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Abstract
Conventional research on large language models
(LLMs) has primarily focused on refining output
distributions, with less attention to the decoding
process that transforms these distributions into fi-
nal responses. Although recent work on inference-
time scaling with reward models highlights the
importance of decoding, such methods often incur
high computational costs and limited applicability.
In this paper, we revisit LLM decoding through
the lens of recommender systems, conceptualiz-
ing the decoding process as analogous to the rank-
ing stage in recommendation pipelines. From
this perspective, both traditional decoding meth-
ods and reward models show clear limitations,
including redundancy. To address this, we pro-
pose Language System, a lightweight framework
that reranks candidate responses using features
extracted by the base model. Experiments across
diverse tasks demonstrate that Language System
achieves performance comparable to large-scale
reward models with <0.5M additional parameters,
significantly reducing overhead during both train-
ing and inference. This highlights the efficiency
and effectiveness of our approach in unlocking
LLM capabilities.

1. Introduction
Traditional research on enhancing the capabilities of large
language models (LLMs) has primarily focused on improv-
ing the quality of output distributions through approaches
such as scaling up model sizes (Kojima et al., 2022) and
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fine-tuning for specific tasks (SFT) (Gao et al., 2024; Mal-
ladi et al., 2023). However, the decoding process, which
converts the output distributions into final responses, has not
received sufficient attention. Brown et al. (2024) showed
that if an oracle selects the best response from multiple sam-
ples, a 7B model can outperform a 70B model as sample
count increases. This underscores the untapped potential of
decoding in maximizing performance. To approximate such
an oracle, recent work on inference-time computation (Snell
et al., 2024; Wu et al., 2024; Setlur et al., 2024) introduces
reward models for reranking. However, these methods in-
cur substantial overhead during both training and inference,
limiting their scalability and real-world applicability.

To address these limitations, we reinterpret LLMs through
the lens of recommender systems. As shown in Figure 1,
each LLM can be viewed as a special recommender sys-
tem, where the input serves as the user information, and
the model’s role is to recommend the most appropriate re-
sponse as the “item” tailored to the user’s needs. Therefore,
the model backbone, language head, and decoding process
correspond directly to the feature engineering, retriever, and
ranker in a traditional recommender system (Zhang et al.,
2020). Given an input, the backbone extracts user features
(i.e., hidden states of the final token), the language head
generates a coarse response distribution, and a decoding
strategy samples candidate responses and selects one for
output.

In this analogy, the limitations of both existing decoding
strategies and reward models become evident. As illustrated
in Figure 1, existing decoding strategies are often simple and
rule-based, neglecting the importance of reranking. While
reward models serve as effective rankers, they introduce sig-
nificant overhead during both training and inference. From
the perspective of recommender systems, they essentially
redo the feature engineering for ranking from scratch, ignor-
ing the features already extracted during the recall stage that
could have been shared. This redundancy leads to significant
unnecessary computations and inefficiency.

In this paper, we propose Language System, inspired by
recommender systems, to address aforementioned short-
comings of existing methods. The Language System incor-
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Figure 1: The comparison among existing methods, recommender system and our Language System. The two charts
on the left highlight the limitations of existing decoding strategies and reward models, in contrast to the recommender
system pipeline shown in the top-right. Language System addresses these limitations by incorporating a feature-shared,
learnable, and lightweight ranker.

porates a carefully designed lightweight ranker to rerank
candidate responses generated by the base model. As il-
lustrated in Figure 3, the earlier layers of the base model
can be viewed as shared feature engineering for both the
retriever and ranker, similar to recommender systems. Once
the candidate responses are sampled, the ranker utilizes the
extracted features to rerank the candidates and identify the
most appropriate response.

As shown in Table 1, by leveraging the representations of
base models, our method achieves performance compara-
ble to that of the large-scale reward model, while requiring
only <0.5M additional parameters, significantly reducing
the computational overhead during both training and infer-
ence stages. Table 2 further shows that the ranker can be
trained and run efficiently on CPUs, enabling deployment
in personalized settings. As illustrated in Figure 2, the base
model runs on central servers, while rankers can be deployed
on edge or local devices to support continual learning and
user-specific adaptation.

In conclusion, the main contributions of this paper are: (1)
We reinterpret LLMs through the lens of recommender sys-
tems, revealing the limitations of existing decoding strate-
gies and reward models while highlighting the potential
of the decoding process. (2) We propose Language Sys-
tem, a novel and lightweight ranking framework for LLMs
that is both efficient and effective. It allows a single base
model to be flexibly paired with different rankers, allow-
ing personalized adaptation to diverse user needs. (3) We
conduct extensive experiments on both 7B and 32B models,
showing that our method matches large-scale reward models
while using <0.5M additional parameters and significantly
reducing computational cost.

2. Method
As shown in Figure 3, we employ a lightweight yet effective
ranker to rerank candidate responses generated by language
models. Specifically, a hyperparameter is defined to select a
specific layer in the model, and the hidden states of this layer
are used as features for the ranker. 1 Before inference, the
hidden states of the selected layer corresponding to the final
token of the given instruction is recorded as the instruction
feature, denoted as i. The model then begins the inference
process, sampling K candidate responses. Once each can-
didate response is fully generated, the hidden state of the
chosen layer corresponding to the final token is recorded
as its feature. These features, representing the candidate
responses, are denoted as {rk}Kk=1. These instruction and
response features are then fed into the ranker to identify the
most suitable response.

Following common practices in recommender systems
(Zhang et al., 2020), we design both a listwise and a point-
wise ranker. Both first project the input features into a
low-dimensional space to compress information and reduce
parameter cost. They then process the projected features
using their respective blocks and compute the similarity (co-
sine similarity by default) between each response and the
instruction features, which is used to rerank the responses.

Specifically, the listwise ranker processes all candidates

1The final layer of the model backbone is often suboptimal
for feature extraction; instead, layers located around 60% from
the bottom of the model typically yield better representations, as
shown in Section 4 and Appendix A.
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Figure 2: Personalized Language System. We can pair
a single base model with different rankers to enable per-
sonalized adaptation for diverse user needs simultaneously.
The base model runs on high-resource central nodes, while
rankers can be deployed on edge devices or even local user
devices.The CPU-trainability allows each user’s ranker to
perform continual learning with behavioral data, paving the
way for deeper personalization.

simultaneously, enabling direct comparisons between them:[̃
i, r̃1, r̃2, · · · , r̃K

]
= Trans (Proj ([i, r1, · · · , rK ])) ,

(1)

[s1, s2, · · · , sK ] = Sim
(̃
i, [r̃1, r̃2, · · · , r̃K ]

)
. (2)

As illustrated in Figure 3, after projection, the instruction
feature i and the response features rkKk=1 interact within a
Transformer block. Subsequently, similarity scores between
the instruction and each candidate response are computed,
and the candidate with the highest score is selected as the
final output.

The pointwise ranker, in contrast, evaluates each candidate
response individually based on the given instruction feature:[̃

i, r̃k
]
= [MLP (Proj(i)) ,MLP (Proj(rk))] , (3)

sk = Sim
(̃
i, r̃k

)
. (4)

Each projected feature is independently processed using a
shared MLP block. The ranker then computes a similarity
score and selects the final result.

A detailed description of dataset construction and ranker
training is provided in Appendix D, and a fine-grained analy-
sis of each component of the Language System is presented
in Section 4 and Appendix A.

3. Main Experiments
In this section, we conduct experiments on three widely
studied tasks for LLMs: math, coding, and function calling.
To further demonstrate the generality of our approach, we
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Figure 3: The framework of Language System. The base
model generates multiple candidate responses, and then the
hidden states of both the instruction and each candidate
response are extracted from a predefined layer as features.
Finally, the ranker selects the most suitable response based
on these features.

also evaluate its general instruction-following ability, as
detailed in Appendix B. Full hyperparameters are listed in
Appendix C.

Baselines For each task, we train two reward models of
different scales for comparison. The first is based on GPT-2
(Radford et al., 2019). The second reward model is trained
from the corresponding base model using LoRA. In addition,
we use the first sampled response from the base model as
a simple baseline and adopt deterministic beam search as a
representative decoding strategy.

Ranker Settings In all experiments, the rankers are im-
plemented using either a single Transformer block or a
single MLP block, and they operate on features extracted
from approximately the bottom 60% of the base model’s
layers. During both training and evaluation, each data group
consists of 10 candidate responses.

Datasets For the mathematics task, we uniformly sample
1,000 problems each for training and testing across different
topics and difficulty levels in MATH dataset (Hendrycks
et al., 2021). For the coding task, we use the full MBPP
dataset (Austin et al., 2021), which consists of Python pro-
gramming problems, 374 for training and 500 for testing.
For the function calling task, we adopt the xlam-function-
calling-60k dataset (Liu et al., 2024). We randomly sample
1,500 challenging problems with more than three APIs, and
split them into 1,000 training and 500 testing examples.

Metrics For the mathematics and function calling tasks,
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Table 1: The total performance across the three tasks compares our methods with reward models and common decoding
strategies. The RM means reward model. In the Parameter column, we report the number of trainable parameters for each
method. For reward models trained with LoRA, we additionally report the number of GPU-loaded parameters.

Method Parameter MATH MBPP xLAM
Llama3.1-8B-Instruct

ListRanker (ours) 0.30M 46.3 54.5 32.6
PointRanker (ours) 0.28M 45.8 55.1 30.4
RM (gpt2) 137M 42.9 47.7 29.4
RM (Llama8B) 176M / 8.2B 45.1 52.9 32.8
Beam Search — 40.3 42.3 27.0
First Sample — 25.1 41.9 10.6

Qwen2.5-7B-Instruct
ListRanker (ours) 0.27M 74.8 63.2 71.0
PointRanker (ours) 0.25M 75.2 62.7 70.4
RM (gpt2) 137M 71.9 60.2 65.4
RM (Qwen7B) 161M / 7.6B 74.6 62.9 70.2
Beam Search — 67.9 62.2 68.0
First Sample — 68.7 60.6 57.0

Qwen2.5-32B-Instruct
ListRanker (ours) 0.36M 81.1 74.2 72.8
PointRanker (ours) 0.34M 81.3 74.6 72.4
RM (gpt2) 137M 78.8 70.6 68.8
RM (Qwen32B) 537M / 32.8B 80.7 75.9 73.6
Beam Search — 78.1 71.4 70.6
First Sample — 75.9 68.2 65.2

we extract the final answers and verify its correctness by
comparing it with the ground-truth answer. For the coding
task, we extract the generated code and evaluate its correct-
ness using the test cases provided in the MBPP dataset.

Results Both the listwise and pointwise rankers signif-
icantly improve model performance across all tasks. Our
lightweight method consistently outperforms the reward
model (gpt2), despite being over 100 times smaller in scale,
and even achieves performance comparable to reward mod-
els trained from the base model. Specifically, for Llama3.1-
8B-Instruct, our approach improves over the first-sample
baseline by more than 20% on MATH and 12% on MBPP,
substantially outperforming both larger reward models. On
the function calling task, it trails the Llama8B-based reward
model by only 0.2%. For Qwen2.5-7B-Instruct, the Lan-
guage System outperforms all baselines. For Qwen2.5-32B-
Instruct, rankers with fewer than 1M parameters achieve per-
formance comparable to 32B-scale reward models, demon-
strating remarkable potential. This suggests that rankers can
adapt to even larger base models, as the extracted features
they rely on become increasingly expressive—allowing
them to “stand on the shoulders of giants.”

4. Analysis and Ablation Study
Ranker Scaling Law Figure 4 shows that the Language
System’s performance improves as the number of candidate
responses increases, demonstrating the Ranker Scaling Law.
A key challenge in LLM research is scaling inference-time
computation to boost performance. Most prior work focuses

on optimizing sampling strategies, often with traditional
reward models for reranking (Wu et al., 2024; Snell et al.,
2024; Zhang et al., 2025). In contrast, our method targets the
ranking stage, offering a scalable and efficient alternative.
This highlights the complementarity of our approach with
sampling-based techniques, which can be combined for
further gains.

CPU Trainability As shown in Table 2, the lightweight
rankers can be efficiently run on CPUs, demonstrating the
potential of constructing a personalized Language System.
As illustrated in Table 2, the base model can be paired
with different rankers to enhance capabilities across various
dimensions. The hidden states of the final token ( 8KB) are
compact enough to be transmitted over the internet. In this
setup, the base model runs on high-resource central nodes,
while rankers can be deployed on edge devices or even local
user devices, enabling flexible adaptation to diverse user
needs. Moreover, the CPU-trainability allows each user’s
ranker to perform continual learning with behavioral data,
paving the way for deeper personalization.

Further analysis are provided in Appendix A.

5. Conclusion and Discussion
We introduce the Language System, a lightweight ranking
framework for enhancing LLMs inspired by recommender
systems. Our method addresses the limitations of exist-
ing methods by reranking responses based on features ex-
tracted from the base model, with minimal overhead. The
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ranker can be decoupled from the base model, allowing
flexible pairing and independent optimization across dif-
ferent domains. We hope this work offers new perspec-
tives on inference-time computation and contributes to more
resource-efficient LLM systems.
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Figure 4: The performance of the Language System built on Llama3.1 improves consistently across all three tasks as the
number of candidate responses increases.

Table 2: The total training time on the MBPP dataset for
both CPU and GPU settings, including data loading stages.

Method CPU A100

Listwise Ranker 67s 44s
Pointwise Ranker 71s 42s

RM (gpt2) >1h 72s
RM (Llama8b) too long 24min

Table 3: Comparison of performance and parameter on
MATH under different ranker architecture ablations, using
Llama3.1-8B as the base model.

Ranker Setting Accuracy Parameter

Listwise Ranker 46.3 0.30M
– remove projection 46.4 192M
– remove instruction 44.2 0.30M

Pointwise Ranker 45.8 0.28M
– remove projection 46.0 128M
– remove instruction 44.1 0.28M
– remove MLP block 42.5 0.25M

A. Detailed Analysis
Ranker Scaling Law Figure 4 shows that the Language System’s performance improves as the number of candidate
responses increases, demonstrating the Ranker Scaling Law. A key challenge in LLM research is scaling inference-time
computation to boost performance. Most prior work focuses on optimizing sampling strategies, often with traditional reward
models for reranking (Wu et al., 2024; Snell et al., 2024; Zhang et al., 2025). In contrast, our method targets the ranking
stage, offering a scalable and efficient alternative. This highlights the complementarity of our approach with sampling-based
techniques, which can be combined for further gains.

CPU Trainability As shown in Table 2, the lightweight rankers can be efficiently run on CPUs, demonstrating the
potential of constructing a personalized Language System. As illustrated in Table 2, the base model can be paired with
different rankers to enhance capabilities across various dimensions. The hidden states of the final token ( 8KB) are compact
enough to be transmitted over the internet. In this setup, the base model runs on high-resource central nodes, while rankers
can be deployed on edge devices or even local user devices, enabling flexible adaptation to diverse user needs. Moreover,
the CPU-trainability allows each user’s ranker to perform continual learning with behavioral data, paving the way for deeper
personalization.

Ablation Study To better understand the design of our ranker, we conduct ablation studies on all key components of both
the listwise and pointwise architectures. As shown in Table 3, the projection layer compresses high-dimensional features
into a lower-dimensional space, playing a critical role in keeping the ranker lightweight. Removing this layer results in a
much larger ranker with minimal performance gain. Additionally, we examine the role of the instruction feature, which
is used to compute similarity scores with each candidate for ranking. Replacing this feature with a learnable vector leads
to a noticeable drop in performance, underscoring the its importance as a form of user information, consistent with our
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Table 4: Performance comparison across different ranker configurations in MATH for Llama3.1-8B-Instruct.

Ranker Type Hidden States Layer Block Number
0.1 0.3 0.6 1.0 1 2 3 4

Llama3.1-8B-Instruct
Listwise Ranker 41.2 44.6 46.3 44.9 46.3 46.7 46.6 46.9
Pointwise Ranker 40.6 43.6 45.8 44.0 45.8 46.2 46.4 46.3

Qwen2.5-7B-Instruct
Listwise Ranker 70.6 72.7 74.8 73.6 74.8 74.9 75.2 75.4
Pointwise Ranker 71.4 73.1 75.2 73.9 75.2 75.1 75.6 75.5

Table 5: Performance across different hyperparameter configurations for Llama3.1-8B-Instruct on the MATH dataset. Green
indicates the best resuls, while red indicates the worst results.

Optimizer SGD AdamW
Learning Rate 0.05 0.1 0.5 1.0 1e-5 1e-4
Batch Size=256 46.2 46.1 45.8 45.7 46.2 46.1
Batch Size=1024 46.1 45.9 46.3 45.9 45.9 46.1

(a) Listwise Ranker

Optimizer AdamW
Learning Rate 5e-5 1e-4 2e-4 5e-4
Batch Size=64 41.2 42.2 45.1 43.6
Batch Size=256 43.2 41.9 42.8 44.7

(b) Reward Model (Llama8B)

perspective of recommender system.

Ranker Configurations The last layer of the model backbone is often not the best choice for providing features. Since
the backbone is trained for next-token prediction, the final layers tend to overfit to this specific task. In contrast, intermediate
layers typically provide more comprehensive representations of the preceding context, making them better suited for
capturing the overall features required for ranking (Skean et al., 2024). As shown in the Hidden States Layer part of Table 4,
the most effective features for the rankers are extracted from the 60% from the bottom of the model layers. As shown in the
Block Number part of Table 4, increasing the ranker’s scale has only a marginal impact. Since the base model has already
extracted high-quality features, the ranker’s task remains relatively simple, making further scaling unnecessary.

hyperparameter robustness Table 5 illustrates the hyperparameter robustness of our method, particularly in comparison
to reward models. For the listwise ranker, the accuracy range across 12 hyperparameter configurations is only 0.6%, whereas
the reward model exhibits a much larger range of 3.9% across 8 configurations.

Transferability To assess this, we use the MATH dataset, which includes seven distinct problem types. We train the
ranker on a single task type and evaluate its generalization to the remaining tasks (see Table 6). Results show that rankers
trained on any individual task maintain robust performance across all others. Remarkably, in some cases, the cross-task
performance approaches that of task-specific rankers, highlighting the system’s adaptability to unseen domains.

B. Instruction-Following Task
Our framework performs well on the three tasks presented in Section 3. To further demonstrate its general applicability, we
also evaluate it on a mixed instruction-following task.

Models Considering that instruct models are specifically fine-tuned for instruction-following tasks, we conduct evaluations
on this task with Llama3.1-8B-Base (Dubey et al., 2024) and Qwen2.5-7B-Base (Yang et al., 2024). For fairness, all models
are evaluated using zero-shot prompts, as shown in Appendix G.

Datasets We use the first 1,000 queries from the Databricks-Dolly-15k dataset (Conover et al., 2023) for training. For
evaluation, we adopt AlpacaEval (Dubois et al., 2024b), a widely recognized benchmark for assessing instruction-following
capabilities in LLMs. It consists of diverse test queries sourced from Self-Instruct, OASST, Anthropic’s Helpful dataset,
Vicuna, and Koala.

Metrics Unlike tasks such as mathematics, instruction-following lacks objective ground-truth answers, making rule-based
evaluation infeasible. To address this, we follow the AlpacaFarm (Dubois et al., 2024b) method and prompt DeepSeek-V3
to simulate human judgment by assigning scores from 0 to 5 to all sampled responses. These responses are then used
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Table 6: The Transfer Performance of a Ranker Trained on a Single Task. All results are tested with Llama3.1-8B-Instruct
on the MATH dataset. For task types, we use abbreviations in the table due to space constraints: Prealgebra (PA), Algebra
(A), Number Theory (NT), Counting and Probability (CP), Geometry (G), Intermediate Algebra (IA), Precalculus (PC).

Source Task
Target Task

PA A NT CP G IA PC

PA
67.5

0.0

61.3

-0.4

38.2

-0.5

43.7

-0.2

33.4

0.0

21.9

-0.8

32.2

-1.7

A
66.0

-1.5

61.7

0.0

38.5

-0.2

42.0

-1.9

34.7

-4.0

22.3

-0.4

31.1

-2.8

NT
64.9

-2.6

60.2

-1.5

38.7

0.0

41.4

-2.5

35.7

-2.7

20.7

-2.0

31.0

-2.9

CP
66.5

-1.0

61.3

-0.4

37.4

-1.3

43.9

0.0

35.3

-2.1

22.2

-0.5

32.6

-1.3

G
66.0

-1.5

60.5

-1.2

36.7

-1.8

41.4

-2.5

37.4

0.0

22.4

-0.3

31.1

-2.8

IA
64.3

-3.2

58.8

-2.9

35.7

-2.8

38.6

-5.3

32.4

-5.0

22.7

0.0

31.3

-2.6

PC
63.0

-4.5

59.1

-2.6

35.6

-2.9

41.1

-2.9

34.5

-2.9

22.3

-0.4

33.9

0.0

to train both our ranker and reward models. For evaluation, we adopt the official AlpacaEval evaluator to compute the
Length-Controlled Win Rate metric (Dubois et al., 2024a), a relative measure based on a reference model. For each base
model, we use its corresponding instruct variant as the reference—for example, Llama3.1-8B-Instruct for Llama3.1-8B-Base.

Results As shown in Table 1, the performance of our methods far exceeds that of vanilla decoding strategies and is
comparable to the reward models trained from base models. Notably, with the assistance of a 0.3M-level ranker, Qwen2.5-
7B-Base achieves a 46.3% win rate compared to Qwen2.5-7B-Instruct, which has undergone extensive fine-tuning on various
instruction-following tasks.

C. Hyperparameter settings
In sampling process, we set temperature as 1.5 for diverse responses and max_new_tokens as 1024 to make sure completed
answers. We sample 100 responses for each problem. During training, we perform a grid search over the parameter ranges
specified in Table 8.

D. Dataset construction and Ranker Training
The training dataset for our ranker is constructed in a manner similar to that of reward model datasets (Trung et al., 2024),
introducing virtually no additional computational or time overhead. For each task, we allow the base model to perform
sampling and generate 100 responses for each instruction in the training set. During this process, the corresponding
instruction features and response features are recorded. These features are then used to train the ranker effectively. After
collecting all responses, we assign labels depending on the characteristics of the task. These details will be discussed within
the context of specific tasks in Section 3.

The listwise ranker processes a list of candidates simultaneously, allowing for direct comparisons among them. To prepare
the training data, K candidate responses are randomly sampled for each query from the previously constructed dataset.
This process is repeated multiple times, and groups that do not contain both positive and negative responses are filtered
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Table 7: The evaluation on general instruction-following tasks compares our method against reward models and common
decoding strategies. We conduct experiments on Llama3.1-8B-Base and Qwen2.5-7B-Base, reporting the win rate using the
corresponding Instruct model as the reference. RM (base) refers to reward models trained from the respective base model.

Method Parameter Llama3.1-8B-Base Qwen2.5-7B-Base

ListRanker (ours) <0.3M 30.7 46.3
PointRanker (ours) <0.3M 27.1 45.8

RM (gpt2) 137M 27.1 42.9
RM (base) ~170M/8B 31.6 45.3
First Sample — 19.0 25.1
Beam Search — 20.4 40.3

out. Ultimately, N data groups per query, along with their corresponding hidden states, are collected for training, formally

represented as
[
i, (r

(n)
1 , y

(n)
1 ), · · · , (r(n)K , y

(n)
K )

]N
n=1

. For training process, the loss function is selected based on the form of

the labels. If y(n)k ∈ {0, 1}, the task is framed as a classification problem, where s
(n)
k is computed using cosine similarity.

We optimize the ranker using the following KL divergence loss:

π(n)
y =

y
(n)
k

K∑
k=1

y
(n)
k

, π(n)
s =

exp(s
(n)
k )

K∑
k=1

exp(s
(n)
k )

, (5)

J list
cls =

1

N

N∑
n=1

DKL

(
π(n)
y ∥π(n)

s

)
. (6)

If y(n)k ∈ R, the task is treated as a regression problem, where s
(n)
k is computed by the learnable similarity function

previously introduced. We apply the mean squared error (MSE) loss:

J list
reg =

1

N

N∑
n=1

1

K

K∑
k=1

(
s
(n)
k − y

(n)
k

)2

. (7)

The pointwise ranker is much simpler than the listwise ranker. For each query, it independently pairs each candidate response
with its corresponding instruction, formally represented as:

[
i, (r(n), y(n))

]N
n=1

. The choice of loss function also depends
on the form of the labels. Following the discussion for the listwise ranker, we summarize the corresponding loss functions
for the two forms of labels below:

p
(n)
k =

exp(s(n))

1 + exp(s(n))
, (8)

J point
cls = − 1

N

N∑
n=1

y(n) log p(n) + (1− y(n)) log(1− p(n)). (9)

J point
reg =

1

N

N∑
n=1

(
s(n) − y(n)

)2

. (10)

E. Related Work
Decoding methods A variety of rule-based decoding methods have been proposed to improve language model perfor-
mance, including top-k sampling (Fan et al., 2018; Holtzman et al., 2018), temperature-based sampling (Ficler & Goldberg,
2017), and nucleus sampling (Holtzman et al., 2020). Beyond these, more refined algorithms have been developed to focus
specific task. Wang et al. (2023); Wang & Zhou (2024) introduce self-consistency as a method to improve Chain-of-Thought
(CoT) reasoning by majority voting. (Xu et al., 2024b; Li et al., 2023; Zhang et al., 2024b) select or even finetune another
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Table 8: The hyperparameter list

Hyperparameter Value

Sampling
Sampling Temperature 1.5
Sampling Max New Tokens 1024

Ranker Training
Batch Size [256, 1024]
Epoch 1
Optimizer [SGD, AdamW]
SGD LR [0.05, 0.1, 0.5, 1.0]
SGD Momentum [0.0, 0.9]
AdamW LR [1e-5, 1e-4]
AdamW Betas (0.9, 0.999)
Weight Decay 1e-4
LR Schedule [Constant, Cosine Decay]
Projection Dimension 64

Reward Model Training
Batch Size [64, 256]
Epoch 1
Optimizer AdamW
AdamW LR [5e-5, 5e-4]
AdamW Betas (0.9, 0.999)
Weight Decay 1e-4
LR Schedule [Constant, Cosine, Decay]
LoRA r 64
LoRA alpha [64, 128]

auxiliary model to assist in generating responses that better align with specific requirements. However, these methods are
either rule-based or task-specific, limiting their performance ceiling and application scope. We propose a more general
ranking framework to address these limitations.

Reward Models Reward models have been widely adopted for the enhancements of LLMs.They serve as learned proxies
for human preferences in RLHF (Ouyang et al., 2022; Zhang et al., 2024c), and have also been applied to guide multi-step
reasoning processes (Guan et al., 2025; Cui et al., 2025). While effective in a range of scenarios, reward models typically
introduce significant computational overhead, limiting their practical deployment in real-world systems. To address this
issue, some efforts aim to teach models to act as self-critics Xu et al. (2024a); Zhang et al. (2024a), but their performance
remains suboptimal. Sun et al. (2025) proposes an embedding-based alternative to simplify reward model training, while
it focuses on RLHF settings and still requires an additional forward pass during both training and inference to extract
embeddings. Rashid et al. (2025) propose a reward model that scores all candidate tokens at once, reducing call frequency
but relying more on large-scale models.

Inference-time computing Recently, there has been growing interest in scaling inference-time computation to improve
the performance of LLMs. Most existing approaches focus on optimizing configurations at the sampling stage, often relying
on traditional reward models to evaluate and rerank generated responses (Setlur et al., 2024; Wang et al., 2024; Zhang
et al., 2025; Trung et al., 2024). In contrast, our method shifts the focus to the ranking stage and introduces a lightweight
architecture that operates directly on features already extracted by the base model. This design eliminates the need for
additional forward passes, providing a scalable, efficient, and effective alternative. We believe our approach complements
sampling-based strategies and can be combined with them to further improve model performance.

11



Language System: A Lightweight Ranking Framework for Language Models

F. Limitations
The ranker is trained using hidden states saved during data sampling, which introduces additional I/O overhead. For example,
when training on the MBPP dataset with 374 queries, data loading took 31 seconds using 8 parallel threads. This accounts
for the comparable CPU and GPU training times observed in Table 2. When scaling to significantly larger datasets, this I/O
overhead may become a limiting factor and should be taken into consideration.
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G. Prompts for Each Task

Prompt for mathematics task

system:
You are a math expert.

user:
Please solve the given math problem step by step and present the answer in the following format: "\boxed{X}",
where X is the answer.
{Question}

assistant:

Prompt for coding task

system:
You are an expert Python programmer.

user:
Write a Python function based on the following instructions and test example. Please ensure that the function is
clearly marked with a start and end so I can easily extract it from your output.

Instructions:
{question}

Test Example:
{test_list[0]}

Please provide your code with clear start and end markers, like so:

#START OF CODE
def {function_name(input)}:

... function code ...
return result

#END OF CODE

assistant:

13
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Prompt for function calling task

system:
You are a function-calling assistant. Your role is to complete tasks solely through correct function calls, without
generating any additional text. For each task, directly output the function call(s) required to complete it. If the task
involves multiple steps, you may issue multiple function calls sequentially. Each function call must be formatted as
a JSON object. For example: [{"name": "functionA", "arguments": {"param1": "value1", "param2": "value2"}},
{"name": "functionB", "arguments":{"param1": "value1", "param2": "value2"}}]
The following are the available functions: {function_list}

Now, use the appropriate function(s) to complete the given task.

user:
{Question}
Please directly output the function call(s) to solve the task without any other text.

assistant:

Prompt for instruction-following task

system:
You are an assistant.

user:
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.
{Instruction} Begin!

assistant:
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Scoring criteria in instruction-following task

Review the user’s question and the corresponding response using the additive 5-point scoring system described below

The user’s question is between <question>and </question>The response of the AI Assistant is between <re-
sponse>and </response>

Points are accumulated based on the satisfaction of each criterion: - Add 1 point if the response is relevant and
provides some information related to the user’s inquiry, even if it is incomplete or contains some irrelevant
content. - Add another point if the response addresses a substantial portion of the user’s question, but does
not completely resolve the query or provide a direct answer. - Award a third point if the response answers
the basic elements of the user’s question in a useful way, regardless of whether it seems to have been written
by an AI Assistant or if it has elements typically found in blogs or search results. - Grant a fourth point if
the response is clearly written from an AI Assistant’s perspective, addressing the user’s question directly and
comprehensively, and is well-organized and helpful, even if there is slight room for improvement in clarity,
conciseness or focus. - Bestow a fifth point for a response that is impeccably tailored to the user’s question by
an AI Assistant, without extraneous information, reflecting expert knowledge, and demonstrating a high-quality,
engaging, and insightful answer. - If the response repeats itself or is not concise and to the point, score the response 0.

<question>prompt</question>
<response>response</response>

After examining the user’s instruction and the response: - output the score of the evaluation using this exact format:
"score: <total points>", where <total points>is between 0 and 5 - Briefly justify your total score, up to 100 words.
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