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ABSTRACT

Text-to-image generation requires large amount of training data to synthesizing
high-quality images. For augmenting training data, previous methods rely on data
interpolations like cropping, flipping, and mixing up, which fail to introduce new
information and yield only marginal improvements. In this paper, we propose a
new data augmentation method for text-to-image generation using linear extrap-
olation. Specifically, we apply linear extrapolation only on text feature, and new
image data are retrieved from the internet by search engines. For the reliability of
new text-image pairs, we design two outlier detectors to purify retrieved images.
Based on extrapolation, we construct training samples dozens of times larger than
the original dataset, resulting in a significant improvement in text-to-image perfor-
mance. Moreover, we propose a NULL-guidance to refine score estimation, and
apply recurrent affine transformation to fuse text information. Our model achieves
FID scores of 7.91, 9.52 and 5.00 on the CUB, Oxford and COCO datasets. The
code and data will be available on GitHub.

1 INTRODUCTION
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Figure 1: An illustration of data linear
extrapolation. We use search engine and
outlier detectors to ensure the image simi-
larity. Extrapolation produces much more
text-image pairs than the original dataset.

Text-to-image generation aims to synthesize images
according to textual descriptions. As the bridge be-
tween human language and generative models, text-
to-image generation (Reed et al., 2016b; Ye et al.,
2023; Sauer et al., 2023; Rombach et al., 2022; Ramesh
et al., 2022)is applied to more and more application do-
mains, such as digital human (Yin & Li, 2023), image
editing (Brack et al., 2024), and computer-aided de-
sign (Liu et al., 2023). The diversity of applications
leads to a large number of small datasets, where exist-
ing data are not sufficient to train high-quality genera-
tive models, and generative large models cannot over-
come the long-tail effect of diverse applications.

To augment training data, existing methods typically
rely on data interpolation techniques such as cropping,
flipping, and mixing up images (Zhang et al., 2017).
While these methods leverage human knowledge to cre-
ate new perspectives on existing images or features,
they do not introduce new information and yield only
marginal improvements. Additionally, Retrieval-base models (Chen et al., 2022; Sheynin et al.,
2022; Li et al., 2022) employs retrieval methods to gather relevant training data from external
databases like WikiImages. However, these external databases often contain very few images for
specific entries, and their description styles differ significantly from those in text-to-image datasets.
Furthermore, VQ-diffusion (Gu et al., 2022) pre-trains its text-to-image model on the Conceptual
Caption dataset with 15 million images, but the resulting improvements are not obvious.

In this paper, we explore data linear extrapolation to augment training data. Linear extrapolation
can be risky, as similar text-image pairs may not be nearby in Euclidean space. For information
reliability, as depicted in Figure 1, we explore linear extrapolation only on text data, and new image

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data are retrieved from the internet by search engines. And then outlier detectors are designed to
purify retrieved web images. In this way, the reliability of new text-image pairs are guaranteed by
search precision and outlier detection.

To detect outliers from web images, we divide outliers into irrelevant and similar ones. For detect-
ing irrelevant outliers, K-means (Lloyd, 1982) algorithm is used to cluster noisy web images into
similar images and outliers. In the image feature space generated by a CLIP encoder (Radford et al.,
2021), similar images will be close to dataset images, while outliers will be far away. Based on this
observation, we remove images that differ significantly from dataset images. For detecting simi-
lar outliers, each web image is assigned a label by a fine-grained classifier trained on the original
dataset. If the label does not match the search keyword, the image is considered as an outlier and
removed. For every purified web image, we extrapolate a new text descriptions according to the
local manifold of dataset images. Based on extrapolation, we construct training samples dozens of
times larger than the original dataset.

Moreover, we propose NULL-condition guidance to refine score estimation for text-to-image gen-
eration. Classifier-free guidance (Ho & Salimans, 2022) uses a dummy label to refine label-
conditioned image synthesis. Similarly, in text-to-image generation, such a dummy label can be
replaced by a prompt with no new physical meaning. For example, “a picture of bird” provides
no information for the CUB dataset “a picture of flower” provides no information for the Oxford
dataset). In addition, we apply recurrent affine transformation (RAT) in the diffusion model for
handling complex textual information.

The contributions of this paper are summarized as follows:

• We propose a new data augmentation method for text-to-image generation using linear
extrapolation. Specifically, we apply linear extrapolation only on text feature, and new
image data are retrieved from the internet by search engines.

• We propose a NULL-condition guidance to refine the score estimation for text-to-image
generation. This guidance is also applicable to existing text-to-image models without fur-
ther training.

• We apply recurrent affine transformation in the diffusion model for handling complex tex-
tual information.

2 RELATED WORK

GAN-based text-to-image models. Text-to-image synthesis is a key task within conditional im-
age synthesis (Feng et al., 2022; Tan et al., 2022; Peng et al., 2021; Hou et al., 2022). The pioneer-
ing work of (Reed et al., 2016b) first tackled this task using conditional GANs (Mirza & Osindero,
2014). To better integrate text information into the synthesis process, DF-GAN (Tao et al., 2022)
introduced a deep fusion method featuring multiple affine layers within a single block. Unlike previ-
ous approaches, DF-GAN eliminated the normalization operation without sacrificing performance,
thus reducing computational demands and alleviating limitations associated with large batch sizes.
Building on DF-GAN, RAT-GAN employed a recurrent neural network to progressively incorporate
text information into the synthesized images. GALIP (Tao et al., 2023) and StyleGAN-T (Sauer
et al., 2023) explore the potential of combining GAN models with transformers for large-scale text-
to-image synthesis. However, the aforementioned GAN-based models often struggle to produce
high-quality images.

Diffusion-based text-to-image models. Recently, diffusion models (Ho et al., 2020; Song & Er-
mon, 2019; Song et al., 2021; Hyvärinen, 2005) have demonstrated impressive generation perfor-
mance across various tasks. Building on this success, Imagen (Saharia et al., 2022) and DALL·E
2 (Ramesh et al., 2022) can synthesize images that are sufficiently realistic for real-world applica-
tions. To alleviate computational burdens, they first generate 64×64 images and then upsample them
to high-resolution using another diffusion model. Additionally, the Latent Diffusion Model (Rom-
bach et al., 2022) encodes high-resolution images into low-resolution latent codes, avoiding the
exponential computation costs associated with increased resolution. DiT (Peebles & Xie, 2023)
integrated latent diffusion models and transformers to enhance performance on large datasets. VQ-
Diffusion (Gu et al., 2022) pre-train their text-to-image model on the Conceptual Caption dataset,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

which contains 15 million text-image pairs, and then fine-tune it on smaller datasets like CUB, Ox-
ford, and COCO. Hence, VQ-Diffusion is the work most similar to ours but we use significantly less
pre-training data while achieving better results.

Data augmentation methods. Data augmentation increases training data to improve the perfor-
mance of deep learning applications, from image classification (Krizhevsky et al., 2012) to speech
recognition (Graves et al., 2013; Amodei et al., 2016). Common techniques include rotation, trans-
lation, cropping, resizing, flipping (LeCun et al., 2015; Vedaldi & Zisserman, 2016), and random
erasing (Zhong et al., 2020) to promote visually plausible invariances. Similarly, label smoothing
is widely used to boost the robustness and accuracy of trained models (Müller et al., 2019; Lukasik
et al., 2020). Mixup (Zhang et al., 2017) involves training a neural network on convex combinations
of examples and their labels. However, interpolated samples fail to introduce new information and
effectively address data scarcity. Hence, Re-imagen (Chen et al., 2022; Sheynin et al., 2022; Li et al.,
2022) retrieval relevant training data from external databases to augment training data.

3 LINEAR EXTRAPOLATION FOR TEXT-TO-IMAGE GENERATION

In this section, we begin by collecting similar images from the internet. Next, we explain how to
extrapolate text descriptions. Following that, we use the extrapolated text-image pairs to train a
diffusion model with RAT blocks. Finally, we sample images using NULL-condition guidance.

3.1 COLLECTING SIMILAR AND CLEAN IMAGES

Linear extrapolation requires the images to be sufficiently close in semantic space. Hence, we au-
tomatically retrieve similar images by searching for their classification labels. However, search
engines return both similar images and outliers. To eliminate unwanted outliers, we employ a clus-
ter detector for irrelevant outliers and a classification detector for similar outliers. For the cluster
detector, each image is encoded into a vector using the CLIP image encoder. Images retrieved with
the same keyword are then clustered using K-means. If the distance from the cluster center to dataset
images exceeds a threshold, this cluster is excluded. For the classification detector, we train a fine-
grained classification model on the original dataset, which assigns a label to each web image. If the
label does not match with the search keyword, corresponding image is then excluded.

3.2 LINEAR EXTRAPOLATION ON TEXT FEATURE SPACE

Here we introduce how to extrapolates text descriptions for web images. Assuming that web images
are sufficiently close to dataset images in semantic space, each web image can be represented by
nearest k images:

argmin
W

|f − F × w|2, (1)

where w = [w1, w2, ..., wk]are the reconstruction weights and F = [f1, f2, ..., fk] are the image
features of dataset images produced by CLIP image encoder. Since the above equation is a super-
determined problem, we solve this coefficient using least squares:

w = (FT F)−1FT f. (2)

We assume that the image feature space and text feature space share the same local manifold. Hence,
the image reconstruction efficient w can be used to compute the text feature of web images:

s = S × w, (3)
where S = [s1, s2, ..., sk] is the fake sentence features for nearest k dataset images, and s is the
sentence feature for a web image.

3.3 RECURRENT DIFFUSION TRANSFORMER ON LATENT SPACE

The training objective of the diffusion model is the squared error loss proposed by DDPM (Ho et al.,
2020):

3
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Figure 2: Latent diffusion model with recurrent affine transformation and NULL-guidance for text-
to-image synthesis. The RAT blocks are connected by a recurrent neural network to ensure the
global assignment of text information.

L(θ) =
∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ

)∥∥∥2 , (4)

where ϵ ∈ N(0, 1) is the score noise injected at every diffusion step, and ϵθ is the predicted noise by
a diffusion network consisted of 12 transformer layers. ᾱt and ᾱt are hyper-parameters controlling
the speed of diffusion. The work of score mismatching (Ye & Liu, 2024) shows that predicting the
score noise leads to an unbiased estimation.

Network architecture. As depicted in Fig 2, the diffusion network consists of transformer blocks.
Recurrent affine transformation is used to enhance the consistency between transformer blocks. To
avoid directly mixing text embedding and time embedding, we stack four transformer blocks as a
RAT block and text embedding is fed into the top of each RAT block. Each RAT block applies a
channel-wise shifting operation on a image feature map:

c′ = c+ β, (5)

where c is the image feature vector and β is shifting parameters predicted by a one-hidden-layer
multi-layer perception (MLP) conditioned on recurrent neural network hidden state ht.

In each transformer block, we inject time embedding by a channel-wise scaling operation and a
channel-wise shifting operation on c. At last, the image feature c is multiplied by a scaling parameter
α. This process can be formally expressed as:

c′ = Transformer((1 + γ) · c+ β) · α, (6)

where α, γ, β are parameters predicted by two one-hidden-layer MLPs conditioned on time embed-
ding. When applied to an image feature map composed of w × h feature vectors, the same affine
transformation is repeated for every feature vector.

Early stop of fine-tuning. Extrapolation may produces training data very close to the original
dataset, which makes fine-tuning saturate very quickly. Excessive fine-tuning epochs would forget
knowledge gained from the extrapolated data and overfit small datasets. As a result, the training loss
of the diffusion model becomes unreliable. Therefore, fine-tuning should be stopped when the FID
score begins to increase.

3.4 SYNTHESIZING FAKE IMAGES

Finally, we introduces how to synthesizing images from scratch. As depicted in Figure 2, the syn-
thesis begins with sampling a random vector z from standard Gaussian distribution. And then, this
noise is gradually denoised into an image latent code by the diffusion model. The reverse diffusion
iterations are formulated as:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz, (7)

where, αt, ᾱt and σt are diffusion hyper-parameters, and z is a random vector sampled from stan-
dard Gaussian distribution. At last, we decode image latent codes into images with the pre-trained
decoder from Stable Diffusion (Rombach et al., 2022).
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NULL guidance. A sentence with no new information is able to boost text-to-image performance
obviously. This guidance is inspired by Classifier-free diffusion guidance (Ho & Salimans, 2022)
which uses a dummy class label to boost label-to-image performance. Similarly, we design CLIP
prompt without obvious visual meaning and embed them into the diffusion model. Specifically, we
denote the original score estimation based on text description as ϵtext and score estimation based on
null description as ϵnull. Then we mix these two estimations for a more accurate estimation ϵ′:

ϵ′ = (ϵtext − ϵnull)× η + ϵnull, (8)

where, η is the guidance ration controlling the balance of two estimations. When η = 1, NULL
Guidance falls back to an ordinary score estimation. Usually, a NULL prompt with the average
meaning of the dataset achieve the best performance.

4 EXPERIMENTS
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Figure 3: Qualitative comparison on the CUB and Oxford dataset. The input text descriptions are
given in the first row and the corresponding generated images from different methods are shown in
the same column. Best view in color and zoom in.

Datasets. We report results on the popular CUB, Oxford-102, and MS COCO datasets. The CUB
dataset includes 200 categories with a total of 11,788 bird images, while the Oxford-102 dataset con-
tains 102 categories with 8,189 flower images. Unlike the approaches taken in Reed et al. (2016a;b),
we utilize the entire dataset for both training and testing. Each image is paired with 10 captions.
To expand the original datasets, we collect 300,000 bird images and 130,000 flower images. The
MS COCO dataset comprises 123,287 images, each with 5 sentence annotations. We use the official
training split of COCO for training and the official validation split for testing. During mini-batch
selection, a random image view (e.g., crop or flip) is chosen for one of the captions.

Web images. For the CUB and Oxford datasets, we collected 603,484 bird images and 331,602
flower images using search engines, utilizing fine-grained classification labels as search keywords.
After removing detected outliers, we retained 399,246 bird images and 132,648 flower images. In the
case of the COCO dataset, we gathered 770,059 daily images without applying any outlier detection,
as the precise descriptions in COCO allow search engines to retrieve clean images effectively.
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Table 1: Performance of IS and FID of StackGAN++, AttnGAN, SSGAN, DM-GAN, DTGAN,
DF-GAN and our method on the CUB, Oxford and MS COCO datasets. The results are taken from
the authors’ own papers. The best results are in bold.

Methods IS(Fine-tune) ↑ IS(ImageNet) ↑ FID(Fine-tune) ↓ FID(ImageNet) ↓
CUB Oxford CUB Oxford CUB Oxford CUB Oxford COCO

StackGAN++ 4.04 3.26 4.04 3.26 23.96 48.68 15.30 32.33 81.59
AttnGAN 4.36 - 4.36 - - - 23.98 - 35.49
DAE-GAN 4.42 - - - - - 15.19 - 28.12
DM-GAN 4.75 - - - - - 16.09 - 32.64
DF-GAN 5.10 3.80 4.96 3.92 17.23 18.90 14.81 22.56 21.42
RAT-GAN 5.36 4.09 5.00 3.95 13.91 16.04 10.21 18.68 14.60
GALIP - - - - - - 10.05 - 5.85
VQ-Diffusion - - - - - - 10.32 14.10 13.86
U-ViT - - - - - - - - 5.45
Ours 6.56 4.35 6.37 4.11 7.91 8.58 6.36 9.52 5.00

Training details. The text encoder is a pre-trained CLIP text encoder with an output of size 512.
The latent encoder and decoder is pre-trained by Stable Diffusion (Rombach et al., 2022). We have
tried to pre-train new latent encoders on extrapolated data but the results are not satisfying. Adam
optimizer is used to optimize the network with base learning rates of 0.0001 and weight decay of
0. The same as RAT-GAN, we used a mini-batch size of 24 to train the model. Most training and
testing of our model are conducted on 2 RTX 3090 Ti and the detailed training consumption is listed
in Table 3.

Evaluation metrics. We adopt the widely used Inception Score (IS) (Salimans et al., 2016) and
Fréchet Inception Distance (FID) (Heusel et al., 2017) to quantify the performance. On the MS
COCO dataset, an Inception-v3 network pre-trained on the ImageNet dataset is used to compute
the KL-divergence between the conditional class distribution (generated images) and the marginal
class distribution (real images). The presence of a large IS indicates that the generated images are
of high quality. The FID computes the Fréchet Distance between the image feature distributions
of the generated and real-world images. The image features are extracted by the same pre-trained
Inception v3 network. A lower FID implies the generated images are closer to the real images.
We only compare the FID on the COCO dataset. On the CUB and Oxford-102 dataset, pre-trained
Inception models are fine-tuned on two fine-grained classification tasks (Zhang et al., 2019).

There are two conflicts in evaluation methods in previous works. First, some studies report Inception
Score (IS) using the ImageNet Inception model, while others use a fine-tuned version. Second, some
works evaluate using the entire training data, whereas others use only the test split. To address these
inconsistencies, we report IS and FID using both Inception models and employ the same Inception
model as DM-GAN for consistency. Additionally, to resolve conflicts related to data splits, we
report the FID scores of our model and other re-implemented models using the entire dataset for
both training and testing. According to results from RAT-GAN (Ye et al., 2023), training and testing
on the full dataset typically yields the best FID scores. We will also release all evaluation codes on
GitHub.

Compared models. We compare our model with recent state-of-the-art methods: Stack-
GAN++ (Zhang et al., 2019), DM-GAN (Zhu et al., 2019), DF-GAN (Tao et al., 2022), DAE-
GAN (Ruan et al., 2021), VQ-diffusion (Gu et al., 2022), AttnGAN (Xu et al., 2018), GALIP (Zhang
& Schomaker, 2021),U-ViT (Bao et al., 2023), and RAT-GAN (Ye et al., 2023).

4.1 COMPARISONS WITH OTHERS

Quantitative results. We present results for the CUB dataset of bird images, the Oxford-102
dataset of flower images, and the MS COCO dataset of common objects, as shown in Table 1. On
the CUB dataset, our model achieve an IS score of 6.56 and an FID score of 6.36, outperforming
all the previous models. For the Oxford dataset, we achieve an IS score of 4.35 and an FID score
of 6.36, outperforming all the previous models. On the COCO dataset, our model achieves an

6
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Table 2: Ablation studies on the CUB dataset. We utilize a NULL-guidance ratio of 1.5 during
sampling. The FID score was employed to evaluate generation performance.

ID Component Extrapolation Quantity(k)
Cluster Classification RAT NULL 0 50 100 200 300 400

0 - - - - 16.74 - - - - 30.78
1 ✓ - - - - - - - - 20.67
2 - ✓ - - - - - - - 12.45
3 ✓ ✓ - - - - - - - 9.87
4 ✓ ✓ ✓ - - - - - - 8.76
5 ✓ ✓ - ✓ - - - - - 7.65
6 ✓ ✓ ✓ ✓ - 9.56 7.34 6.87 6.54 6.36

FID score of 5.00 that is competitive with previous best result.Compared with VQ-Diffusion, our
model uses less training data and achieve much better performance. This comparison reveals that
pre-training on large datasets can be inefficient and lead to suboptimal results. Moreover, results
in Table 1 reveal that Inception model pre-trained on ImageNet is less sensitive than fine-tuned on
small datasets. Additionally, the Inception score on the Oxford dataset exceeds that of real images
(4.10). Extensive results demonstrate the effectiveness and generalization ability of the proposed
data extrapolation method.

Qualitative results. We present qualitative results for the CUB dataset of bird images and the
Oxford-102 dataset of flower images. In Figure 3 , we compare the visualization results of DF-
GAN, RAT-GAN, and our model. DF-GAN and RAT-GAN are previous state-of-the-art methods
for text-to-image synthesis. On the CUB dataset, with more clear details such as feathers, eyes, and
feet, our model clearly outperforms DF-GAN and RAT-GAN. Additionally, the background in our
model’s results is more coherent compared to RAT-GAN. On the Oxford dataset, our model exhibits
better texture and more relevant colors than the others. With the proposed text extrapolation, RAT
block, and null-guidance, our model demonstrates fewer distorted shapes and more relevant content
compared to the other two models.
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A man riding a wave on

top of a surfboard.
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Assorted electronic
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Figure 4: Qualitative comparison of our model with RAT-GAN on the COCO dataset.

The qualitative results for the COCO dataset are shown in Figure 4. The COCO dataset includes
a wide variety of common objects, which makes it particularly susceptible to the long-tail prob-
lem (Chen et al., 2022). With additional training data obtained through extrapolation, our model
generates more realistic objects compared to RAT-GAN. However, the collected 770,059 images are
still insufficient to cover the entire distribution of images in COCO. As a result, the outputs from
COCO are not as realistic as those from the CUB and Oxford datasets.
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Table 3: Training consumption on the CUB, Oxford and COCO datasets. Fine-tuning is performed
on the original dataset until the FID scores increase.

Dataset Device Original dataset Extrapolated data Fine-tuning
CUB 2 RTX 3090 Ti 5 days/1500 epochs 10 days/100 epochs 6 hours/50 epochs
Oxford 2 RTX 3090 Ti 5 days/1500 epochs 8 days/200 epochs 6 hours/50 epochs
COCO 2 RTX 4090 10 days/125 epochs 20 days/95 epochs 7 days/70 epochs

4.2 ABLATION STUDIES

Analysis of outlier detectors. In Table 2, we present text-to-image results without cluster detec-
tor or classification detector. According to ID 0,1 and 2, the FID score without outlier detectors
degrade severely because noisy images force the diffusion model to generate irrelevant objects. Al-
though fine-tuning on small datasets could alleviate noise pollution but parameters also forget gen-
eral knowledge at the same time. According to ID 2 and 3, classification detector performs better
than cluster detector because it has utilized fine-grained classification labels.

Analysis of extrapolation quantity. More images generally lead to improved text-to-image re-
sults. however, this trend saturates around 100,000 images, after which the improvement in FID
becomes less significant with more training samples. This phenomenon aligns with that diffusion
models perform much better than GANs on the COCO dataset (84K images) but exhibit similar per-
formance to GANs on the CUB and Oxford datasets( 10K images). Furthermore, with transformers
as core building blocks, GALIP performs similarly to previous models on the CUB dataset. This
suggests that transformer architectures exacerbate the need for larger training datasets.

Table 4: The impact of various NULL prompts on FID
scores in the CUB dataset.

NULL Prompts Guidance Ratio
1.25 1.5 2.0

“Null” 7.23 7.16 7.68
“a picture” 6.89 6.54 7.14

“no description” 6.97 6.47 7.25
“a picture of bird” 6.46 6.36 6.86

“a picture of flower” 9.04 10.6 11.4
“we don’t know what it is” 8.98 9.35 9.94

Analysis of NULL guidance. The per-
formance of NULL guidance is influenced
by both the NULL prompt and the guid-
ance ratio. The results in Table 4 indicate
that a NULL prompt reflecting the aver-
age meaning of the dataset achieves the
best performance. Additionally, a suitable
guidance ratio is crucial for optimal re-
sults, and we find that a ratio around 1.5
yields the best performance on the CUB
and COCO datasets. However, on the Ox-
ford dataset, NULL guidance improves the
Inception Score from 4.10 to 4.35 but de-
grades the FID score from 9.52 to 11.07.

Table 5: Ablation studies on the MS COCO dataset.
We adopt “A picture” as the NULL prompt.

Training data FID score
η = 1.0 η = 1.5 η = 2.0

COCO 11.89 7.99 8.43
Extrapolation 12.33 8.41 9.24

COCO-ft 8.45 5.00 5.56

Analysis of text injection. Text injec-
tion is crucial for text-to-image genera-
tion. As shown in ID 4 and 5 of Ta-
ble 2, RAT significantly improves the FID
score. Further experiments indicate that
directly mixing text feature with time em-
bedding results in an FID score of 25.41,
which is much worse than 16.74 achieved
by RAT. This suggests that time embed-
ding provides information very different to
text embedding. Additionally, incorporat-
ing a scaling operator into RAT can lead to model collapse, as information becomes highly com-
pressed in latent space. Consequently, the mean value of the latent code becomes sensitive, and the
scaling operation disrupts the information structure.

Ablation studies on the MS COCO dataset. We conduct ablation studies on the MS COCO
dataset, as presented in Table 5. The MS COCO dataset differs significantly from the CUB and
Oxford datasets in terms of variety and image quantity. Experimental results demonstrate that linear
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This flower is purple and white, and has petals that are bulb shaped and drooping downward.

Figure 5: Randomly generated images from the Oxford dataset. Best view in color and zoom in.

Model FID Type Pre-training images #Params
Parti (Yu et al., 2022) 3.22 Autoregressive 4.8B 20B
Make-A-Scene (Gafni et al., 2022) 7.55 Autoregressive 35M 4B
Re-Imagen (Chen et al., 2022) 5.25 Diffusion 50M 2.5B
VQ-Diffusion (Gu et al., 2022) 19.75 Diffusion 15M 370M
Ours 5.00 Diffusion 7M 464M

Table 6: Comparison of pre-training dataset and parameter quantity of different models on the MS
COCO dataset. Parameters for text encoder, latent encoder and super resolution are not counted.

extrapolation and fine-tuning (5.00) outperform the original COCO dataset (7.99). However, unlike
CUB and Oxford, fine-tuning on COCO requires much more time, as shown in Table 3. Additionally,
we observe that early stopping is unnecessary for fine-tuning on the COCO dataset due to its larger
image volume compared to CUB and Oxford.

In Table 6, we compare the pre-training dataset and model parameters with previous models on the
MS COCO dataset. The compared models are all pre-trained on external datasets and fine-tuned on
MS COCO dataset. Our result outperforms all previous models except for Parti but we use much
less pre-training images and parameters than Parti. Moreover, our diffusion model is designed for
small datasets and requires very few GPUs for training.

Diversity. To qualitatively evaluate the diversity of our proposed model, we generate random im-
ages conditioned on the same text description and different random noises. In Figure 5, we present
10 images generated from the same text. These images exhibit similar foreground elements while
showcasing high diversity in spatial structure, demonstrating that our model effectively controls the
image content.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new data augmentation method for text-to-image generation using linear
extrapolation. Specifically, we apply linear extrapolation only on text data, and new image data
are retrieved from the internet by search engines. For the reliability of new text-image pairs, we
design two outlier detectors to purify retrieved images. Based on extrapolation, we construct training
samples dozens of times larger than the original dataset, resulting in a significant improvement in
text-to-image performance. Moreover, we propose a NULL-condition guidance to refine the score
estimation for text-to-image generation. This guidance is also applicable to existing text-to-image
models without further training. In the future, linear extrapolation and NULL-condition guidance
could be applied to tasks beyond text-to-image generation.
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