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Abstract
Backdoor defense is crucial to ensure the safety
and robustness of machine learning models when
under attack. However, most existing methods
specialize in either the detection or removal of
backdoors, but seldom both. While few works
have addressed both, these methods rely on strong
assumptions or entail significant overhead costs,
such as the need of task-specific samples for detec-
tion and model retraining for removal. Hence, the
key challenge is how to reduce overhead and re-
lax unrealistic assumptions. In this work, we pro-
pose two Energy-Based BAckdoor defense meth-
ods, called EBBA and EBBA+, that can achieve
both backdoored model detection and backdoor
removal with low overhead. Our contributions
are twofold: First, we offer theoretical analysis
for our observation that a predefined target label
is more likely to occur among the top results for
various samples. Inspired by this, we develop an
enhanced energy-based technique, called EBBA,
to detect backdoored models without task-specific
samples (i.e., samples from any tasks). Secondly,
we theoretically analyze that after data corruption,
the original clean label of a poisoned sample is
more likely to be predicted as a top output by the
model, a sharp contrast to clean samples. Accord-
ingly, we extend EBBA to develop EBBA+, a new
transferred energy approach to efficiently detect
poisoned images and remove backdoors without
model retraining. Extensive experiments on mul-
tiple benchmark datasets demonstrate the superior
performance of our methods over baselines in
both backdoor detection and removal. Notably,
the proposed methods can effectively detect back-
doored model and poisoned images as well as
remove backdoors at the same time.

1China University of Petroleum 2Hunan University 3College
of William & Mary. Correspondence to: Honglong Chen
<chenhl@upc.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Table 1. Whether a defense technique is model uncontrolled (MU)
or can help backdoor detection in poisoned model (BD), trigger
detection in poisoned image (TD), backdoor removal (BR) and not
need task-specific samples (NTS) or model retraining (NMR).

Defense MU BD TD BR NTS NMR

MEDIC ✗ ✗ ✗ ✓ ✗ ✗
ANP ✗ ✗ ✗ ✓ ✓ ✗
TeCo ✓ ✓ ✓ ✗ ✗ N/A
RNP ✗ ✓ ✗ ✓ ✗ ✗

Unicorn ✗ ✓ ✓ ✗ ✓ N/A
SCALE ✓ ✓ ✓ ✗ ✗ N/A

ZIP ✓ ✗ ✗ ✓ ✗ ✓
EBBA (ours) ✓ ✓ ✓ ✓ ✓ ✓

1. Introduction
Backdoor attacks refer to adversaries purposely manipulate
either training data or model parameters to achieve accurate
predictions on clean data while triggering predefined pre-
dictions on poisoned data (Gu et al., 2017). Such attacks
pose a severe security threat to the safety and robustness
of deep neural networks (DNNs), thereby hindering their
widespread deployment in safety-critical applications such
as health care and autonomous driving.

A plethora of methods have been developed to defend
against backdoor attacks. In general, existing defense meth-
ods can be categorized into two types: backdoor detection
and backdoor removal (Li et al., 2023b). The backdoor
detection methods assess whether a model contains a back-
door (Wang et al., 2019) or if a sample contains a backdoor
trigger (Guo et al., 2022; Zeng et al., 2021) while removal
techniques aim to purify backdoored models by restoring
their performance to that of a uncompromised model (Xu
et al., 2023).

However, most existing works excel in either backdoor de-
tection or backdoor removal. Solely detecting backdoors
without removing them does not entirely address the security
issue. Conversely, removing backdoors without detection
lacks logical soundness. Only a few studies (Wang et al.,
2019) have tackled both detection and removal, but they of-
ten rely on strong assumptions or incur high overhead, such
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Figure 1. Location index statistical results for the target label and a
clean label (label 35) on a dataset. The dataset is selectively chosen
on Cifar10 and ImageNet to ensure a uniform distribution in the
model outputs. The x-axis represents the position at which the
labels are observed in the model’s output. The output distribution
of the selected dataset for the clean label is uniform. As for the
target label manipulated by an attacker, it is present in the top
positions in the results of the backdoored model, though it does
not appear in the first position (since the image may not be fully
poisoned). This indicates that despite the absence of poisoned
samples in the input, the model’s output still exhibits anomalies.

as the need of poisoned/clean images (Liu et al., 2023) or
model retraining (Li et al., 2023a) (Table 1 summarizes these
limitations). In many real-world applications, accessing
such resources is impractical. For instance, users typically
interact with cloud-based models where model retraining is
infeasible. Additionally, obtaining poisoned data for back-
door detection is usually not possible, as attackers often
launch attacks at critical times, such as when autonomous
vehicles encounter a poisoned road sign. These constraints
severely limit the generalizability and practicality of current
backdoor defenses. Therefore, the key challenge is how to
mitigate these unrealistic assumptions to achieve effective
and low-cost backdoor defense.

In this work, we propose two energy-based backdoor de-
fense methods, called EBBA and EBBA+ 1, that enable
the detection of backdoored models without task-specific
samples and the removal of backdoors without model retrain-
ing. Here task-specific samples refer to clean or poisoned
samples related to current tasks. Before introducing our
methods, we share two insights that inspire us to develop
our method. Insight 1: as shown in Fig. 1, we can see
that the backdoored model can accurately classify the clean
(even out-of-distribution) samples, but the predefined target
label still has a higher likelihood of appearing among the
top results. We also offer theoretical analysis to verify it
in Appendix A. From the perspective of energy model (Liu
et al., 2020), this suggests that the energy corresponding
to the attacker’s predefined target label tends to be greater

1codes: https://github.com/ifen1/EBBA
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Figure 2. Location index statistical results on a set of images that
are generated by a same poisoned image with 80 image corruption
methods. The original location output of the poisoned image for
target label, ground-truth label and another randomly selected clean
label are 0 (since the image is poisoned), 6 and 7 respectively. After
the poisoned image undergoes image corruption, its ground-truth
label in the output has clearly shifted forward to the top results
(with the portion less than 6 exceeding 90%). A small portion of
the target label has shifted backward, while the randomly selected
clean labels in the output remain largely unchanged.

than that of other labels (except for the label assigned to
the sample by the poisoned model). Insight 2: as seen in
Fig. 2, after data corruption, the original clean label of the
poisoned sample is more likely to shift forward to the top
outputs of the model while the target label shift backward,
which is theoretically proved in Appendix C. This indicates
that the energy concerning the output of a poisoned image
transfers from the target label to the clean label after data
corruption.

Our Contributions. Based on the above insights, we in-
troduce two novel energy-based models for backdoor de-
tection and removal. Inspired by insight 1, we develop an
energy-based backdoor detection approach, called EBBA,
that computes the energy of each label from a task-agnostic
dataset (on Internet). If a label exhibits exceptionally high
energy scores, we identify it as a poisoned sample. By
doing this, we can detect the backdoored model without
task-specific samples. According to insight 2, we extend
EBBA to propose a new EBBA+ based on transferred en-
ergy to quantify the energy transfer phenomenon. This
technique enables to accomplish poisoned images detection
and backdoor removal without model retraining. Extensive
experiments on three benchmark datasets demonstrate that
the proposed methods outperform the baselines in both back-
door detection and backdoor removal with low overhead.
Importantly, our methods can effectively detect backdoored
model and poisoned images as well as remove backdoors in
an all-in-one manner. What is more, our backdoor detection
technique can also be applied to other classification tasks,
such as speech and text classification.
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2. Related Work
2.1. Backdoor Defenses

Generally, backdoor defenses can be grouped into two cate-
gories: backdoor detection and backdoor removal.

Backdoor Detection. (i) Backdoored model detection. The
classical method for backdoored model detection involves
using reverse engineering and identify the backdoor by
anomaly detection, such as NC (Wang et al., 2019), Unicorn
(Wang et al., 2022b) and so on. Other methods rely on poi-
soned samples detection to indentify the backdoored model.
(ii) Poisoned samples detection. The classical approach
for poisoned image detection involves using interpretable
methods, such as GradCAM (Selvaraju et al., 2017), to lo-
cate the trigger’s position. There are also effective methods
which use output abnormality. For example, STRIP (Gao
et al., 2019) superimposes various image patterns on the
suspicious image to observe its output. Lower output ran-
domness yield higher poisoning odds. Similarly, SCALE
(Guo et al., 2022) superimposes the image itself and TeCo
(Liu et al., 2023) corrupts the image to detect final output
abnormality. Another different example is FTD (Zeng et al.,
2021), which identifies poisoned samples by recognizing
high-frequency noise in samples without the backdoored
model. However, most of these methods (Gao et al., 2019;
Guo et al., 2022; Liu et al., 2023) can only detect backdoor
but not remove it.

Backdoor Removal. Backdoor removal aim to erase the
backdoor from a model without compromising its classifi-
cation accuracy on clean samples. One classic defense is
pruning-based method. For instance, existing works, such as
Fine-Pruning (Liu et al., 2018), ANP (Wu & Wang, 2021),
and RNP (Li et al., 2023a), employ various methods to lo-
cate and prune backdoor neurons. Besides, ZIP (Shi et al.,
2023) employs an image-reconstruction based approach to
erase triggers and restore the model’s performance but re-
lies on the performance of the diffusion model. Another
effective line of defense is knowledge distillation. For ex-
ample, NAD (Li et al., 2021b), ARGD (Xia et al., 2022),
and MEDIC (Xu et al., 2023) distill a clean model based on
the loss function across multiple intermediate feature layers.
(Pang et al., 2023) reconfigures a portion of the model’s
parameters and perform distillation using uncontaminated
data. However, most backdoor removal methods require
model retraining. This assumption does not hold in vari-
ous scenarios like when users lack adequate computational
resources and data. Table 1 summarizes the limitations of
existing defenses.

Joint Backdoor Detection and Removal. In addition, very
few works have studied both backdoor detection and re-
moval. To our best knowledge, NC (Wang et al., 2019) is
the first work to detect and remove backdoors using reverse

engineering and neuron unlearning. However, it struggles
with advanced attacks. (Li et al., 2023a) adopts an asym-
metric process to reveal the backdoor neurons then prune
them to achieve backdoor removal. Nevertheless, it may
in turn reveal backdoor neurons in a clean model. In addi-
tion, these removal methods require model retraining. In
contrast, our methods can effectively achieve backdoored
model and poisoned images detection as well as backdoor
removal without model retraining.

2.2. Backdoor Attack

Backdoor attack can be grouped into spatial domain back-
door and frequency domain backdoor according to the
method of trigger generation.

Spatial Domain Backdoor BadNet (Gu et al., 2017)
is the first to introduce the existence of backdoor attacks,
placing a white or black square in the bottom right corner
of an image as a trigger. Subsequently, various simple yet
effective triggers were proposed, such as blended images
(Chen et al., 2017), single pixels (Tran et al., 2018), and
sine signals (Barni et al., 2019). However, these attacks
are visually detectable, leading to recent research focus on
generating visually imperceptible triggers. For example,
SSBA (Li et al., 2021a) employs image steganography to
create backdoors, WaNet (Nguyen & Tran, 2021) uses a
distortion field to generate triggers, LIRA (Doan et al., 2021)
searches for invisible triggers in high-dimensional space,
and Color Backdoor utilizes intelligent algorithms to search
for triggers. In fact, the invisibility of spatial domain triggers
has been studied almost to the utmost.

Frequency Domain Backdoor Recently, (Zeng et al.,
2021) has ventured into exploring backdoor attacks within
the frequency domain. To mitigate potential high-frequency
artifacts post frequency transform, a low-pass filter is uti-
lized to create a seamless trigger. FIBA (Feng et al., 2022)
crafts triggers in the frequency domain by blending the
low-frequency components of two images after applying
the Fourier Transform. Similarly, FTROJAN (Wang et al.,
2022a) transforms the clean image using color coding meth-
ods and subsequently applies cosine transform with modifi-
cations to frequency components. However, the triggers pro-
duced in these approaches remain visible in the frequency
domain. Consequently, DUBA (Gao et al., 2023a) intro-
duces a backdoor that remains invisible in both spatial and
frequency domains. Detecting backdoors from the abnor-
mality of input samples becomes extremely challenging.

3. Preliminaries
In this section, we introduce the attacking setting and de-
fense setting in our work as follow.

Attack Setting. Following prior works (Zhao et al., 2022;
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Gao et al., 2023a), we focus on the backdoor attacks for
supervised image classification, which is a widely used in
various applications like face recognition and autonomous
driving. Formally, the classification task needs to train a
DNN model fθ = f1 ◦ f2 : X → Y , where X ⊂ Rd is the
input space, Y = {1, 2, ...,K} denotes the label space, θ
indicate model parameters, f1 represents the main structure
of the model that produces the logits while f2 is the softmax
layer. The core of backdoor is to craft Np poisoned samples
Dpoison = {(T (xi) , γ (yi))}

Np

i=1 from the training dataset
D train = {(xi, yi)}Ni=1, where T (·) denotes the trigger im-
plantation method and γ(·) ∈ Y represents the predefined
target label. When the model is trained on a considerable
amount of poisoned data, it will be embedded a backdoor
such that it behaves normally on the clean samples but out-
puts a predifined label on poisoned samples.

Defense Setting. We consider a scenario where users em-
ploy a cloud/based model. Regarding the model, the de-
fenders can only access the model’s outputs (including the
last two layers) while remaining unaware of any other de-
tails, such as the model structure and loss function. Con-
cerning the data information, the defenders can only use
task-agnostic samples. They do not get any certain clean or
poisoned samples when design the algorithm.

Objective. The main objective of this work is to detect
backdoors in the backdoored model, identify poisoned im-
ages in a dataset, and remove backdoors to restore model
performance.

4. Proposed Methods
4.1. Backdoored Model Detection via Energy Statistics

Motivation. Our insight is to shift the attention from the
extremely invisible input to the output abnormality that is
always neglected by attackers. As shown in Fig. 1, we can
observe that even when the backdoored model is provided
with clean (out-of-distribution) samples as input, the prede-
fined target label still consistently exhibits a high probability
of appearing among the top results. Below, we will intro-
duce Lemma 1 to theoretically elucidate the observations in
Fig. 1. Before that, we first introduce the two functions, f1
and f2, that will be used in Lemma 1.

Given an image xi ∈ X , the output Zi (logits) of the model
fθ is:

f1
(
xi
)
= Zi =

{
zi1, z

i
2, z

i
3, ..., z

i
K

}
, (1)

where zk represents the logits corresponding to the kth label,
and K is the the total number of labels. The softmax results
of zi is:

f2(z
i) = si = {sik|sik =

ez
i
k∑K

k=0 e
zi
k

, k ∈ [0,K]}. (2)

Lemma 1. Suppose the poisoned model fpθ = fp1 ◦ fp2 ,
where p denotes the model has been subjected to a backdoor
attack, and the attacker has a predefined target label t.
Given an image x (clean or out-of-distribution) with the
pseudo label k1 (from the model fpθ output), k1 ̸= t, the
model output is fp1 ◦ fp2 (x) = {sk|k ∈ [0,K]}. We have
that: although sk1

is greater than st, st is greater than most
of sk2 , where k2 ∈ [0,K], k2 ̸= k1, and k2 ̸= t.

We provide theoretical validation and additional experimen-
tal results for Lemma 1 in Appendix A and Appendix E.1,
respectively.

Based on Lemma 1, we can get st is greater than most
of sk2

. We also try to explain this observation from the
perspective of energy model (LeCun et al., 2006) below.
When clean samples are fed into the backdoored model,
the energy corresponding to the target label is significantly
higher than that of other labels (excluding the label assigned
to the sample by the model). Therefore, we propose utilizing
energy statistics to detect the backdoored model. If a label
exhibits exceptionally high energy scores, it indicates that
the model is under attack. Accordingly, this specific label is
more likely to be the attacker’s predefined target label.

Usually, the energy of each label is determined by expo-
nentiating the softmax results of the corresponding label.
However, a direct calculation may compromise robustness in
the statistical results of all samples. Imagine a well-trained
model that confidently assigns the ground-truth label to a
clean sample with a 99% probability (which is the case in
most situations). Even if the target label receives the entire
remaining 1% probability, the energy assigned to the target
label will not differ significantly from that of other labels.
This is because, after exponential computation, the energy
of all labels becomes 1, except for the ground-truth label,
which becomes extremely larger. Thus, the energy statisti-
cal results depend solely on the chosen sample distribution.
Even with equal sample numbers per category, if the model
is uncertain about a sample’s category (e.g., assigning 80%
probability) and the remaining 20% probability is unfor-
tunately allocated to labels other than the target label, it
will easily disrupt the statistical significance, rendering the
statistical results essentially random. In Appendix B, we
provide a more detailed explanation with examples. There-
fore, it motivates us to redesign a new method to calculate
the energy.

Proposed EBBA. We propose an energy-based backdoor
detection model, called EBBA, that can detect the back-
doored model without task-specific samples, as illustrated
in Fig. 3. Specifically, we first refine the test set to achieve
a uniformly distributed output, addressing concerns about
skewed distributions that would lead to illogical statistical
outcomes. Secondly, we set the maximum logits for each
sample to 0, tackling the challenge of minor differences be-
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Figure 3. Overall framework of backdoored model detection, poisoned images detection, and backdoor removal. For backdoored model
detection, we initially refine images obtained from the Internet to achieve a uniformly distributed output. Subsequently, we calculate the
energy of each label using our improved energy method (EBBA). If the model is backdoored, the energy of the target label will be very
high. For poisoned images detection and backdoor removal, we input the image into the poisoned model. If the model does not classify it
into the target label (determined in the backdoored model detection phase), the image is considered clean. If the output label is the target
label, we employ our proposed transferred energy method (EBBA+) to revert it to its original clean label. Thus, each clean label will have
three types of images: clean images from direct output (belonging to this label), poisoned images from transfer output (belonging to this
label), and clean images from transfer output (belonging to the target label). Simply employing basic binary classification methods can
effectively distinguish between poisoned and clean images from the transfer output. Thus, our method can effectively achieve both trigger
detection and backdoor removal.

tween the energy of labels. More specifically, since we know
the model’s task, we begin by collecting a large amount of
data from the Internet. Then, we obtain pseudo-labels (the
labels predicted by the poisoned model) for them and se-
lect a data set X ′

based on these pseudo-labels to ensure
an equal number of samples for each class. As mentioned
before, given the image xi ∈ X ′

, the logits of the model fθ
is Zi and we set the maximum value in Zi to zero (defined
as MZ):

MZ
(
Zi

)
= {zi

∗

k = zik|zik = 0, k = argmax
k

zik}. (3)

Assume that we select N images for each class (pseudo-
label), we can obtain a set of softmax results from these
images after applying Eq. (3). For a clear description, we
denote it by S = {s1, s2, ......, sN×K}. According to (Liu
et al., 2020), we define the energy of label k for image xi

as:

P i
k =

es
i
k×T

T
, (4)

where T is the temperature coefficient, sik represents the
value in si corresponding to the label k. For the purpose
of convenient statistical analysis, we design a Normalize
Energy as follows:

NP i
k = P i

k − e0×T

T
=
es

i
k×T − 1

T
, (5)

where e0 is the benchmark energy. Thus the energy of each
label regarding dataset X ′

is:

E =

Ek|Ek =
∑

xi∈X ′

NP i
k, k ∈ [0,K]

 . (6)

Subsequently, a straightforward statistical method is em-
ployed to identify the label with abnormal energy. The
mean (µ) and variance (σ) values for E are as follows:

µ =

∑K
k=0Ek

K
,σ =

√∑K
k=0 (Ek − µ)

K
. (7)

If there is a label k
′

that satisfies the following condition,
the model is poisoned and the target label is k

′
.

Ek′ − µ > λσ, (8)

where λ is a hyper-parameter discussed in the experiments.

4.2. Poisoned Images Detection and Backdoor Removal
via Transferred Energy

We extend the above EBBA to propose a new EBBA+
method for poisoned images detection and backdoor re-
moval. In the following, we first present the motivation and
then elaborate on our method.

5



Energy-based Backdoor Defense without Task-Specific Samples and Model Retraining

Motivation. In prior study (Liu et al., 2023), it has demon-
strated that backdoored model exhibits almost the same
performance across different image corruptions for clean
images but shows discrepancies for poisoned samples. How-
ever, as shown in Fig. 2, we can see that the output of
poisoned samples may not change after image corruption.
Thus, only observing the final output may result in low ro-
bustness of defense. To deal with this problem, we shift
our attention from the final output to the logits. We find
that even when the final output of a poisoned sample re-
mains unchanged after corruption, its logits will be changed.
We further explain how the logits change in the following
Lemma 2.

Lemma 2. Suppose the backdoored model fpθ has been
backdoored with the target label t. Given an image x with
the original ground-truth label k1, the model output is
s = {sk|k ∈ [0,K]}. We apply different types of image
corruptions to x to get J corruption images Dj (x) = xdj ,
where dj represents the corrupted image generated by jth

corruptions method, such as Gaussian noise, raindrop ef-
fects and division by positive integers, where j ∈ [1, J ],
indicating the J kinds of corruptions. The model output of
xdj is sdj = {sdj

k |k ∈ [0,K]}. If an image x is poisoned,
we have st > s

dj

t and sk1 < s
dj

k1
.

We provide detailed theoretical proof of Lemma 2 in Ap-
pendix C.

We can conclude from Lemma 2 that the backdoored model
shows reduced confidence in the final classification of the
corrupted poisoned images. For instance, the probability
of classifying it to the target label decreases from 99% to
60%, yet it is still classified to the target label. Besides,
the corrupted poisoned samples are more prone to being
classified back into their original ground-truth class, which
means that the decrease in probability at the target label
transfers to the original label.

Motivated by the above discussion, we propose a new con-
cept of Transferred Energy (TE) to quantify this probability
transfer phenomenon in Lemma 2

Proposed EBBA+. We propose a novel EBBA+ method for
both poisoned images detection and backdoor removal. To
this end, we propose a new concept of normalize transferred
energy (NTE) as follows. For each label k, let the energy
of the image x and that after image corruption (xdj ) denote
Pk and P dj

k , respectively. We define the transferred energy
from image x to its corresponding corrupted image xdj of
label k as:

TEj
k =

P
dj

k

Pk
=
es

dj
k

esk
= es

dj
k −sk . (9)

In order to conveniently count the transferred energy for
each label, we normalize the TE. Since mean(s

Dj
m ) −
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mean(sm) = 0, the Normalized Transferred Energy (NTE)
score can be defined as:

NTEj
k =

es
dj
k

esk
− e0 = es

dj
k −sk − 1. (10)

Then, the NTE of all labels for image x can be expressed
as:

NTE = {NTEk =
∑J

j=1
NTEj

k|k ∈ [0,K]}. (11)

Next, we use NTE to purify the performance of backdoored
model on poisoned images, which is a core component for
poisoned images detection and backdoor removal. Con-
cretely, if image x is poisoned, the transfer of output proba-
bility from the target to the original label leads to the NTE
of the original label significantly surpassing that of other
labels, while the NTE of the target label is much lower than
that of other labels. Mathematically, the original label k1 of
the poisoned image x can be written as:

k1 = argmax
k

NTEk, k ∈ [0,K]. (12)

While NTE can purify the backdoored model on poisoned
images, it fails to identify whether image x is poisoned and
achieve fully backdoor removal only by itself. The main
reason is that if the image x is clean, the energy will be ran-
domly transferred to other labels, making it hard to ensure
the model performance in clean images. As a result, the
NTE score cannot distinguish the clean images and poisoned
images. To deal with this problem, we propose to combine it
with target label identified in EBBA above. Below, we intro-
duce how to combine these two methods to detect poisoned
images and backdoor removal simultaneously.

The basic idea is that we first consider all images classified
into the target class as poisoned images by the backdoored
model. In this way, we only compromise the benign accu-
racy of the target class and locate all the poisoned images
within a small range (with a few clean images of the target
label). Then, we classify these images based on Eq. (12).
Poisoned images will be classified into the original clean
class, while clean images will be randomly classified. As
a result, each clean class k will have three types of images:
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poisoned/clean images belonging to class k and clean im-
ages belonging to the target class t. Based on this, we may
use clustering methods to classify these images for poisoned
images detection and backdoor removal simultaneously.

To achieve this, we adopt t-SNE to project the perturbed im-
ages into a feature space for clustering. We have conducted
extensive experiments to demonstrate the effectiveness of
our method in Appendix E.4. In particular, we present two
examples in Figs. 4 and 5. It can be observed from them
that our method successfully distinguishes clean samples
belonging to class t from poisoned samples belonging to
class k. Thus, we recover the benign accuracy of the target
class and perfectly locate all the poisoned images without
any clean sample. We can conclude that simple clustering
methods can detect poisoned images by combining NTE
score and target label.

5. Experiments
5.1. Experimental Setup

Dataset and DNN Selection. Following the settings in prior
backdoor defenses (Guo et al., 2022; Shi et al., 2023), we
conduct experiments on Cifar10 (Krizhevsky et al., 2009),
GTSRB (Stallkamp et al., 2012) and Imagenet (Deng et al.,
2009) (subset) datasets with ResNet18 (He et al., 2016).
More details are presented in Appendix D.1.

Attack Methods. We evaluate our methods under five rep-
resentative attacks, including BadNets (Gu et al., 2017),
Blend (Chen et al., 2017), WaNet (Nguyen & Tran, 2021),
FIBA (Feng et al., 2022) and DUBA (Gao et al., 2023a).
The attack success rate of each attack is trained to be above
98.8% to ensure the credibility of the defense results.

Baselines. Since very few works have been developed to
identify backdoor defense and removal at the same time, we
compare our method with the baselines in one of the three
defense types. Specifically, for backdoored model detection,
we compare the proposed approach with Neural Cleanse
(Wang et al., 2019), SCALE (Guo et al., 2022), Unicorn
(Wang et al., 2022b), and TeCo (Liu et al., 2023). Regarding
poisoned images detection, we compare it with FTD (Zeng
et al., 2021), SCALE (Guo et al., 2022), and TeCo (Liu et al.,
2023). In the context of backdoor removal, we compare our
approach with Fine-Pruning (Liu et al., 2018), NAD (Li
et al., 2021b), ANP (Wu & Wang, 2021), RNP (Li et al.,
2023a), ZIP (Shi et al., 2023), and MEDIC (Xu et al., 2023).

Evaluation Metrics. For backdoored model detection, it is
a binary classification problem concerning whether or not
detecting the backdoor. Considering each method own its
specific quantification metric, it is unfair for us to compare
with them. Thus, we propose to identify whether our ap-
proach can detect the backdoor under different scenarios
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Figure 6. Energy on Cifar10.
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Figure 7. Energy on GTSRB.

using binary measurement. For trigger detection in poisoned
images, following TeCo (Liu et al., 2023), we adapt two
metrics: Poisoned data Detection Rate (PDR) and F1 score.
PDR is the ratio of true positive samples to all poisoned sam-
ples and F1 score is a more comprehensive evaluation metric.
We describe the details in Appendix D.2. For backdoor re-
moval, following (Wu & Wang, 2021; Li et al., 2023a), we
adapt attack success rate (ASR) and Benign Accuracy (BA)
to evaluate the defenses.

5.2. Main Defense Results

Backdoored Model Detection. We first evaluate the pro-
posed EBBA on backdoored model detection. The main
reason is that we need to identify if the model is backdoored
first so as to decide whether to perform a backdoor removal
operation. As illustrated in Table 2, Neural Cleanse (NC)
can not detect the backdoored model on advanced attacks.
Under conditions where there are no poisoned or clean sam-
ples, only our method performs effectively, while TeCo and
SCALE become entirely ineffective. Figs. 6 and 7 show two
examples of the experimental results. We can see that the
energy of the target label is significantly higher than other
labels, showing the excellent performance of our defense.
More results are presented in Appendix E.2.

Poisoned Image Detection. We also employ our EBBA+ to
detect poisoned images. As we know, the backdoor behavior
is triggered when the trigger and the model backdoor are
present simultaneously. Table 3 illustrates the comparison
results for different methods using PDR and F1. EBBA+
exhibits excellent performance in two aspects. First, it can
detect all the triggers with high probability, in which the
triggers are from visible to invisible and further to dual-
invisible in both spatial and frequency domains. This is
attributed to its property of shifting attention from the input
to the output. Secondly, EBBA+ can achieve better or com-
petitive detection performance than the baselines on three
datasets. Thus, we can conclude that our proposed EBBA+
can effectively detect poisoned images.

Backdoor Removal in Poisoned Models. Lastly, we assess
the performance of EBBA+ on backdoor removal. Table
4 shows the defense results of our method and baselines
using BA and ASR metrics. It can be observed that EBBA+
performs the best among all the defenses in terms of BA.
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Table 2. The defense results of backdoored model detection. Only the proposed EBBA can detect backdoored model in all cases.

Methods With Poisoned/Clean Images With Poisoned Images Without Poisoned/Clean Images
BadNets Blend WaNet FIBA DUBA BadNets Blend WaNet FIBA DUBA BadNets Blend WaNet FIBA DUBA

NC ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
SCALE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Unicorn ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TeCo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
EBBA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3. Defense results of poisoned images detection using PDR
and F1 score (F1). The higher the better. The proposed EBBA+
outperforms all other methods in terms of PDR and F1 score.

Datasets Backdoor
Attacks

FTD TeCo SCALE EBBA+
PDR F1 PDR F1 PDR F1 PDR F1

Cifar10

BadNets 0.97 0.94 0.94 0.91 0.97 0.93 0.96 0.96
Blend 0.95 0.89 0.93 0.95 0.89 0.87 0.95 0.94
WaNet 0.52 0.54 0.93 0.92 0.92 0.90 0.95 0.94
FIBA 0.58 0.52 0.96 0.94 0.88 0.87 0.95 0.95

DUBA 0.53 0.53 0.95 0.94 0.82 0.79 0.96 0.95

GTSRB

BadNets 0.96 0.93 0.92 0.88 0.98 0.96 0.98 0.97
Blend 0.95 0.96 0.93 0.91 0.89 0.88 0.97 0.96
WaNet 0.54 0.58 0.97 0.95 0.91 0.89 0.96 0.95
FIBA 0.50 0.58 0.93 0.91 0.89 0.87 0.95 0.95

DUBA 0.54 0.58 0.90 0.93 0.89 0.86 0.96 0.95

ImageNet

BadNets 0.90 0.93 0.91 0.92 0.98 0.96 0.98 0.95
Blend 0.95 0.93 0.93 0.92 0.88 0.86 0.98 0.95
WaNet 0.64 0.60 0.94 0.92 0.87 0.86 0.96 0.94
FIBA 0.57 0.52 0.94 0.92 0.93 0.92 0.96 0.95

DUBA 0.52 0.55 0.93 0.90 0.89 0.91 0.96 0.95

Besides, our method has lower or competitive ASR than
the baselines under most attack scenarios. Note that the
baselines except for ZIP require model retraining while ZIP
try to purify samples based on the pre-trained diffusion
model, which requires a large amount of clean data for
pre-training. In contrast, our method does not need model
retraining or pre-training.

To further show the good performance of our method, we
present two examples of the NTE (Normailzed Transferred
Energy) results in Figs. 8 and 9. We can observe that the
ground-truth label has the highest NTE score, so our method
makes the poisoned sample perform as a clean sample. Be-
sides, since we have identified the target label in EBBA,
the minimum value of BA is K−1

K × ba, where K is the
total number of labels and ba is the benign accuracy of the
backdoor model. This already surpasses most defense meth-
ods. In particular, when K is large, BA can almost reach a
comparable value to that in the clean model. It suggests that
our method is effective in backdoor removal.

5.3. Ablation Studies and Hyper-parameter Settings

We also conduct ablation studies to explore the impact of
important components on defense performance, such as the
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Figure 8. NTE on Cifar10.
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Figure 9. NTE on GTSRB.

necessity of selecting Internet images. In addition, we also
study the effect of important hyper-parameters on model
performance, such as the threshold λ and the temperature
T .

Impact of Binary Classification. We conduct experiments
on GTSRB with four clustering models, namely Hierarchi-
cal Clustering (HC), Birch, Mean Shift, and DBSCAN. The
result is the average of PDR from five attack methods. As
shown in Table 7, since the final result is already easily
amenable to binary classification, the choice of clustering
method has little impact for EBBA+.

For more details, please refer to Appendix F.

5.4. Further Exploration

We further explore the defense capability in other domains.

EBBA Against Speech and Text Classification Tasks. We
find that EBBA is effective not only in image classifica-
tion but also easily applicable to text and speech classifi-
cations. We conduct speech recognition experiments on
ESC-50 (Piczak, 2015) and text classification experiments
on THUCnews (Tnews) (Sun et al., 2016). We introduce
backdoors by replacing portions of speech or characters.
The defense results are illustrated in Figs. 10 and 11.
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Figure 10. Energy on ESC-50.
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Figure 11. Energy on Tnews.

EBBA Against Multi-Label Backdoor Attacks. We test
the defensive efficacy of EBBA against multi-target back-
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Table 4. The defense results of backdoor removal in poisoned models. The BA of EBBA+ is best among all methods while its ASR is only
comparable with them. Notably, the methods with “*” require model retraining and ZIP needs a sufficient amount of data to pre-train the
diffusion model. The proposed EBBA+ does not need model retraining or additional data.

Datasets Backdoor
Attacks

No Defense Fine-Pruning* NAD* ANP* RNP* MEDIC* ZIP EBBA+ (ours)
BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓ BA↑ ASR↓

Cifar10

BadNets 91.22 99.36 86.79 15.76 88.96 4.72 87.08 3.42 89.72 1.46 88.09 3.76 88.02 5.53 89.92 2.92
Blend 91.35 99.97 85.42 17.92 87.36 5.92 89.59 1.59 90.06 3.72 86.27 6.79 83.67 7.75 89.72 5.79
WaNet 91.25 99.78 86.92 79.63 86.37 39.36 87.62 19.92 89.30 12.72 87.91 9.66 86.25 3.96 89.96 4.36
FIBA 91.08 99.26 86.59 59.07 86.71 39.79 88.96 16.29 89.75 9.91 87.09 8.78 85.08 2.85 90.02 7.88

DUBA 91.55 99.98 85.97 82.96 89.32 62.58 81.39 25.97 90.95 11.80 85.46 6.27 85.05 4.09 89.52 5.24

GTSRB

BadNets 99.14 99.62 94.72 7.09 92.69 2.92 95.16 2.39 97.82 0.72 94.58 1.99 96.92 6.19 99.06 1.79
Blend 99.15 99.72 96.93 42.39 92.61 10.29 97.57 5.92 97.02 2.36 94.64 8.42 97.01 8.53 98.92 2.72
WaNet 99.07 99.81 92.42 21.97 96.02 8.39 96.47 1.92 97.09 2.09 95.79 10.36 97.50 3.29 98.79 1.37
FIBA 99.22 98.91 93.55 90.72 95.98 14.69 96.52 4.93 96.46 1.93 96.21 9.57 96.68 1.92 98.36 1.47

DUBA 99.21 99.92 97.83 94.31 94.19 27.08 95.14 15.12 93.69 7.84 95.92 14.82 96.84 3.33 98.94 3.72

ImageNet

BadNets 88.56 99.22 79.62 2.39 85.72 9.36 85.21 11.63 85.92 6.83 86.05 2.28 87.09 7.55 88.19 1.51
Blend 88.39 98.62 72.97 7.92 85.93 11.92 84.27 6.34 86.92 5.04 84.65 8.09 86.08 8.35 88.36 1.32
WaNet 88.62 99.27 62.91 84.27 85.62 14.96 85.49 12.35 86.56 9.26 86.15 10.97 86.90 3.02 87.94 4.76
FIBA 89.07 98.59 82.17 79.62 84.92 11.15 86.39 6.11 87.07 2.30 86.82 3.09 87.15 2.92 88.09 1.92

DUBA 88.92 99.36 81.91 92.47 86.39 35.72 85.51 13.94 85.35 10.09 84.99 6.90 86.69 2.06 87.91 2.96

Table 5. Average PDR results on four clustering models.
Methods HC Birch Mean Shift DBSCAN

PDR 0.972 0.968 0.965 0.975

door attacks. Specifically, we employed the methods out-
lined in (Xue et al., 2020) to set up two backdoors in one
model, both achieving a attack success rate of 99%. Ini-
tially, we recorded the positions where their labels appeared.
As depicted in Fig. 12, the two target labels consistently
appear among the top results, while clean labels tend to
exhibit a uniform distribution, aligning with our expecta-
tions. The defensive outcomes using EBBA are illustrated
in Fig. 13, where the energy of the two target labels signifi-
cantly surpasses that of other labels. This provides evidence
of EBBA’s outstanding defense capabilities against multi-
target attacks.
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Figure 12. Location index sta-
tistical results for Two-Target
attacks (target 10 and 20).
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Figure 13. The results of EBBA
on Two-Target attacks (target
10 and 20).

EBBA Against Adaptive Attacks. We design an adaptive
attack that, during the training process, intentionally reduces
the probability that a clean image belongs to the target label
class by modifying the soft labels. For example, in a five-
class classification task where the target label is 2 and the

clean label (label 1) for clean images is one-hot encoded
as [1 0 0 0 0], we modified it to [0.8 0 0.067 0.067 0.067].
This means the original clean label value is 0.8, the target
label value is 0, and the rest are equally divided. We trained
on the GTSRB dataset and found that this training method
significantly reduces the energy value of the target label.
EBBA can still detect this anomaly. Simply modifying
Eq. (8) from Ek′ − µ > λσ to |Ek′ − µ| > λσ in the
EBBA formula is sufficient, as the energy of the target label
will exhibit an exceptionally low value under this training
condition, which can still be captured by EBBA.

For more details, including more results of adaptive attacks
and defense ability against clean-label attack, please refer
to Appendix G.

6. Conclusion
In this paper, we developed two energy-based methods,
called EBBA and EBBA+, for backdoor detection and back-
door removal. Specifically, EBBA adopted an enhanced
energy statistics approach to evaluate the energy of each
label from a task-agnostic dataset, enabling the detection of
backdoored models without the need for clean or poisoned
samples specific to the task at hand. Then we extended
EBBA to propose a new EBBA+ based on transferred energy
to identify poisoned images and remove backdoor simul-
taneously. Extensive experiments validated the superiority
of our proposed methods over baselines in both backdoor
detection and removal. Importantly, our approaches can
provide an all-in-one defense that simultaneously detects
backdoored model and poisoned images as well as removes
backdoors. Furthermore, the introduced backdoor detec-
tion method can be adaptable to other classification tasks,
including speech recognition and text classification.
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A. Proof of Lemma 1
Lemma 1. Suppose the model fpθ = fp1 ◦ fp2 has been subjected to a backdoor attack, and the attacker has predefined
the target label as t. Given an image x (clean or out-of-distribution) with the pseudo label k1 (from the model fpθ output),
k1 ̸= t, the model output is fp1 ◦ fp2 (x) = {sk|k ∈ [0,K]}. We have that: although sk1 is greater than st, st is greater than
most of sk2

, where k2 ∈ [0,K] and k2 ̸= k1 ̸= t.

Proof. According to the NTK theory (Jacot et al., 2018), the model output of image x can be expressed as:

ψ(x) =

∑K
k=0

∑nk

i=0 K(x, xk,i) · yk,i∑K
k=0

∑nk

i=0 K(x, xk,i)
, (13)

where xk,i ∈ X is the training sample and yk,i is the corresponding one-hot label, ψ(x) ∈ XK is an output vector with
the same dimension as yk,i and nk is the number of training samples for class k. Following SCALE (Guo et al., 2022),
K(x, xk,i) = e−2γ∥x−xk,i∥2

,γ > 0. The model ultimately classifies image x into the class corresponding to the maximum
value in the output vector.

Since yk,i is one-hot encoded, meaning it has a value of 1 at the ground-truth label and 0 elsewhere, the probability for each
class can be computed separately. For each output value of class k, the denominator remains the same, and the probability is
solely determined by the magnitude of

∑nk

i=0 K(x, xk,i) in the numerator. That is:

x ∈ argmax
k

{
∑nk

i=0
K(x, xk,i)|k ∈ [0,K]}. (14)

Thus, in Lemma 1, we actually need to prove that:∑nt

i=0
K (x, xt,i) >

∑nk2

i=0
K (x, xk2,i), (15)

where x is an image with pseudo label k1 (from the model fpθ output), t is the target label, and k2 is one of the other labels,
k2 ̸= k1 ̸= t.

Case 1: Since the process of data poisoning is necessary, i.e., transforming an image belonging to category k2 into a
poisoned image belonging to category t, we assume that nt > nk2

.

∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=
∑nk2

i=0
K (x, xt,i) +

∑nt

i=nk2

K (x, xt,i)−
∑nk2

i=0
K (x, xk2,i)

(16)

Since x is neither classified by the model into category t nor into category k2, the value of
∑nk2

i=0 K (x, xt,i) and∑nk2
i=0 K (x, xk2,i) are approximately equal. Thus,∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=[
∑nk2

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)] +

∑nt

i=nk2

K (x, xt,i)

≈0 +
∑nt

i=nk2

K (x, xt,i)

=
∑nt

i=nk2

e−2γ∥x−xt,i∥2

>0

(17)

Case 2: Due to the low poisoning rates for many advanced attacks (1%), we consider a more general scenario where
nt equals nk2

. Assume that the original clean training images of the target label t is denoted as Db,t, which has nb,t
clean images and the attacker adds np poisoned images (denoted as Dp) to it, where these np images are obtained by
randomly sampling nc,k images (clean images denoted as Dc,k and poisoned images denoted as Dp,k) from other labels,
i.e., Dp = Dp,1 ∪Dp,2... ∪Dp,k1 ... ∪Dp,K and Dt = Db,t ∪Dp, denoted the training samples with label t.
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∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=
∑

xt,i∈Dt\Dp,k1

K(x, xt,i) +
∑

xt,i∈Dp,k1

K(x, xt,i)−
∑nk2

−nc,k1

i=0
K(x, xk2,i)−

∑nk2

i=nk2
−nc,k1

K(x, xk2,i).
(18)

Since x is neither classified by the model into category t nor into category k2, the value of
∑

xt,i∈Dt\Dp,k1

K(x, xt,i) and∑nk2
−nc,k1

i=0 K(x, xk2,i) are approximately equal. When xt,i ∈ Dp,k1 , xt,i = xc,k1 + T , where xc,k1 is the clean image is
belong to class k1, and T is the trigger. Thus,

∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=
∑

xt,i∈Dt\Dp,k1

K(x, xt,i)−
∑nk2

−nc,k1

i=0
K(x, xk2,i) +

∑
xt,i∈Dp,k1

K(x, xt,i)−
∑nk2

i=nk2
−nc,k1

K(x, xk2,i)

≈0 +
∑

xc,k1
∈Dc,k1

K(x, xc,k1
+ T )−

∑nk2

i=nk2
−nc,k1

K(x, xk2,i)

=
∑

xc,k1
∈Dc,k1

e−2γ∥x−xc,k1
−T∥2

−
∑nk2

i=nk2
−nc,k1

e−2γ∥x−xc,k2∥
2

.

(19)

Since the image x is belong to k1 with a high probability, the value of
∑

xc,k1
∈Dc,k1

e−2γ∥x−xc,k1∥
2

is much lager than∑nk2
i=nk2

−nc,k1
e−2γ∥x−xc,k2∥

2

. T is a small trigger and invisible in most case, thus,

∑
xc,k1

∈Dc,k1

e−2γ∥x−xc,k1
−T∥2

−
∑nk2

i=nk2
−nc,k1

e−2γ∥x−xc,k2∥
2

> 0. (20)

In both case 1 and case 2, we have:
∑nt

i=0 K (x, xt,i) >
∑nk2

i=0 K (x, xk2,i). Thus we can know that although the poisoned
model is provided with clean (out-of-distribution) samples as input, the predefined target labels still consistently exhibit
a high probability of appearing among the top results. Note that the above proof is conducted under the assumption of a
dirty-label attack. In Appendix G.3, we provide a more general proof, demonstrating Lemma 1 under both clean-label and
dirty-label settings.
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B. An Example to Further Explain Why We Redesigned a Method for Calculating Label Energy
We offer a simple and easily understandable example, assuming a model is employed for a three-class classification task
(label 0, 1, 2), with the second category subjected to a backdoor attack and treated as the target class (label 1). Consider
feeding three images into the model, denoted as x1, x2, and x3, to achieve a uniformly distributed output. Let the logits be
denoted as Z1, Z2, and Z3:

Z1 = [9, 1,−1], Z2 = [3, 8,−2], Z3 = [−1, 3, 7]. (21)

After applying the softmax function, we obtain the values s1, s2, and s3:

s1 = [0.99, 0.01, 0], s2 = [0.12, 0.88, 0], s3 = [0.002, 0.018, 0.98]. (22)

Thus the energy of label 0, 1 and 2 is:

E0 = e0.99 + e0.12 + e0.002 = 4.82, E1 = e0.01 + e0.88 + e0.018 = 4.43, E2 = e0 + e0 + e0.98 = 4.62. (23)

The result is E0 > E2 > E1. Even though the target label consistently has the highest or second-highest probability, the
ultimately calculated energy is the lowest. This occurs because when the maximum probability is exceptionally high, such
as 0.99, the remaining 0.01 probability, irrespective of its assignment to any label, loses statistical significance. The final
statistical outcome will be influenced by samples similar to those with uncertain results, like s2, which is essentially a
random statistical process and lacks meaningful interpretation.

Nevertheless, given our deliberate choice of a sample set with uniformly distributed outputs, theoretically, the maximum
value of the output should no longer influence the statistical results. Hence, we propose setting the maximum value of the
logits to 0, as follows:

Z1∗ = [0, 1,−1], Z2∗ = [3, 0,−2], Z3∗ = [−1, 3, 0]. (24)

After applying the softmax function, we obtain the values s1
∗
, s2

∗
, and s3

∗
:

s1
∗
= [0.231, 0.66, 0.09], s2

∗
= [0.94, 0.05, 0.01], s3

∗
= [0.02, 0.94, 0.04]. (25)

Thus the energy of label 0, 1 and 2 is:

E0∗ = e0.231 + e0.94 + e0.02 = 4.83, E1∗ = e0.66 + e0.05 + e0.94 = 5.54, E2∗ = e0.09 + e0.01 + e0.04 = 3.14. (26)

The result is E1∗ > E0∗ > E2∗ . When the number of images is large, the difference will become more pronounced.
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C. Proof of Lemma 2
Lemma 2. Suppose the model fpθ has been backdoored with the target label t. Given an image x with the original
ground-truth label k1, the model output is s = {sk|k ∈ [0,K]}. We apply different types of image corruptions to x to get J
corruption images Dj (x) = xdj , such as gaussian noise, raindrop effects and division by positive integers, where j ∈ [1, J ],
indicating the J ways of corruptions. The model output of xdj is sdj = {sdj

k |k ∈ [0,K]}. If the image x is poisoned, we
have that: st > s

dj

t and sk1 < s
dj

k1
.

Proof. We demonstrate that one of the data augmentation methods satisfies the Lemma 2. In fact, as long as one data
augmentation method proves effective, the subsequent transfer energy will be valid. We choose to prove the effectiveness of
division by positive integers. Other augmentation methods can be demonstrated in the similar way.

Following SCALE (Guo et al., 2022), we assume that the model has only two classes with labels 0 and 1. Set label 1 as
the target label and 0 as the clean label. Given a clean image x with the original ground-truth label 0, xp = x+ T is the
poisoned image which belongs to calss 1. We get the corrupted image xd = xp/n, where n is a positive integer greater
than 1 and assume that there are Nb clean samples (denoted as Db) and Np poisoned samples (denoted as Dp), where clean
samples can be divide into two subsets, i.e., Db,0 and Db,1 belong to class 0 and 1, respectively. We can rewrite the NTK
expression, Eq. (13), as:

ψ(x) =

∑
X∈Db,0

K(x,X) · 0 +
∑

X∈Db,1

K(x,X) · 1 +
∑

X∈Dp

K(x,X) · 1∑
X∈Db,0

K(x,X) +
∑

X∈Db,1

K(x,X) +
∑

X∈Dp

K(x,X)

=

∑
X∈Db,1∪Dp

K(x,X)∑
X∈Db∪Dp

K(x,X)
.

(27)

In fact, we only need to prove that:

ψ(xp/n) < ψ(xp) ⇒

∑
X∈Db,1∪Dp

K(xp/n,X)∑
X∈Db∪Dp

K(xp/n,X)
<

∑
X∈Db,1∪Dp

K(xp, X)∑
X∈Db∪Dp

K(xp, X)
. (28)

We first establish the proof for K(xp/n,X) < K(xp, X), where X ∈ Db,1 ∪Dp, and then proceed to prove Eq. (28). Thus
we need to prove:

e−2γ∥xp/n−X∥2

< e−2γ∥xp−X∥2

, γ > 0

⇒
∥∥∥∥x+ T

n
−X

∥∥∥∥2 > ∥x+ T −X∥2.
(29)

Please note that x, T , and X are matrices. For each element in these three matrices, denoted as a, t and b respectively, if
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they all satisfy Eq. (29), then it is guaranteed to hold true. Thus we prove the following expression:

(
a+ t

n
− b

)2

> (a+ t− b)
2

⇒ (a+ t)
2

n2
− 2b (a+ t)

n
+ b2 > (a+ t)

2 − 2b (a+ t) + b2

⇒ (a+ t)
2

n2
− 2b (a+ t)

n
> (a+ t)

2 − 2b (a+ t)

⇒ (a+ t)

n2
− 2b

n
> a+ t− 2b

⇒ (a+ t)

n2
− (a+ t) >

2b

n
− 2b

⇒(1− n2)(a+ t) > 2n(1− n)b

⇒(1 + n)(a+ t) < 2nb

⇒t <
2nb

1 + n
− a.

(30)

Since n is a positive integer greater than 1, 2n
1+n ∈ [ 43 , 2). We need to prove: t < 4

3b − a. Note that we only need to
demonstrate the validity of Eq. (29), which essentially calculates the sum of squared Euclidean distances. Therefore, it is
sufficient for the majority of elements t in the trigger matrix T to satisfy t < 4

3b− a.

If X ∈ Db1 , a and b are two pixels of two images from class 0 and class 1, (b − a) is large enough in most cases and
( 43b− a) is larger.

If X ∈ Dp, a is the pixel of the clean image from class 0 and b is the pixel of the poisoned image made by class 0, (b− a) is
equal to t in most cases and ( 43b− a) is clearly larger than t. Thus Eq. (29) clearly holds and has a greater probability to
hold as n increases. Now we have that: K(xp/n,X) < K(xp, X), where X ∈ Db,1 ∪Dp. Thus:

∑
X∈Db,1∪Dp

K(xp/n,X)∑
X∈Db∪Dp

K(xp/n,X)

=

[ ∑
X∈Db,1

K(xp/n,X) +
∑

X∈Dp

K(xp/n,X)

][ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]
[ ∑
X∈Db,0

K(xp/n,X) +
∑

X∈Db,1

K(xp/n,X) +
∑

X∈Dp

K(xp/n,X)

][ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]

<

[ ∑
X∈Db,1

K(xp/n,X) +
∑

X∈Dp

K(xp/n,X)

][ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]
[ ∑
X∈Db,0

K(xp/n,X) +
∑

X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

][ ∑
X∈Db,1

K(xp/n,X) +
∑

X∈Dp

K(xp/n,X)

]

=

[ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]
[ ∑
X∈Db,0

K(xp/n,X) +
∑

X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

] .

(31)

Since K(xp/n,X) < K(xp, X) (X ∈ Db,1), K(xp/n,X) > K(xp, X) (X ∈ Db,0). Otherwise xp will not belong to any
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category. Thus, ∑
X∈Db,1∪Dp

K(xp/n,X)∑
X∈Db∪Dp

K(xp/n,X)

=

[ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]
[ ∑
X∈Db,0

K(xp/n,X) +
∑

X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]

<

[ ∑
X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]
[ ∑
X∈Db,0

K(xp, X) +
∑

X∈Db,1

K(xp, X) +
∑

X∈Dp

K(xp, X)

]

=

∑
X∈Db,1∪Dp

K(xp, X)∑
X∈Db∪Dp

K(xp, X)
.

(32)
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D. Details of Experiment Settings
D.1. Datasets

To comprehensively assess the performance across various tasks, we conducted experiments utilizing three datasets: Cifar10,
which is a dataset for object classification encompassing a diverse range of items including horses and aircraft. Gtsrb, a
dataset specifically tailored for traffic signal recognition. ImageNet, a renowned dataset for object classification, containing
an extensive array of objects. Due to its vast size, we opted to work with a subset of ImageNet. The specific dataset details
are outlined in Table 6.

Table 6. Dataset information.
Datasets Training/Testing Size Lables Size Image Size

Cifar10 50000/10000 10 32×32×3
Gtsrb 39209/12603 43 64×64×3

ImageNet 48000/12000 100 224×224×3

D.2. Evaluation Metrics

For trigger detection in poisoned images, we adapt Poisoned data Detection Rate (PDR) and F1 score as metrics. The detail
expressions are as follows:

PDR=
TP

TP + FN
, (33)

where TP means True Positive samples and FN means False Negative samples. Thus PDR represents the proportion of
detected poisoned samples out of all poisoned samples.

F1 score =
2× Precision× PDR

Precision+ PDR
, (34)

where Precision= TP
TP+FP and FP stands for the False Positive samples. Thus F1 score is a metric that balances precision

and PDR (also named recall), providing a single value that reflects a model’s overall performance in binary classification
tasks.

D.3. Implantation Details

In EBBA, when testing a backdoored model trained on one of the three datasets (Cifar10, GTSRB and ImageNet), the other
two datasets with some task-agnostic images from Internet are used as out-of-distribution (OOD) datasets for evaluation.
The threshold λ is set to 3. The temperature T is set to 2 and the Birch is chosen as the final clustering model.

To effectively test the proposed EBBA, the backdoor attacks are set as follows: For BadNets, a black block is injected into
the image; For Blend, the blend ratio is set as 0.2, and the default “hello kitty” pattern is adopted; For WaNet, we set the
uniform grid of size to 6; For FIBA, we typically enhance the embedding strength and ratio to ensure the ASR. For DUBA,
we adopt the default setting; We utilize the stochastic gradient descent (SGD) optimizer to train the backdoored model over
a span of 200 epochs. The learning rate is established at 0.01, accompanied by a decay factor of 0.1 and decay intervals
occurring at epochs 50, 100, and 150. A batch size of 64 is employed for the training process.
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E. More Detailed Experimental Results
E.1. More Results of Location Index statistic

More results of motivation for backdoored model detection. As shown in Fig. 14 to Fig. 21, we present additional
experimental results on the positioning of target labels and a specific clean label in the final outcome after inputting datadet
into the poisoned model. The dataset is selectively chosen to ensure a uniform distribution in the model outputs. The results
indicate that the target label consistently appears among the top positions, while the position of the clean label tends to be
more uniformly distributed.

More results of motivation for poisoned images detection and backdoor removal. From Fig. 22 to Fig. 25, each figure
presents the statistical results of the location index on a set of images generated by the same poisoned image using 80 image
corruption methods. These results indicate that following image corruption of the poisoned image, the ground-truth label in
the output has notably shifted forward. A minor portion of the target label has shifted backward, whereas the randomly
selected clean labels in the output largely remain unchanged.
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Figure 14. Label 5 of BadNet.
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Figure 15. Label 10 of BadNet.
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Figure 16. Label 30 of BadNet.
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Figure 17. Label 35 of BadNet.
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Figure 18. Label 5 of WaNet.
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Figure 19. Label 10 of WaNet.
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Figure 20. Label 30 of WaNet.
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Figure 21. Label 35 of WaNet.
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Figure 22. The original location of the poisoned image for target
label, ground-truth label and clean label are 0, 25 and 20.
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Figure 23. The original location of the poisoned image for target
label, ground-truth label and clean label are 0, 10 and 22.
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Figure 24. The original location of the poisoned image for target
label, ground-truth label and clean label are 0, 38 and 20.
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Figure 25. The original location of the poisoned image for target
label, ground-truth label and clean label are 0, 7 and 12.
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Figure 26. Clean Model of Cifar10.
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Figure 27. BadNets on Cifar10.
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Figure 28. Blend on Cifar10.
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Figure 29. WaNet on Cifar10.
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Figure 30. FIBA on Cifar10.
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Figure 31. DUBA on Cifar10.

E.2. More Results of Energy Statistic for Backdoor Detection in Poisoned Models

As shown in Fig. 26 to Fig. 43, we demonstrated the effectiveness of EBBA in detecting backdoors across different datasets
and attack methods. In comparison to results from a clean model, the energy of target labels in the attacked model is
noticeably anomalous. This strongly highlights the efficacy of EBBA in detecting backdoor models.
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Figure 32. Clean on GTSRB.
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Figure 33. BadNets on GTSRB.
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Figure 34. Blend on GTSRB.
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Figure 35. WaNet on GTSRB.
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Figure 36. FIBA on GTSRB.
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Figure 37. DUBA on GTSRB.
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Figure 38. Clean Model of ImageNet.
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Figure 39. BadNets on ImageNet.
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Figure 40. Blend on ImageNet.
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Figure 41. WaNet on ImageNet.
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Figure 42. FIBA on ImageNet.
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Figure 43. DUBA on ImageNet.
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Figure 44. Label 0 of Cifar10.
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Figure 45. Label 2 of Cifar10.
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Figure 46. Label 3 of Cifar10.
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Figure 47. Label 6 of Cifar10.
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Figure 48. Label 7 of Cifar10.
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Figure 49. Label 8 of Cifar10.

21



Energy-based Backdoor Defense without Task-Specific Samples and Model Retraining

0 10 20 30 40
Labels

30
20
10

0
10
20
30
40

Su
m

 o
f N

TE
 sc

or
es

NTE score of poisoned target label
NTE score of original clean label
NTE scores of other labels

Figure 50. Label 1 of GTSRB.
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Figure 51. Label 3 of GTSRB.
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Figure 52. Label 11 of GTSRB.

E.3. More Results of the NTE Scores for Trigger Detection and Backdoor Removal

As illustrated in Fig. 44 to Fig. 61, we present additional experimental results in EBBA, focusing on the NTE scores for
various samples. When an image is poisoned, its NTE score is calculated, resulting in a significant decrease in the score
for the poisoned target label. Simultaneously, the score for the original clean label becomes substantially higher, while the
scores for the remaining labels hover around 0.
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Figure 53. Label 18 of GTSRB.
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Figure 54. Label 32 of GTSRB.

0 10 20 30 40
Labels

20
10

0
10
20
30
40
50

Su
m

 o
f N

TE
 sc

or
es

NTE score of poisoned target label
NTE score of original clean label
NTE scores of other labels

Figure 55. Label 35 of GTSRB.

E.4. More Results of the Final t-SNE for Trigger Detection and Backdoor Removal

As shown in Fig. 62 to Fig. 77, we present additional t-SNE results. Specifically, we showcased t-SNE results for poisoned
data belonging to a certain clean label and clean data belonging to the target label, given that we are dealing with a binary
classification task. In Cifar10, where the poisoned label is 9, we display t-SNE results for poisoned data originally belonging
to labels 0 - 7 and clean data belonging to label 9. In GTSRB, the poisoned label is 20. The results demonstrate that t-SNE
effectively separates the two classes of images. This underscores the high detection rate of poisoned samples and the strong
performance in removing backdoors achieved by EBBA.
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Figure 56. Label 5 of ImageNet.
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Figure 57. Label 20 of ImageNet.
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Figure 58. Label 30 of ImageNet.
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Figure 59. Label 35 of ImageNet.
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Figure 60. Label 50 of ImageNet.
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Figure 61. Label 80 of ImageNet.
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Figure 62. Label 0 of Cifar10.
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Figure 63. Label 1 of Cifar10.
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Figure 64. Label 2 of Cifar10.
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Figure 65. Label 3 of Cifar10.
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Figure 66. Label 4 of Cifar10.
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Figure 67. Label 5 of Cifar10.
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Figure 68. Label 6 of Cifar10.
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Figure 69. Label 7 of Cifar10.
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Figure 70. Label 0 of GTSRB.
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Figure 71. Label 5 of GTSRB.
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Figure 72. Label 10 of GT-
SRB.
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Figure 73. Label 15 of GT-
SRB.
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Figure 74. Label 25 of GT-
SRB.
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Figure 75. Label 30 of GT-
SRB.
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Figure 76. Label 35 of GT-
SRB.
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Figure 77. Label 40 of GT-
SRB.
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F. More details of Ablation Study
Necessity of Selecting Internet Images. In backdoored model detection, the first step is to select a dataset that results in a
uniformly distributed output from the model. We remove this component to emphasize the importance of this configuration.
As shown in Figures 78 and 79, although the energy of the target label remains the highest, the energy of several clean labels
is also close to that of the target label. As a result, multiple false positive labels are ultimately detected. This is due to the
dataset selected being biased towards certain classes, leading to a final result that is skewed towards specific labels. This
highlights the importance of carefully choosing the dataset.
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Figure 78. Energy on Cifar10 (with-
out selecting images).
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Figure 79. Energy on GTSRB (with-
out selecting images).
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Figure 80. Impact of the threshold λ
on Ek

′ − µ− λσ.

Impact of the threshold λ. We conduct experiments on the Impact of threshold λ in EBBA for backdoored model detection.
We analyse the impact of λ on the value ofEk′ − µ−λσ. If this value is lower than 0, the model is considered as backdoored.
We conducted comparative experiments on poisoned and clean models. The magnitude of λ should be chosen such that the
value for the clean model is less than 0, while the value for the poisoned model is greater than 0. As shown in Figure 80, to
meet the above conditions, the value of λ should be approximately between 1.8 and 5.7. Therefore, we ultimately chose
lambda to be 3.

Impact of Binary Classification. We conduct experiments on GTSRB with four clustering models, namely Hierarchical
Clustering (HC), Birch, Mean Shift, and DBSCAN. The result is the average of PDR from five attack methods. As shown in
Table 7, since the final result is already easily amenable to binary classification, the choice of clustering method has little
impact for EBBA+.

Table 7. Average PDR results on four clustering models.
Methods HC Birch Mean Shift DBSCAN

PDR 0.972 0.968 0.965 0.975

Impact of the Temperature T. We conduct experiments on the impact of temperature T on the energy statistical results for
backdoored model detection. As shown in Figure 81, we still analyse the impact of T on Ek′ − µ− 3σ. When T increases,
this value also becomes larger, demonstrating that the detection performance improves. But this does not mean that a larger
T is always better, as a very large T may cause the detection method to focus only on the second largest value, rendering the
significance of setting the largest value to 0 meaningless. Thus we set T to be 2.
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Figure 81. Impact of Temperature T on Ek
′ − µ− 3σ.
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Figure 82. Energy of Two-Target Backdoors.

G. Further Exploration
G.1. More Details about EBBA Against Speech and Text Classification Tasks

We conduct defensive testing experiments for EBBA on the speech dataset ESC-50 (Piczak, 2015) and the text dataset
THUCnews (Sun et al., 2016).

Speech ESC-50. The ESC-50 dataset is a labeled collection comprising 2000 environmental audio recordings intended for
evaluating methods in environmental sound classification. The dataset consists of 5-second-long recordings categorized into
50 semantical classes, each containing 40 examples, such as dog, pig, and cat. We divide it into training and test sets in
a ratio of 4:1. The model PANN-CNN14 (Kong et al., 2020) is employed to train the backdoor. The backdoor trigger is
generated through a simple substitution similar to the BadNets method, wherein a portion of the audio in the samples is
replaced and used as the trigger. The final accuracy on the clean test set is 93%, and the ASR on the poisoned test set is
99.69%. This aligns with our testing requirements.

Text THUCnews. THUCnews is generated by filtering historical data from the Sina News RSS subscription channel
between 2005 and 2011. It consists of 14 categories, such as finance, lottery, and real estate. The dataset includes 752,471
examples in the training set and 83,599 examples in the test set. The model LSTM with Muti-Head Attention module
(Abbasimehr & Paki, 2022) is employed to train the backdoor. The backdoor trigger is generated by replacing a specific
character in the text, similar to the BadNets method. The final classification accuracy on clean samples is 97.01%, and the
ASR on poisoned samples is 100%.

G.2. Defense Capability Against Multi-Label Backdoor Attacks.

We test the defensive efficacy of EBBA against multi-target backdoor attacks. Specifically, we employed the methods
outlined in (Xue et al., 2020) to set up two backdoors in one model, both achieving a attack success rate of 99%. Initially,
we recorded the positions where their labels appeared. As depicted in Figs. 83 to 86, the two target labels consistently
appear among the top results, while clean labels tend to exhibit a uniform distribution, aligning with our expectations. The
defensive outcomes using EBBA are illustrated in Fig. 82, where the energy of the two target labels significantly surpasses
that of other labels. This provides evidence of EBBA’s outstanding defense capabilities against multi-target attacks.
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Figure 83. Label 10 of GTSRB.
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Figure 84. Label 15 of GTSRB.
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Figure 85. Label 25 of GTSRB.
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Figure 86. Label 30 of GTSRB.
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G.3. The Defense Capability of EBBA Against Clean Label Backdoor

In previous experiments and demonstrations, we show EBBA’s robust detection and removal capabilities against various
advanced backdoors. In this section, we will further validate EBBA’s ability to detect clean label backdoors. Specifically,
this involves embedding a trigger into an image without modifying its label, thus creating a more invisible backdoor.

In the proof of Lemma 1 (appendix A), it is important to highlight that our assumption revolves around the presence of a
dirty-label backdoor, implying a modification of labels. Therefore, we first supplement the proof to demonstrate EBBA’s
detection capability for clean label backdoors. In fact, we still need to prove Eq. (15) in the appendex A.

Proof. We assume that nt is equal to nk2 . Despite being a clean label backdoor attack, its behavior during the testing phase
remains identical to that of dirty-label backdoor attacks. That is, the image x is originally assigned to category k1 by the
model, but with the addition of the trigger T , x+ T belongs to the target label t. We have:∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=
∑nt

i=0
K (x+ T − T, xt,i)−

∑nk2

i=0
K (x, xk2,i)

=
∑nt

i=0
(e−2γ∥x+T−xt,i−T∥2

−e−2γ∥x−xk2,i∥2

)

>
∑nt

i=0
(e−2γ∥x+T−xt,i∥2−2γ∥T∥2

−e−2γ∥x−xk2,i∥2

)

(35)

Since x + T belongs to the target label t and x not belongs to category k1, e−2γ∥x+T−xt,i∥2

is much larger than
e−2γ∥x−xk2,i∥2

. T is a trigger that does not affect the semantic information of the sample and is even invisible, thus:∑nt

i=0
K (x, xt,i)−

∑nk2

i=0
K (x, xk2,i)

>
∑nt

i=0
(e−2γ∥x+T−xt,i∥2−2γ∥T∥2

−e−2γ∥x−xk2,i∥2

) > 0
(36)

We conduct experiments to evaluate EBBA’s detection performance against state-of-the-art clean backdoor attacks proposed
in (Gao et al., 2023b), as shown in the following figures. We can see that EBBA can successfully detect the backdoor.
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Figure 87. Label 0 of Cifar10.
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Figure 88. Label 5 of Cifar10.

G.4. Defense Ability Against Adaptive Attacks

We further explore the influence of the parameter in soft-label to EBBA. We conducted thirteen different parameters in
adaptive attacks on GTSRB using VGG19 in BadNets. The thirteen maximum encoding values of soft labels are 0.9 (for
example, indicated [0.9 0 0.33 0.33 0.33]), 0.6, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.985, 0.99 and 0.995. As
shown in Figs 89 to 100, only when the maximum encoding value is between 0.98 and 0.99 (e.g., 0.985), EBBA becomes
confused. This means that EBBA has a detection rate of over 99% for this attack, showing its strong robustness and proving
the powerful defense capability of EBBA. We also want to emphasize that the adaptive attack parameters that cause EBBA
to become confused are very difficult to find. It is almost impossible to identify this range without knowing all of EBBA’s
parameters.
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Figure 89. Parameter 0.6.
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Figure 90. Parameter 0.9.
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Figure 91. Parameter 0.91.
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Figure 92. Parameter 0.92.
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Figure 93. Parameter 0.93.
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Figure 94. Parameter 0.94.
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Figure 95. Parameter 0.95.
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Figure 96. Parameter 0.97.
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Figure 97. Parameter 0.98.
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Figure 98. Parameter 0.985.

0 10 20 30 40
Labels

0

100

200

300

400

500

Su
m

 o
f e

ne
rg

y 
sc

or
es

Energy score of the target label
Energy scores of other labels

Figure 99. Parameter 0.99.
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Figure 100. Parameter 0.995.

G.5. Defense Ability Against All-to-All Backdoor Attacks

EBBA needs some minor changes to adapt to all-to-all backdoor attacks. Originally, the first step of EBBA was to select
a batch of images with the same number of samples for each class based on pseudo-labels. This needs to be changed
to: selecting a batch of samples with the same pseudo-label. For example, in CIFAR-10, there are 10 batches of such
samples. Energy distribution is computed based on these samples ten times. In the case of an all-to-all attack setting with
ytarget = yclean + 1, the highest energy during each computation will appear after the pseudo-label of this batch. This
abnormality can be used to detect the backdoor. We have conducted further experiments on two types of all-to-all attacks for
EBBA (ytarget = yclean + 1 and ytarget = yclean + 2). The results are shown in Figs 101 to 104, indicating the superior
ability of EBBA to defend the adaptive attacks.
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Figure 101. Label 0 to Label 1.
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Figure 102. Label 0 to Label 2.
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Figure 103. Label 10 to Label
11.
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Figure 104. Label 10 to Label
12.

G.6. Defense Ability Against Full-Target Backdoor Attacks

Since EBBA analyzes the abnormal target of backdoor model, it can not defend against full-target backdoor attacks.
Fortunately, full-target attacks are rare. Besides, the transferred energy module in EBBA+ is a plug-and-play module that
can be integrated into any backdoor sample detection framework. Even though EBBA fails, EBBA+ can still be effective
when integrated. The backdoor sample detection framework can detect whether samples are poisoned, and EBBA+ can
handle only those poisoned samples. The transferred energy module in EBBA+ can revert poisoned samples back to their
original labels. Clean samples can be directly classified into the correct categories by the poisoned model.
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