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Abstract

Memory is a fundamental component of Al
systems, underpinning large language models
(LLMs) based agents. While prior surveys have
focused on memory applications with LLMs,
they often overlook the atomic operations mem-
ory dynamics. In this survey, we first catego-
rize memory representations into parametric
and contextual forms, and then introduce six
fundamental memory operations: Consolida-
tion, Updating, Indexing, Forgetting, Retrieval,
and Compression. We map these operations to
the most relevant research topics across long-
term, long-context, parametric modification,
and multi-source memory. By reframing mem-
ory systems through the lens of atomic opera-
tions and representation types, this survey pro-
vides a structured and dynamic perspective on
research, benchmark datasets, and tools related
to memory in Al, clarifying the functional in-
terplay in LL.Ms based agents while outlining
promising directions for future research.

1 Introduction

Memory is central to LLM-based systems (Wang
et al., 2024j), enabling coherent and long-term in-
teraction (Maharana et al., 2024; Li et al., 2024a).
While recent work has addressed storage (Zhong
et al., 2024), retrieval (Qian et al., 2024; Wang
et al., 2025a), and memory-grounded generation
(Lu et al., 2023; Yang et al., 2024b; Lee et al.,
2024a), cohesive architectural views remain under-
developed (He et al., 2024c).

Recent surveys have proposed operational views
of memory (Zhang et al., 2024f), but most focus
narrowly on subtopics such as long-context mod-
eling (Huang et al., 2023b), long-term memory
(He et al., 2024c; Jiang et al., 2024b), personal-
ization (Liu et al., 2025), or knowledge editing
(Wang et al., 2024g), without offering a unified
operational framework. For example, Zhang et al.
(2024f) cover only high-level operations such as
writing, management, and reading and miss some

operations like indexing. More broadly, few sur-
veys define the scope of memory research, ana-
lyze technical implementations, or provide practi-
cal foundations such as benchmarks and tools.

To address these gaps, we categorize memory
into parametric and contextual types. Parametric
memory encodes knowledge implicitly in model
parameters (Wang et al., 2024c), while contextual
memory stores explicit external information, either
structured (Rasmussen et al., 2025) or unstructured
(Zhong et al., 2024). Temporally, memory spans
both long-term (e.g., multi-turn dialogue, external
observations (Li et al., 2024a)) and short-term con-
texts (Packer et al., 2023). Based on these types, we
divide memory operations into management and
utilization. Memory management includes: consol-
idation (integrating new knowledge into persistent
memories (Feng et al., 2024)), indexing (organizing
memory for retrieval (Wu et al., 2025a)), updating
(modifying memory based on new inputs (Chen
et al., 2024b)), and forgetting (removing outdated
or incorrect content (Tian et al., 2024)). Mem-
ory utilization covers retrieval (accessing relevant
memory (Gutiérrez et al., 2024)) and compression
(reducing size while preserving key information
(Chen et al., 2024b)).

To ground our taxonomy and map key memory-
centric research directions, we conduct a pilot study
and define four core topics spanning complemen-
tary dimensions: (1) Long-Term Memory (tem-
poral), covering memory management, utilization,
and personalization; (2) Long-Context Memory
(contextual), focusing on parametric efficiency in
extended input handling; (3) Parametric Memory
Modification (model-internal), including editing,
unlearning, and continual learning; and (4) Multi-
Source Memory (modality/integration), address-
ing cross-textual (structured/unstructured) integra-
tion and multimodal coordination. Based on this
taxonomy, we collect and annotate over 30K pa-
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Figure 1: A unified framework of memory Taxonomy, Operations, and High-impact Topics.

pers! using a GPT-based relevance scoring pipeline
(see Appendix A for details), retaining 3,923 high-
relevance papers (score > 8; details in Appendix B).
To highlight influential work, we propose the Rela-
tive Citation Index (RCI), a time-normalized cita-
tion metric inspired by RCR (Hutchins et al., 2016).
These papers are systematically analyzed through
our unified taxonomy—operations framework (see
Table 1 in Appendix).

The remainder of the paper is organized as fol-
lows. Section 2 introduces the memory taxonomy
and core operations. Section 3 maps high-impact
topics to these foundations and summarizes key
methods and datasets (Appendix 5). Section 4 out-
lines practical tools and applications for building
memory-enabled Al systems. Section 5 concludes
with future directions for memory-centric Al (see
Figure 1 for an overview).

2 Memory Foundations

2.1 Taxonomy

From the perspective of memory representation,
we divide memory into Parametric Memory and
Contextual Memory, the latter comprising Un-
structured and Structured forms.

Parametric Memory refers to the knowledge im-
plicitly stored within an LLM’s internal parameters
(Berges et al., 2024; Wang et al., 2024c; Prashanth
et al., 2024). Learned during (pre/post-)training, it
enables fast, immediate, and context-free access to
factual and commonsense knowledge via feedfor-
ward computation. This form of long-term memory
is persistent and efficient but lacks transparency and

'From NeurIPS, ICLR, ICML, ACL, EMNLP, and NAACL
(2022-2025).

is difficult to update selectively in response to new
experiences or task-specific contexts.

Contextual Memory denotes explicit, external
information that complements an LLM’s parame-
ters. (a) Unstructured Contextual Memory stores
heterogeneous inputs such as text (Zhong et al.,
2024), images (Wang et al., 2025a), audio, and
video (Wang et al., 2023c), supporting integration
across short-term (e.g., current dialogue) and long-
term (e.g., user history) contexts (Li et al., 2024a).
(b) Structured Contextual Memory organizes infor-
mation into predefined, interpretable formats such
as knowledge graphs (Oguz et al., 2022), tables
(Lu et al., 2023), or ontologies (Qiang et al., 2023),
enabling symbolic reasoning and precise querying.
These structures can be transient (built at inference)
or persistent (cross-session knowledge bases).

2.2 Operations

Dynamic memory in Al systems relies on oper-
ations that govern the information lifecycle and
enable effective use during interaction. These fall
into two categories: Memory Management and
Memory Utilization (see Figure 1).

2.2.1 Memory Management

Memory management governs how memory is
stored, maintained, and pruned over time. It in-
cludes four core operations: Consolidation, Index-
ing, Updating, and Forgetting, all reflecting the
temporal dynamics of memory.

Consolidation (Squire et al., 2015) refers to trans-
forming m short-term experiences & ¢y,
(€1,€2,...,6n) clapsing between ¢ and ¢t + A,
into persistent memory M, a,. This involves en-
coding interaction histories (e.g., dialogues) into
durable forms such as parameters (Wang et al.,



2024j), graphs (Zhao et al., 2025), or knowledge
bases (Lu et al., 2023). It is essential for continual
learning (Feng et al., 2024), personalization (Zhang
et al., 2024a), external MemoryBank construction
(Zhong et al., 2024), and knowledge graph con-
struction (Xu et al., 2024c¢).

Miya, = Consolidate(My, Eypa,) (1)

Indexing (Maekawa et al., 2023) builds auxiliary
codes ¢ (e.g., entities, embeddings (Wu et al.,
2025a)) to support efficient and structured memory
retrieval, enabling temporal (Maharana et al., 2024)
and relational traversal (Mehta et al., 2022) across
memories. It supports scalable retrieval across sym-
bolic, neural, and hybrid memory systems.

Z; = Index(My, ¢) 2)

Updating (Kiley and Parks, 2022) reactivates ex-
isting memory representations in My and modifies
them with new knowledge K¢ A,. Updating para-
metric memory involves a locate-and-edit mecha-
nism (Fang et al., 2024) that targets specific model
components. Meanwhile, contextual memory up-
dating involves summarization (Zhong et al., 2024),
pruning, or refinement (Bae et al., 2022) to reorga-
nize or replace outdated content.

Miya, = Update(My, Kiya,) 3)

Forgetting (Davis and Zhong, 2017; Wang et al.,
2009) refers to selectively removing memory con-
tent F from M; that is outdated or harmful. In
parametric memory, this is achieved via unlearning
techniques (Jia et al., 2024a; Li et al., 2025). In
contextual memory, forgetting involves time-based
deletion (Zhong et al., 2024) or semantic filtering
(Wang et al., 2024e).

Min, = Forget(My, F) 4

Despite its benefits, forgetting poses security
risks via persistent malicious edits. (see Section 5).

2.2.2 Memory Utilization

Memory utilization refers to how memory is ac-
cessed and used during inference, comprising two
operations: Retrieval and Compression.

Retrieval selects relevant memory fragments mgo
in response to inputs Q (ranging from textual
queries (Du et al., 2024), multi-modal queries or
multi-turn dialogues (Wang et al., 2025a; Zhou
et al., 2024)). Memory fragments are scored with

a function sim() with those above a threshold 7
deemed relevant. Retrieval targets include memory
from multiple sources (Tan et al., 2024b), modali-
ties (Wang et al., 2025a), or even parametric repre-
sentations (Luo et al., 2024) within LLMs.

Retrieve(M;, Q) =mg € M,

with sim(Q, mg) > 7 ©)

Compression improves efficiency by reducing
memory size with compression ratio «, either be-
fore input (e.g., filtering long contexts (Yu et al.,
2023)) or after retrieval (e.g., summarizing re-
trieved content (Xu et al., 2024a; Safaya and Yuret,
2024)). Unlike memory consolidation, which sum-
marizes information during memory construction
(Zhong et al., 2024), compression focuses on re-
ducing memory for inference (Lee et al., 2024a).

M7 = Compress(My, a) (6)

3 From Operations to Primary Topics

This section analyzes how real-world systems man-
age and utilize memory through core operations.
We examine four key research topics introduced
in Section 1, guided by the framework in Figure 1,
using the Relative Citation Index (RCI)—a time-
adjusted metric normalizes citation counts by pub-
lication age (Appendix B)—to highlight influential
work. RCI surfaces emerging trends and enduring
contributions across memory research. Figure 6
shows the architectural landscape of these topics.

3.1 Long-term Memory

Long-term memory refers to the persistent storage
of information acquired through interactions such
as multi-turn dialogues. It enables memory man-
agement, utilization, and personalization across
extended interactions. This section focuses on con-
textual long-term memory. See in Appendix Ta-
bles 3 for representative datasets and Tables 7 and
8 for representative approaches.

Memory Management. A core component of
long-term memory systems, memory management
includes consolidation, indexing, updating, and for-
getting. Consolidation turns short-term inputs into
persistent memory via summarization, salient ex-
traction, or temporal modeling (Lu et al., 2023;
Zhong et al., 2024; Hou et al., 2024; Wang et al.,
2025c¢; Park et al., 2025). Indexing ensures effi-
cient access, using graph-based, timestamped, or
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Figure 2: Publication statistic of highlighted papers
(RCI > 1) discussed in long-term memory.

timeline-aware structures (Gutiérrez et al., 2024,
Wu et al., 2025a; iunn Ong et al., 2025). Up-
dating modifies memory content through recur-
sive summarization, selective deletion, or reflec-
tive rewriting, sometimes guided by external feed-
back (Dalvi Mishra et al., 2022; Bae et al., 2022;
Sun et al., 2024; Wang et al., 2025b). Forgetting,
though less explored, plays a critical role in safety
and compliance, implemented via passive decay in
external memory (Zhong et al., 2024; Chen et al.,
2024b). Parametric unlearning is discussed sepa-
rately in Section 3.3.

Memory Utilization. A core process in long-
term memory systems is memory utilization, in-
volves retrieving, integrating, and applying mem-
ory during inference. Retrieval can be query-
centered, memory-centered, or event-centered,
with advanced strategies like multi-hop traversal
and graph-based evolution (Xu et al., 2021; Jiang
et al., 2023b; Jang et al., 2024; Wu et al., 2025a;
Du et al., 2024; Maharana et al., 2024; Gutiér-
rez et al., 2024; Qian et al., 2024). Integration
is either static—directly merging retrieved memory
with context—or dynamic, where memory evolves
through interaction (Chen et al., 2024a; Li et al.,
2024h; Hou et al., 2024; Zheng et al., 2024). Re-
trieved memory further guides grounded gener-
ation via reflection, feedback, and long-context
alignment (Tandon et al., 2021; Lu et al., 2023; Li
and Qiu, 2023; Li et al., 20241; Chen et al., 2024b;
Lee et al., 2024b).

Personalization. Essential for user-adaptive be-
havior, personalization combines model adaptation
and memory augmentation. Adaptation encodes
user preferences via fine-tuning or lightweight mod-
ules like prefix encoders, adapters, or latent em-
beddings (Liu et al., 2023c; Tang et al., 2023a;
Tan et al., 2024d). Dual-memory systems such
as MaLLP model both long- and short-term traits
(Zhang et al., 2023b). Augmentation retrieves

structured profiles, unstructured histories, or hy-
brid memory from persistent agents (Dutt et al.,
2022; Fu et al., 2022; Salemi et al., 2023; Huang
et al., 2024a; Zhong et al., 2024; Li et al., 2024a).
Despite scalability, most approaches remain pas-
sive, revealing challenges in building adaptive and
proactive personalization.

Discussion. 1) Static Memory Limit Evaluation.
Most current evaluations focus on retrieval and gen-
eration accuracy in factual Question Answering or
multi-turn dialogue (Yang et al., 2024c; Salama
et al., 2025; Wu et al., 2025a; Maharana et al.,
2024), often assuming static memory and over-
looking operations like updating, selective reten-
tion, and cross-session continuity. This static view
limits our understanding of how models manage
memory over time. 2) Gap Between Retrieval and
Generation. While benchmarks such as LoCoMo
(Maharana et al., 2024) and MemoryBank (Zhong
et al., 2024) incorporate longer contexts, they fail
to account for temporal drift, source inconsistency,
and memory reliability, leading to a disconnection
between retrieval scores and generation quality un-
der noisy or distant conditions (see Figure 13). 3)
Personalization and Planning Require Evolving
Memory. Recent work has explored personalization
through profile retrieval and agent-based modeling
of long-term user behavior (Salemi et al., 2023;
Dutt et al., 2022; Fu et al., 2022; Li et al., 2024a),
but often assumes static profiles and offers limited
evaluation of how memory consistency, user adap-
tation, and planning based on evolving memory
unfold across sessions.

As shown in Figure 2, retrieval and generation
dominate recent literature, especially in NLP. Core
operations like consolidation and indexing receive
more focus in ML, while forgetting remains under-
explored. Personalization is largely limited to NLP
due to practical relevance. In terms of citation im-
pact, consolidation, retrieval, and integration play
key roles—driven by advances in memory-aware
fine-tuning, summarization, retrieval-augmented
generation, and prompt fusion.

3.2 Long-context

Managing vast quantities of multi-sourced external
memory in conversational search presents signif-
icant challenges in long-context language under-
standing. These challenges can be broadly cate-
gorized into Parametric Efficiency and Contex-
tual Utilization. In this section, we review efforts
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Figure 3: Publication statistic of highlighted papers
(RCI > 1) discussed in long-context memory.

made in handling these challenges. Representative
datasets and methods are reviewed in Tables 4, 9
and 10 in Appendix.

Parametric Efficiency. Key-Value (KV) cache
aims to minimize unnecessary key-value compu-
tations by storing past key-value pairs as external
parametric memory. However, as context length in-
creases, the memory requirement for storing these
memory grows quadratically, making it infeasible
for handling extremely long contexts. KV Cache
Dropping aims to reduce cache size by eliminat-
ing unnecessary KV cache, with static approaches
(Xiao et al., 2024; Han et al., 2024) dropping KV
cache with fixed pattern, dynamic approaches drop-
ping KV cache concerning the query (Zhang et al.,
2023c; Ge et al., 2024; Chen et al., 2024c¢), or the
model behavior (Liu et al., 2023d; Li et al., 2024g;
Yang et al., 2024a; Yao et al., 2024a). KV Cache
Storing Optimization considers the potential in-
formation loss when removing KV cache by pre-
serving the entire KV cache at a smaller footprint,
achieved through compressing less important cache
entries into low-rank representations (Dong et al.,
2024), or dynamically quantize KV cache to reduce
memory allocation (Liu et al., 2024f; Zhao et al.,
2024c; Hooper et al., 2024; Sheng et al., 2023)).
KV Cache Selection refers to selectively loading re-
quired KV cache to speed up the inference, which
focuses on memory retrieval (Wu et al., 2022a;
Tworkowski et al., 2023; Tang et al., 2024).

Contextual Utilization. Apart from optimizing
language models to obtain long-context abilities,
optimizing contextual memory utilization raises an-
other important challenge. Context Retrieval aims
to enhance LLM’s ability in identifying and locat-
ing key information from the contextual memory.
Graph-based approaches (Li et al., 2024d) decom-
pose documents into graph structures for effective
context selection. Token-level methods (Yu et al.,
2023; Zhang et al., 2024c) selecting tokens deemed

most important while fragment-level methods (Zhu
et al., 2025) perform context selection at the frag-
ment level. Training-based approaches (He et al.,
2024b; An et al., 2024c) train LLMs with special-
ized data to improve the context selection ability.
Context Compression utilizes memory compres-
sion operation to optimize contextual memory uti-
lization. Soft prompt compression (Chevalier et al.,
2023; Cheng et al., 2024) focuses on compress-
ing chunks of input tokens into continuous vectors.
Hard prompt compression directly compress long
input chunks into shorter natural language chunks
by dropping uninformative tokens (Li et al., 2023)
or chunks (Fei et al., 2024), abstracting the key
information to summarize the context (Jiang et al.,
2023a, 2024a; Pan et al., 2024), or combining drop-
ping and abstracting (Liu et al., 2023a).

Discussion: 1) Compression vs. Performance
Trade-off. Yuan et al. (2024) propose an universal
benchmarking on different compression strategies
(Figure 14), showcasing that KV cache storage op-
timization methods achieve best trade-off between
effectiveness and efficiency. In contrast, KV cache
dropping methods are more flexible but less effec-
tive. In the other hand, compressing the contextual
memory are less effective compared with compress-
ing the parametric memory. 2) Lost in Context. De-
spite efforts to extend context length to millions of
tokens (Ding et al., 2023), long-context LLMs have
been found to miss crucial information in the mid-
dle of the context (Liu et al., 2024d; Ravaut et al.,
2024). In addition, though higher recall can be
obtained with larger retrieval set, irrelevant infor-
mation will mislead LLMs and harm the generation
quality (Shi et al., 2023; Jin et al., 2025).

In publication trend perspective, Figure 3 shows
that the NLP community focus more on the uti-
lization aspect with contextual memory, while the
ML community dedicate more effort on efficiency
processing with parametric memory. From an RCI
perspective, KV cache storage optimization dom-
inates discussions on this topics. This dominance
stems from their optimal balance efficiency and
effectiveness, as well as their general compatibility
with other long-context methods.

3.3 Parametric Memory Modification

Modifying parametric memory, which is encoded
knowledge within the LLM parameters, is crucial
for dynamically adapting stored memory. Exist-
ing methods for parametric memory modification



can be grouped into three categories: Editing, Un-
learning, and Continual Learning. Represen-
tative datasets and methods are reported in Ta-
bles 5, 11, 12, and 13.

Editing Editing refers to updating specific knowl-
edge in a model’s parametric memory without full
retraining. One prominent line of work involves di-
rectly modifying model weights. A dominant strat-
egy is Locating-then-Editing (Meng et al., 2022a,
2023; Mela et al., 2024; Huang et al., 2024b; Fang
et al., 2025), which first identifies and then up-
dates the relevant parameters. Another approach
is meta-learning (De Cao et al., 2021; Mitchell
et al., 2022a; Tan et al., 2024a; Li et al., 2024e;
Zhang et al., 2024d), where an auxiliary network
learns to generate efficient weight updates. Some
methods avoid altering the original weights alto-
gether: Prompt-based methods steer the model
through in-context prompts (Zheng et al., 2023;
Zhong et al., 2023), while Additional Parameter
methods store updates externally in learnable mod-
ules (Mitchell et al., 2022c; Dong et al., 2022;
Wang et al., 2024c,i; Das et al., 2024).

Unlearning Unlearning aims to remove specific
knowledge from a model while preserving unre-
lated information. Additional Parameter methods
introduce modules such as logit difference units (Ji
et al., 2024) or dedicated unlearning layers (Chen
and Yang, 2023). Prompt-based approaches either
modify the input directly (Liu et al., 2024b) or
apply in-context learning techniques (Pawelczyk
et al., 2024). Locating-then-Unlearning meth-
ods (Jia et al., 2024a; Tian et al., 2024; Wu et al.,
2023) identify and suppress the memory respon-
sible for undesired behavior. Finally, Training
Objective-based methods (Wang et al., 2025d; Liu
et al., 2024e; Jia et al., 2024b; Yao et al., 2024b)
revise the loss function to encourage forgetting.

Lifelong learning Lifelong learning (Wang et al.,
2024b) enables long-term memory retention by
mitigating catastrophic forgetting. Regularization-
based learning (Feng et al., 2024; Wang et al.; Kirk-
patrick et al., 2017; Wu et al., 2024) constrains up-
dates to important weights to preserve prior knowl-
edge. Replay-based learning (Mehta et al., 2022)
reinforces memory by reintroducing past samples,
supporting the integration of retrieved or historical
knowledge. Interactive learning, as in LifeSpan
Cognitive System (Wang et al., 2024j), allows
agents to acquire and consolidate memory through
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Figure 4: Publication statistic of highlighted papers
(RCI > 1) discussed in parametric memory modification.
LocatingU, LocatingE and AdditionalP refer to locating-
then-editing, locating-then-unlearning and additional
parameters, respectively.

real-time experience, offering insights into contin-
ual parametric encoding.

Discussion: 1) Editing Still Requires Precise
Control. As shown in Figure 16, current editing
methods perform poorly on the ZsRE benchmark
due to low specificity, underscoring the challenge
of making precise edits without affecting unre-
lated information. 2) Unlearning needs a More
Challenging and Realistic Benchmark. As detailed
in Figure 15, current unlearning methods already
achieve high scores on TOFU, suggesting that it
may not be challenging enough. This indicates a
need for new unlearning benchmarks that go be-
yond the unlearning of specific entities. 3) Scal-
ability Remains Underexplored. Most methods
(Figure 17) attempted no more than 5,000 edits,
with limited exploration of sequential unlearning.
Non-prompt approaches (Figure 18) are costly and
limited to small models (< 20B). The link between
model size and its capacity for edits or unlearn-
ing remains unknown. Enabling efficient, scalable
editing and unlearning is a key open challenge.

In publication trend perspective, Figure 4 shows
that research focuses mainly on editing, followed
by unlearning, with less attention to lifelong learn-
ing. Editing has higher impact, while unlearning
methods—especially those using additional param-
eters—are gaining interest. This suggests a shift
toward post-deployment model adjustment, with
lifelong learning still underexplored.

3.4 Multi-source Memory

Multi-source memory is crucial for real-world Al,
encompassing both parametric memory and contex-
tual memory. These memories support reasoning
across short-term context and long-term user his-
tory or domain knowledge. Key challenges include
cross-textual integration and multi-modal coor-



dination across these heterogeneous sources.

Cross-textual Integration. Text-based memory
integration requires factual consistency and cross-
domain Reasoning. Recent efforts combine struc-
tured and unstructured sources (Hu et al., 2023;
Wang et al., 2024f; Xu et al., 2024c) or merge pa-
rameterized and retrieved content (Nogueira dos
Santos et al., 2024; Wang et al., 2025¢). However,
Conflicts often emerge when merging heteroge-
neous inputs. Techniques like RKC-LLM (Wang
et al., 2023b) and BGC-KC (Tan et al., 2024b)
detect inconsistencies and propose source-aware
trust mechanisms, yet remain limited in dynamic
or multi-session settings.

Multi-Modal Coordination. In multi-modal
scenarios, fusion and retrieval are central to mem-
ory usage. Unified embedding spaces (e.g., Uni-
TransSeR (Ma et al., 2022), PaLM-E (Driess et al.,
2023)) enable short-term cross-modal Fusion,
while approaches like LifelongMemory (Wang
et al., 2023c) and MA-LMM (He et al., 2024a)
accumulate long-term cross-modal knowledge. Re-
trieval remains embedding-based (e.g., CLIP (Rad-
ford et al., 2021), QwenVL (Bai et al., 2023)),
IGSR (Wang et al., 2025a) with limited capacity
for reasoning or leveraging underexplored signals
like audio. Future systems must bridge this re-
trieval-reasoning gap and support persistent, multi-
modal memory grounded in temporal dynamics.

Discussion. 1) Conflict-aware  Reasoning
Needed. Cross-textual memory integration is
shifting from symbolic querying to generative
reasoning.  Early work relied on structured
symbolic memory (Wu et al., 2022b; Hu et al.,
2023), while later work introduced unstructured
retrieval and attention-based inference (Li et al.,
20241; Wang et al., 2025e), still treating memory
as static. Recent systems embed memory into
reasoning (Xu et al., 2024c; Michelman et al.,
2025), but often merge retrieved and parametric
content without resolving semantic conflicts,
leading to hallucinations (Zhou et al., 2023; Tan
et al.,, 2024c). Some efforts apply epistemic
calibration or multi-step resolution (Wang et al.,
2023b; Xu et al., 2024b), but remain limited in
scope. 2) Temporal and Structured Integration
Are Converging. Time-aware fusion and retrieval
have become common in recent multi-modal
memory models for long-horizon reasoning
(Figure 21), highlighting a shift toward temporal
and operational integration (Wang et al., 2023c; He
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Figure 5: Publication statistic of highlighted papers
(RCI > 1) discussed in multi-source memory.

et al., 2024a; Zhou et al., 2024). General-purpose
solutions such as joint embedding and prompt-
level fusion are commonly adopted, while more
task-specific approaches leverage identifier-based
retrieval and graph-based coordination to achieve
precise integration (Nguyen et al., 2023; Li et al.,
2024f). 3) Operational Scalability Remains
Underexplored. Beyond retrieval, operations
like indexing, updating, and compression are
increasingly central. Emerging system adopt
self-maintaining memory across sessions (Glocker
et al., 2025; Xiao et al., 2025), moving from
passive storage to actively managed memory,
especially in multi-source contexts.

As shown in Figure 5, cross-textual reasoning
dominates by publication volume, reflecting its cen-
tral role in multi-source integration. Fusion re-
search, particularly work driven by CLIP (Radford
et al., 2021), achieves the highest RCI and demon-
strates strong influence on multi-modal learning. In
contrast, progress in multi-modal retrieval remains
limited, and conflict resolution is still narrowly ex-
plored within NLP. The overall slowdown suggests
a transition toward consolidation in these areas.

4 Memory In Practice

Applications. Memory-centric systems en-
able knowledge retrieval, personalization, and
long-horizon planning in real-world scenarios.
Knowledge-centric systems encode general
knowledge in model weights (Chen et al., 2021a;
Yang et al., 2023; Bi et al., 2023), supporting
medical, legal, or financial assistants requiring
static expertise. User-centric systems leverage
contextual memory to model preferences and
history (Li et al., 2024a; Qin et al., 2025; Hong
et al., 2023), powering mental health chatbots
and personalized tutoring. Task-oriented agents
use structured memory for session continuity
and long-range reasoning (Xu et al., 2025), such
as project assistants tracking meeting notes.



Multi-modal systems (OpenAl, 2023) integrate
all memory types to enable coherent interaction in
settings like in-car copilots or medical tools.

Products. Al companions (e.g., Replika (Luka,
Inc., 2025)), recommender systems (e.g., Ama-
zon (Linden et al., 2003)), and virtual assistants
(e.g., Me.bot, Tencent ima.copilot (Coze, 2024;
xAl, 2023)) exemplify user-centric memory de-
sign. Task-oriented tools such as ChatGPT, Grok,
GitHub Copilot, Coze, and CodeBuddy (OpenAl,
2022; xAl, 2023; GitHub and OpenAl, 2021; Coze,
2024; Zhao et al., 2024a) showcase structured con-
textual memory in real-world deployment.

Tools. A layered memory ecosystem has emerged
to support these applications. Core components
include vector stores (e.g., FAISS (Douze et al.,
2024)), graph databases (e.g., Neod4j (Neo4j,
2012)), and LLMs (e.g., LLaMA (Touvron et al.,
2023), GPT-4 (Achiam et al., 2023), DeepSeek
(Liu et al., 2024a)). Retrieval tools such as BM25
(Robertson et al., 1995), Contriever (Izacard et al.,
2021), and OpenAl embeddings (OpenAl, 2025)
enable semantic access. On top of these, frame-
works like LangChain (Chase, 2022), Llamaln-
dex (Liu, 2022), and Graphiti (He et al., 2025)
provide modular pipelines. Mid-layer orches-
tration systems such as Zep (Rasmussen et al.,
2025), Mem0 (Taranjeet Singh, 2024), and Memary
(kingjulio8238, 2025) manage memory lifecycle
and temporal consistency. Tool details are listed in
Tables 16-19 in Appendix.

5 Challenge and Future Direction

Designing memory-centric Al requires addressing
core limitations and emerging demands. Guided by
RCI analysis and trends, we outline key challenges
shaping future memory research.

Unified evaluation is needed to address consis-
tency, personalization, and temporal reasoning
in long-term memory. Existing benchmarks rarely
assess core operations such as consolidation, up-
dating, retrieval, and forgetting in dynamic, multi-
session settings. This gap contributes to the re-
trieval-generation mismatch, where retrieved con-
tent is often outdated, irrelevant, or misaligned due
to poor memory maintenance. Addressing these
issues requires temporal reasoning, structure-aware
generation, and retrieval robustness along with sys-
tems supporting personalized reuse and adaptive
memory management across sessions.

Long-context Processing: Efficiency vs. Ex-
pressivity. Scaling memory length exacerbates
trade-offs between computational cost and model-
ing fidelity. Techniques like KV cache compression
and recurrent memory reuse offer efficiency, but
risk information loss or instability. At the same
time, reasoning over complex environments, es-
pecially in multi-source or multi-modal settings,
requires selective context integration, source differ-
entiation, and attention modulation. Bridging these
demands mechanisms that balance contextual band-
width with task-specific relevance and stability.

While promising, parametric memory mod-
ification requires further research to improve
control, erasure, and scalability. Current editing
methods often lack specificity, while unlearning
benchmarks like TOFU may be too simple to re-
veal real limitations. Most approaches do not scale
beyond a few thousand edits or support models over
20B parameters. Additionally, lifelong learning is
still underexplored despite its potential. Future
work should develop more realistic benchmarks,
improve efficiency, and unify editing, unlearning,
and continual learning into a cohesive framework.

Multi-source Integration: Consistency, Com-
pression, and Coordination. Modern agents
rely on heterogeneous memory—structured knowl-
edge, unstructured histories, and multi-modal sig-
nals—but face redundancy, inconsistency, and
source ambiguity. These arise from misaligned
temporal scopes, conflicting semantics, and miss-
ing attribution, particularly across modalities. Ad-
dressing them requires conflict resolution, temporal
grounding, and provenance tracking. Efficient in-
dexing and compression are also essential for scala-
bility and interpretability in multi-session settings.

Beyond these core areas, several cross-cutting
frontiers are emerging: spatio-temporal memory,
which captures evolving relational dynamics over
time; unified memory representation, bridging
parametric and contextual spaces; lifelong learn-
ing, balancing plasticity and stability across mem-
ory types; multi-agent memory, enabling decen-
tralized synchronization and coordination; biologi-
cal inspirations, including dual-memory systems
and hierarchical abstraction; and memory safety,
ensuring robust unlearning and secure retention
under adversarial conditions.

These challenges require systems capable not
only of retaining information but also of doing so
responsibly, efficiently, and adaptively.



Limitation

Our paper selection primarily focus on memory-
centric research, and articles from related but tan-
gential fields are not systematically included or
analyzed. Additionally, limiting the scope to the
six top conferences may restrict the range of acces-
sible papers reviewed in this study. To mitigate this
limitation, we have included additional reviews of
highly relevant papers beyond these conferences,
including preprints. Apart from this, given the
breadth of the reviewed topics and the extensive
number of memory-based works, some influential
studies may still be missing. To minimize such
omissions as much as possible, we utilize an RCI-
based approach to ensure that most of the highly
influential works are included and discussed in this

paper.
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A GPT-based Pipeline Selection

To facilitate large-scale relevance filtering aligned
with our taxonomy, we design a GPT-based scor-
ing pipeline to evaluate the alignment between pa-
per abstracts and predefined task definitions (Ta-
ble 2). Each abstract is paired with a corresponding
task definition and scored on a 1-10 scale by the
model, with a threshold of > 8 used to retain high-
relevance papers for further analysis. We adopt
GPT-40-mini as the scoring backbone due to its
favorable trade-off between performance and effi-
ciency. Despite its relatively lightweight architec-
ture, GPT-40-mini demonstrates strong zero-shot
reasoning capabilities, making it a cost-effective
and sufficiently accurate choice for abstract-level
topic relevance estimation across a corpus of over
30,000 papers. The exact prompt format used in
this evaluation process is illustrated in Figure 10.

B Relative Citation Index

In this work, we identify impactful works by Rel-
ative Citation Index (RCI) metric inspired by the
RCR metrics (Hutchins et al., 2016), which esti-
mate the expected citations with respect to publica-
tion age to prevent bias between original citations
from different publication dates. The age A; of a

paper p; is computed as:
A=T —Year; N

, where T is the date when the citation is collected
(20th April 2025) and Year; is the year where
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paper 1 is first published. Thus, we can model the
relation between citation number C; and age A; of
paper p; in three different way, which are:

linear model:

Ci =B+ ad; (8)
exponential model:
Ci = exp(B + ad;) ©)
log-log regression model:
log(C; +1) =5+ alog A; +¢; (10)

We collect papers from past 3 years (2022 to
2025) from Top NLP and ML conferences (i.e.,
ACL, NAACL, EMNLP, NeurIPS, ICML, ICLR).
To reduce the bias from different research area, we
use GPT to score the relevance of a paper with the
four topics discussed in the paper, using the prompt
shown in Figure 10. We pick all the papers with
score equal and higher than 8 and collect their pub-
lication date and citation numbers from Semantic
Scholar API?. For papers without publication date
field, we use the first conference day as the pub-
lication date. We gather a total number of 3,932
valid papers after the processing and compute the
estimated B and & accordingly’. Figure 7 shows
the estimated age-citation model, where we can
find that the log-log regression model best fit the
data, which almost perfectly fitting the median ci-
tation with respect to publication age. In addition,
log-log regression model grantees that the expected
citation equals 0 when a paper is freshly released,
which follows the intuition. Thus, we pick log-log
regression model to compute the expected citation
for next step*, and we are able to obtain the ex-
pected citation number C; of paper p; with age A;
as: X o

C; = exp(B) AS (11)
Then we compute the relative citation index RCI;
of paper p; as:

C.
RCI, = = (12)
i
When RCI; >= 1, we consider this paper over-
cited than its expectations, and vice versa. In this
paper, we focus on the paper with RCI >= 1, for
which we believe has more influence.
https://www.semanticscholar.org/
product/api
*Noted that not all papers mentioned in this work are con-

sidered in estimating B and &, but they will be assigned a RCI
score based on the publication age.

“The estimation is: B =1.878, & = 1.297
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Operations ‘ Parametric ‘

Contextual

Structured Unstructured

Consolidation ‘ Continual Learning, ‘
Indexing
Multi-modal Coordination
Updating Knowledge Editing Cross-Textual Integration, Cross-Textual Integration,
Forgetting Knowledge Unlearning,
Retrieval s
Parametric Efficiency s s
Contextual Utilization Contextual Utilization,
Multi-modal Coordination

Compression

Parametric Efficiency

‘ Contextual Utilization

Contextual Utilization

Table 1: Alignment of sub-topics with memory types and memory operations. Sub-topics are highlighted with

colors with respect to the topics:

C RCI-Driven Analysis of Topic Impact

In this study, we leverage both RCI and publica-
tion volume trends to gain a clearer understand-
ing of the development and influence of various
memory-related research topics. As shown in Fig-
ure 8, boxplots illustrate the distribution of median
Relative Citation Index (RCI) values across top-
ics by year. Notably, 2023 stands out as a pivotal
year following the emergence of large language
models (LLMs), with a surge in both the quantity
and quality of publications related to long-context
and parametric memory, suggesting that these areas
were directly shaped by the advancement of LLMs.
In contrast, long-term memory and multi-source
memory maintained relatively stable average im-
pact levels, indicating continued activity without
the emergence of disruptive or field-defining work
during that period.

Figure 9 visualizes the temporal trends in publi-
cation volume and median RCI for each topic. All
topics experienced notable growth in publication
counts, with long-context in particular expanding
from one of the least represented topics before 2022
to the most prominent by 2024—Ilargely driven
by the rise of LLMs. Furthermore, the RCI of
long-term memory has shown a steady increase,
reflecting a growing body of valuable work in that
domain. By contrast, other topics witnessed a no-
ticeable decline in RCI medians after 2023, though
their influence levels remained comparable to those
seen prior to 2022. These patterns collectively un-
derscore the substantial impact of large models
in catalyzing progress across memory-related re-
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, Long-context, Parametric, Multi-source.

search, especially in the areas of long-context and
parametric memory.

D Chord Analysis of Interactions Among
Memory Types, Operations, Topics,
and Venues

We present a chord-based analysis of memory re-
search from two perspectives: (1) the interactions
among memory types, operations, and topics, and
(2) their distribution across major ML and NLP
conference venues.

D.1 Memory Interactions Across Types,
Operations, and Topics

To intuitively analyze the strength of connections
between memory types, operations, and research
topics, we examine 132 method-focused papers
with an RCI > 1 and generate a final chord diagram
(as shown in Figure 11) based on the analysis.

From the perspective of memory types, research
predominantly focuses on parametric memory and
contextual unstructured memory, with most work
centered on compression, retrieval, forgetting, and
updating. In contrast, contextual structured mem-
ory is relatively underexplored, likely because
LLMs are optimized for sequential text and per-
form less effectively on structured inputs.

From the operation perspective, compression
and retrieval are the most frequently studied, while
indexing receives comparatively less attention.
This is largely because most existing works focus
on the use of memory, where retrieval and com-
pression are two fundamental operations. In the
case of consolidation, most studies refer to storing
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Figure 6: Operation-driven system-level topics in Al systems.

knowledge either in model parameters via train-
ing on unstructured text or transforming it into
a fixed external memory format. Updating and
forgetting are mainly associated with knowledge
editing and unlearning, typically within parametric
memory. These directions aim to incrementally
modify parameters in the model based on external
input. However, due to the opaque nature of model
internals, such memory operations remain at an
early stage of active exploration. In contrast, mem-
ory indexing mechanisms for LLMs have received

24

limited attention.

From the topic perspective, parametric modifi-
cation studies are mostly centered on parametric
memory, though some works attempt parameter
adaptation through continual learning over unstruc-
tured text. Research under the long-context theme
primarily focuses on compression and retrieval
within unstructured memory, with some leverag-
ing parameterized forms like key-value caches. In
long-term memory studies, the emphasis is also on
unstructured memory, particularly in terms of con-
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Figure 7: Boxplot of citation distributions from the
3,932 papers with respect to age, red curve is the ex-
pected citations C;. Generally RCI >= 1 indicate the
paper is above median citations in its age group, and
higher RC indicate higher research impact.
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Figure 9: Overall temporal trends of topic-wise publica-
tion volume and median RCI.

solidation, compression, and retrieval. Research
related to multi-source memory is still limited and
typically involves integrating structured and un-
structured information.

In summary, the limited exploration of contex-
tual structured memory highlights an opportunity

Relative Citation Impact (RCI)
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to develop more comprehensive memory opera-
tions by integrating it with unstructured mem-
ory. Second, research on multi-source memory
remains scarce, despite the substantial challenges it
poses—particularly the issue of memory conflicts
arising from heterogeneous sources. Designing
robust and consistent strategies for multi-source
memory integration is thus a promising direction.
Finally, although indexing has been extensively
studied in traditional database systems, it remains
underexplored in the context of LLM-based agents.
The complexity of memory types and the need for
vectorized or sparse retrieval methods call for new
indexing approaches specifically tailored to reason-
ing and interaction in LLMs.

D.2 Memory Interactions Across Conference
Venues

In addition to our primary paper collection, we also
analyzed 81 method-focused papers with RCI >
1 across major conferences. As shown in Figure
12, from the operation perspective, compression,
forgetting, and updating appear more frequently in
ML conferences (ICLR, ICML, NeurIPS), while
retrieval and consolidation are more commonly
featured in NLP conferences (ACL, EMNLP,
NAACL). This distribution suggests that the former
set of operations is still in the stage of theoretical
exploration, whereas the latter is more grounded
in practical application. Consequently, compres-
sion, forgetting, and updating still hold substantial
potential for translation into real-world systems.

Indexing remains underrepresented in both ML
and NLP venues. This may be partly due to its
frequent co-occurrence with retrieval, and partly
because current vector-based indexing approaches
are relatively uniform, with few novel alternatives
available.

From the topic perspective, long-term memory
is more frequently addressed in NLP conferences,
while long-context topics are more common in ML
venues—likely reflecting the differing application-
and theory-oriented focuses of these communities.
Parameter modification appears more often in ML
conferences, whereas multi-source memory is more
prevalent in NLP conferences, highlighting the fact
that multi-source memory challenges often arise
during real-world applications and system integra-
tion.



Topic Name Definition in Prompt

Long-Term Memory Definition: Creating systems that ensure knowledge from past interactions remains accessible
as new tasks emerge, maintaining continuity in multi-turn conversations.
Features: Memory retention, retrieval, and attribution—preserving, accessing, and contextu-
alizing memory to support coherent interaction.

Long-Context Definition: Efficiently processing, interpreting, and utilizing very long input sequences
without performance degradation.
Features: Optimized attention, context compression, and mitigation of the “lost-in-the-
middle” problem.

Parametric Memory Modi- Definition: Managing and updating internal parameters to preserve accuracy, privacy, and
fication adaptability without full retraining.
Features: Selective unlearning, precise model editing, distillation, and lifelong learning.

Multi-Source Definition: Integrating and harmonizing diverse data types into a unified framework while
resolving inconsistencies.
Features: Multi-modal fusion, semantic consistency, conflict resolution, and redundancy
removal.

Personalization* Definition: Building user-centric memory systems that adapt to individual preferences and
history while preserving privacy.
Features: Privacy-aware profiling, consistent personalization, and long-term continuity.

Table 2: Definitions and features of the five memory-centric evaluation topics. *Personalization is treated as a
specialized form of long-term memory that focuses on user-centric adaptation across sessions.

Prompts of the Relevance Evaluation to Task Definitions

System Instruction: Given the task and the abstract, evaluate the relevance of the abstract to the task.
Prompt Template:

You are tasked with evaluating the relevance of a given article to a specific task definition.

Please read the following task definition, article title, and abstract carefully.

Based on the content, rate the relevance on a scale from 1 to 10,

where 1 means not relevant at all, and 10 means highly relevant.

Task Definition: {taskqey}

Article Title: {title}

Abstract: {abstract}

Please provide your rating in the format [[Rating]].
For example, if the relevance is high, you might respond with [[9]].

nn

Figure 10: Prompt for evaluating article relevance to specific task definitions.
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Datasets Mo Operations ']I)‘yspe Per TR Metrics Purpose Year Access
LongMemEval Indexing, Recall@K, Benchmark chat assistants on long-term
(Wugét al., 2025a) text Retrieval, MS X v NDCG@K, memory abilities, including temporal 2024 [LINK]
v Compression Accuracy reasoning.
LoCoMo text  + Indexing, Accuracy, Evaluate long-term memory in LLMs
. Retrieval, MS X v ROUGE, Preci- across QA, event summarization, and 2024 [LINK]
(Maharana et al., 2024)  image . . N "
Compression sion, Recall, FI ~ multimodal dialogue tasks.
. Enhance LLMs with long-term memory
MemoryBank text Updfmng, MS v X Accuracy, Hu- capabilities, adapting to user personali- 2024 [LINK]
(Zhong et al., 2024) Retrieval man Eval .
ties and contexts.
MAP, Recall,
PerLTQA q Precision, To explore personal long-term memory
(Du et al., 2024) = REErl RIS 7 2 F1, Accuracy, question answering ability. 202 (LR
GPT4 score
. Preference-conditioned dialogue gener-
?g;?aﬁ}) etal., 2024a) text Egtrge::sl;ion QA '4 X ﬁ?Ug\f‘;‘ ﬁztceui ation. Parameter-efficient fine-tuning 2024 [LINK]
2 ” press Y. (PEFT) for customization.
DialSim To evaluate dialogue systems under real-
(Kim et al., 2024) text Retrieval MS v X Accuracy istic, real-time, and long-context multi- 2024 [LINK]
” party conversation conditions.
CcC . BLEU, For long-term dialogue modeling with
(Jang et al., 2023) text Retrieval MS x v ROUGE time and relationship context. 2023 [LINK]
Consolidation Multiple entries per user. Supports both
LAMP . B Accuracy, F1, user-based splits and time-based splits,
(Salemi et al., 2023) et gemeval,' WK 4 4 ROUGE enabling evaluation of short-term and 202 ICINKY
ompression 1 o
ong-term personalization.
T To evaluate and improve long-term dia-
MSC Con§0hdanon, logue models via multi-session human-
(Xu et al., 2021) text Retrleva],. MS v X PPL human chats with evolving shared 2022 [LINK]
Compression
knowledge.
Consolidation, .ggg:lr]acy, Pli;i
DuLeMon text Updfmng MS v x e PPL, F_or dynamic persona lracklr'lg and con- 500n [LINK]
(Xu et al., 2022) Retrieval, sistent long-term human-bot interaction.
Compression EILEG,  DIR-
TINCT
E:J;i/l + Consolidation,
2WikiMultiHopQA " Indexing, Multi-hop QA combining structured and
(Ho et al., 2020) ]e;;f: . Retrieval, QA x X EM, F1 unstructured data with reasoning paths. 2020 [LINK]
i Compression
text
NQ . .
(Kwiatkowski et al, text Retittsval, QA X X EM, FI Opsndtneim @Azl Rl Cosde gy g
2019) Compression search queries.
HotpotQA lext Retrieval, QA x X EM. FI Multi-hop QA with explainable reason- 2018 [LINK]

(Yang et al., 2018) Compression ing and sentence-level supporting facts.

Table 3: Datasets used for evaluating long-term memory. “Mo” denotes modality. “Ops” denotes operability
(placeholder). “DS Type” indicates dataset type (QA — question answering, MS — multi-session dialogue). “Per”
and “TR” indicate whether persona and temporal reasoning are present.
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https://github.com/MatthewKKai/MaLP
https://dialsim.github.io/
https://conversation-chronicles.github.io/
https://lamp-benchmark.github.io/
https://parl.ai/projects/msc/
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2022-DuLeMon
https://github.com/Alab-NII/2wikimultihop
https://github.com/google-research-datasets/natural-questions
https://hotpotqa.github.io/

Datasets Modality Operations Metrics Purpose Year Access
- Corpus with 100 million tokens extracted
Wlkl.TeXt'los text compression PPL from the set of verified articles on Wikipedia 2016 [LINK]
(Merity et al., 2017) .
for long context language modeling.
PG-19 Corpus constructed with books extracted
text compression PPL from the Project Gutenberg books library 2019 [LINK]
(Rae et al., 2020) .
for long context language modeling.
LRA compression Benchmark constructed with 6 identical
text + image P ’ Acc tasks for evaluating efficient long context 2020 [LINK]
(Tay et al., 2021) retrieval
language models.
NarrativeQA . Bleu-1, Bleu-4, Meteor, Question Answering dataset could be used
(Kocisky et al., 2018) text et Rouge-L, MRR for evaluating long context QA ability. 20 LRI
TriviaQA . Question Answering dataset could be used
(Joshi et al., 2017) text retrieval EM, F1 for evaluating long context QA ability. 2017 (LINK]
NaturalQuestions . .
(Kwiatkowski et al, text retrieval EM., Fl Question Answering dataset could be used. 51 [LINK]
2019) or evaluating long context QA ability.
MusiQue Challenging multi-hop Question Answering
ustou text retrieval F1 dataset for evaluating long context reasoning 2021 [LINK]
(Trivedi et al., 2022) .
and QA ability.
ORI text compression Ratpge-ily IRtpge2 8/\11\?1;1'3102)1; I;i:lsuigféelsogz‘goccll\lern:;ds]l?s: 2016 [LINK]
(Nallapati et al., 2016) Rouge-L L.
marization
Reports written by government research
GovReport . Rouge-1, Rouge-2, . A
(Huang et al., 2021) text compression Rouge-L, Bert Score agencies for evaluating long document sum- 2021 [LINK]
marization
L-Eval compression Benchmark containing 20 sub-tasks spe-
text ipression, Rouge-L, F1, GPT4 cially designed for evaluating long context 2023 [LINK]
(An et al., 2024a) retrieval 1 2
anguage models from different aspect.
. Benchmark containing 14 English tasks, 5
Lor_lgBench text compression, F1, Rou'ge-vL, Accuracy, Chinese tasks, and 2 code tasks for system- 2023 [LINK]
(Bai et al., 2024) retrieval EM, Edit Sim . .
atical long context evaluation.
Updated version of LongBench which is
LongBench v2 compression, much longer and more challenging, with
(Bai et al., 2025) (i 4> lille 4> 1G retrieval fee consistent multi-choice format for reliable 20 DL
evaluation
Benchmarking LLMs’ ability in solving
GitHub issues. Consisting 2,294 task in-
SWE-bench text compression, Resolution rate (% Re- stances from 12 popular python repositories. 2023 [LINK]
(Jimenez et al., 2024) retrieval solved) Requiring LLMs to process very long con-
text (reading the whole codebase with thou-
sands of files).
ST compression. IReallliom miie (% 1Ke- Extending the original benchmark with im-
Multimodal text + image retrigval b solved), Inference cost - ' da% e f’7 P — 2024 [LINK]
(Yang et al., 2025) (Avg. $ Cost) 8 § - -
Benchmark containing 12 sub-tasks spe-
ooBench text compression, F1, Acc, ROUGE-L- cially designed for evaluating extreme long 2004 [LINK]
(Zhang et al., 2024e) retrieval Sum context (on average surpassing 100K tokens)
language models from different aspect.
Bleu-1, Bleu-4, Rouge-1, Benchmark containing 7 major tasks spe-
LooGLE — compression, Rouge-4, Rouge-L, Me-  cially designed for evaluating extreme long 2023 [LINK]
(Li et al., 2024b) retrieval teor score, Bert score, context (each document surpass 24K tokens)

GPT4 score

language models from different aspect.

Table 4: Datasets for long-context memory evaluation.
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https://github.com/abisee/cnn-dailymail
https://gov-report-data.github.io/
https://github.com/OpenLMLab/LEval
https://github.com/THUDM/LongBench/tree/main/LongBench
https://github.com/THUDM/LongBench/
https://www.swebench.com/
https://www.swebench.com/multimodal.html/
https://github.com/OpenBMB/InfiniteBench
https://github.com/bigai-nlco/LooGLE

Dataset Modality Operations Metrics Purpose Year Access
KnowEdit Edit Success, Consists of 6 datasets. Provide a
text updating Portability, Locality, comprehensive evaluation covering knowledge 2024 [LINK]
(Zhang et al., 2024b) N N . .
and Fluency insertion, modification, and erasure.
To evaluate the propagation of counterfactual
Edit-wise Success Rate, knowledge editing affects through multi-hop
MQUAKE-CF . . . )
text updating Instance-wise Accuracy, reasoning, extending up to 4 hops, where a 2023 [LINK]
(Zhong et al., 2023) . X . 2 X g’
Multi-hop Accuracy single reasoning chain may contain multiple
edits.
N To evaluate the propagation of temporal
MQUAKE-T ‘ Edit-wise Success Rate, 1 yjedge editing affects through multi-hop
text updating Instance-wise Accuracy, . . . 2023 [LINK]
(Zhong et al., 2023) . reasoning,extending up to 4 hops, with only one
Multi-hop Accuracy . . g
edit per reasoning chain.
Efficacy Score, Efficacy
Magnitude, Paraphrase . .
Paranh To evaluate substantial and improbable
Counterfact . Score§, raphrase factual changes over superficial edits
(Meng et al., 2022a) et ik N especially those previously deemed urilikely by 2z U]
” Neighborhood Score, a‘mo el b
Neighborhood .
Magnitude
Success Rate, Retain
zsRE . Accuracy, Equivalence ~ One of the earliest dataset used to evaluate
(De Cao et al., 2021) text updating Accuracy, Performance  knowledge editing. 2021 [LINK]
Deterioration
A comprehensive machine unlearning
MUSE 8 VerbMem, KnowMem,  evaluation benchmark that enumerates six
(Shi et al., 2024) L2 st PrivLeak diverse desirable properties for unlearned 20 [RLINEg
models.
A benchmark containing copyrighted content
Unlearn Success, N A A
KnowUnDo . . and user privacy domains to evaluate if the
. text forgetting Retention Success, - . 2024 [LINK]
(Tian et al., 2024) X unlearning process inadvertently erases
Perplexity, ROUGE-L .
essential knowledge.
RWKU To evaluate real-world knowledge unlearning
2 text forgetting ROUGE-L under practical, corpus-free conditions using 2024 [LINK]
(Jin et al., 2024) .
real-world targets and adversarial assessments.
WMDP Serve as a proxy measurement of hazardous
. R text forgetting QA accuracy knowledge in biosecurity, cybersecurity, and 2024 [LINK]
(Li et al., 2024¢) . .
chemical security.
TOFU . Probability, ROUGE, A novel unlearning dataset with facts about 200
(Maini et al., 2024) d (ot Truth Ratio fictitious authors. Avz U
ABSA - A dataset for aspect-based sentiment analysis to
(Ding et al., 2024) text Consolidation Fl evaluate LLMs in continual learning settings. 2024 [LINK]
JGA, FWT (Forward . . .
(SR(;Is)to el oy Consolidation  Transfer), BWT 21 m‘:}r‘t‘;‘g‘;ltv"‘iik“l’lrs‘:;‘i‘;?eﬁl‘:logue datasetthat 050 1 INK]
g ” (Backward Transfer) PP e .
JGA, FWT (Forward . bt . o .
ot oo 2020 et Consolidation  Transfer), BWT A muliiurn skcoriened dialogue damset at 5099 [LINK]
¥ - (Backward Transfer) supports g us o
Natural Question Indexing Accurac A multi-purpose dataset that offers indexed
(Kwiatkowski et al., text Consolidation g ¥ documents and supports continual learning 2019 [LINK]

2019)

Hits@1

across evolving document collections.

Table 5: Datasets for parametric memory evaluation.
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https://huggingface.co/datasets/zjunlp/KnowEdit
https://github.com/princeton-nlp/MQuAKE/tree/main/datasets
https://github.com/princeton-nlp/MQuAKE/tree/main/datasets
https://rome.baulab.info/data/dsets/counterfact.json
https://mega.nz/folder/p9JC3bwC#vzcrsh9b-pnWPaWdlcBVUA
https://muse-bench.github.io/
https://github.com/zjunlp/KnowUnDo
https://rwku-bench.github.io/
https://www.wmdp.ai/
https://locuslab.github.io/tofu/
https://github.com/yangheng95/ABSADatasets
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://ai.google.com/research/NaturalQuestions

Datasets Mo Ops Src# Mod# Task Metrics Purpose Year Access

Image-grounded sticker retrieval with

MultiChat text + . . Precision, mAP, P .
(Wang et al., 2025a) image Retrieval 2 2 Retrieval GPT-4 ;:er;):s»sessmn image-text dialogue con- 2025 [LINK]
For long-term video understanding for
MovieChat-1K text + . Large Multimodal Models across video
(Song et al., 2024) video etz 2 2 QA Aoy question-answering and video caption- 20 TLIRT]
ing tasks.
; e . Designed to evaluate a model’s ability
Context-conflicting text Compression 2 1 Conflict lefGR EM, to handle conflicting evidence across 2024 [LINK]
(Tan et al., 2024b) Similarity sources
q q Combines episodic video memory, so-
ipoSchena THED < Remeval,. 3 2 Fusion Accuracy cial schema, and conversation for long- 2023 [LINK]
(Mangalam et al., 2023) text Compression
term memory QA.
. . Video QA task focusing on natural lan-
Ego4D NLQ video + Remeval,A 2 2 Fusion Recall@K guage queries over egocentric video 2022 [LINK]
(Hou et al., 2023) text Compression y
with temporal memory.
e q Indexing, Multi-hop QA requiring reasoning
(ZI-‘IY) ‘le(::/llul;g;%l;QA text Retrieval, 2 1 Reasoniny EM, F1 across two Wikipedia passages with 2020 [LINK]
” Compression sentence-level supporting evidence.
HybridQA Retrieval . QA requiring reasoning across struc-
(Chen et al., 2021b) text Compression 2 1 Reasonin; EM, F1 tured tables and unstructured text. 2020 [LINK]
] Commonsense question answering over
Cnmmomsemsa (e text ~ + el q 2 2 Fusion  Accuracy visual scenes requiring visual-textual fu- 2019 [LINK]
(Talmor et al., 2019) image Compression sion
. . Real-world QA over Google search snip-
Natl;ralQu@_tlons text Retrieval - >1* 1 Conflict EM, F1 pets; often used as source for contradic- 2019 [LINK]
(Kwiatkowski et al., 2019) Compression . .
tion analysis.
ComplexWebQuestions text Retrieval ) S1* 1 Reasoning EM, Fl Comp(?mlmnal QA requiring multi-step 2018 [LINK]
(Talmor and Berant, 2018) Compression reasoning across web snippets.
. EM, Fl, Sup- Multi-hop QA with paragraph-level
HotpotQA text Retrieval . 2 1 Conflict ~ porting Fact Ac-  source documents and sentence-level 2018 [LINK]
(Yang et al., 2018) Compression .
curacy supporting facts.
0. g QA over trivia-style questions with
TrmgQA text Rzl . >6 1 Conflict EM, F1 noisy web sources; useful for source dis- 2017 [LINK]
(Joshi et al., 2017) Compression i
agreement analysis.
. Indexing . . .
‘WebQuestionsSP text Retrieval e 1 Reasoniny F1, Accuracy Enhanced version of WebQuestions with 2016 [LINK]

(Yih et al., 2016) structured reasoning chains.

Compression
Image-caption pairs widely used for

2 2 Retrieval ~ Similarity cross-modal retrieval and alignment 2014 [LINK]
tasks.

Flickr30K text + Retrieval
(Young et al., 2014) image Compression

Table 6: Datasets used for evaluating multi-source memory. “Mo” denotes data modality. “Ops” indicates
operations. “Src#” = number of information sources per instance; “Mod#” = number of modalities; “Task” =
retrieval, fusion, reasoning, or conflict resolution.

Method Type TF RE Input Output LMs Ops Features Year Code
PERKGQA Retrieved & long-term dialogue modeling,
(Dutt et al., Augmentation v v Knowledge Response RoBERTa Retrieval event & persona memory, 2022 [LINK]
2022) Graph + Query mudular agent architecture
CLV Persona + contrastive learning,
(Tang et al., Adaption X X - Response GPT-2 Consolidation clustered dense persona, 2023 [LINK]
2023b) Query dialogue generation
RECAP Retrieved & hierarchical transformer
(Liu et al., Augmentation X v Context + Response Transformers Retrieval retriever, context-aware prefix 2023 [LINK]
2023b) Query encoder
SiliconFriend Retrieved & ChatGLM-6B, g‘;‘;’a‘:il:;a‘m“’ -
(Zhong et al., Augmentation X v Context + Response BELLE-7B, e RAG, Ebbinghaus Forgetting 2024 [LINK]
2024) Query gpt-3.5-turbo Retri

etrieval
MALP Retrieved & GPT3.5, Consolidati "‘em"‘ly l‘.""“li‘b“.““‘."f’
(Zhang et al., Adaption x v Context + Response  LLaMA-7B, R‘ SOl ]a ton, C"‘“E” ational bionic mglmmy 2024 [LINK]
2024a) Query LLaMA-13B etrieval mechanism, patient profile,

self-chat

PERPCS modular PEFT sharing,
(Tan et al., Adaption X X User History / Llama-2-7B Consolidation collaborative personalization, 2024 [LINK]
2024d) user history assembly
LAPDOG Retrieved & Consolidation, Story-based trieval
(Huang et al., Augmentation '4 v Context + Response TS Updating, Story-base person? retrieva, 2024 [LINK]
2023a) Query Retrieval Jjoint retriever-generator training
LD-Agent Retrieved & ChatGLM, Consolidation, long-term dialogue modeling,
(Lietal., Augmentation 4 v Context + Response BlenderBot, Updating, event & persona memory, 2025 [LINK]
2024a) Query ChatGPT Retrieval mudular agent architecture

Table 7: Overview of methods for long-term memory in personalization. "TF" (Training Free) denotes whether
the method operates without additional gradient-based updates. "RE" (Retrieval Module) denotes whether the
method needs Retrieval.
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https://github.com/Vincy2King/IGSR
https://github.com/rese1f/MovieChat?tab=readme-ov-file
https://github.com/Tan-Hexiang/RetrieveOrGenerated
https://egoschema.github.io
https://ego4d-data.org
https://github.com/Alab-NII/2wikimultihop
https://hybridqa.github.io/
https://huggingface.co/datasets/tau/commonsense_qa
https://ai.google.com/research/NaturalQuestions
https://huggingface.co/datasets/drt/complex_web_questions
https://hotpotqa.github.io/
http://nlp.cs.washington.edu/triviaqa/
https://aka.ms/WebQuestionsSP
https://shannon.cs.illinois.edu/DenotationGraph/
https://github.com/TamSiuhin/Per-Pcs
https://github.com/Toyhom/CLV
https://github.com/isi-nlp/RECAP
https://github.com/zhongwanjun/MemoryBank-SiliconFriend/
https://github.com/isi-nlp/RECAP
https://github.com/TamSiuhin/Per-Pcs
https://github.com/hqsiswiliam/LAPDOG
https://github.com/TamSiuhin/Per-Pcs

Method Type TF RE DS Input Output LMs Ops Features Year Code

Structured memos,

MemoChat Dialogue GPT4, ChaGPT, Consolidation, memory-driven dialogue, mem-
Consolidation X v v History + Response Vlcuna-7B, 13B, N i P 3 y 2023 [LINK]
(Luetal., 2023) Retrieval orization—retrieval-response
Query 33B,T5
cycle
MemoryBank Retrieved & ChatGLM-6B, S"‘;‘;{[’ilr“d"‘“""' P
(Zhong et al., Consolidation X v v Context + Response BELLE-7B, pdating, & q 2024 [LINK]
Forgetting, RAG, Ebbinghaus Forgetting
2024) Query gpt-3.5-turbo 3
Retrieval
Memory + S . .
NLI-Transfer . . Consolidation, Session-level memory tracking, s
(Bae et al., 2022) Updating s v v g;:{lgf;e Response s Updating, Retrieval  evolving dialogue system 2022 [LINK]
FLOW-RAG g
(Wang et al., Updating x v x g,“f’“”edge Response IGI,PT,“;";}];“L‘,“" forgetting RAG-based unleaming 2024 [LINK]
2024¢) ase + Query ama2-7B-chat
FLARE Database + Active retrieval during
(Jiang et al., Retrieval X v X Quer > Response ‘WebGPT, WebCPM  retrieval generation, forward-looking 2023 [LINK]
2023b) Y query prediction
HippoRAG Context + ColBERTv2, Hippocampal-inspired retrieval,
(Gutiérrez et al., Retrieval X v X @ Response GPT-3.5-turbo, Indexing multi-hop QA, Knowledge 2024 [LINK]
2024) Y Llama-3.1-8B, 70B graph integration
IterCQR Dialogue Retrieved Iterative query reformulation.
(Jang et al., Retrieval X v v History + . Transformer++ Retrieval q ‘y . 2024 [LINK]
Results context-aware query rewriting
2024) Query
EWE Memory Grounded Explicit working memory,
(Chen et al., G Y v v X Context Response Llama-3.1-70B, 8B Updating, Retrieval  online fact-checking feedback, 2025 [LINK]
eneration 3 3 .
2024a) factual long-form generation
MEMORAG Memory Grounded Context + Mistral7B-Instruct, Retrieval. Global memory retrieval, KV
(Qian et al., Genera&);()n X v X Quer Response Phi-3-mini-128K- Com res;ion memory compression, 2024 [LINK]
2024) Y instruct, GPT-40 press Feedback-guided generation
ReadAgent Context + Retrieved Episodic gist memory, dynamic
(Leeetal., Generation X v X Quer Passages/- PalLM 2 Updating, Retrieval ~ memory retrieval, extended 2024 [LINK]
2024b) Y Summary context window
ICAL Examples + Traiectory + Trajectory abstraction memory,
(Sarch et al., Generation X X X . p oSt v y GPT4V, Qwen2VL  Updating multi-modal, iterative reasoning 2025 [LINK]
Task Instruction ~ Thoughts .
2024) correction

Table 8: Overview of methods for long-term memory in memory management and utilization. "TF" (Training
Free) denotes whether the method operates without additional gradient-based updates. "RE" (Retrieval Module)
denotes whether the method needs Retrieval. "DS" (Dialogue System) denotes whether the method aims for a
dialogue task.

Method Type TF DF Operations LMs Features Year Code

StreamingLLM KV Cache . . Static KV cache dropping, Attention
(Xiao et al., 2024) Dropping v X Compression Llama-2, MPT, PyThia, Falcon sink in the initial tokens

2024 [LINK]

FastGen KV Cache ] Adaptive profiling-based KV cache
(Ge et al., 2024) it v X Compression Llama-1 7B/13B/30B/65B drersing 2024 [LINK]
H>0 ’ . . . .
(Zhang et al., KV Cache v X Compression  OPT, Llama-1, GPT-NeoX Dynamica KV cache dropping, Retain 3 [LINK]
2023¢) Dropping Heavy Hitter tokens
LWM-Text-Chat-1M,
SnapKV KV Cache . LongChat-7b-v1.5-32k, Head-wise KV cache dropping,
(Lietal., 2024g) Dropping 4 X Compression Mistral-7B-Instruct-v0.2, Attention head behavior 2024 [LINK]
Mixtral-8x7B-Instruct-v0.1
Scissorhands KV Cache Dynamic KV cache dropping,
(Liu et al., 2023d) Dropping / X Compression OPT 6.7B, 13B, 30B, 66B Persistence of importance hypothesis 2023 [LINK]
FlexGen 1V Chsiie
Storing v v Compression OPT 6.7B to 175B KV cache quantization and offloading 2023 [LINK]
(Sheng et al., 2023) Optimizati
ptimization
KV Cache
LESS Storing x v Compression  Llama-2 13B, Falcon 7B Low-rank KV cache storage, enable 54 vk
(Dong et al., 2024) Optimizati querying all tokens
ptimization
KV Cache
KIVI ” 5 Llama-2 7B/13B, Llama-3 8B, . -
(Liu et al., 2024f) Stor'mg . v v Compression Falcon 7B, Mistral-7B Asymmetrical KV cache quantization 2024 [LINK]
Optimization
KVQuant KV Cache Llama-27B/13/70B,
(Hooper et al., Storing v v Compression ’ KV cache quantization 2024 [LINK]
2024) Optimization Llama-3-8B/70B, and
Mistral-7B
QUEST KV Cache . LongChat-7B-v1.5-32K, ~ .
(Tang ct al., 2024) Selecton v v Retrieval Yarn-Llama2-7B-128K Query-aware KV cache selection 2024 [LINK]
Memorizing KV Cache
Transformers . X v/ Retrieval Transformers External KV cache memory 2022 [LINK*]
Selection
(Wu et al., 2022a)
TokenSelect KV Cache . Qwen?2 7B, Llama-3 8B, Dynamic token-level KV cache
(Wuetal, 2025b)  Selection 4 i st Yi-1.5-6B selection 25 [N

Table 9: Overview of methods for long-context memory in Parametric Efficiency. “TF” (Training Free) denotes
whether the method operates without additional gradient-based updates. “DF” (Dropping Free) denotes whether the
method able to maintain all the KV cache without dropping. [LINK]* indicates unofficial implementations.
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https://github.com/LuJunru/MemoChat
https://github.com/zhongwanjun/MemoryBank-SiliconFriend/
https://github.com/ naver-ai/carecall-memory
https://github.com/jzbjyb/FLARE
https://github.com/OSU-NLP-Group/HippoRAG
https://github.com/YunahJang/IterCQR
https://github.com/ritun16/chain-of-verification
https://microsoft.github.io/graphrag/posts/query/0-global_search/
https://github.com/read-agent
https://ical-learning.github.io
https://github.com/mit-han-lab/streaming-llm
https://github.com/machilusZ/FastGen
https://github.com/FMInference/H2O
https://github.com/FasterDecoding/SnapKV
https://github.com/JingWu321/Scissorhands
https://github.com/FMInference/FlexLLMGen
https://github.com/hdong920/LESS
https://github.com/jy-yuan/KIVI
https://github.com/SqueezeAILab/KVQuant
https://github.com/mit-han-lab/Quest
https://github.com/lucidrains/memorizing-transformers-pytorch
https://github.com/pzs19/TokenSelect

Method Type SM ™ Operations LMs Features Year Code

GraphReader Context . Graph-based agent, Structuring long

(Li et al., 2024d) Selection T G Retrieval GPT-4-128k context to a graph 2024 [LINK]
Sparse RAG Context . .. Sparse context selection, Reduce

(Zhu et al., 2025) Selection T P Retrieval Gemini involved documents in decoding 202 DN/
Ziya-Reader Context . Ziya2-13B-Base Supervised finetuning, Position agnostic

(Heetal., 2024b)  Selection T T Retrieval (LLaMA-2-13B) multi-step QA R [LINK]
LD ConeA i ] Retrieval FILM-7B (Mistral 7B) Data driv h, lostin the middle 2024 [LINK]
(An et al., 2024b) Selection etrieval - istral ata driven approach, lost in the middle

xRAG Context . . . .

(Cheng ctal., 2024)  Compression T P Compression Mistral-7b and Mixtral-8x7b Soft prompt compression 2024 [LINK]
AutoCompressor Gtz

(Chevalier et al., C . T P Compression OPT-1.3B, 2.7B, LLaMA-2-7B  Soft prompt compression 2023 [LINK]
2023) ompression

RECOMP Context . GPT-2, GPT2-XL, GPT-J, Hard prompt compression, extractive

(Xu et al., 2024a) Compression T T Compression Flan-UL2 compressor, abstractive compressor 2024 [LINK]
LongLLMLingua  Context < GPT-3.5-Turbo-06136, : <

(Tiang et all20248)) " Compression T T Compression LongChat-13B-16k Hard prompt compression 2024 [LINK]
LLMLingua-2 Context . xIm-roberta-large, Hard prompt compression, Data

(Pan et al., 2024) Compression T T Compression multilingual-BERT distillation 2024 [LINK]
QGC Context q LongChat-13B16K, Query-guided dynamic context

(Cao et al., 2024) Compression u w Comprzssion LLaMA-2-7B compression 20 (LR

Table 10: Overview of methods for long-context memory in Contextual Utilization. “SM” (Source Modal)
denotes the source modality of contextual memory. “TM” (Target Modal) denotes target modality (processed for
selection / after compression) of contextual memory (T — Text, G — Graphs, P — Parametric).

Method Type PR TF BES SEO LMs Main Advancement Year Code
Protect the preserved knowledge by projecting

. ot o than. gpt2-x1-1.5b, .
AlphaEdit log‘{tlng then: X v v v apt-j-6b, perturbation f)nt(.) the null space. o 2024 [LINK]
(Fang et al., 2025) editing Add a regularization term when optimizing v*
Illama3-8b . .
for sequential editing.
8 MEMAT is expanded upon MEMIT with
MEMA'I; loga}mg-then- X v v X aguila-7b attention heads corrections for cross-lingual 2024 [LINK]
(Mela et al., 2024) editing et
. . Use a dynamic aware module to select the
DEM locating-then- x v v x g?[-J-(’b’ editing layers. Evaluate commonsense 2024 [LINK]
(Huang et al., 2024b) editing llama2-7b PO
knowledge editing in free-text.
PMET locating-then- gpt-j-6b, Simul ly optimi: ion heads and
(Li et al., 2024c) editing 4 7 7 4 £ptnicox-20b FFN but only update FEN weights. 208 LY
U e Optimize a relaxed least-squares objective,
?{\I/[EnMI:; al, 2023) lel;({?il‘:ng then X '4 '4 X gp:_)n 565,(-20b enabling a simple closed-form solution for 2022 [LINK]
g etal, S0s- s &p efficient massive batch editing.
ROME locating-then- The most classic locate-the-edit method.
cating X v X X gpt2-x1-1.5b Perform a rank-one update on the weights of a 2022 [LINK]
(Meng et al., 2022a) editing a
single MLP layer.
Supports sequential editing through
DAFNET BT gpt-j-6b, Intra-editing Attention Flow (within facts)
(Zhang et al., 2024d) meta learning ¥ ¥ ¥ v 1lama2-7b and Inter-editing Attention Flow (across 2024 [LINK]
facts).
MALMEN bet—zbase, Use least squares to merge edits reliably and
" . ) meta learning X X v X P2 decouple networks to save memory. Support 2023 [LINK]
(Tan et al., 2024a) t5-x1, % s
. massive batch editing.
gpt-j-6b
gpt-neo
MEND g5p H{éb lable and fast th D
o Tt t5-x] More scalable and fast than KE. Decompose
(Mitchell et al., 2022a) meta learning d d v * 5-xxl gradient into rank-one outer product form. 2021 [LINK]
bert-base
bart-base
The first one employs a hypernetwork to
KE . bert-base, learn how to modify the gradient. Pose LSTM
(De Cao et al., 2021) el LA 4 4 7 4 bart-base to project the sentence embedding into rank-1 202 (IR
mask over the gradient.
gpt-j-6b,
IKE gpt2-x1-1.5b,
(Zheng et al., 2023) prompt v v - - gpt-neo, The first use ICL to edit knowledge in LLMs. 2023 [LINK]
gpt-neox,
opt-175b
MeLLo vicuna-7b, .
(Zhong et al., 2023) prompt 4 4 - - gpt=j-6b Question Decompose + Self Check 2023 [LINK]

Introduce a decoupled latent memory module

(I]‘;'::'tha; 2004) ag?;‘noc‘:z:; v v v v gpt2-x1, gpt-j-6b that conditions the LLM decoder at test time 2024 [LINK]
i ” P i without parameter updates.
. Introduces a fixed-size memory pool in a
?\/?[VEnM(ZF;L;E)I\Z/IM) ag:—i;:;oe‘::; v X v v 1lama2-7b frozen LLM that is incrementally and 2024 [LINK]
& - P ) selectively updated with new knowledge.
T llama2-7b, Support sequential editing by Side Memory
mif etal., 20240) ““;f;:]"e‘:e‘ls v X v v mistral-7b, Design and Knowledge Sharding and 2024 [LINK]
° ” P i gpt-j-6b Merging.
CaliNET additional t5-base, Add the output of FFN-like CaliNET to the
(Dong et al., 2022) parameters 4 2 4 2 t5-large original FEN output. 2 (LR
- t5-large, Scope Classifier + Counterfactual Model.
Egl\l;jlﬁ(e:ll etal., 2022¢) a:.?:ri;l:gs v X v v bert-base, Sequentially or simultaneously applying k edits 2022 [LINK]
- P blenderbot-90m yields the same edited model.
e t5-small, Support sequential editing by maintain a
gﬁéﬁfn etal., 2022¢) a:f;;:::s:g v X X v bert-base codebook with a deferral mechanism to 2022 [LINK]
” P! gpt2-x1-1.5b decide whether to use the codebook for a input.

Table 11: Overview of methods for parametric memory optimization in editing. "PR" (Parametric Reserving)
indicates whether the method avoids direct modification of the model’s internal weights. "TF" (Training-Free)
denotes whether the method operates without traditional iterative optimization. "BES" (Batch Editing Support)
reflects the method’s ability to handle multiple edits simultaneously. "SEO" (Sequential Editing Optimization)
specifies whether the method introduces mechanisms tailored for sequential Editing. "LMs" lists the language
models used for empirical evaluation.
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https://github.com/BorealisAI/GraphReader
https://github.com/hejunqing/neverforget
https://github.com/microsoft/FILM
https://github.com/Hannibal046/xRAG
https://github.com/princeton-nlp/AutoCompressors
https://github.com/carriex/recomp
https://github.com/microsoft/LongLLMLingua
https://github.com/microsoft/LLMLingua
https://github.com/DeepLearnXMU/QGC
https://github.com/jianghoucheng/AlphaEdit
https://github.com/dtamayo-nlp/MEMAT
https://github.com/Huangxiusheng/DEM
https://github.com/xpq-tech/PMET
https://memit.baulab.info/
https://rome.baulab.info/
https://github.com/qizhou000/DAFNet
https://github.com/ChenmienTan/malmen
https://sites.google.com/view/mend-editing
https://github.com/nicola-decao/KnowledgeEditor
https://github.com/PKUnlp-icler/IKE
https://github.com/princeton-nlp/MQuAKE
https://github.com/IBM/larimar
https://github.com/wangyu-ustc/MemoryLLM
https://github.com/zjunlp/EasyEdit
https://github.com/dqxiu/CaliNet
https://sites.google.com/view/serac-editing
https://github.com/thartvigsen/grace

Method Type PR TF BUS SUO LMs Main Advancement Year Code
I o ohat Derive the unlearned LLM by computing the
U.LD dd(:h(ll)ndl‘ v X v X lld_de Lhd? 7b, logit difference between the target and the 2024 [LINK]
(Jietal, 2024) parameters mistral-7b-instruct e, .
assistant LLMs.
Introduce unlearning layers which are learned
EUL additional t5-base, to forget requested data. Support sequential
(Chen and Yang, 2023)  parameters 7 4 7 7 t5-3b unlearning by using a fusion mechanism to 207 [CINAT
merge different unlearning layers.
ECO 68 Ilms ranging from ECO unlearns by corrupting prompt
(Liu et al., 2024b) prompt '4 X v X 0.5b to 236b 1 g b.ased on classifier detection 2024 [LINK]
without changing the model.
bloom-560m,
ICUL bloom-1.1b, S
(Pawelczyk et al., 2024) prompt v v - - bloom-3b, The first use ICL for unlearning in LMs. 2023 [LINK]
llama2-7b
llama2-7b-chat WAGLE uses bi-level optimization to compute
WAGLE lucutlng—then— X X v X zephyr-Tb-beta, weight a'tmbuuon scores that guide selective 2024 [LINK]
(Jia et al., 2024a) unlearning o fine-tuning for efficient and modular
llama2-7b .
unlearning.
DEPN locating-then- Detect and disable privacy-related neurons in
(Wu et al., 2023) unlearning 7 7 4 beie language models to reduce data leakage. 202 IR
SOUL S o opt-1.3b, Unveil the power of second-order optimizer in
(Jia et al., 2024b) training objective ¥ ¥ v v llama2-7b LLM unlearning. 2024 [LINK]
o N Applies a two-stage framework combining
S].(U ) training objective X X v v OPl ?'7b‘ Llama2a/by harmful knowledge learning and task vector 2024 [LINK]
(Liu et al., 2024¢) llama2-13b . . X
negation for effective unlearning.
~ . Pioneered LLM unlearning with an objective
(,1‘:\+Ml'sma(ch training objective X X v X 0‘,)[-%'%‘ opt-2.7b, blending forgetting, random mismatch, and 2023 [LINK]
(Yao et al., 2024b) 1lama2-7b .
KL-based preservation.
- Aligns knowledge gaps between models trained
KGR training objective X X v X Brige, Gl with retain vs. forget data to simulate forgetting 2023 [LINK]

(Wang et al., 2023a)

Istm

via distributional divergence minimization.

Table 12: Overview of methods for parametric memory optimization in unlearning. "PR" (Parametric Reserving)
indicates whether the method avoids direct modification of the model’s internal weights. "TF" (Training-Free)
denotes whether the method operates without traditional iterative optimization. "BUS" (Batch Unlearning Support)
reflects the method’s ability to handle multiple edits simultaneously. "SUQO" (Sequential Unlearning Optimization)
specifies whether the method introduces mechanisms tailored for sequential Editing. "LMs" lists the language
models used for empirical evaluation.

Method Type TF B TS Domain LMs Main Advancement Year Code
. Employs a training objective that
HIPP?RAG 2 Task- Question minimizes the Kullback-Leibler (KL)
(Gutiérrez et al., X X . . - 2025 [LINK]
Free Answering divergence between the predictions of
2025) >
the original model and target model.
Enhances Personalized PageRank-based
SELF- retrieval with deeper passage
PARAM Regularlzaupn— v v Task- Quesuqn Llama-3.3-70B- integration and gnlme LLM usage, 2025 [LINK]
based Learning Free Answering Instruct achieving superior performance on
(Wang et al.) L .
factual, associative, and sense-making
memory tasks.
Integrate Maintaining a small,
MBPA ++ REPLAY. randomly selected subset (as low as
(Wang et al., Replay-based X X CIL None ’ 1%) of past examples in memory can 2025 [LINK]
: MBPA g
2024j) achieve performance comparable to
larger memory sizes.
ILSXCS Interactive Abdirsiing :Lii:ﬁ;zlgféeazﬁzsgimh
(Wang et al., B X X CIL Merging/ / B B 5 2025 [LINK]
: Learning . abstraction and experience merging and
2024j) Retrieval q 2
long-term retention with accurate recall.
TaSL Reoularization- Dialoeue Parameter-level task skill localization
(Feng et al., g . X X TIL < TS, Llama-7B and consolidation enable knowledge 2024 [LINK]
2024 based Learning System .
) transfer without memory replay.
EMP . . .
an il Replay-based X X CLI Eventl E](E:I;IT—ED, D'eshlgn cltlmtlmmus prompts associated 2023 [LINK]
2022a) etection with each event type.
oEWC, SI, Introducing adaptive coefficients that
UDIL Interactive Event LwF, A-GEM are optimized during training to achieve
(zsogl;;nd Wang, Learning X v DLI detection CLS-ER, ESM, tighter generalization error bounds and 2023 [LINK]
N etc. better performance across domains.
DSI++ Information Enables continual document indexing
(Mehta et al., Replay-based X v TIL : TS5 while retaining query performance on 2022 [LINK]
Retrieval
2022) old and new data.
MRDC Enhances memory replay by
) . o Object LUCIR, compressing data, balancing sample
(2‘3;1;;% etal, Replay-based 4 v CIL detection PODNet quality and quantity for continual 2022 [LINK]

learning.

Table 13: Overview of methods for parametric memory modification in continual learning. "TB" denotes the
task boundary whether exists. "TS" denotes the task settings including TIL (Task Incremental Learning), CIL (Class
Incremental Learning), DIL (Domain Incremental Learning), Task-Free.
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https://github.com/UCSB-NLP-Chang/ULD
https://github.com/SALT-NLP/Efficient_Unlearning/
https://github.com/chrisliu298/llm-unlearn-eco
https://github.com/MartinPawel/In-Context-Unlearning
https://github.com/OPTML-Group/WAGLE
https://github.com/flamewei123/DEPN
https://github.com/OPTML-Group/SOUL
https://github.com/franciscoliu/SKU
https://github.com/kevinyaobytedance/llm_unlearn
https://github.com/Lingzhi-WANG/KGAUnlearn
https://github.com/XinshuangL/SELF-PARAM
https://github.com/OSU-NLP-Group/HippoRAG
https://github.com/vgaraujov/LLL-NLP
https://github.com/WoodScene/TaSL
https://github.com/PLUM-Lab/Incremental_Prompting?utm_source=chatgpt.com
https://github.com/Wang-ML-Lab/unified-continual-learning
https://github.com/ArvinZhuang/DSI-transformers
https://github.com/lywang3081/MRDC

Method Type TF STs SNs Input Output LMs Ops Features Year  Code

GPT-
3.5,GPT4,
GoG KG + Qwen-1.5- Retrieval inteerate internal and
(Xuetal,  reasoning ¢  KG+text ~ WebQSP,.CWQ  prompt+  answer  72B-Chat, etreva’, e o ledan. 2024 [LINK]
2024¢) query LLaMA3- Compression external knowledge
70B-
Instruct
Conflict span
RKC-LLM . model + .. . localization,
(Wangetal., conflict v prompt + context entities answer ChatGPT Compression : 5 ided 2024 [LINK]
2023b) text instruction-guide
conflict handling
GPT-4,
BGC-KC model + documents GPT-3.5, Retrieval attribution tracing
(Tan et al., conflict v text AIG, AIR + quer answer Llama2- Compr "'i n framework, evaluate 2024 [LINK]
2024b) ¢ query 13b, ompressiof LLM bias
Llama2-7b
Semi-structured
Sem-CoT Knowledge P . llama2-7b, B .
(Suetal., reasoning X Graph + xi‘ksl:jét:; 2,1,“12}1;1’ fc())"l;é)romp ¢ answer 13b, 70b, g(e)tmne;,:i;ion Ir: Sllfilf):::l%cf:li—n - 2023 [LINK]
2023) text +Model J Ty 65b press . P
fusion
Wikidata,
Wikipedia,and Heterogeneous
Database +  Wikitables, . kn«)wlgdge integration,
CoK . CoT prompt gpt-3.5- Retrieval, dynamic knowledge
reasoning X Tables + Flashcard, answer . C 2023 [LINK]
? Text UpToDate + Query turbo Compression retrieval, adaptive query
SfienceQ A generation across
CK-12 ’ formats
Two-hop reasoning,
?ZIQ; I;l;(?dfvc i x Knowledge  Wikidata, CoT prompt SO gpt-3.5- Retrieval, symbolic query 2023 [LINK]
2024b) ” e Base + text DIVKNOWQA + Query turbo Compression generation for structured
data
St?““RAG . KG + Table  Loong, Podcast documents . Qwen2-7B,  Retrieval, ?Ognlllye_'?SPlred .
(Lietal., reasoning X . answer . structurization, dynamic 2023 [LINK]
. + text Transcripts + query 72B Compression 3 .
20241) structure selection

Table 14: Overview of methods for multi-source memory in cross-textual integration. "TF" (Training Free)
denotes whether the method operates without additional gradient-based updates. "STs" denotes the source types.
"SNs" denotes the source dataset names.

Method Type TF DS Mo Input Output Modeling Ops Features Year Code
LLaVa,

multi-modal memory bank,

IGSR image- GPTA4, sticker retrieval, intention
(Wang et al., retrieval v v text + image text stickers Qwen-VL, retrieval ‘ o 2025 [LINK]
8 e aware cross-session
2025a) dialogue CLIP, N T
Llam,a3 dialogue
VISTA image- retrieved CLIP, Visual Token Injection
(Zhou et al., retrieval v X text + image & SN BLIP-B, retrieval e J i 2024 [LINK]
2024) text query  response Pic2Word composed data fine-tuning
UniVL-DR . . . .
(Liuetal., retrieval X x text + image A& rewieved  VInVLDPR, = o Modality-balanced hard 2023 [LINK]
2022b) text query  response CLIP-DPR negatives
Multilnstruct* instruction Cross-modal transfer
(Xuetal., fusion v X text + image  + response OFA compression . 2023 [LINK]
2023) instances aming
NextChat text +image  image +
(Zhang et al., fusion X v + boxes & textg response CLIP compression  Cross-modal alignment 2023 [LINK]
2023a)
UniTranSeR MLM + Intention-aware response
(Maetal., fusion X v text + image context response MPM compression generation, unified 2022 [LINK]
2022) transformer space

Table 15: Overview of methods for multi-source memory in Multi-modal Coordination. "TF" (Training Free)
denotes whether the method operates without additional gradient-based updates. "DS" (Dialogue System) denotes
whether the method aims for a dialogue task. "Mo" denotes data modality (T — Text, I — Images, B — Box (Position)).
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https://github.com/YaooXu/GoG
http://github.com/yikee/Knowledge_Conflict
https://github.com/Tan-Hexiang/RetrieveOrGenerated
https://github.com/IntelLabs/multimodal_cognitive_ai/tree/main/Semi-Structured-CoT
https://github.com/DAMO-NLP-SG/chain-of-knowledge
https://github.com/Li-Z-Q/StructRAG
https://github.com/HITSZ-HLT/IGSR
https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual
https://github.com/OpenMatch/UniVL-DR
https://github.com/amritasaha1812/MMD_Code
https://next-chatv.github.io
https://github.com/amritasaha1812/MMD_Code

Source

Memory Tool Level Taxonomy Operation Function Input/Output Example Use Type Access
Vector Database-Index a large
FAISS Consolidation,  Library for fast storage, set of text embeddmgs and
Contextual- s . . . vector/Index, quickly retrieve the most
(Douze etal.,  Components Indexing and indexing, and Retrieval of s open [LINK]
Unstructured : . - . relevance score relevant documents for a user’s
2024) retrieval high-dimensional vectors . .
query in a retrieval-augmented
generation (RAG) system.
Consolidation, ~ Native graph database NOd?S and! Grgph DB = Model el
5 a i relationships retrieve complex relational data -
Neodj Contextual-  Indexing, supporting ACID a 5 T 3 conditional
5 Components q : with properties /  for use cases like fraud [LINK]
(Neodj, 2012) Structured Updating, transactions and Cypher q ; ] open
q Query results via  detection and recommendation
Retrieval query language 3
Cypher engines.
A probabilistic ranking
function used in .
BM25 Contextual- . information retrieval to Text queries ! Enhancing search engine results
(Robertson Components Retrieval . . Ranked list of N open [LINK]
Unstructured estimate the relevance of and document retrieval systems.
etal., 1995) A documents
documents to a given
search query.
An unsupervised dense
retriever trained with
Contriever Contextual- contrastive learning, Query text /List ~ High-recall retrieval tasks in
(Izacard et al.,  Components Retrieval capable of retrieving of similar multilingual open [LINK]
Unstructured q P . .
2021) semantically similar documents question-answering systems.
documents across
languages.
323:;: d(leng Techniques that convert
-8 . text, images, or audio into Text similarity computation,
OpenAl c Consolidation, Raw data / Vector d
. omponents  Contextual . dense vector . recommendation systems, and open [LINK]
embedding Retrieval . . embeddings .
(OpenAl, ;z}éll'zizllte:g::si[clapturlng clustering tasks.
2025)) g.
Table 16: Component-Level Tools for Memory Management and Utilization.
Memory Level Taxonomy Operation Function Input/Output Example Use Source Access
Tool Type
Graphiti Contextual- E{gg{;ﬂdatlon, F;i??zm?;floro]::ﬁld_l:v% ;‘;d Multi-source data  Constructing real-time
(Heetal,, framework ne, querying temp . ¥ / Queryable knowledge graphs to enhance  open [LINK]
Structured Updating, knowledge graphs tailored for Al
2025) . . . X knowledge graph Al agent memory.
Retrieval agents in dynamic environments.
LLamalndes Consolidation, A flexible framework for building ~ Text / Context- Developing knowledge
: framework  Contextual Indexing, knowledge assistants using LLMs ~ augmented assistants that process open [LINK]
(Liu, 2022) H !
Retrieval connected to enterprise data. responses complex data format.
Consolidation, S o A
LangChain Indexing. 0 renoning |+ Inputprompes /- {ELEE SR M
(Chase, framework  Contextual Updating, L S 2 Multi-step pplic N . open [LINK]
- applications by connecting LLMs . . question-answering systems
2022) Forgetting, . reasoning outputs
. with external data sources. and chatbots.
Retrieval
ﬁ%r;(;::gallon, Constructs controllable agent Bl ol (el
LangGraph framework Contextual- Updating, architectures supporting long-term  Graph state/ State workflows with multiple AT = [LINK]
(Inc., 2025) Structured F R memory and human-in-the-loop updates
orgetting, " agents.
A multi-agent systems.
Retrieval
EasyEdit An easy-to-use knowledge editing g . i1 ructions / Modifying LLM knowledge
(Wang . . framework for LLMs, enabling . f .
framework ~ Parametric Updating N . P Updated model in specific domains, such as open [LINK]
etal., efficient behavior modification behavior updatine factual information
2024d) within specific domains. P 2 .
CrewAl By A platff)m‘ e buﬂdmg e q Automating workflows
Consolidation,  deploying multi-agent systems, Multi-agent tasks : ]
(Duan and . 3 . P across agents like project
W framework  Contextual Indexing, supporting automated workflows / Collaborative open [LINK]
ang, § % e management and content
Retrieval using any LLM and cloud results 8
2024) generation.
platform.
Letta Constructs stateful agents with User interactions
(Packer Contextual- Consolidation, long-term memory, advanced Developing Al agents that
framework N . o / Improved B N open [LINK]
etal., Unstructured Retrieval reasoning, and custom tools within R learn and improve over time.
N . esponse
2023) a visual environment.
Table 17: Framework-Level Tools for Memory Management and Utilization.
Memory Level Taxonomy  Operation Function Input/Output Example Use Source Access
Tool Type
Mem0 Consolidation,  Provides a smart memory layer for . . Enh‘f\ncmg Al systems with
- . . . ke User interactions  persistent context for
(Taran- Application  Contextual- Indexing, LLMs, enabling direct addition, ) . ) )
N . . . . - / Personalized customer support and open [LINK]
jeet Singh, Layer Unstructured Updating, updating, and searching of .
. =0 responses personalized
2024) Retrieval memories in models. .
recommendations.
Zep Consolidation, . Chat logs, Augmenting Al agents with
g P ; Integrates chat messages into a ;
(Rasmussen  Application ~ Contextual- Indexing, ; business data / knowledge through
q knowledge graph, offering accurate 5 & open [LINK]
etal., Layer Structured Updating, . . Knowledge graph  continuous learning from
q and relevant user information. 5 :
2025) Retrieval query results user interactions.
Memary o Consolhdanon, An open memory layer that Agent tasks / Building AT agents with
R, Application Indexing, emulates human memory to help Memory .
(kingjulio823 Contextual . -, human-like memory open [LINK]
Layer Updating, Al agents manage and utilize management and o
2025) N . N . .ol characteristics.
Retrieval information effectively. utilization
Consolidation, A user profile-based long-term q 5 Implementing virtual
Memobase P " " User interactions £ q
Application Indexing, memory system designed to 5 assistants, educational tools,
(memodb Contextual . R . X / Personalized . open [LINK]
: Layer Updating, provide personalized experiences and personalized AL
io, 2025) q § 7 Py responses q
Retrieval in generative Al applications. companions.

Table 18: Application Layer-Level Tools for Memory Management and Utilization.
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https://github.com/facebookresearch/faiss
https://neo4j.com/?utm_source=chatgpt.com
https://pypi.org/project/rank-bm25/
https://github.com/facebookresearch/contriever
https://huggingface.co/spaces/mteb/leaderboard
https://github.com/getzep/graphiti
https://www.llamaindex.ai/
https://www.langchain.com/
https://github.com/langchain-ai/langgraph
https://github.com/zjunlp/EasyEdit
https://www.crewai.com/
https://www.letta.com/
https://mem0.ai/
https://www.getzep.com/
https://github.com/kingjulio8238/Memary
https://www.memobase.io/

Source

Memory Tool Level Taxonomy  Operation Function Input/Output Example Use Type Access

Consolidation,  Al-powered personal assistant that g(;i;[}pms (text, Personal productivity
Me.bot product Contextual {l}sg:::;gg :’;f?ﬂ‘gée:s n:rtzi’ié?;l;sé;]:;:mml Organized notes,  enhancement, emotional closed [LINK]

Retrieval support and productivity tools. remmde_rs, support, idea organization.

summaries

Consolidation, Intelligent workstation powered by [CJSC{ qu_enzs b Enhancine learni
q q Indexing, Tencent’s Mix Huang model, ustomize nancing fearning ..
ima.copilot Product Contextual Updating (it el Ceorilttze B responses, efficiency, work productivity, closed [LINK]

Retrieval for learning and work scenarios. kno.w edzs el M e

retrieval
Coze Prod c I C lidati Enabling multi-agent collaboration Usell;-éleﬁn/ed Deploved chatbots, Al losed LINK
(Coze, 2024) roduct ontextual onsolidation " rous platforms. gor ows, eployed chatbots, Al agents  closex [ ]
esponse
Al assistant developed by xAI, oy
Grok (xAI Retrieval designed to provide truthful, useful, Inforymative Answering questions,
2023) ’ Product Contextual Com res;ion and curious responses, with answers generating images, providing  closed [LINK]
press real-time data access and image Y insights.
ST, generated images

ChatGPT L Conversational Al developed by User prompts / Answering questions,

Consolidation,  OpenAl, capable of understanding .o, -
(OpenAl, Product Contextual Retrieval and senerating human-like text Generated text generating images, providing  closed [LINK]
2022) & 2 responses insights.

based on prompts.

Table 19: Product-Level Tools for Memory Utilization.
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https://www.me.bot/
https://www.aibase.com/tool/www.aibase.com/tool/33943
https://www.coze.com/
https://x.ai/grok
https://chat.openai.com/
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Figure 14: Compression based method performance
with respect to compression rate on LongBench (Bai
et al., 2024). Data borrowed from Yuan et al. (2024).
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Figure 15: SOTA solutions across different categories
on the CounterFact (editing), ZsRE (editing) and TOFU
(unlearning) benchmark.
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Figure 16: The sub-score distribution of SOTA solutions
on the CounterFact (editing), ZsRE (editing) and TOFU
(unlearning) benchmark.
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Figure 17: Maximum editing number of sequence edit-
ing in empirical experiments.
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Figure 18: Model size distribution in memory editing
and unlearning.
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Figure 19: Trends in cross-textual reasoning: memory
sources and reasoning strategies.
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Figure 20: Evolution of memory operation support
across Years.
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Figure 21: Analysis of temporal modeling, fusion strate-
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