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ABSTRACT

Lightweight neural networks refer to deep networks with small numbers of param-
eters, which are allowed to be implemented in resource-limited hardware such as
embedded systems. To learn such lightweight networks effectively and efficiently,
in this paper we propose a novel convolutional layer, namely Channel-Split Recur-
rent Convolution (CSR-Conv), where we split the output channels to generate data
sequences with length T as the input to the recurrent layers with shared weights.
As a consequence, we can construct lightweight convolutional networks by simply
replacing (some) linear convolutional layers with CSR-Conv layers. We prove that
under mild conditions the model size decreases with the rate of O( 1

T 2 ). Empiri-
cally we demonstrate the state-of-the-art performance using VGG-16, ResNet-50,
ResNet-56, ResNet-110, DenseNet-40, MobileNet, and EfficientNet as backbone
networks on CIFAR-10 and ImageNet. Please refer to our demo code in the
supplementary file.

1 INTRODUCTION

Convolutional neural networks (CNNs) (Krizhevsky et al., 2012) have revolutionized computer vision
by achieving state-of-the-art performance on many applications (He et al., 2016; Girshick, 2015; Jia
et al., 2014). The impressive improvement usually comes with a substantial increase in the number
of parameters (i.e., model size) which is undesirable for the model applicability in many real-world
applications (Gong et al., 2014; Gui et al., 2019), such as embedded systems where the computing
resources (e.g., processor and memory) in the hardware are limited. Therefore, how to design/learn
lightweight neural networks, i.e., reducing storage requirement in terms of parameters while achieving
good performance, is becoming increasingly demanded (Sandler et al., 2018; Denton et al., 2014; Liu
et al., 2015; Zhou et al., 2016; Li et al., 2016; Singh et al., 2019).

Generally speaking, there are two families of approaches for learning lightweight networks in the
literature: (1) network architecture design/search, and (2) network compression. Typical works
in the former family include SqueezeNet (Iandola et al., 2016), MobileNet (Sandler et al., 2018),
ShuffleNet (Zhang et al., 2018), EfficientNet (Tan & Le, 2019a), MnasNet (Tan et al., 2019), and
ProxylessNAS (Cai et al., 2018). Such approaches focus on developing network architectures (e.g.,
using small convolutional filters) to satisfy certain requirements such as model size while achieving
good performance for the applications. The latter family includes the approaches such as compression
with learning (Wen et al., 2016; Li et al., 2019a; 2020; Kim et al., 2019; Eban et al., 2020; Zhao et al.,
2019c; Prabhu et al., 2020; Hu et al., 2018; Zhang et al., 2018) or after learning (Han et al., 2015a;
Kusupati et al., 2018a), whose basic ideas are to remove the network redundancy by imposing some
structural assumptions on the convolutional filters. Nice surveys on this topic can be found in (Cheng
et al., 2017; Zhang et al., 2019; Choudhary et al., 2020; Deng et al., 2020; Neill, 2020).

Motivation. Intuitively, reducing the number of parameters in each convolutional layer can signifi-
cantly compact a given network. However, this may lead to poor generalization of the network, as
wider networks have been shown to effectively improve the performance (Zagoruyko & Komodakis,
2016; Tan & Le, 2019a). In order to compensate for the performance loss due to model size reduction
(i.e., lightweight networks), we are mainly motivated by the following works:

• Deeper Networks: In complement to the universal approximation theorem (Cybenko, 1989), recent
works such as (Lu et al., 2017) have shown that with the increase of network depth, the number
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Figure 1: Comparison with 256 input channels and 128 output channels among (a) depth-wise
separable convolution, (b) group convolution, and (c) our channel-split recurrent convolution (CSR-
Conv) using vanilla RNNs. The linear convolutional operation is denoted as (#input channels, filter
size, #output channels) and vertical small rectangles in (c) denote ReLU activation functions.

of hidden neurons can be dramatically reduced to approximate a function with similar expressive
power. This motivates us to consider constructing a deeper network using narrow networks.

• Visual Transformer (ViT): Recently Dosovitskiy et al. (2021) demonstrated excellent performance
on image recognition using ViT that are designed to handle sequential input data, similar to recurrent
neural networks (RNNs). In their work, each image is divided into 16× 16 patches in the spatial
domain, and then fed into ViT as an input data sequence. This motivates us to consider exploring
RNNs (not ViT due to its large model size) in different ways to learn lightweight networks.

Our proposed approach and contributions. Based on consideration above, we propose a novel
convolutional layer, namely Channel-Split Recurrent Convolution (CSR-Conv), as illustrated in Fig.
1(c) where the 256 input channels are equally split into 4 groups, fed into a recurrent convolutional
layer (implemented using a vanilla RNN in the figure as demonstration) as input, and the hidden
states in the RNN are concatenated to generate the 128 output channels. Compared with depth-wise
separable convolution (used in MobileNet (Sandler et al., 2018)) and group convolution (used in
ShuffleNet (Zhang et al., 2018) and ResNeXt (Xie et al., 2017)) in Fig. 1(a-b), respectively, we can
see clearly that our key difference is to replace each linear convolution with a recurrent convolution.
As a result, if imaging each figure as a graph where all the linear convolutions are denoted by nodes,
then the depths (i.e., the longest paths) between node “split” and node “concat” in the figures are
different: in Fig. 1(a-b) the depths are both 2, while in Fig. 1(c) the depth is 5. In other words,
recurrent convolution can lead to deeper network architectures, which could be beneficial for learning
lightweight convolutional networks.

We are aware that the integration of RNNs with convolution for deep learning has been explored in
the literature such as (Wang & Hu, 2017; Liang & Hu, 2015; Kim et al., 2016; Tai et al., 2017; Shi
et al., 2015; Ondruska et al., 2016; Spoerer et al., 2017). However, to the best of our knowledge,
we are the first to explore the applicability of recurrent deep models (e.g., RNNs, GRUs, LSTM)
as general recurrent convolutional layers to learn lightweight CNNs. Given a backbone network
such as VGGNet (Simonyan & Zisserman, 2014) or ResNet (He et al., 2016), we can easily replace
its linear convolutional layers using our CSR-Conv to reduce the model size, achieving a deeper
network as well as preserving its performance1. We analyze the relationship between model size
and CSR-Conv to show that the model compression rate is fairly controllable. We also demonstrate
the state-of-the-art performance of our approach based on seven existing network architectures on
CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) datasets.

2 RELATED WORKS

Recurrent neural networks. RNNs have achieved significant success in learning complex patterns
for sequential input data, and have been widely used in computer vision (Zhao et al., 2019a; Zhong

1Certainly we can design new networks using our standalone CSR-Conv layers, but this is beyond the scope
of this paper. In this paper, we only focus on learning lightweight networks given certain backbone networks.
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et al.; Zhao et al., 2020; Zhang & Zuo, 2020; Corona et al., 2020; Pato et al., 2020). At each time step,
an RNN updates the state vector based on the current state and input data. Subsequently, RNNs output
the predictions as a function of the hidden states. The model parameters are learned by minimizing
an empirical loss. In the literature, there are significant amount of works on developing RNNs such
as, just to name a few, long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997), gated
recurrent unit (GRU) (Cho et al., 2014), UGRNN (Collins et al., 2016), FastGRNN (Kusupati et al.,
2018b), unitary RNNs (Arjovsky et al., 2016), antisymmetric RNN (Chang et al., 2019), incremental
RNN (Kag et al., 2020), exponential RNN (Lezcano-Casado & Martınez-Rubio, 2019), Lipschitz
RNN (Erichson et al., 2020).

Recurrent convolutional neural networks (RCNN). (Liang & Hu, 2015) proposed incorporating
the recurrent connections in each convolutional layer to generate features with different resolutions.
(Wang & Hu, 2017) added a gate to the recurrent connections in RCNN to control context modulation
and balance the feed-forward information and the recurrent information. (Kim et al., 2016) imposed
very deep recursive layers to improve performance without introducing new parameters for additional
convolutions. (Tai et al., 2017) developed a recursive convolutional neural network with the residual
connection. (Shi et al., 2015) replaced vanilla RNN architecture with an LSTM structure in RCNN.
(Ondruska et al., 2016) used dilated convolution in the RCNN to reduce computational complexity.

Variants of convolutional operator for compression. (Denil et al., 2013) proposed using a linear
combination of basis functions to predict parameters for compression. (Bagherinezhad et al., 2017)
proposed encoding convolutions by few lookups to a dictionary trained to cover the space of weights
in CNNs. (Wu et al., 2018) presented a parameter-free, FLOP-free “shift” operation as an alternative
to spatial convolutions. (Gao et al., 2018) proposed channel-wise convolutions, which replace dense
connections among feature maps with sparse ones in CNNs. (Wen et al., 2016) proposed a Structured
Sparsity Learning (SSL) method to regularize the structures such as filters, channels, filter shapes,
and layer depth of CNNs. (Liao & Yuan, 2019) proposed an efficient CircConv operator based on the
presumed circulant structures of convolutional filters where Fast Fourier Transform (FFT) can be used
to compute the filter responses in feed-forward and inverse FFT can be applied in back-propagation.

Network compression. Weight pruning (Han et al., 2015a;b; Li et al., 2021) aims at reducing
non-significant weights to reduce computation and memory usage of the model. Other than weight
pruning, filter level pruning which leads to the removal of the corresponding feature maps is also
studied intensively (He et al., 2018; Li et al., 2019b). Regularization constraints are also introduced in
pruning (Alvarez & Salzmann, 2016; Liu et al., 2017; Huang & Wang, 2018). Low-rank factorization
(Lebedev et al., 2014; Tai et al., 2015; Jaderberg et al., 2014; Zhang et al., 2015; Yu et al., 2017) aims
to decompose the large weight matrices in the convolutional layers into smaller matrices with fewer
parameters. Knowledge distillation (Hinton et al., 2015; Lan et al., 2018; Park et al., 2019) aims to
force a smaller student network to fit specific features from a larger teacher network for knowledge
transfer.

3 OUR APPROACH

3.1 PROBLEM DEFINITION

In this paper we only focus on learning lightweight convolutional networks by replacing some linear
convolutions with CSR-Conv in a given backbone network such as VGGNet or ResNet, so that the
model size can satisfy certain requirements. We will not design or propose new network architectures.

Specifically, given a backbone network with L convolutional layers, a desirable model compression
rate ρM (this constraint is optional depending on the applications/users), and a training dataset
{x, y} ⊆ X × Y with sample x ∈ X and label y ∈ Y , we propose the following optimization
problem as our objective for learning lightweight networks:

min
ω,T ∈ZL

E(x,y)`
(
f(x;ω, T ), y

)
, s.t.

MC

MB
≈ 1− ρM , (1)

where f denotes the modified network with CSR-Conv parametrized by ω, T denotes a set of the
sequence lengths as input to the recurrent convolutional layers in CSR-Conv (if the length is equal
to 1, there will be no change to the linear convolution), ` denotes the loss function, E denotes the
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expectation operation, and MC ,MB denote the numbers of parameters in the modified and backbone
networks, respectively. In case that achieving the exact compression rate ρM may be impossible, we
instead try to search for the best network architectures with similar compression rates.

Table 1: Illustration of our CSR-Conv-4 architec-
ture in Table 2 for VGG-16 with T = 5, where
the parameters in the 6th-13th convolutional layers
are converted to the parameters U,V in CSR-Conv
with the same spatial sizes.

Layer VGG-16 Ours #Param (ρM )
Conv1 [3×64] [3×64] 1,728(0.0%)
Conv2 [64×64] [64×64] 36,864(0.0%)
Conv3 [64×128] [64×128] 73,728(0.0%)
Conv4 [128×128] [128×128] 147,456(0.0%)
Conv5 [128×256] [128×260] 299,520(-1.6%)

Conv6 [256×256] [52×52]
[52×52] 48,672(91.9%)

Conv7 [256×256] [52×52]
[52×52] 48,672(91.9%)

Conv8 [256×512] [52×103]
[103×103] 134,685(87.8%)

Conv9 [512×512] [103×103]
[103×103] 190,962(91.9%)

Conv10 [512×512] [103×103]
[103×103] 190,962(91.9%)

Conv11 [512×512] [103×103]
[103×103] 190,962(91.9%)

Conv12 [512×512] [103×103]
[103×103] 190,962(91.9%)

Conv13 [512×512] [103×103]
[103×103] 190,962(91.9%)

FC / / 267,264(0.0%)
Total 2,022,489(86.5%)

Grid-search solver with CSR-Conv. In con-
trast to network architecture search (NAS) that
is optimized in the network architecture space,
in this paper we simply use grid-search to de-
termine T , same as EfficientNet (Tan & Le,
2019a), because our search space is much
smaller than NAS given the compression rate
and backbone network. To accelerate our train-
ing, in our implementation we further reduce
our search space to T ∈ {1, T}L, that is, a
linear convolutional layer is either unchanged
or split into T groups of channels. We then
determine T > 1 using grid-search as well as
learning ω. We list an exemplar of our network
implementation in Table 1 where the bold parts
are the filter sizes in CSR-Conv. We restrict
our grid search so that the number of channels
in the backbone network is approximately pre-
served by the RNNs.

3.2 CSR-CONV: CHANNEL-SPLIT
RECURRENT CONVOLUTION

We illustrate the general architecture of CSR-
Conv in Fig. 2, where “Split” and “Concat”
denote the channel split and concatenation op-
erations, respectively. The in-between recurrent
convolutional layer takes the split data sequence
as input and outputs the hidden states over time.
It can be implemented using an RNN, GRU,
LSTM, etc. Recall that Fig. 1 illustrates our
customized implementation based on a vanilla RNN, where the input and output are 3D features and
the network weights are 4D. For simplicity, we represent all the input and output data as vectors, and
network weights as matrices. Specifically, we denote xl ∈ Rdl ,∀l ∈ [L] as a dl-dim input for the
l-th convolutional/recurrent layer (xl = x, i.e., the input data to the network, when l = 0). We will
explain the architecture based on a vanilla RNN as well.

Split

Recurrent conv layer

Concat

RNN
GRU
LSTM

Channel-Split Recurrent Convolution 
(CSR-Conv)

Figure 2: General architecture.

Channel split. The goal of this step is to generate data sequence
based on the input channels for further process in the recurrent layer.
Imagining that we need a sequence with length T at the l-th con-
volutional layer, then we reshape xl to a matrix Xl = [xl,t]t∈[T ] ∈
Rd

dl
T e×T where d·e denotes the ceiling operator and [·]t∈[T ] denotes

the vector concatenation operator. This new matrix will be fed into
the recurrent layer column-by-column sequentially.

Vanilla RNN based recurrent convolution. We follow the sim-
plest RNN formulation (i.e., vanilla RNN) as below to implement
the recurrent layer:

hl,t = σ
(
UT

l hl,t−1 +VT
l xl,t

)
,hl,0 = 0,∀t ∈ [T ], (2)

where at the layer l and time step t, hl,t ∈ RDl denotes the hidden state vector, Ul ∈ RDl×Dl ,Vl ∈
Rd

dl
T e×Dl denote the shared state and data transition matrices in the RNN, σ denotes the activation

function such as ReLU, and (·)T denotes the matrix transpose operator. Here we do not take the bias
term into account, because in practice we do not observe any significant improvement with the bias
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term but introducing more parameters. Note that the recurrent layer defined in Eq. 2 can be viewed as
the generalization of the traditional linear convolution, because both will be equivalent when T = 1.
For other implementations, one can replace the formula in Eq. 2 with the corresponding formula to
construct the recurrent layer.

Table 2: Summary of our results on (2nd block) CIFAR-
10 and (3rd block) ImageNet, where “#C-C” denotes
the number of CSR-Conv modules used in the networks
for learning compact networks, and “ρM” denotes the
model size compression rate.

Network Top-1 Err.(%) ρM (↓) #Param. #C-C T
VGG-16 6.04±0.05 0.0% 14.98M 0 1
CSR-Conv-1 5.89±0.06 39.3% 9.09M 5 2
CSR-Conv-2 6.01±0.10 49.0% 7.64M 4 3
CSR-Conv-3 6.16±0.10 67.2% 4.91M 6 3
CSR-Conv-4 6.35±0.08 86.5% 2.02M 9 5
CSR-Conv-5 7.08±0.12 95.0% 0.75M 12 9
ResNet-56 6.74±0.14 0.0% 0.85M 0 1
CSR-Conv-1 6.12±0.11 21.8% 0.66M 4 2
CSR-Conv-2 6.69±0.12 61.0% 0.33M 11 3
CSR-Conv-3 6.83±0.10 70.3% 0.25M 17 3
CSR-Conv-4 7.93±0.19 78.8% 0.18M 15 4
CSR-Conv-5 9.15±0.13 88.9% 0.09M 22 5
ResNet-110 6.50±0.05 0.0% 1.74M 0 1
CSR-Conv-1 5.72±0.07 17.2% 1.44M 7 2
CSR-Conv-2 5.55±0.05 36.4% 1.11M 14 2
CSR-Conv-3 6.12±0.11 61.3% 0.67M 22 3
CSR-Conv-4 7.06±0.15 79.6% 0.35M 31 4
CSR-Conv-5 8.57±0.18 87.1% 0.22M 33 5
DenseNet-40 5.19±0.04 0.0% 1.06M 0 1
CSR-Conv-1 5.19±0.12 15.9% 0.89M 19 2
CSR-Conv-2 5.13±0.09 35.2% 0.69M 11 3
CSR-Conv-3 5.09±0.14 50.3% 0.53M 22 3
CSR-Conv-4 6.01±0.13 63.7% 0.38M 23 4
CSR-Conv-5 8.30±0.15 82.4% 0.19M 34 5
MobileNet-V2 5.53±0.15 0.0% 2.24M 0 1
CSR-Conv-1 5.21±0.13 26.4% 1.65M 4 3
CSR-Conv-2 5.08±0.14 34.3% 1.47M 7 3
CSR-Conv-3 5.37±0.09 44.1% 1.25M 17 3
CSR-Conv-4 5.84±0.12 51.4% 1.09M 18 3
CSR-Conv-5 6.10±0.21 57.3% 0.95M 18 4
ResNet-50 23.85±0.23 0.0% 25.56M 0 1
CSR-Conv-1 23.51±0.27 35.7% 16.43M 10 3
CSR-Conv-2 24.61±0.24 70.3% 7.59M 15 4
EfficientNet-B0 22.90±0.23 0.0% 5.28M 0 1
CSR-Conv-1 22.34±0.31 18.9% 4.28M 3 3
CSR-Conv-2 27.59±0.31 26.3% 3.89M 4 5
MobileNet-V2 27.80±0.29 0.0% 3.50M 0 1
CSR-Conv-1 27.65±0.32 14.0% 3.01M 2 4
CSR-Conv-2 29.45±0.32 29.5% 2.47M 12 4

Channel concatenation. Once we have
the collection of the hidden state vectors,
we simply concatenate them into a (Dl ×
T )-dim vector hl = [hT

l,t]
T that will be

used in further process.

3.3 ANALYSIS

Proposition 1 (Model Size). Suppose that
the numbers of input and output channels
in each convolutional layer of the back-
bone network are equal to those from CSR-
Conv with sequence length T (T > 1).
Then we can compute the model size ra-
tio, λM , between CSR-Conv in Eq. 2 and
the corresponding linear convolution as
follows:

λM =
k2D(D + d)

k2DdT 2
=

(
1 +

d

D

)
1

T 2

= O

(
1

T 2

)
. (3)

Often empirically d ≤ D ⇔ 0 < d
D ≤ 1

holds. Meanwhile, given the fact that the
number of parameters in unchanged sub-
networks is trivial, the compression rate
will be heavily dominated by the number
of the duplicate networks T .

Proposition 2 (FLOPs). Suppose that (1)
the computational complexity of add, mul-
tiplication, and σ is a unit operation with
one FLOP, and (2) the input and output di-
mension for the backbone network can be
represented as dT and DT , respectively.
Then we can compute the FLOP ratio, λF ,
between CSR-Conv in Eq. 2 and the corre-
sponding linear convolution as follows:

λF =
k2WHDT (1 + 2D + 2d)

k2WHDT (1 + 2dT )
(4)

=
1 + 2D + 2d

1 + 2dT
≤

(
1 +

D

d

)
1

T
,

where the equation holds if and only if T = 1 + D
d that leads to λF = 1.

The upper-bound in Eq. 4 indicates that the FLOPs of CSR-Conv tends to decrease w.r.t. T
approximately. For instance, empirically our CSR-Conv-1 for ResNet-56 in Table 2 has the same
FLOPs as ResNet-56, even with better performance and smaller model size, because we set T = 2
and d = D in CSR-Conv in our implementation. Differently, CSR-Conv-5 can achieve 42.0% of
FLOP compression rate, compared with ResNet-56.
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Figure 3: Comparison of error vs. compression rate on (a-e) CIFAR-10 and (f) ImageNet.

4 EXPERIMENTS

Datasets. Following the literature, we evaluate our approach comprehensively on CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) for the image classification task.
CIFAR-10 consists of 50k training images and 10k testing images from 10 classes. ImageNet is a
large dataset, which contains over 1m training images and 50k testing images from 1000 categories.

Backbone networks & baseline approaches. We conduct experiments based on five main stream
CNNs, i.e., VGGNet (Simonyan & Zisserman, 2014)2, ResNet (He et al., 2016)2, DenseNet (Huang
et al., 2017)2, MobileNet (Sandler et al., 2018)3, and EfficientNet (Tan & Le, 2019a)4. To better
demonstrate the effectiveness of our approach in learning lightweight networks, we mainly compare it
with state-of-the-art (1) lightweight networks and (2) network compression methods, including L1 (Li
et al., 2016), SSS (Huang & Wang, 2018), Variational Pruning (Zhao et al., 2019b), HRank (Lin

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/tonylins/pytorch-mobilenet-v2
4https://github.com/lukemelas/EfficientNet-PyTorch
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et al., 2020),NISP (Yu et al., 2018), GAL (Lin et al., 2019), Hinge (Li et al., 2020), CNN-FCF (Li
et al., 2019b), Group Lasso (Oyedotun et al., 2020), L2PF (Huang et al., 2018), EGL (Oyedotun et al.,
2020) and DEGL (Oyedotun et al., 2020), DCP-A (Zhuang et al., 2018), Slimming (Liu et al., 2017)
and GBN (You et al., 2019).

Implementation. We use PyTorch to implement our network architecture. Following the literature
as well as the original code for each network, in our experiments we use the SGD optimizers with the
cross-entropy loss and set the initial learning rate, momentum, and decay as 0.05, 0.9, and 0.0005,
respectively. The learning rate is divided by 2 every 30 epochs on CIFAR-10 and by 10 every 10
epochs on ImageNet. We use Top-1 error as our performance measure for both datasets. We report
our results based on three random trials in terms of mean and standard deviation.

4.1 RESULTS SUMMARY

We summarize our results in Table 2 based on seven classic network architectures. In general, we use
grid search to determine which convolutional layers in the backbone network should be replaced by
CSR-Conv layer. Overall, CSR-Conv can be used to learn smaller but better lightweight networks
based on different backbones. Specifically,

• CSR-Conv can effectively learn lightweight networks using less than half of the model sizes of the
backbone networks with no, or only < 1% performance loss. On CIFAR-10, CSR-Conv can even
achieve ρM > 80% with 1% ∼ 3% performance loss.

• CSR-Conv seems to be able to improve the performance by 0.1% ∼ 1% when ρM < 50%.
• CSR-Conv performs stably, as the standard deviation ranging from 0.04% to 0.31%.
• Often more CSR-Conv layers are needed to learn more lightweight networks. Meanwhile, deeper

RNNs are desirable for better performance. This validates our motivation.

4.2 COMPARISON WITH LIGHTWEIGHT NETWORKS

Table 3: Lightweight network comparison on ImageNet in
terms of the number of parameters and top-1 error. Numbers
are cited from https://paperswithcode.com/sota/
image-classification-on-imagenet. All the net-
works with model sizes smaller than 5M are included.

Networks #Param. Err. (%)
MUXNet-xs (Lu et al., 2020) 1.8M 33.3
MUXNet-s (Lu et al., 2020) 2.4M 28.4
Ours-1 (MobileNet-V2) 2.5M 29.5
DY-MobileNetV2 x0.35 (Chen et al., 2020) 2.8M 35.1
Ours-2 (MobileNet-V2) 3.0M 27.7
ECA-Net (Wang et al., 2020) 3.3M 27.4
PVTv2-B0 (Wang et al., 2021) 3.4M 29.5
MUXNet-m (Lu et al., 2020) 3.4M 24.7
MnasNet-A1 (Tan et al., 2019) 3.9M 24.7
DY-MobileNetV2 x0.5 (Chen et al., 2020) 4.0M 30.6
Proxyless (Cai et al., 2018) 4.0M 25.4
MUXNet-l (Lu et al., 2020) 4.0M 23.4
MixNet-S (Tan & Le, 2019b) 4.1M 24.2
Ours-3 (Efficient-B0) 4.3M 22.3
GreedyNAS-C (You et al., 2020) 4.7M 23.8
DY-MobileNetV3-Small (Chen et al., 2020) 4.8M 30.3
MnasNet-A2 (Tan et al., 2019) 4.8M 24.4
ViTAE-T-Stage (Xu et al., 2021) 4.8M 23.2
PiT-Ti (Heo et al., 2021) 4.9M 25.4

We also compare our CSR-Conv
based networks with the state-
of-the-art lightweight networks.
The comparison results are listed
in Table 3, where we show 3
CSR-Conv based networks with
EfficientNet and MobileNet as
our backbones. It is clear that
CSR-Conv with EfficientNet has
the lowest error among all the
networks. The “lighter” mod-
els with the MobileNet back-
bone also have similar or bet-
ter performance comparing to
the networks with similar model
sizes such as MUXNet-s and
DY-MobileNetV2 x0.35. Note
that the DY-MobileNetV2 x0.35
model also uses MobileNetV2
as the backbone network, and
our model can achieve signifi-
cantly better performance with
even less parameters. This also
validates the effectiveness of our
CSR-Conv layer. Since these
competitors are based on standard
linear convolutions, we strongly
believe that our CSR-Conv layer can further reduce the model sizes of such networks while preserving
(even improving) their performance. Also, post-processing such as pruning can be applied to our
networks to achieve smaller networks. See Table 6 later for example.

7

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet


Under review as a conference paper at ICLR 2022

4 6 8 10 12 14 16

#CSR-Conv modules

2

4

6

8

10

12

14

16

S
eq

u
en

ce
le

n
gt

h
(T

)

ρM =∼ 86%

ρM =∼ 74%

ρM =∼ 44%
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Figure 5: Training loss comparison using the
VGG-16 backbone on CIFAR-10.

4.3 COMPARISON WITH NETWORK COMPRESSION

Fig. 3 illustrates our comparison with the state-of-the-art on both CIFAR-10 and ImageNet, where
methods towards the bottom right corner are preferred. We can see the performance trends as
discussed above for Table 2. Surprisingly, our approach forms “lower-bound” curves in each
subfigure, indicating that given similar model compression rates CSR-Conv often works best. This
is because of the overparameterization in the neural networks so that we have a sufficiently large
parameter space to identify a better yet lightweight architecture. Thanks to our design, CSR-Conv
has the flexibility of exploring the performance with a specific compression rate. In summary, CSR-
Conv can manage to learn lightweight networks effectively, consistently and robustly using different
backbone networks on large-scale complicated datasets.

4.4 ABLATION STUDY

Table 4: Top-1 error (%) comparison on
CIFAR-10 using VGG-16.
Networks ρM (↓) Ours s-GroupConv
CSR-Conv-1 39.4% 5.89 6.23
CSR-Conv-2 49.0% 6.01 6.56
CSR-Conv-3 67.2% 6.16 7.03
CSR-Conv-4 86.5% 6.35 7.27
CSR-Conv-5 95.0% 7.08 7.82

Impacts of the hidden state transition in vanilla RNNs.
The hidden state transition helps construct deeper net-
works, compared with the backbones, to compensate for
the performance loss when learning lightweight networks.
To verify this usage, we compare our model with a baseline
model with shared weights in group convolutions (denoted
as “s-GroupConv”), as illustrated in Fig. 1(b), to replace
our CSR-RNN layers. We then tune such networks so that
the model size compression ratios are approximately the
same as ours. We list some results in Table 4, where we can see that in all the cases our results are
consistently better than this baseline, demonstrating the need of the hidden state transition.

Impacts of the number of CSR-Conv layers and input sequence length. Recall that we use grid
search to seek a lightweight network architecture to meet a certain model size compression rate, if
required. We take VGG-16 for example to demonstrate their impacts on the performance, as illustrated
in Fig. 4. Note that we select convolutional layers in the VGG-16 architecture in descending order.
We can see that:

• The model compression rates towards the bottom left corner are lower and lower.
• Given the same model size compression rate, the networks form nice “U” shaped contours where

more CSR-Conv layers need short sequence length.
• Lightweight networks with small errors, given compression rates, are distributed along the valley.

These observations are very useful as guidance for our approach on how to search for a lightweight
network architecture effectively.

RNN variants, GRU, and LSTM as the recurrent layer. Overall, we do not observe any significant
performance improvement over the vanilla RNN implementation. For instance, to learn lightweight
networks based on VGG-16 with a model compression rate of ∼87% on CIFAR-10, vanilla RNN,
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incremental RNN, and FastRNN achieve 6.35%, 6.45%, and 7.87% in terms of classification error,
respectively. Using the same amount of parameters Lipschitz RNN achieves 6.55% error with a
model compression rate of ∼78%. Similarly, we replace vanilla RNNs with GRUs and LSTMs to
learn lightweight networks based on ResNet-56 that achieve (10.9%, 7.53%) and (-18.8%, 7.80%)
in terms of (ρM , error) on CIFAR-10, respectively. These results are worse than vanilla RNNs as
well, probably due to the short sequence length. Therefore, by default we utilize vanilla RNNs as the
recurrent layer in our CSR-Conv.

Table 5: Comparison on CIFAR-10.
Networks Err.(%) FLOPs(↓) Param(↓)
ResNet-56 6.74 0.0% 0.0%
CSR-Conv-1 6.12 0.0% 21.8%
CSR-Conv-2 6.69 12.8% 61.0%
CSR-Conv-3 6.83 17.2% 70.3%
CSR-Conv-4 7.93 29.6% 78.8%
CSR-Conv-5 9.15 43.5% 88.9%

FLOP reduction. As demonstration, we verify the
FLOP reduction of our approach using ResNet-56 in
practice and list our results in Table 5. Recall that our
main focus of the paper is to learn lightweight networks,
and FLOPs tend to decrease as well with the increase of
sequence length, in general. For CSR-Conv-1, the input
and output dimensions are the same so that T = 1+ D

d
holds, and thus no drop in FLOPs exists. Such results
in Table 5 also verify Prop. 2 properly.

Running time. Recall that our CSR-Conv layer leads to deeper networks that need to be opti-
mized/inferred sequentially. Therefore, our running time is heavily dependent on the numbers of
CSR-Conv layers in the networks, as well as the bottleneck computation in the backbone networks.
For instance, the training time is 0.3ms per batch on a Quadro RTX 6000 GPU when we run ResNet-
56 on CIFAR-10 dataset. Under the same setting, CSR-Conv-1 (CSR-Conv-5) involves 4 (22)
CSR-Conv layers and runs for 0.56ms (1.31ms), with the increase of compression rate from 21.8% to
88.9%. Differently, on ImagetNet the MobileNet-V2 architecture takes 1.068s to train per batch and
CSR-Conv-1 (CSR-Conv-2) takes 1.071s (1.096s) that involves 2 (7) CSR-Conv layers.

Training curves. It is critical to make sure that our lightweight networks are easy to train even with
a small portion of parameters and RNNs that share parameters. To demonstrate this, we illustrate our
training curves of VGG-16 in Fig. 5 where ρM = 0 denotes the backbone network and the rest are
the variants of our approach. For simplicity, we only plot the training curves of the first 100 epochs.
As expected, the networks with a higher compression rate are more difficult to train, leading to larger
training losses and test errors. Note that the trends of loss are very similar to each other, indicating
that our lightweight yet deeper networks can be trained as easily as backbone networks.

Table 6: Pruning results on CIFAR-10
based on our learned CSR-Conv net-
works. Here, VGG-16 and ResNet-56
are two backbone networks.
Network Err.(%) ρM (↓)
CSR-Conv + VGG-16 6.35 86.5%
CSR-Conv + VGG-16
+ (Han et al., 2015a) 6.40 91.9%

CSR-Conv + ResNet-56 6.83 70.3%
CSR-Conv + ResNet-56

+ (Han et al., 2015a) 6.90 75.3%

Further compression with existing methods. Note that
the learned filters in our CSR-Conv layers are still dense,
and thus we can apply network compression methods
as post-processing to further reduce the model size. We
list some results in Table 6 using the classic compres-
sion algorithm in (Han et al., 2015a) to prune our learned
lightweight networks. It is apparent that the pruning al-
gorithm can further reduce ∼ 5% of model sizes with
marginal∼ 0.06% error increase. These results show that
our CSR-Conv layer can be considered as being orthogo-
nal to the literature of network compression.

5 CONCLUSION

In this paper, we aim to address the problem of learning lightweight networks by proposing a novel
CSR-Conv layer that replaces traditional linear convolution with channel-split recurrent convolution.
The hidden state transition in the vanilla RNNs leads to deeper networks, given backbones, to
compensate for the performance loss while reducing the model sizes. Essentially our CSR-Conv can
be viewed as the generalization of linear convolution. We show that the model size of a lightweight
network decreases w.r.t. the number of the duplicate networks with the rate of O( 1

T 2 ). We then
conduct comprehensive experiments to evaluate our CSR-Conv on CIFAR-10 and ImageNet. We
demonstrate state-of-the-art performance on learning lightweight networks in terms of accuracy vs.
model size. We can even further improve our results by integrating existing network compression
algorithms such as pruning.
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