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Abstract
Purpose Pelvic X-ray (PXR) is widely utilized in clinical decision-making associated with the pelvis, the lower part of the
trunk that supports and balances the trunk. In particular, PXR-based landmark detection facilitates downstream analysis and
computer-assisted diagnosis and treatment of pelvic diseases. Although PXR has the advantages of low radiation and reduced
cost compared to computed tomography (CT), it characterizes the 2D pelvis-tissue superposition of 3D structures, which
may affect the accuracy of landmark detection in some cases. However, the superposition nature of PXR is implicitly handled
by existing deep learning-based landmark detection methods, which mainly design the deep network structures for better
detection performances. Explicit handling of the superposition nature of PXR is rarely done.
Methods In this paper, we explicitly focus on the superposition of X-ray images. Specifically, we propose a pelvis extraction
(PELE) module that consists of a decomposition network, a domain adaptation network, and an enhancement module, which
utilizes 3D prior anatomical knowledge in CT to guide and well isolate the pelvis from PXR, thereby eliminating the influence
of soft tissue for landmark detection. The extracted pelvis image, after enhancement, is then used for landmark detection.
Results Weconduct an extensive evaluation based on two public and one private dataset, totaling 850 PXRs. The experimental
results show that the proposed PELE module significantly improves the accuracy of PXRs landmark detection and achieves
state-of-the-art performances in several benchmark metrics.
Conclusion The design of PELE module can improve the accuracy of different pelvic landmark detection baselines, which
we believe is obviously conducive to the positioning and inspection of clinical landmarks and critical structures, thus better
serving downstream tasks. Our project has been open-sourced at https://github.com/ECNUACRush/PELEscores.
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Introduction

Pelvis, the foundation of the human torso, is of great signifi-
cance to human health [24]. In clinical decision-making, 2D
pelvic X-rays (PXRs) are widely used due to their low radi-
ation exposure and low cost [30, 34]. To take advantage of
PXRs and improve their clinical utility, research is dedicated
to automatic analysis of PXRs [6, 8, 34]. For instance, PXR
landmark detection, aiming to localize some key anatomi-
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Fig. 1 Pelvic X-ray poses the
superposition problem, which
renders a severe difficulty in
finding landmarks

cal points, plays an essential role in clinical computer-aided
diagnosis and treatment [25, 36, 41]. On the one hand, land-
mark detection can automatically offer key points for clinical
use [4, 20–22]; on the other hand, it can be used for some
downstream analysis tasks, including segmentation [5, 31,
38], registration [12, 26], pathological diagnosis [9, 37], and
surgical planning [33].

Mainstream X-ray landmark detection methods show
powerful performances based on elegant deep network
designs [1, 7, 18, 27, 40]. These methods mainly focus
on (1) designing, for better learning of discriminative fea-
tures, novel network architectures, such as spatial config-
uration network [28], patch-based iterative network [19],
graph-based convolutional neural network based on Cheby-
shev polynomials [10], and context encoding-constrained
network [23]; and (2) developing better landmark represen-
tation and decision-making strategies, such as multi-channel
heatmaps [39] and local voting [35]. However, thesemethods
are still challenged by the so-called pelvis-tissue superposi-
tion, that is, the pelvis can be covered by soft tissues like
large and small intestines, bladder, and urethra (as in Fig. 1),
as they implicitly handle the superposition, which is exempli-
fied by training images. However, the image variations posed
by superposition are so diverse that it is difficult to exhaust
them with limited training data.

In this paper, we take an explicit approach and attempt to
extract the pelvis from a PXR before landmark detection,
therefore addressing the pelvis-tissue superposition chal-
lenge upfront. This is shown in Fig. 2. Specifically, we
first design a PELvis Extraction (PELE) module based on
structural priors in ‘unpaired’ 3D CT images to extract the
pelvis bone from PXRs. The extracted pelvis is further fed

into an enhancement module for extra quality improvement.
The final enhanced pelvis serves as the input of definitive
landmark detection for improved detection accuracy. Our
contributions are as follows:

• To the best of our knowledge, we are the first to focus
on the pelvis-tissue superposition challenge explicitly to
benefit pelvic landmark detection. We propose to relieve
this challenge by performing explicit pelvis extraction
before feeding the image into a landmark detection net-
work.

• The significance of PELE has been demonstrated by
quantitative and qualitative results at different data scales
with different baselines. State-of-the-art (SOTA) pelvic
landmark detection performances have been obtained on
two public datasets and an in-house real-patient dataset.
The landmark detection errors are significantly reduced
with the aid of PELE.

Method

Pelvis extraction (PELE)

As shown in Fig. 3, the PELE module consists of two stages:
(a) the imagedecomposition stagevia FDE and (b) the domain
adaptation via FDA.

Image Decomposition. Ideally, we aim to decompose a 2D
PXR Xraw into a pelvis-only image Xbone and a tissue-only
image X tissue, i.e., Xraw → (Xbone, X tissue) by a learned
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Fig. 2 The existing landmark detection method may have detection
results with significant errors because of the pelvis-tissue supposition
challenge. We break this challenge using the proposed pelvis extraction
(PELE)module, and then the extracted pelvis image is used for accurate
landmark detection. a Process of normal landmark detection. b Process

of landmark detection using PELE module. Note that FDe, FDA, FEnh
and Landmark Network, respectively, refer to (a), (b), (c), and (d) in
Fig. 3. c Some comparison renderings before and after using the PELE
module

deep network. However, such learning is challenging since
no pelvis-only images are paired with 2D PXRs in common
datasets. Therefore, inspired by [2, 13, 16, 17], we resort to
3D prior knowledge in 3D CT and use a 2D digitally recon-
structed radiograph (DRR) image to bridge the gap between
3D CT and 2D PXR.

From a 3D CT volume Vraw with its isolated pelvis part
Vbone, we first create 2D DRR images of Vraw and Vbone,
denoted as Iraw and Ibone, respectively, using the Deep-
DRR [32] algorithm. Then we learn a deep neural network
FDE to perform DRR-based decomposition:

Ibone = FDE(Iraw), (1)

based on an L1 loss function.
To boost the performance of FDE, we introduce bonemask

segmentation as an auxiliary task in addition to bone extrac-
tion. Specifically, in the training dataset, a CT volume Vraw
is associated with the bone mask Vmask annotation; thus the
bone part is obtained via Vbone = Vraw � Vmask, where �
refers to the element-wise product. We project 3D Vmask to

create the projected 2D mask image Imask using DeepDRR.
These images are used in a two-stage operation: (1) First, we
learn two networks, an nnU-Net F1 and a U-Net F2. Both
take the 2D DRR image Iraw as input, the nnU-Net outputs
Imask, and the U-Net outputs Ibone; (2) Then, we take their
product Imask � Ibone as the final bone prediction Îbone.

Imask = F1(Iraw); Ibone = F2(Iraw); Îbone
= FDE(Iraw) = Imask � Ibone. (2)

Domain Adaptation. The DRR image has the same size as
the PXR, but there is a domain gap between DRR and PXR;
hence, the decomposition model FDE cannot be directly
applied to the PXR Xraw. To further narrow the domain
gap between them, we resort to domain adaptation (DA).
Specifically, we utilize the CycleGAN [42] as our DA back-
bone, which learns a forward mapping network FDA from
the PXR to the DRR and an auxiliary inverse mapping
Iraw = FDA(Xraw). Finally, the predicted pelvis for Xraw,
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Fig. 3 a, b The diagram of the proposed PELvis Extraction (PELE) module. c The enhancement module. d The landmark detection flow

denoted by Xbone, is given by

Xbone = FDE( Îbone) = FDE(FDA(Xraw)). (3)

Pelvis enhancement

The Xbone generated from FDE sometimes contains artifacts,
especially in the ‘dark’, less-penetrated areas like hip bones,
sacrum bones, and tail bones, which affect the subsequent
diagnosis. To solve this, we propose an enhancement mod-
ule to obtain the final result, XboneEnh, as in Fig. 3c. Firstly,
we smooth the transition and normalization of the pelvic con-
tour edge in the Xbone to get processed pelvic bone XbonePre;
we use the Gaussian filter as a low-pass filter for a smooth
transition.

XbonePre = N [G (Xmask) � Xbone] , (4)

where Xbone denotes the pelvis extracted from Xraw before,
Xmask denotes the binary mask of bone, N denotes the nor-
malization operator, andG denotes a low-pass filter operation
(e.g., Gaussian filter). Then we multiply the XbonePre with

Xraw to obtain the image containing PXR details and per-
form the tone mapping operations (e.g., Gamma correction)
to compress the dynamic range of dark areas to show the
details clearly. The final enhanced image is XboneEnh.

Pelvic landmark detection

As shown in Fig. 3d, we use the enhanced pelvis image
XboneEnh to train a landmark detection network �. Firstly,
we annotate landmark labels on Xraw, which are used to gen-
erate the ground truth (GT) heatmaps Hgt.Given an annotated
landmark position (x0, y0), its GT heatmap Hgt(x, y) is for-
mulated as

Hgt(x, y) = 1√
2πσ

exp

{
− (x − x0)2 + (y − y0)2

2σ 2

}
, (5)

where σ represents the standard deviation of the Gaussian
distribution, which dictates the shape and intensity values of
the heatmap. As a critical hyperparameter, we empirically
determine its optimal value to be 3 based on our experi-
ments and analysis. Then, we train the detection network
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with XboneEnh supervised by GT heatmaps Hgt. As XboneEnh

and Xraw share the same imaging grid, the predicted land-
marks can be directly applied to the original image Xraw.

This work, uses two landmark baselines, U-Net [29], and
GU2Net [41]. U-Net [29] is a popular baseline in medical
analysis, and GU2Net [41] is a universal model for landmark
detection, which combines local features and global context
information. We use the cross-entropy loss to optimize the
above networks. After obtaining the predicted heatmap, we
apply argmax to extract coordinates of the strongest response
as predicted landmarks.

Experiment

Settings

Datasets. For CT datasets, we use the public dataset
CTPelvic1K [24], which contains 1184 volumes (over 320K
slices).Weuse theDeepDRR[32] algorithm togenerateDRR
images and resize them to 512 × 512 based on a bilinear
interpolation. Finally, we generate 919 DRR images to train
FDA, and select 200 high-quality images to train FDE. For
PXRs, we curate 850 images from three sources. Dataset1:
open-source CGMH-PelvisSeg, provided by CGMHai Lab,1

which contains 400 high-resolution PXRs. Dataset2: A 150-
image open-source dataset provided by [8].2 Dataset3: An
in-house dataset of 300 images we retrospectively collect
fromcooperative hospitalswith the institutional reviewboard
(IRB) policies of contributing sites. All data are under Cre-
ative Commons license CC-BY-NC-SA at least, and we will
keep the license unchanged. To handle varying sizes of these
images, we resize them to 512 × 512.

Implementation Details. The decomposition network FDE
consists of nnU-Net and U-Net. For domain adaptation net-
work FDA, the generators GD and GX both use a 9-block
ResNet, while DD and DX use PatchGAN [42]. For the
decomposition network FDE, we train 1000 epochs using the
basic setup of nnU-Net [14]. For U-Net [29], we use Adam
optimizer with an initial learning rate of 2e−4 and a batch
size of 16. FDA is trained for 200 epochs; reasonable results
are obtained after 100 epochs. λcycle is increased to 15 to
reduce the data limitation’s effect and obtain good results.
Both FDE and FDA are implemented based on an RTX3090
GPU. Training FDE takes about 20h, and training FDA takes
approximately 30h. For landmark detection, we refer to the
setting of [41]: 3×3 convolution followed by batch normal-
ization and leaky RELU activation. The batch size is set
to 4, the learning rate (LR) is [1e−4, 1e−2], and a cyclic

1 https://www.kaggle.com/datasets/tommyngx/cgmh-pelvisseg.
2 This paper makes only 150 images public.

scheduler is used to decrease LR within this interval. Binary
cross-entropy (BCE) loss and Adam optimizer are used. The
dataset is randomly divided into 7/1/2 for train/val/test.

The extraction performance of the PELEmodule

We first test the decomposition performance of the PELE
module. We use commonly used metrics for segmenta-
tion evaluation: Structural Similarity (SSIM) to measure the
structural consistency, Learned Perceptual Image Patch Sim-
ilarity (LPIPS) tomeasure image block similarity, Dice Score
and Hausdorff Distance (the 95th percentile or HD95) to
measure the effectiveness of the extracted bone from the
PELE module. The pelvic areas of 100 PXRs are manually
marked using LabelMe3 by a medical imaging practitioner
with five years of experience. Themarking approach involves
an approximation technique where polylines are used to rep-
resent curves.

We compare two baselines: U-Net and CycleGAN. The
U-Net takes a PXR Xraw as an input directly into the decom-
position FDE network to obtain the extracted bone Xbone.
The CycleGAN, different from Eq. (3), directly trains a net-
work that maps between Xraw and Xbone. Note that Xbone are
not readily available. Our previous experiments indicate that
among the various metrics evaluated, PSNR (peak signal-
to-noise ratio) shows the strongest correlation with image
quality. Consequently, we utilize PSNR as the primary cri-
terion for sorting images generated by PELE. Subsequently,
a medical imaging practitioner with five years of experience
selects 297 PXRs, prioritizing image quality and particularly
focusing on the completeness of the images, to align with the
number of training sets used in our experiment.

From Table 1, we perceive that PELE outperforms the
baseline by a large margin: SSIM and LPIPS reach 0.923
and 0.083, respectively. In Fig. 4 as well as in Fig. 2c, we
show the visualization of different modules: The bone is well
separated from the soft tissue in PELE. At the same time,
comparing results before and after using the enhancement
module, FEnh, we observe that less-penetrated areas such as
hip bones, sacrum bones, and tail bones are more visible,
which proves that FEnh is also instrumental.

In order to further evaluate whether the bone extraction
results can help to find the landmarks useful for clinical
decision making, such as deriving the H-line and acetabular
index [15].We conduct subjective experimentswith an ortho-
pedic surgeon with more than 20 years of clinical experience
(D1) and a medical imaging practitioner with five years of
experience (D2).We request them to score the original image
Xraw, bone extraction image Xbone, and enhancement image
XboneEnh using a subjective score of 1 (or 5), meaning that
the image provides the lowest (or highest) diagnostic value.

3 https://github.com/wkentaro/labelme.
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Table 1 Performance evaluation
of the pelvis extraction module
from PXRs

Dice↑ HD95↓ SSIM↑ LPIPS↓ PSNR(dB)↑
U-Net [29] 0.809 54.056 0.565 0.515 12.331

CycleGAN [42] 0.606 59.327 0.616 0.351 13.796

PELE 0.945 34.723 0.923 0.083 21.856

PELE (w/o Enh) 0.945 34.723 0.827 0.177 16.934

The ‘w/o Enh’ option means without enhancement, so the Dice and HD95 metrics are the same as the first
row. The best result is in bold, and the second best is underlined

Fig. 4 Visualization of the
results obtained by the PELE
module. We choose images with
different datasets, shapes, and
superposition degrees to
demonstrate the qualitative
effect better. At the same time,
we compare the impact before
and after using the enhancement
network FEnh, proving the FEnh
is also indispensable
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Images with higher scores are of higher quality and more
helpful in locating landmarks needed in clinical decision
making.

To reduce the inconsistencies and uncertainties, we do
the following settings: the experiment is performed four
times over different durations: workday morning, workday
evening, weekend morning, and weekend evening. We ran-
domly select 15% of PXRs for testing each time to ensure
unbiased selection.

The test results are listed in Table 2: Our method obtains
mean scores of 4.23 (D1), 4.31 (D2) (before FEnh), 4.52 (D1),
and 4.55 (D2) (after FEnh), Both have significant improve-
ments over Xraw.

The performance of landmark detection

We select 14 corresponding landmarks according to CE
Angle, acetabular index, H-line, and Perkin quadrant [20,
21, 34], which are commonly used in clinical auxiliary diag-
nosis, as shown in Fig. 2b. All images are annotated by a
pelvic surgeon with over ten years of experience and reex-
amined by D2, whomainly examines the locations that make
up the CE Angle, acetabular index, H-line, etc., and makes
corrections, if necessary, after consultation with D1.

For evaluation, we use mean radial error (MRE) to mea-
sure the Euclidean distance between ground truth and the
predicted result and successful detection rate (SDR) in 4 radii
of 3, 4, 6, and 9 pixels(px) in Tables 3 and 4 radii of 2, 2.5,
3, 4mms(mm) in Table 4. We report Dataset3 separately in
mm and compare it with other methods, as shown in Table 4.

Tables 3 and 4 show quantitative performances of differ-
ent baselines before and after using PELE. To reflect the
robustness of the model with various data scales, we train
our model using 12.5%(107), 25%(213), and 50%(425) of
training data with a simple cross-validation strategy and ver-
ify the comprehensive effectiveness of the PELE module.
When training with only 107 PXRs (12.5% of all PXRs), the
MRE improvement is particularly significant, with a gain of
more than 200% over the baseline, demonstrating that PELE
is potentially a huge advantage for small datasets. GU2Net
does not achieve the best results here, mainly because its
training here does not use datasets of multiple organs, so its
effect degenerates into an ordinary U-Net.

When trained with 50% data (i.e., 425 PXRs), our method
achieves 1.83 MRE and 94.41% SDR within a 9px distance.
Also, PELE works well with different baselines (i.e., U-Net,
GU2Net), shows good generalization, and can be applied to
other baselines. However, our results present a large varia-
tion as the standard deviation reaches 9.32px. This is due to
the presence of extreme superposition in some PXRs such as
those in Fig. 1, and even our experts admit that they have diffi-
cultymarking the landmarks well.We also select ten extreme
case PXRs and ten normal case PXRs for landmark marking

by D1 and D2, respectively. Then we calculate the difference
in terms of MRE labeled by two experts on extreme case
PXRs and normal case PXRs. The result is that the MRE on
normal case PXRs is 1.42px, which is far less than 3.86px on
extreme casePXRs, proving the difficulty of labeling extreme
case PXRs from an inter-expert perspective.

It is evident that the PELE module brings performance
improvement in landmark detection, especially comparing
the difference before and after using the PELE module. Fur-
thermore, our model also reaches state-of-the-art results in
terms of absolute values. As shown in Table 4, the last four
rows present the landmark detection performances of seven
competing methods [3, 20, 21, 25]. It is challenging to give
an entirely fair comparison as different methods use different
protocols and datasets; nevertheless, our MRE of 0.71 mm
trained with only 425 PXRs compares favorably to the MRE
of 0.93 mm by Liu et al. [20], trained with 8000 PXRs as
shown in Table 4.

As shown in Fig. 5, the pink points represent ground
truth, and the blue points represent predictions. Obviously,
the detected landmarks have been much better localized after
PELE is used, in the sense that, after using the PELEmodule,
the distance between the predicted point and the real point
becomes smaller visually.

Discussion

In this study, we develop the PELE for extracting pelvis
bones in the PXRs and achieve state-of-the-art performance
in the landmark detection experiment. Our proposed PELE is
specially designed to handle the challenges of pelvis-tissue
superposition and is inspired by othermachine-learning tasks
on other organs like the abdomen and chest, e.g., suppressing
ribs to improve lung disease classification or detection [13,
17], enhance the model with realistic simulated images [11]
using DeepDRR. We thought of using a decomposition
network to separate the soft tissue from the pelvis bone,
which is the prototype of our idea. In the design, it was
found that merely FDE cannot make good use of the struc-
tural knowledge of CT, so the intermediary of DeepDRR is
used. CycleGAN [42] is a widely used method for domain
adaptation by constructing the mapping of the source-target
domains. In the proposed PELE, the structural features of
DRR images are adaptively transferred to PXRs using Cycle-
GAN as FDA network. Finally, we design a FEnh module to
enhance the image by filtering and tone mapping, aiming
at the problem that sometimes contains artifacts in the hip,
sacrum, tail, and other parts. Sufficient experiments prove
that our method not only achieves the state-of-art result but
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Table 2 The score of original
image Xraw, bone extraction
image Xbone, and enhancement
image XboneEnh by D1 and D2

Dataset1 Dataset2 Dataset3
Xbone XboneEnh Xraw Xbone XboneEnh Xraw Xbone XboneEnh Xraw

D1 4.26 4.54 4 4.15 4.50 4 4.28 4.52 4

D2 4.38 4.61 4 4.23 4.45 4 4.33 4.59 4

The score of 1 (or 5) provides the lowest (or highest) diagnostic value. Note that we artificially set the score
of Xraw to 4 for easier comparison

Table 3 Performances of
different landmark detection
models before and after using
the PELE module

Models Training MRE STD SDR (%)
Data (px) (px) 3px 4px 6px 9px

GU2Net [41] 107 11.64 30.79 52.40 67.34 82.84 90.50

GU2Net with PELE 107 4.85 12.95 53.43 67.40 83.40 91.30

U-Net [29] 107 10.70 30.99 51.12 66.13 81.82 90.07

U-Net with PELE 107 4.74 14.33 52.79 66.42 83.17 91.52

GU2Net [41] 213 6.66 23.44 54.30 70.00 85.97 92.26

GU2Net with PELE 213 4.39 11.12 54.53 70.71 85.99 93.04

U-Net [29] 213 6.98 22.01 52.30 68.05 83.45 91.30

U-Net with PELE 213 4.72 10.65 53.70 69.27 84.51 92.24

GU2Net [41] 425 3.81 20.53 56.54 73.10 87.04 93.35

GU2Net with PELE 425 2.01 9.75 56.89 73.49 88.14 94.41

U-Net [29] 425 3.41 19.48 55.17 72.63 86.65 92.70

U-Net with PELE 425 1.83 9.32 55.49 73.18 87.33 93.38

The best results are in bold, and the second best results are underlined

Table 4 Performances of
different landmark detection
models before and after using
the PELE module

Models Training MRE SDR (%)
Data (mm) 2mm 2.5mm 3mm 4mm

GU2Net[41] 425 1.95 84.79 90.56 95.36 96.10

GU2Net with PELE 425 1.03 85.28 90.83 96.21 97.13

U-Net[29] 425 1.32 85.17 90.43 95.07 95.92

U-Net with PELE 425 0.71 85.92 90.75 96.02 96.74

Liu et al. [25]* 566 2.10 84.73 90.89 92.57 96.55

Liu et al. [21]* 7710 1.24 83.85 – 95.18 –

Liu et al. [20]* 8000 0.93 84.29 90.36 95.83 –

Benjamin et al. [3]* 122 2.60 – – – –

The difference with Table 3 is that we reports the physical distance (mm) here. The best results are in bold,
and the second best results are underlined. –: No experimental results can be found in the original paper. ∗:
The performances that are copied from the original paper

also applies to various backbones and can have correspond-
ing improvements.

Ablation StudyWe provide ablation experiments of the key
component modules of our proposed approach: FDE, FDA,
and FEnh.We compare the quantitative results with and with-
out these modules, using SSIM and PSNR to evaluate image
quality, MRE and SDR to measure landmark detection effec-
tiveness. 425 PXRs are used to train the model, and only 9px

distance is selected for SDR. An U-Net is used as the back-
bone of landmark detection.

The results in Tables 3 and 4 show that when only FDE or
FDA module is used to form PELE, the landmark detection
performance (e.g.,MRE=5.83px for FDE andMRE=6.81px
for FDA) is even worse than that of directly using the baseline
model (e.g., U-Net). This is because the extracted Xbone lacks
a lot of details, and there are problems such as incomplete soft
tissue elimination. However, when FDE and FDA networks
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Fig. 5 Visualizations of different approaches under 213 training data
setting. The blue points represent the predicted landmarks, while the
pink points denote the ground truth labels. The corresponding local

details are shown in the following line to demonstrate the results better.
The MRE value is displayed on the top left for comparison

are combined, both image quality and landmark detection
performances are greatly improved, achieving 2.07px MRE
and 93.29% SDR within a 9px distance, which indicates
that both FDE and FDA are indispensable. The FEnh mainly
enhances the detail information, so the quality indicators such
as PSNR and SSIM are improved more greatly and the land-
mark detection performances reach 1.83pxMREand 93.38%
SDR within a 9px distance, which indicate a small improve-
ment (Table 5).

Conclusion

In this paper, we propose a two-stagemodel, PELE, via learn-
ing from the prior structural knowledge of CT to separate
the soft tissue and bone from the 2D PXRs and increase the
accuracy of landmark detection. In order to better capture the
details of the pelvis, we further design a bone enhancement
network as post-processing to enhance the details. We per-
form extensive experiments on multiple PXR datasets, and
both qualitative and quantitative results show superiority over
the competing methods. We believe that the PELE module,
which is suitable for landmark detection, also has a positive
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Table 5 Ablation study on
different modules

Baseline FDE FDA FEnh MRE STD SDR(9px) SSIM PSNR(dB)

� 3.41 19.48 92.70 – –

� 5.83 19.75 91.08 0.565 12.331

� 6.81 20.83 90.87 0.616 13.796

� � 2.07 13.71 93.29 0.827 16.934

� � � 1.83 9.32 93.38 0.923 21.856

The best result is in bold, and the second best is underlined. Baseline is a U-Net model which can be referred
in Table 3

significance in the diagnosis and treatment of other clinical
tasks, which we plan to investigate in future.

Funding This work was supported byNatural Science Foundation
of Chinaunder Grant62271465andOpen Fund Project of Guangdong
Academy of Medical Sciences, China(No.YKY-KF202206).

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.
The IRB approval is obtained.

Informed consent For the in-house data sets retrospectively collected,
there is no informed consent needed.

References

1. Alansary A, Oktay O, Li Y, Le Folgoc L, Hou B, Vaillant G, Kam-
nitsas K, Vlontzos A, Glocker B, Kainz B, Rueckert D (2019)
Evaluating reinforcement learning agents for anatomical landmark
detection. Med Image Anal 53:156–164

2. Aubert B, Cresson T, De Guise J, Vazquez C (2022) X-ray to DRR
images translation for efficientmultiple objects similaritymeasures
in deformablemodel 3D/2D registration. IEEETransMed Imaging
42(4):897–909

3. Aubert B, Vazquez C, Cresson T, Parent S, DeGuise J (2016) Auto-
matic spine and pelvis detection in frontal X-rays using deep neural
networks for patch displacement learning. In: 2016 IEEE 13th
international symposium on biomedical imaging (ISBI). IEEE, pp
1426–1429

4. Avisdris N, Joskowicz L, Dromey B, David AL, Peebles DM,
StoyanovD, BenBashat D, Bano S (2022) Biometrynet: landmark-
based fetal biometry estimation from standard ultrasound planes.
In: International conference on medical image computing and
computer-assisted intervention. Springer, pp 279–289

5. Barbu A, Suehling M, Xu X, Liu D, Zhou SK, Comaniciu D
(2010) Automatic detection and segmentation of axillary lymph
nodes. In: International conference on medical image computing
and computer-assisted intervention. Springer, pp 28–36

6. Bier B, Unberath M, Zaech JN, Fotouhi J, Armand M, Osgood
G, Navab N, Maier A (2018) X-ray-transform invariant anatomi-

cal landmark detection for pelvic trauma surgery. In: International
conference on medical image computing and computer-assisted
intervention. Springer, pp 55–63

7. Browning J, Kornreich M, Chow A, Pawar J, Zhang L, Herzog R,
Odry BL (2021) Uncertainty aware deep reinforcement learning
for anatomical landmark detection in medical images. In: Medi-
cal image computing and computer assisted intervention–MICCAI
2021: 24th international conference, Strasbourg, France, Septem-
ber 27–October 1, 2021, Proceedings, Part III 24. Springer, pp
636–644

8. ChengCT,WangY,ChenHW,HsiaoPM,YehCN,HsiehCH,Miao
S, Xiao J, Liao CH, Lu L (2021) A scalable physician-level deep
learning algorithm detects universal trauma on pelvic radiographs.
Nat Commun 12(1):1066

9. Duan J, Bello G, Schlemper J, BaiW,Dawes TJ, Biffi C, deMarvao
A, Doumoud G, O’Regan DP, Rueckert D (2019) Automatic 3D
bi-ventricular segmentation of cardiac images by a shape-refined
multi-task deep learning approach. IEEE Trans Med Imaging
38(9):2151–2164

10. Elkhill C, LeBeau S, French B, Porras AR (2022) Graph convolu-
tional network with probabilistic spatial regression: application to
craniofacial landmark detection from3dphotogrammetry. In: Inter-
national conference on medical image computing and computer-
assisted intervention. Springer, pp 574–583

11. Gao C, Killeen BD, Hu Y, Grupp RB, Taylor RH, Armand M,
Unberath M (2023) Synthetic data accelerates the development of
generalizable learning-based algorithms for X-ray image analysis.
Nat Mach Intell 5(3):294–308

12. Ge J, Saeidi H, Opfermann JD, Joshi AS, Krieger A (2019)
Landmark-guided deformable image registration for supervised
autonomous robotic tumor resection. In: Medical image com-
puting and computer assisted intervention–MICCAI 2019: 22nd
international conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part I 22. Springer, pp 320–328

13. Han L, Lyu Y, Peng C, Zhou SK (2022) Gan-based disentangle-
ment learning for chest X-ray rib suppression. Med Image Anal
77:102369

14. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH
(2021) nnU-Net: a self-configuringmethod for deep learning-based
biomedical image segmentation. Nat Methods 18(2):203–211

15. Karnik A, Lawande A, Lawande MA, Patkar D, Aroojis A, Bhat-
nagar N (2021) Practice essentials of imaging in early diagnosis of
DDH. Indian J Orthop 55:1–14

16. Kasten Y, Doktofsky D, Kovler I (2020) End-to-end convolu-
tional neural network for 3D reconstruction of knee bones from
bi-planar X-ray images. In: Machine learning for medical image
reconstruction: third international workshop, MLMIR 2020, held
in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020,
Proceedings 3. Springer, pp 123–133

123



International Journal of Computer Assisted Radiology and Surgery (2024) 19:939–950 949

17. Li H, Han H, Li Z, Wang L, Wu Z, Lu J, Zhou SK (2020)
High-resolution chest X-ray bone suppression using unpaired CT
structural priors. IEEE Trans Med Imaging 39(10):3053–3063

18. Li W, Lu Y, Zheng K, Liao H, Lin C, Luo J, Cheng CT, Xiao
J, Lu L, Kuo CF, Miao S (2020) Structured landmark detection
via topology-adapting deep graph learning. In: Computer vision–
ECCV 2020: 16th European conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part IX 16. Springer, pp 266–283

19. Li Y, Alansary A, Cerrolaza JJ, Khanal B, Sinclair M, Matthew
J, Gupta C, Knight C, Kainz B, Rueckert D (2018) Fast multi-
ple landmark localisation using a patch-based iterative network.
In: Medical image computing and computer assisted intervention–
MICCAI 2018: 21st international conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part I. Springer, pp 563–571

20. Liu C, Xie H, Zhang S, Mao Z, Zhang Y (2020) Misshapen pelvis
landmark detection with local-global feature learning for diagnos-
ing developmental dysplasia of the hip. IEEE Trans Med Imaging
39(99):1–1

21. Liu C, Xie H, Zhang S, Xu J, Sun J, Zhang Y (2019) Misshapen
pelvis landmark detection by spatial local correlation mining for
diagnosing developmental dysplasia of the hip. In: Medical image
computing and computer assisted intervention–MICCAI 2019:
22nd international conference, Shenzhen, China, October 13–17,
2019, Proceedings, Part VI 22. Springer, pp 441–449

22. Liu D, Zhou SK, Bernhardt D, Comaniciu D (2010) Search strate-
gies for multiple landmark detection by submodular maximization.
In: 2010 IEEE conference on computer vision and pattern recog-
nition (CVPR). IEEE, pp 2831–2838

23. Liu J, Xing F, Shaikh A, Linguraru MG, Porras AR (2022) Learn-
ing with context encoding for single-stage cranial bone labeling
and landmark localization. In: International conference on medical
image computing and computer-assisted intervention. Springer, pp
286–296

24. Liu P, Han H, Du Y, Zhu H, Li Y, Gu F, Xiao H, Li J, Zhao C, Xiao
L, Wu X, Zhou S (2021) Deep learning to segment pelvic bones:
large-scale CT datasets and baseline models. Int J Comput Assist
Radiol Surg 16:749–756

25. LiuW,WangY, JiangT,ChiY,ZhangL,HuaXS (2020)Landmarks
detection with anatomical constraints for total hip arthroplasty
preoperative measurements. In: Medical image computing and
computer assisted intervention–MICCAI 2020: 23rd international
conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV
23. Springer, pp 670–679

26. Mader AO, von Berg J, Fabritz A, Lorenz C, Meyer C (2018)
Localization and labeling of posterior ribs in chest radiographs
using a CRF-regularized FCN with local refinement. In: Medi-
cal image computing and computer assisted intervention–MICCAI
2018: 21st international conference, Granada, Spain, September
16–20, 2018, Proceedings, Part II 11. Springer, pp 562–570

27. Noothout JM, De Vos BD, Wolterink JM, Postma EM, Smeets
PA, Takx RA, Leiner T, Viergever MA, Išgum I (2020) Deep
learning-based regression and classification for automatic land-
mark localization in medical images. IEEE Trans Med Imaging
39(12):4011–4022

28. Payer C, Štern D, Bischof H, Urschler M (2016) Regressing
heatmaps formultiple landmark localization usingCNNs. In: Inter-
national conference on medical image computing and computer-
assisted intervention. Springer, pp 230–238

29. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional
networks for biomedical image segmentation. In: Medical image
computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5–9,
2015, Proceedings, Part III 18. Springer, pp 234–241

30. Ruiz SantiagoF, SantiagoChinchillaA,AnsariA,GuzmánÁlvarez
L, Castellano García MdM, Martínez Martínez A, Terce-
dor Sánchez J (2016) Imaging of hip pain: from radiography

to cross-sectional imaging techniques. Radiol Res Pract 2016,
6369237

31. Sofka M, Wetzl J, Birkbeck N, Zhang J, Kohlberger T, Kaftan
J, Declerck J, Zhou SK (2011) Multi-stage learning for robust
lung segmentation in challenging CT volumes. In: International
conference on medical image computing and computer-assisted
intervention. Springer, Berlin, pp 667–674

32. Unberath M, Zaech JN, Lee SC, Bier B, Fotouhi J, Armand M,
Navab N (2018) Deepdrr—a catalyst for machine learning in
fluoroscopy-guided procedures. In: Medical image computing and
computer assisted intervention–MICCAI 2018: 21st international
conference, Granada, Spain, September 16–20, 2018, Proceedings,
Part IV 11. Springer, pp 98–106

33. Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Van-
daele R, Marée R, Jodogne S, Geurts P, Chen C, Zheng G, Chu
C, Mirzaalian H, Hamarneh G, Vrtovec T, Bulat I (2015) Evalu-
ation and comparison of anatomical landmark detection methods
for cephalometric X-ray images: a grand challenge. IEEE Trans
Med Imaging 34(9):1890–1900

34. Wang Y, Lu L, Cheng CT, Jin D, Harrison AP, Xiao J, Liao
CH, Miao S (2019) Weakly supervised universal fracture detec-
tion in pelvic X-rays. In: Medical image computing and computer
assisted intervention–MICCAI 2019: 22nd international confer-
ence, Shenzhen, China, October 13–17, 2019, Proceedings, Part
VI 22. Springer, pp 459–467

35. Xu J, Xie H, Liu C, Yang F, Zhang S, Chen X, Zhang Y (2021) Hip
landmark detection with dependency mining in ultrasound image.
IEEE Trans Med Imaging 40(12):3762–3774

36. Yao Q, Quan Q, Xiao L, Kevin Zhou S (2021) One-shot medical
landmark detection. In: Medical image computing and computer
assisted intervention–MICCAI 2021: 24th international confer-
ence, Strasbourg, France, September 27–October 1, 2021, Proceed-
ings, Part II 24. Springer, pp 177–188

37. Zhang J, Liu M, Shen D (2017) Detecting anatomical landmarks
from limited medical imaging data using two-stage task-oriented
deep neural networks. IEEE Trans Image Process 26(10):4753–
4764

38. Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, Shen SGF, Tang
Z, Chen KC, Xia JJ, Shen D (2020) Context-guided fully convo-
lutional networks for joint craniomaxillofacial bone segmentation
and landmark digitization. Med Image Anal 60:101621

39. Zhong Z, Li J, Zhang Z, Jiao Z, Gao X (2019) An attention-guided
deep regression model for landmark detection in cephalograms.
In: Medical image computing and computer assisted intervention–
MICCAI 2019: 22nd international conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part VI 22. Springer, pp 540–
548

40. Zhou XY, Lai B, Li W, Wang Y, Zheng K, Wang F, Lin C, Lu L,
HuangL,HanM,XieG,Xiao J,KuoCf,HarrisonA,Miao S (2021)
Scalable semi-supervised landmark localization for X-ray images
using few-shot deep adaptive graph. In: Deep generative models,
and data augmentation, labelling, and imperfections: first work-
shop, DGM4MICCAI 2021, and first workshop, DALI 2021, held
in conjunction with MICCAI 2021, Strasbourg, France, October 1,
2021, Proceedings 1. Springer, pp 145–153

41. ZhuH,YaoQ,XiaoL,ZhouSK (2021)Youonly learn once: univer-
sal anatomical landmark detection. In: Medical image computing
and computer assisted intervention–MICCAI 2021: 24th interna-
tional conference, Strasbourg, France, September 27–October 1,
2021, Proceedings, Part V 24. Springer, pp 85–95

42. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Pro-
ceedings of the IEEE international conference on computer vision,
pp. 2223–2232

123



950 International Journal of Computer Assisted Radiology and Surgery (2024) 19:939–950

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	PELE scores: pelvic X-ray landmark detection with pelvis extraction and enhancement
	Abstract
	Introduction
	Method
	Pelvis extraction (PELE)
	Pelvis enhancement
	Pelvic landmark detection

	Experiment
	Settings
	The extraction performance of the PELE module
	The performance of landmark detection

	Discussion
	Conclusion
	References




