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Abstract

We propose an algebraic geometric framework to study the expressivity of linear1

activation neural networks. A particular quantity that has been actively studied in2

the field of deep learning is the number of linear regions, which gives an estimate3

of the information capacity of the architecture. To study and evaluate information4

capacity and expressivity, we work in the setting of tropical geometry—a com-5

binatorial and polyhedral variant of algebraic geometry—where there are known6

connections between tropical rational maps and feedforward neural networks. Our7

work builds on and expands this connection to capitalize on the rich theory of8

tropical geometry to characterize and study various architectural aspects of neural9

networks. Our contributions are threefold: we provide a novel tropical geometric10

approach to selecting sampling domains among linear regions; an algebraic result11

allowing for a guided restriction of the sampling domain for network architectures12

with symmetries; and an open source library to analyze neural networks as tropical13

Puiseux rational maps. We provide a comprehensive set of proof-of-concept nu-14

merical experiments demonstrating the breadth of neural network architectures to15

which tropical geometric theory can be applied to reveal insights on expressivity16

characteristics of a network. Our work provides the foundations for the adaptation17

of both theory and existing software from computational tropical geometry and18

symbolic computation to deep learning.19

1 Introduction20

Deep learning has become the undisputed state-of-the-art for data analysis and has wide-reaching21

prominence in many fields of computer science, despite still being based on a limited theoretical22

foundation. Developing theoretical foundations to better understand the unparalleled success of deep23

neural networks is one of the most active areas of research in modern statistical learning theory.24

Expressivity is one of the most important approaches to quantifiably measuring the performance of a25

deep neural network—such as how they are able to represent highly complex information implicitly26

in their weights and to generalize from data—and therefore key to understanding the success of deep27

learning.28

Tropical geometry is a reinterpretation of algebraic geometry that features piecewise linear and29

polyhedral constructions, where combinatorics naturally comes into play [e.g., 1, 2, 3]. These30

characteristics of tropical geometry make it a natural framework for studying the linear regions in a31

neural network—an important quantity in deep learning representing the network information capacity32

[4, 5, 6, 7, 8, 9, 10]. The intersection of deep learning theory and tropical geometry is a relatively33

new area of research with great potential towards the ultimate goal of understanding how and why34

deep neural networks perform so well. In this paper, we propose a new perspective for measuring35

and estimating the expressivity and information capacity of a neural networks by developing and36

expanding known connections between neural networks and tropical rational functions in both theory37

and practice.38
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Related Work. Tropical geometry has been used to characterize deep neural networks with piece-39

wise linear activation functions, including two of the most popular and widely-used activation40

functions, namely, rectified linear units (ReLUs) and maxout units. The first explicit connection41

between tropical geometry and neural networks establishes that the decision boundary of a deep42

neural network with ReLU activation functions is a tropical rational function [11]. Concurrently,43

it was established that the maxout activation function fits input data by a tropical polynomial [12].44

These works considered neural networks whose input domain is Euclidean, which was recently45

developed to incorporate tropically-motivated input domains, in particular, the tropical projective46

torus [13]. Most recently, tropical geometry has been used to construct convolutional neural networks47

that are robust to adversarial attacks via tropical decision boundaries [14].48

Contributions. In this paper, we establish novel algebraic and geometric tools to quantify the49

expressivity of a neural network. Networks with a piecewise linear activation compute piecewise50

linear functions where the input space is divided into areas; the network computing a single linear51

function on each area. These areas are referred to as the linear regions of the network; the number52

of distinct linear regions is a quantifiable measure of expressivity of the network [e.g., 5]. In our53

work, we not only study the number of linear regions, we aim to understand their geometry. The main54

contributions of our work are the following.55

• We provide a geometric characterization of the linear regions in a neural network via the56

input space: estimating the linear regions is typically carried out by random sampling from57

the input space, where randomness may cause some linear regions of a neural network to be58

missed and result in an inaccurate information capacity measure. We propose an effective59

sampling domain as a ball of radius R, which is a subset of the entire sampling space that60

hits all of the linear regions of a given neural network. We compute bounds for the radius R61

based on a combinatorial invariant known as the Hoffman constant, which effectively gives62

a geometric characterization and guarantee for the linear regions of a neural network.63

• We exploit geometric insight into the linear regions of a neural network to gain dramatic64

computational efficiency: when networks exhibit invariance under symmetry, we can restrict65

the sampling domain to a fundamental domain of the group action and thus reduce the66

number of samples required. We experimentally demonstrate that sampling from the67

fundamental domain provides an accurate estimate of the number of linear regions with a68

fraction of the compute requirements.69

• We provide an open source library integrated into the Open Source Computer Algebra70

Research (OSCAR) system [15] which converts both trained and untrained arbitrary neural71

networks into algebraic symbolic objects. This contribution then opens the door for the72

extensive theory and existing software on symbolic computation and computational tropical73

geometry to be used to study neural networks.74

The remainder of this paper is organized as follows. We provide an overview of the technical75

background on tropical geometry and its connection to neural networks in Section 2. We then devote76

a section to each of the contributions listed above—Sections 3, 4, and 5, respectively—in which we77

present our theoretical contributions and numerical experiments. We close the paper with a discussion78

on limitations of our work and directions for future research in Section 6.79

2 Technical Background80

In this section, we give basic definitions from tropical geometry required to write tropical expressions81

for neural networks.82

2.1 Tropical Polynomials83

Algebraic geometry studies geometric properties of solution sets of polynomial systems that can84

be expressed algebraically, such as their degree, dimension, and irreducible components. Tropical85

geometry is a variant of algebraic geometry where the polynomials are defined in the tropical semiring,86

R̄ = (R∪{∞},⊕,⊙) where the addition and multiplication operators are given by a⊕b = max(a, b)87

and a⊙ b = a+ b, respectively. Define a⊘ b := a− b.88
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Using these operations, we can write polynomials as
⊕

m amTm, where ai are coefficients, T ∈ R̄,89

and where the sum is indexed by a finite subset of Nn. In our work, we consider the following90

generalizations of tropical polynomials.91

Definition 2.1. A tropical Puiseux polynomial in the indeterminates T1, . . . , Tn is a formal expression92

of the form
⊕

m amTm where the index n runs through a finite subset of Qm
≥0 and Tm = Tm1

1 ⊙93

· · · ⊙ Tmn
n , and taking powers in the tropical sense.94

Definition 2.2. A tropical Puiseux rational map in T1, . . . , Tn is a tropical quotient of the form p⊘ q95

where p, q are tropical Puiseux polynomials.96

Tropical (Puiseux) polynomials and rational maps induce functions from Rn → R, which take a point97

x ∈ Rn to the number obtained by substituting T = x in the algebraic expression and performing the98

(tropical) operations. It is important to note that tropically, the formal algebraic expression contains99

strictly more information than the corresponding function, since different tropical expressions can100

induce the same function.101

2.2 Tropical Expressions for Neural Networks102

We now overview and recast the framework of [11], which establishes the first explicit connection103

between tropical geometry and neural networks, in a slightly different language for our results.104

As in [11], the neural networks we will focus on are fully connected multilayer perceptrons with ReLU105

activation, i.e., functions Rn → Rm of the form σ ◦Ld ◦σ ◦Li−1 ◦ · · · ◦L1 where Li : Rni−1 → Rni106

is an affine map and σ(t) = max{t, 0}. For the remainder of this paper, we use the term “neural107

network” to refer solely to these. We will always assume that the weights and biases of our neural108

networks are rational numbers. From a computational perspective, this is not a serious restriction109

since this is sufficient to describe any neural network with weights and biases given by floating point110

numbers. We refer to the tuple [n, n1, . . . , nd−1,m] as the architecture of the neural network.111

One of the key observations intersecting tropical geometry and deep learning is that, up to rescaling112

of rational weights to obtain integers, neural networks can be written as tropical rational functions113

[11, Theorem 5.2]. From a more computational perspective, it is usually preferable to avoid such114

rescaling and simply work with the original weights. The proof of Theorem 5.2 in [11] can directly115

be adapted to show that any neural network can be written as the function associated to a tropical116

Puiseux rational map. In their language, this corresponds to saying that any neural network is a117

tropical rational signomial with nonnegative rational exponents.118

3 Sampling Domain Selection Using a Hoffman Constant119

Estimating the number of linear regions of a neural network typically proceeds by sampling points120

from the input domain and counting the memberships of these points. To guarantee that membership121

is exhaustive, we seek a sampling domain as a sufficiently large ball so that all linear regions are122

intersected. At the same time, we would like for the ball to be as small as possible to guarantee123

efficient sampling. We are thus searching for the smallest ball from which we can sample in such a124

way that all linear regions are intersected. Given the polyhedral geometry of tropical Puiseux rational125

maps, it turns out that the radius of this smallest ball that we seek is closely related to the Hoffman126

constant, which is a combinatorial invariant.127

Our contribution in this section is a definition of a Hoffman constant of a neural network; we128

demonstrate its relationship to the smallest sampling ball and propose algorithms to compute its true129

value and lower and upper bounds.130

3.1 Defining a Neural Network Hoffman Constant131

In simpler terms, the Hoffman constant can be expressed for a matrix as follows. Let A be an m× n132

matrix. For any b ∈ Rm, let P (A, b) = {x ∈ Rn : Ax ≤ b} denote the polyhedron determined by133

A and b. For a nonempty polyhedron P (A, b), let d(u, P (A, b)) = min{∥u − x∥ : x ∈ P (A, b)}134

denote the distance from a point u ∈ Rn to the polyhedron, measured under an arbitrary norm ∥ · ∥135
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on Rn. Then there exists a constant H(A) only depending on A such that136

d(u, PA,b) ≤ H(A)∥(Au− b)+∥ (1)

where x+ = max{x, 0} is applied coordinate-wise [16]. The constant H(A) is called the Hoffman137

constant of A.138

The Hoffman Constant for Tropical Polynomials and Rational Functions. Let f : Rn → R139

be a tropical Puiseux polynomial and let U = {U1, . . . , Um} be the set of linear regions of f . Let140

f(x) = ai1x1 + . . .+ ainxn + bi occur on the region Ui. Further, let A = [aij ]m×n be the matrix of141

coefficients in the expression of f over U . The linear region Ui is defined by the following inequalities142

ai1x1 + · · ·+ ainxn + bi ≥ aj1x1 + · · ·+ ajnxn + bj , ∀ j = 1, 2, · · · ,m. (2)

In matrix form, (2) is equivalent to143

(A− 1ai)x ≤ bi1− b (3)

where 1 is a column vector of all 1’s; ai is the ith row vector of A; and b is a column vector of all144

bi. Denote ÃUi
:= A− 1ai and b̃Ui

:= bi1− b. Then the linear region Ui is captured by the linear145

system of inequalities ÃUix ≤ b̃Ui .146

Definition 3.1. Let f : Rn → R be a tropical Puiseux polynomial. The Hoffman constant of f is147

defined as148

H(f) = max
Ui∈U

H(ÃUi
).

Care needs to be taken in defining a Hoffman constant for a tropical Puiseux rational map: We want149

to avoid having all linear regions defined by systems of linear inequalities, since there exist linear150

regions which are not convex. To do so, we consider convex refinements of linear regions induced by151

intersections of linear regions of tropical polynomials.152

Definition 3.2. Let p⊘ q be a difference of two tropical Puiseux polynomials. Let Ap (respectively153

Aq) be the mp × n (respectively mq × n) matrix of coefficients for p (respectively q). The Hoffman154

constant of p⊘ q is155

H(p⊘ q) := max

{
H

([
Ap

Aq

]
− 1

[
aip
aiq

])
: ip = 1, · · · ,mp; iq = 1, · · · ,mq

}
. (4)

Let f be a tropical Puiseux rational map. Then the Hoffman constant of f is defined as the minimal156

Hoffman constant of H(p⊘ q) over all possible expressions of f = p⊘ q.157

Given the correspondence between neural networks and tropical Puiseux rational maps, the Hoffman158

constant is well-defined for any neural network and may be computed from the geometry and159

combinatorics of its linear regions.160

3.2 The Minimal Effective Radius161

For a neural network whose tropical Puiseux rational map is f : Rn → R, let U = {U1, . . . , Um} be162

the collection of all linear regions. For any x ∈ Rn, define the minimal effective radius of f at x as163

Rf (x) := min{r : B(x, r) ∩ Ui ̸= ∅, Ui ∈ U}

where B(x, r) is the ball of radius r centered at x. That is, Rf (x) is the minimal radius such that the164

ball B(x, r) intersects all linear regions. It is the smallest required radius of sampling around x in165

order to express the full classifying capacity of the neural network f .166

We start with the following lemma which relates the minimal effective radius to the Hoffman constant167

when f is a tropical Puiseux polynomial.168

Lemma 3.3. Let f be a tropical Puiseux polynomial and x ∈ Rn be any point, then169

Rf (x) ≤ H(f) max
Ui∈U

∥(ÃUi
x− b̃Ui

)+∥. (5)
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In particular, we are interested in studying when Rm and Rn are equipped with the ∞-norm. In170

this case, the minimal effective radius can be related to the Hoffman constant and function value171

of f = p ⊘ q. For a tropical Puiseux polynomial p(x) = max1≤i≤mp{aix + bi}, let p̌(x) =172

min1≤j≤mq
{ajx+ bj} be its min-conjugate.173

Proposition 3.4. Let f = p⊘ q be a tropical Puiseux rational map. For any x ∈ Rn, we have174

Rf (x) ≤ H(p⊘ q)max{p(x)− p̌(x), q(x)− q̌(x)}. (6)

3.3 Computing and Estimating Hoffman Constants175

The PVZ Algorithm. In [17], the authors proposed a combinatorial algorithm to compute the176

precise value of the Hoffman constant for a matrix A ∈ Rm×n, which we refer to as the Peña–Vera–177

Zuluaga (PVZ) algorithm and sketch its main steps here.178

Definition 3.5. A set-valued map Φ : Rn → Rm assigns a set Φ(x) ⊆ Rm. The map is surjective179

if Φ(Rn) = ∪xΦ(x) = Rm. Let A ∈ Rm×n. For any J ⊆ {1, 2, . . . ,m}, let AJ be the submatrix180

of A consisting of rows with indices in J . The set J is called A-surjective if the set-valued map181

Φ(x) = AJx+ {y ∈ RJ : y ≥ 0} is surjective.182

Notice that A-surjectivity is a generalization of linear independence of row vectors. We illustrate this183

observation in the following two examples.184

Example 3.6. If J is such that AJ is full-rank, then J is A-surjective, since for any y ∈ RJ , there185

exists x ∈ Rn such that y = AJx.186

Example 3.7. Let A = 1m×n be the m × n matrix whose entries are 1’s. For any subset J of187

{1, . . . ,m} and for any y ∈ RJ , let x ∈ Rn such that
∑

i xi ≤ min{yj , j ∈ J}. Then y−AJx ≥ 0.188

Thus any J is A-surjective.189

The PVZ algorithm is based on the following characterization of Hoffman constant.190

Proposition 3.8. [17, Proposition 2] Let A ∈ Rm×n. Equip Rm and Rn with norm ∥ · ∥ and denote191

its dual norm by ∥ · ∥∗. Let S(A) be the set of all A-surjective sets. Then192

H(A) = max
J∈S(A)

HJ(A) (7)

where193

HJ(A) = max
y∈Rm∥y∥≤1

min
x∈Rn

AJx≤yJ

∥x∥ =
1

min
v∈RJ

+,∥v∥∗=1
∥A⊤

J v∥∗
. (8)

This characterization is particularly useful when Rm and Rn are equipped with the ∞-norm, since194

the computation of (8) reduces to a linear programming (LP) problem. The key problem is how to195

maximize over all A-surjective sets. To do this, the PVZ algorithm maintains three collections of196

sets F , I, and J where during every iteration: (i) F contains J such that J is A-surjective; (ii) I197

contains J such that J is not A-surjective; and (iii) J contains candidates J whose A-surjectivity198

will be tested.199

To detect whether a candidate J ∈ J is surjective, the PVZ algorithm requires solving200

min ∥AT
J v∥1, s.t. v ∈ RJ

+, ∥v∥1 = 1. (9)

If the optimal value is positive, then J is A-surjective, and J is assigned to F and all subsets of J are201

removed from J . Otherwise, the optimal value is 0 and there is v ∈ RJ
+ such that A⊤

J v = 0. Let202

I(v) = {i ∈ J : vi > 0} and assign I(v) to I. Let Ĵ ∈ J be any set containing I(v). Replace all203

such Ĵ by sets Ĵ\{i}, i ∈ I(v) which are not contained in any sets in F . The implementation used in204

our paper directly uses the MATLAB code provided by [17].205

Lower and Upper Bounds. A limitation of the PVZ algorithm is that during each loop, every set in206

J needs to be tested, and each test requires solving a LP problem. Although solving one LP problem207

in practice is fast, a complete while loop calls the LP solver many times.208
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Here, we propose an algorithm to estimate lower and upper bounds for Hoffman constants. An209

intuitive way to estimate the lower bound is to sample a number of random subsets from {1, . . . ,m}210

and test for A-surjectivity. This method bypasses optimizing combinatorially over S(A) of A-211

surjective sets and gives a lower bound of Hoffman constant by Proposition 3.8.212

To get an upper of Hoffman constant, we use the result from [18].213

Theorem 3.9. [18, Theorem 4.2] Let A ∈ Rm×n. Let D(A) be a set of subsets of J ⊆ {1, . . . ,m}214

such that AJ is full rank. Let D∗(A) be the set of maximal elements in D(A). Then the Hoffman215

constant measured under 2-norm is bounded by216

H(A) ≤ max
J∈D∗(A)

1

ρ̂(AJ)
(10)

where ρ̂(A) is the smallest singular value of A.217

Using the fact that ∥ · ∥1 ≥ ∥ · ∥2, and the characterization from (8), we see that the upper bound also218

holds when Rm and Rn are equipped with the ∞-norm. However, enumerating all maximal elements219

in D(A) is not an improvement over enumerating A-surjective sets from a computational perspective.220

Instead, we will retain the strategy as in lower bound estimation to sample a number of sets from221

{1, 2, . . . ,m} and approximate the upper bound by (10). We verify this approach via synthetic data.222

The experiments are relegated to the Appendix.223

4 Symmetry and the Fundamental Domain224

In this section, we study a geometric characterization of the sampling domain for networks exhibiting225

symmetry. This corresponds to invariant neural networks.226

4.1 Linear Regions of Invariant Neural Networks227

The notion of invariance for a neural network describes when a manipulation of the input domain228

does not affect the output of the network. The manipulations we consider here are group actions.229

Definition 4.1. Let σ : Rn → R be a piecewise linear function, and let G be a group acting on the230

domain Rn. σ is invariant under the group action of G if for any element g ∈ G, σ ◦ g = σ.231

Given an invariant neural network, we can then define a sampling domain that takes into account the232

effect of the group action.233

Definition 4.2. Let G be a group acting on Rn. A subset ∆ ⊆ Rn is a fundamental domain if it234

satisfies two following conditions: (i) Rn =
⋃

g∈G g ·∆; and (ii) g · int(∆) ∩ h · int(∆) = ∅ for all235

g, h ∈ G, g ̸= h.236

The fundamental domain of a group G therefore provides a periodic tiling of Rn by acting on ∆.237

This is very useful in the context of numerical sampling for neural networks which are invariant238

under some symmetry, since it means we can sample from a smaller subset of the input domain with239

a guarantee to find all the linear regions in the limit. This allows us, in principle, to be able to use far240

fewer samples while maintaining the same density of points.241

Theorem 4.3. Let f : RN → R be a tropical rational map invariant under group G. Let ∆ ⊆ RN be242

a fundamental domain of G. Suppose L is the set of linear regions. Define the following two sets243

Uc := {A ∈ U : A ⊆ ∆}
Un := {A ∈ U : A ∩∆ ̸= ∅}.

Then244

|G||Uc| ≤ |U| ≤ |G||Uc|+
∑

A∈Un\Uc

|G|
|GA|

.

where |GA| is the size of the stabilizer of A.245

This gives us a method for estimating the total number of linear regions from sampling in the246

fundamental domain using multiplicity, which we discuss next.247
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4.2 Sampling from the Fundamental Domain248

To demonstrate the potential performance improvements in numerical sampling exploiting symmetry249

in the network architecture, we consider permutation invariant neural networks inspired by deep sets250

[19]. Our numerical sampling approach is inspired by very recent work in this area [20].251

Lemma 4.4 ([19]). An m ×m matrix W acting as a linear operator of the form W = λIm×m +252

γ(1T1), where λ, γ ∈ R is permutation equivariant, meaning WPx = PWx for any x ∈ Rm, so it253

commutes with any permutation matrix.254

Using a weight matrix of this form, we can construct permutation invariant neural networks by setting255

the bias to 0, applying a ReLU activation after multiplication by W , and then summing. In this case,256

the network is invariant under the group action Sn, so the fundamental domain is the set of points257

with increasing coordinates, i.e., ∆ = {(x1, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn}. This splits Rn into n!258

tiles, so we have a clear and significant advantage in restricting sampling to the fundamental domain.259

Note, however, that it is important to address the multiplicities of symmetric linear regions correctly:260

If a given Jacobian of shape n× 1 has no repeated elements, this means it is contained in the interior261

of some group action applied to the fundamental domain. This means there are n! total linear regions262

with this Jacobian. If, on the other hand, there are repeated coefficients in a given Jacobian J , we263

consider the set C(J) of counts of repeated elements. For example, for J = [1, 1, 0], C(J) = (2, 1).264

Then the multiplicity of a given Jacobian is given by265

mult(J) =
n!∏

c∈C(J) c!
.

Using this multiplicity calculation we can efficiently estimate the number of linear regions while266

reducing the number of point samples by a factor of n!. This provides a dramatic gain in sampling267

efficiency.268

In Figure 1, we present the results when Algorithm 2 is run with R = 10, N = 10,M = 50. These269

results show that the fundamental domain estimate performs well for low dimensional inputs but270

appears to overcount linear regions as n increases. Despite divergence, there is still utility in this271

metric because we are often more concerned with obtaining an upper bound on the expressivity of a272

neural network than an exact figure and the fundamental domain estimate does not undercount the273

number of linear regions.274

5 Symbolic Neural Networks275

Here, we present the details on our practical contribution of a symbolic representation of neural276

networks as a new library integrated into OSCAR [15].277

5.1 Computing Linear Regions of Tropical Puiseux Rational Maps278

We present an algorithm that can compute the linear regions of any tropical Puiseux rational function.279

Intuitively, we do this by computing the linear regions of the numerator and denominator, and then280

considering intersections of such regions and how they fit together. Thus, a first step is to understand281

how the computation of linear regions works for tropical Puiseux polynomials. The key to our282

approach will be to exploit the polyhedral connection of tropical geometry and recast the problem283

in the language of polyhedral geometry. This, among other things, will allow us to make use the284

extensive polyhedral geometry library in OSCAR [15] for implementation.285

One important upshot from this study is that there is a strong connection between the number of286

linear regions of a tropical Puiseux rational function and the number of monomials that appear in287

its algebraic expression. Note, however, that the two are independent, in the sense that two Puiseux288

rational functions could have the same number of linear regions but different numbers of (nonzero)289

monomials, and conversely, the same number of monomials and a different number of linear regions.290

For instance, computing the number of linear regions requires some combinatorial data about the291

intersections of the polyhedra defined by monomials.292

First, we need to know how to compute the linear regions of tropical polynomials. Let P =293 ⊕
n an ⊙xn where by xn we mean xn1

1 ⊙ · · ·⊙xnk

k and powers are taken in the tropical sense. Then294
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as function Rk → R, P is given by maxn {an + n1x1 · · ·+ nkxk} . It follows that the linear regions295

of P are precisely the sets of the form296

Sn = {x ∈ Rn | am +m1x1 · · ·+mkxk ≤ an + n1x1 · · ·+ nkxk for all m ̸= n} .
For any set U on which P is linear, we write L(P,U) for the corresponding linear map. This gives us297

L(P, Sn)(x) = an + n1x1 · · ·+ nkxk. (11)

We now rewrite (11) using polyhedral geometry. Recall that a polyhedron in Rk is a set of the form298

P (A, b) = {x ∈ Rk | Ax ≤ b}. We claim that each linear region is a polyhedron: For a fixed index299

n, define the matrix An to be the (N − 1)× k matrix whose rows are the vectors m− n, where m300

ranges over the support of the coefficients of P (ordered lexicographically) and bn to be the vector301

with entries an − am. Then Sn = P (An, bn). This gives us a way to encode the computation of the302

linear regions of tropical Puiseux polynomials using polyhedral geometry. As a direct consequence,303

intersections of linear regions of tropical Puiseux polynomials are also polyhedra. In particular, there304

are algorithms from polyhedral geometry for determining whether such polyhedra are realizable. One305

of the key observations given by our algorithm is that the linear regions of tropical Puiseux rational306

maps are almost given by k-dimensional intersections of the linear regions of the numerator and307

the denominator. Indeed, note that if U is a linear region of p and V a linear region of q, then we308

have L(U ∩ V, p⊘ q) = L(U, p)− L(V, q). The only issue that arises is that there might be some309

repetition in the L(U ∩V, p⊘q) as U ranges over the linear regions of p and V over the linear regions310

of q. In particular, linear regions of p⊘ q might end up corresponding to unions of such U ∩ V .311

5.2 Computing Linear Regions312

Determining the linear regions of a neural network may be approached numerically or symbolically.313

The numerical approach exploits the fact that linear regions of a neural network correspond to regions314

where the gradient is constant. Thus, to estimate the number of linear regions, we can evaluate the315

gradient on a sample of points (e.g., a mesh) in some large box [−R,R]n. For sufficiently large R316

and a sufficiently dense sample of points, we get an accurate estimate. The symbolic approach, on317

the other hand, exploits the connection between neural networks and tropical Puiseux rational maps.318

Indeed, we can symbolically compute a Puiseux rational map that represents the neural network and319

then compute the number of linear regions using the approach outlined in section 5.1.320

To compare each method, we ran the computations on smaller networks with varying sizes to compare321

run times and precision. For the symbolic approach, we generate 20 neural networks with random322

weights for each architecture and then compute the tropical Puiseux rational function associated to323

each neural network and compute the linear regions using Algorithm 3.324

For the numerical approach, we also work with synthetic data and generate 1000 neural networks325

with random weights for each architecture. We then estimate the number of linear regions in a box of326

size [−10, 10]n and sample 1000 points from this domain.327

In both cases, we use He initialization for the weights, i.e., we generate weights with distribution328

N(0, 2√
d
) where d is the input dimension. The data we obtain in this manner is summarized in Tables329

10 and 11. For the symbolic approach, we also track the number of nonzero monomials to compare330

this quantity with the number of linear regions. For networks with 3 layers, we find the numerical331

estimate to be quite close, but for 4 it seems to diverge. This could be because in the numerical332

approach, we are only counting the number of unique Jacobians that can be found in the domain. A333

situation could arise where the same linear function is disconnected and hence counted twice by the334

symbolic approach but only once for the numerical approach.335

The main observations from our experimental study are as follows. The numerical approach is faster,336

but offers no guarantee of precision: When running the computation for a given R and mesh grid,337

there seems to be no easy way of determining whether we have indeed hit all the linear regions or338

whether we have obtained an accurate estimate of the arrangements of these regions. It is possible339

to either overestimate or underestimate the number of linear regions. In particular, there is a priori340

no obvious way to select the parameters. We found the symbolic approach to be more precise, but341

slower. In general, the number of monomials seems to be far larger than the number of linear regions,342

which contradicts the intuition of Figure 2.343

Both algorithms suffer from the curse of dimensionality: in the case of the numerical approach, the344

number of samples in a meshgrid grows exponenially with respect to the dimension. In the case of345

8



the symbolic approach, calculations with polytopes seem to scale poorly with dimension and with the346

complexity of the neural network.347

6 Discussion: Limitations & Directions for Future Research348

In this paper, we set up a framework to interpret and analyzed the expressivity of neural networks349

using techniques from polyhedral and tropical geometry. We demonstrated several ways in which a350

symbolic interpretation can often enable computational optimizations for otherwise intractable tasks351

and provided new insights into the inner workings of these networks. To the best of our knowledge,352

ours is the first work to provide practical tropical geometric theory and algorithms to numerically353

compute and analyze the expressivity of a neural network both in terms of inherent neural network354

quantities as well as tropical geometric quantities.355

Despite the theoretical and practical advancement of tropical deep learning that our work offers, it356

is nevertheless subject to limitations, which we now discuss and which inspire directions for future357

research.358

Experimental Limitations. The curse of dimensionality is a common theme in deep learning, and359

our work is unfortunately no exception. The methods introduced in this paper are quite fast for small360

enough networks, but scale poorly with dimension and more complex architectures.361

We note that the main computational bottlenecks of the Puiseux rational function associated with a362

neural network are the implementation of fast multivariate Puiseux series operations. Our current363

computations rely on a custom implementation of this type of operation, and one potential avenue for364

improvement would be using such methods once they have been implemented in OSCAR [15].365

For the computation of linear regions, both the numerical and symbolic approaches suffer from the366

curse of dimensionality. For instance, the numerical approach requires sampling on a mesh grid in a367

box of the form [−R,R]n where n is the input dimension. In particular, the number of points needed368

is proportional to the volume, which scales exponenially in n. Similarly, the symbolic approach relies369

on the computation of the Puiseux rational function associated with a neural network and polytope370

computations, both of which are challenging computational problems in higher dimensions.371

Most of our computations rely on carrying out some elementary computations many times. Thus,372

another avenue of improvement for this would be to parallelize.373

Structural Limitations. Much of what we are studying are basically framed as a combinatorial374

optimization problem, which are known to be difficult. In particular, computing the Hoffman constant375

is equivalent to the Stewart–Todd condition measure of a matrix and both quantities are NP-hard to376

compute in general cases [17, 21].377

Further studying and understanding where and how symbolic computation algorithms can be made378

more efficient, e.g., by parallelization, would make our proposed approaches more applicable to379

larger neural networks. Our work effectively proposes a new intersection of symbolic computation380

and deep learning, so there remains infrastructure to set up to make methods from these two fields381

compatible.382
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A Further Experimental Details431

We ran the final computations on NVIDIA GeForce RTX 3090 GPUs. Table 7 lists the time taken by432

each experiment. Given that our experiments do not include training on large datasets, the experiments433

are not particularly expensive from the perspective memory usage, and all the code can be run on a434

laptop. The detail provided in the paper correspond roughly to the amount of computational resources435

that were used for this work, omitting trial and testing runs.436

B Algorithms437

Algorithm 1 Lower and approximate upper bound of Hoffman constant
Require: A: an m× n matrix; B max number of iterations; ϵ threshold of testing surjectivity.

1: Initialize HL = HU = 0.
2: for i ∈ 1, . . . , B do
3: Sample a random integer K.
4: Sample a random subset J from {1, . . . ,m} of size K.
5: Solve (9). Let t be the optimal value;
6: if t > ϵ then
7: J is surjective. Update HL = max{HL,

1
t };

8: Compute the minimal singular value of ρ̂(AJ);
9: if ρ̂(AJ) > 0 then

10: Update HU = max{HU , 1
ρ̂(AJ )

};
return Lower bound HL and approximate upper bound HU .

Algorithm 2 Estimation of the ratio of fundamental domain sampling to regular sampling
Require: The input dimension n, R ∈ R side length for cube centered at the origin from which the

samples are taken, M number of models to use, N base number of points to sample.
1: for m ∈ 1..M do
2: Create a permutation invariant model σ with input dimension n.
3: Sample Nn points in the cube with side length R centered at the origin. Note that the number

of points in the sample grows exponentially with the input dimension n.
4: Compute the Jacobian matrices of the network at each point, round to 10 decimal place to

avoid numerical errors, remove duplicates, and count the number of unique Jacobians.
5: Sample Nn

n! points from the fundamental domain of Rn intersected with the sampling cube.
6: Compute the unique Jacobians similarly as for the regular sampling.
7: Sum the multiplicities of each Jacobian to get an estimate of the total number of linear

regions.
8: Record the ratio of the fundamental domain estimate to the regular estimate.

return The average ratio across M models.

C Proofs438

C.1 Proof of Proposition 3.4439

Proof. The polyhedra defined by440 ([
Ap

Aq

]
− 1

[
aip
ajq

])
x ≤

[
bip1− bp
bjq1− bq

]
form a convex refinement of linear regions of f . Let441

resip,jq (x) :=

([
Ap

Aq

]
− 1

[
aip
ajq

])
x−

[
bip1− bp
bjq1− bq

]
denote the residual of x to the polyhedron. We have442

Rf (x) ≤ H(p⊘ q)max{∥resip,jq (x)+∥∞ : 1 ≤ ip ≤ mp ; 1 ≤ jq ≤ mq}.
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Algorithm 3 Linear regions of tropical Puiseux rational functions
Require: Tropical Puiseux polynomials p, q in n variables.

1: Compute the linear regions U1, . . . , Ul of p, and set Li = L(p, Ui).
2: Compute the linear regions V1, . . . , Vm of q, and set Sj = L(q, Vj).
3: Compute the pairs (i, j) such that Ui ∩ Vj has dimension n
4: for (i, j) such that Ui ∩ Vj has dimension n do
5: Compute the linear map Tij = Li − Sj

6: Set S to be the set of all Tij

7: for T ∈ S do
8: Compute the set I(T ) indices (i, j) such that T = Tij .
9: Compute the set C(T ) of connected components of⋃

(i,j)∈I(T )

Ui ∩ Vj

return
⋃

T∈S C(T ).

Algorithm 4 Numerical estimation of neural network linear regions
Require: The architecture of a linear activation neural network σ with scalar output, R ∈ R side

length for cube centered at the origin from which the samples are taken, M number of models to
use, N number of points to sample.

1: for m ∈ 1..M do
2: Create a model with architecture σ and initialise weights and biases using He inialisation.
3: Sample N points in the cube with side length R centered at the origin.
4: Compute the Jacobian matrices of the network at each point.
5: Round the Jacobians matrices to 5 decimal places to avoid floating point errors.
6: Remove duplicates and count the number of unique Jacobians.

return The average number of linear regions.

Note that443

∥resip,jq (x)+∥∞ =

∥∥∥∥([
Apx+ bp − 1(aipx+ bip)
Aqx+ bq − 1(ajqx+ bjq )

])
+

∥∥∥∥
∞

= max
k,ℓ

{
(Apx+ bp)k − (aipx+ bip), (Aqx+ bq)ℓ − (ajqx+ bjq ), 0

}
= max

{
p(x)− (aipx+ bip), q(x)− (ajqx+ bjq ), 0

}
Therefore,444

max
ip,jq

∥resip,jq (x)∥∞ = max
ip,jq

{
p(x)− (aipx+ bip), q(x)− (ajqx+ bjq ), 0

}
= max

{
p(x)−min

ip
{aipx+ bip}, q(x)−min

jq
{ajqx+ bjq}, 0

}
= max

{
p(x)− p̌(x), q(x)− q̌(x)

}
which proves (6).445

C.2 Proof of Lemma 3.3446

Proof. From the definition of minimal effective radius we have447

Rf (x) = min{r : B(x, r) ∩ Ui ̸= ∅, Ui ∈ U} = min{r : d(x, Ui) ≤ r, Ui ∈ U}
= max{d(x, Ui) : Ui ∈ U}.

For each linear region Ui characterized by ÃUix ≤ b̃Ui , by (1), d(x, Ui) ≤ H(ÃUi)∥(ÃUix−b̃Ui)+∥.448

Passing to maximum we have449

Rf (x) = max
Ui∈U

d(x, Ui) ≤ max
Ui∈U

H(ÃUi
) max
Ui∈U

∥(ÃUi
x− b̃Ui

)+∥ = H(f) max
Ui∈U

∥(ÃUi
x− b̃Ui

)+∥.

450

12



Lower bounds HL 0.5460 0.1520 0.6220 0.5771 0.1208 0.0844 1.0389 0.1492
Time tL 0.2495 0.2449 0.2446 0.2458 0.2443 0.2463 0.2466 0.2477

True values H 0.3298 0.7980 0.3772 0.8376 6.5934 2.6744 0.9372 1.2645
Time t 0.2132 0.1504 0.1253 0.1722 0.1566 0.1529 0.1721 0.1568

Upper bounds HU 0.2081 0.5090 0.2903 1.0539 3.8508 1.3942 0.5484 0.8031
Time tU 0.0043 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040

Table 1: Hoffman constants, lower bounds, approximate upper bounds, and their corresponding
computational time for mp = 10, mq = 5 and n = 3

C.3 Proof of Theorem 4.3451

Proof. The action of G partitions U into a set of orbits [U ] and we have |U| =
∑

[A]∈[U ] |[A]|.452

From property (i) defining a fundamental domain ∪A∈UA = ∪σ∈Gσ ·∆, we have the trivial lower
bound on the number of linear regions |U| ≥

∑
A∈Uc

|[A]| = |G||Uc|. Let A ∈ U . By Lagrange’s
theorem, the orbit of A is such that |[A]||GA| = |G|. Thus we have

|U| ≤
∑
A∈Un

|[A]| ≤ |G||Uc|+
∑

A∈Un\Uc

|G|
|GA|

.

453

D Numerical Calculations of the Hoffman Constant454

We illustrate the computation of Hoffman constant of tropical Puiseux rational map on synthetic data.455

We generate tropical Puiseux rational maps by randomly generating two tropical Puiseux polynomials456

p and q. Specifically, suppose p has mp monomials and q has mq monomials. We construct an457

mp×n matrix Ap and an mq ×n matrix Aq by uniformly sampling entries from [0, 1]. We then form458

the matrix defined by (4). We then compute the exact Hoffman constant using the PVZ algorithm and459

estimate its lower bound and approximate its upper bound by our proposed algorithm. We record the460

computation time and the number of calls to solve the LP problem in the whole loop.461

In the experiment we take different values of mp, mq, n and B. For each of the parameters we462

repeat all computation for 8 times. The true Hoffman constants, lower bounds, upper bounds, and463

the computation time per linear region can be found in Table 1,2,3, and the number of iterations of464

the PVZ algorithm and average time to solve LP during each iteration can be found in Table 4,5.6.465

From the tables we can see that computing the true Hoffman constants requires testing surjectivity466

and solving over thousands LP problems, which costs a lot of time. Although the lower bounds and467

approximate upper bounds can be loose, the computational time is much faster for lower bounds and468

upper bounds, which implies its potential to apply for real data applications.469

E Tables470

Tables 8 and 9 summarise the outcomes of the experiments on the computation of linear regions for471

tropical Puiseux rational functions. For a fixed number of variables nvar and number of monomials472

nmonomials, we generate nsamples random Puiseux rational functions by picking random coefficients473

and exponents using Julia’s inbuilt random number generation functions, where both the numerator474

and the denominator have nmonomials monomials. We then compute the number of linear regions for475

each of these rational functions and take the average over our all the samples that were generated.476

F Figures477
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Lower bounds HL 2.4965 5.9002 2.3501 3.7049 1.1434 0.8335 1.6517 2.2396
Time tL 0.8924 0.9101 0.9127 0.8914 0.9132 0.9154 1.1117 0.6190

True values H 26.2231 726.8115 173.0057 23.8868 52.6080 8.1573 8.5050 18.7593
Time t 6.0048 2.3452 5.5451 3.6778 3.2828 2.9109 3.5494 1.7530

Upper bounds HU 8.2854 323.5149 21.3290 7.4338 183.8179 254.1373 36.7961 32.5276
Time tU 0.0136 0.0137 0.0143 0.0132 0.0120 0.0139 0.0148 0.0097

Table 2: Hoffman constants, lower bounds, approximate upper bounds, and their corresponding
computational time for mp = 15, mq = 9 and n = 6

Lower bounds HL 0.1120 0.1382 0.1227 63.9169 0.2331 0.1191 0.0571 0.1126
Time tL 0.2622 0.2628 0.2625 0.2672 0.2771 0.2715 0.2689 0.2633

True values H 0.0017 1.2683 1.5375 0.0832 0.2777 0.3537 0.0464 0.1586
Time t 0.0112 0.0217 0.1002 0.0182 0.0582 0.0693 0.0189 0.0122

Upper bounds HU 10.6826 1.7551 3.2794 7.2134 26.4648 2.6868 25.0251 5.1308
Time tU 0.0775 0.0789 0.0780 0.0784 0.0789 0.0782 0.0782 0.0769

Table 3: Hoffman constants, lower bounds, approximate upper bounds, and their corresponding
computational time for mp = 15, mq = 5 and n = 7

# iterations 94 86 67 83 99 86 75 83
Time per LP 0.0042 0.0026 0.0025 0.0026 0.0025 0.0025 0.0026 0.0026

Table 4: Number of iterations in the PVZ algorithm and average time to solve LP during each iteration
for mp = 10, mq = 5 and n = 3

# iterations 2437 1110 1731 1441 1432 1706 1741 1095
Time per LP 0.0152 0.0093 0.0092 0.0098 0.0098 0.0102 0.0095 0.0097

Table 5: Number of iterations in the PVZ algorithm and average time to solve LP during each iteration
for mp = 15, mq = 9 and n = 6

# iterations 2 607 525 80 194 355 78 19
Time per LP 0.0027 0.0027 0.0026 0.0027 0.0032 0.0027 0.0028 0.0027

Table 6: Number of iterations in the PVZ algorithm and average time to solve LP during each iteration
for mp = 15, mq = 5 and n = 7

Experiment Compute time
Linear regions of tropical Puiseux rational functions (3 variables) 4.7 hours
Linear regions of tropical Puiseux rational functions (4 variables) 13.3 hours
Symbolic linear regions computation for neural networks 35 minutes
Numeric linear regions computation for neural networks 4.9 minutes
Sampling on fundamental domain 13 minutes

Table 7: Compute details

nmonomials Average number of regions Average runtime
20 84.4 4.0 seconds
50 160.1 11.6 seconds
100 264.2 29.5 seconds
200 375.2 66.0 seconds
350 500.8 139.2 seconds
500 580.8 202.7 seconds
800 706.1 394.8 seconds
1000 776.2 563.6 seconds

Table 8: Computation for nvar = 3, nsamples = 12
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nmonomials Average number of regions Average runtime
20 157.5 12.6 seconds
50 398.75 50.3 seconds
100 667.75 83.8 seconds
200 1021.5 237.5 seconds
350 1614.5 987.3 seconds
500 1909.5 1682.1 seconds
800 2432.0 3436.7 seconds
1000 2876.5 5441.8 seconds

Table 9: Computation for nvar = 4, nsamples = 4

Architecture Average number of linear regions Average number of monomials Average runtime(s)
[2, 2, 1] 3.85 5.75 0.4166
[4, 3, 1] 6.75 9 0.4646
[4, 4, 1] 14.2 13.55 1.5794
[3, 2, 2, 1] 6.8 30.15 1.7679
[3, 3, 2, 1] 17.55 176.75 97.9659

Table 10: Symbolic computation

Architecture Average number of linear regions Average runtime(s)
[2, 2, 1] 3.041 0.01667
[4, 3, 1] 6.339 0.01667
[4, 4, 1] 11.936 0.01667
[3, 2, 2, 1] 3.549 0.01683
[3, 3, 2, 1] 7.381 0.01678

Table 11: Numerical computation

Figure 1: Ratio estimates for different input sizes with standard deviation error bars
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Figure 2: Linear regions of a Puiseux rational function in 3 variables
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Figure 3: Linear regions of a Puiseux rational function in 4 variables
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NeurIPS Paper Checklist478

1. Claims479

Question: Do the main claims made in the abstract and introduction accurately reflect the480

paper’s contributions and scope?481

Answer: [Yes]482

Justification: Each of the three contributions mentioned in the abstract has a whole section483

devoted to it, including theoretical results and experiments. We also provided an in-depth484

discussion of the limitations of our work in Section 6.485

Guidelines:486

• The answer NA means that the abstract and introduction do not include the claims487

made in the paper.488

• The abstract and/or introduction should clearly state the claims made, including the489

contributions made in the paper and important assumptions and limitations. A No or490

NA answer to this question will not be perceived well by the reviewers.491

• The claims made should match theoretical and experimental results, and reflect how492

much the results can be expected to generalize to other settings.493

• It is fine to include aspirational goals as motivation as long as it is clear that these goals494

are not attained by the paper.495

2. Limitations496

Question: Does the paper discuss the limitations of the work performed by the authors?497

Answer: [Yes]498

Justification: We provided a detailed discussion of the limitations or our work, both compu-499

tational and theoretical in Section 6.500

Guidelines:501

• The answer NA means that the paper has no limitation while the answer No means that502

the paper has limitations, but those are not discussed in the paper.503

• The authors are encouraged to create a separate "Limitations" section in their paper.504

• The paper should point out any strong assumptions and how robust the results are to505

violations of these assumptions (e.g., independence assumptions, noiseless settings,506

model well-specification, asymptotic approximations only holding locally). The authors507

should reflect on how these assumptions might be violated in practice and what the508

implications would be.509

• The authors should reflect on the scope of the claims made, e.g., if the approach was510

only tested on a few datasets or with a few runs. In general, empirical results often511

depend on implicit assumptions, which should be articulated.512

• The authors should reflect on the factors that influence the performance of the approach.513

For example, a facial recognition algorithm may perform poorly when image resolution514

is low or images are taken in low lighting. Or a speech-to-text system might not be515

used reliably to provide closed captions for online lectures because it fails to handle516

technical jargon.517

• The authors should discuss the computational efficiency of the proposed algorithms518

and how they scale with dataset size.519

• If applicable, the authors should discuss possible limitations of their approach to520

address problems of privacy and fairness.521

• While the authors might fear that complete honesty about limitations might be used by522

reviewers as grounds for rejection, a worse outcome might be that reviewers discover523

limitations that aren’t acknowledged in the paper. The authors should use their best524

judgment and recognize that individual actions in favor of transparency play an impor-525

tant role in developing norms that preserve the integrity of the community. Reviewers526

will be specifically instructed to not penalize honesty concerning limitations.527

3. Theory Assumptions and Proofs528

Question: For each theoretical result, does the paper provide the full set of assumptions and529

a complete (and correct) proof?530
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Answer: [Yes]531

Justification: We clearly define all mathematical terms and the proofs are explained in detail532

and are correct to the best of our knowledge.533

Guidelines:534

• The answer NA means that the paper does not include theoretical results.535

• All the theorems, formulas, and proofs in the paper should be numbered and cross-536

referenced.537

• All assumptions should be clearly stated or referenced in the statement of any theorems.538

• The proofs can either appear in the main paper or the supplemental material, but if539

they appear in the supplemental material, the authors are encouraged to provide a short540

proof sketch to provide intuition.541

• Inversely, any informal proof provided in the core of the paper should be complemented542

by formal proofs provided in appendix or supplemental material.543

• Theorems and Lemmas that the proof relies upon should be properly referenced.544

4. Experimental Result Reproducibility545

Question: Does the paper fully disclose all the information needed to reproduce the main ex-546

perimental results of the paper to the extent that it affects the main claims and/or conclusions547

of the paper (regardless of whether the code and data are provided or not)?548

Answer: [Yes]549

Justification: Our paper describes the algorithms that are used to run the experiments, and our550

submission includes all the code necessary to run these together with instructions detailing551

how to use it.552

Guidelines:553

• The answer NA means that the paper does not include experiments.554

• If the paper includes experiments, a No answer to this question will not be perceived555

well by the reviewers: Making the paper reproducible is important, regardless of556

whether the code and data are provided or not.557

• If the contribution is a dataset and/or model, the authors should describe the steps taken558

to make their results reproducible or verifiable.559

• Depending on the contribution, reproducibility can be accomplished in various ways.560

For example, if the contribution is a novel architecture, describing the architecture fully561

might suffice, or if the contribution is a specific model and empirical evaluation, it may562

be necessary to either make it possible for others to replicate the model with the same563

dataset, or provide access to the model. In general. releasing code and data is often564

one good way to accomplish this, but reproducibility can also be provided via detailed565

instructions for how to replicate the results, access to a hosted model (e.g., in the case566

of a large language model), releasing of a model checkpoint, or other means that are567

appropriate to the research performed.568

• While NeurIPS does not require releasing code, the conference does require all submis-569

sions to provide some reasonable avenue for reproducibility, which may depend on the570

nature of the contribution. For example571

(a) If the contribution is primarily a new algorithm, the paper should make it clear how572

to reproduce that algorithm.573

(b) If the contribution is primarily a new model architecture, the paper should describe574

the architecture clearly and fully.575

(c) If the contribution is a new model (e.g., a large language model), then there should576

either be a way to access this model for reproducing the results or a way to reproduce577

the model (e.g., with an open-source dataset or instructions for how to construct578

the dataset).579

(d) We recognize that reproducibility may be tricky in some cases, in which case580

authors are welcome to describe the particular way they provide for reproducibility.581

In the case of closed-source models, it may be that access to the model is limited in582

some way (e.g., to registered users), but it should be possible for other researchers583

to have some path to reproducing or verifying the results.584
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5. Open access to data and code585

Question: Does the paper provide open access to the data and code, with sufficient instruc-586

tions to faithfully reproduce the main experimental results, as described in supplemental587

material?588

Answer: [Yes]589

Justification: We provided all the code that is necessary to reproduce the experimental590

results, together with instructions on how to run this.591

Guidelines:592

• The answer NA means that paper does not include experiments requiring code.593

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/594

public/guides/CodeSubmissionPolicy) for more details.595

• While we encourage the release of code and data, we understand that this might not be596

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not597

including code, unless this is central to the contribution (e.g., for a new open-source598

benchmark).599

• The instructions should contain the exact command and environment needed to run to600

reproduce the results. See the NeurIPS code and data submission guidelines (https:601

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.602

• The authors should provide instructions on data access and preparation, including how603

to access the raw data, preprocessed data, intermediate data, and generated data, etc.604

• The authors should provide scripts to reproduce all experimental results for the new605

proposed method and baselines. If only a subset of experiments are reproducible, they606

should state which ones are omitted from the script and why.607

• At submission time, to preserve anonymity, the authors should release anonymized608

versions (if applicable).609

• Providing as much information as possible in supplemental material (appended to the610

paper) is recommended, but including URLs to data and code is permitted.611

6. Experimental Setting/Details612

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-613

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the614

results?615

Answer: [Yes]616

Justification: The paper gives some details about how the synthetic data used for experiments617

was generated. Moreover, we also provide the code that is necessary to run the experiments.618

Guidelines:619

• The answer NA means that the paper does not include experiments.620

• The experimental setting should be presented in the core of the paper to a level of detail621

that is necessary to appreciate the results and make sense of them.622

• The full details can be provided either with the code, in appendix, or as supplemental623

material.624

7. Experiment Statistical Significance625

Question: Does the paper report error bars suitably and correctly defined or other appropriate626

information about the statistical significance of the experiments?627

Answer: [Yes]628

Justification: Our figures clearly demonstrate error bars when appropriate and we disclose629

the experimental setup relevant to the statistical significance of our experiments.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• The authors should answer "Yes" if the results are accompanied by error bars, confi-633

dence intervals, or statistical significance tests, at least for the experiments that support634

the main claims of the paper.635
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• The factors of variability that the error bars are capturing should be clearly stated (for636

example, train/test split, initialization, random drawing of some parameter, or overall637

run with given experimental conditions).638

• The method for calculating the error bars should be explained (closed form formula,639

call to a library function, bootstrap, etc.)640

• The assumptions made should be given (e.g., Normally distributed errors).641

• It should be clear whether the error bar is the standard deviation or the standard error642

of the mean.643

• It is OK to report 1-sigma error bars, but one should state it. The authors should644

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis645

of Normality of errors is not verified.646

• For asymmetric distributions, the authors should be careful not to show in tables or647

figures symmetric error bars that would yield results that are out of range (e.g. negative648

error rates).649

• If error bars are reported in tables or plots, The authors should explain in the text how650

they were calculated and reference the corresponding figures or tables in the text.651

8. Experiments Compute Resources652

Question: For each experiment, does the paper provide sufficient information on the com-653

puter resources (type of compute workers, memory, time of execution) needed to reproduce654

the experiments?655

Answer: [Yes]656

Justification: The appendix provides some detail on the type of compute that was used (type657

of GPU, memory), as well was runtimes for each experiment.658

Guidelines:659

• The answer NA means that the paper does not include experiments.660

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,661

or cloud provider, including relevant memory and storage.662

• The paper should provide the amount of compute required for each of the individual663

experimental runs as well as estimate the total compute.664

• The paper should disclose whether the full research project required more compute665

than the experiments reported in the paper (e.g., preliminary or failed experiments that666

didn’t make it into the paper).667

9. Code Of Ethics668

Question: Does the research conducted in the paper conform, in every respect, with the669

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?670

Answer: [Yes]671

Justification: We are carefully read through the code of ethics and to the best of our672

knowledge the contributions in this paper do not violate it in any way.673

Guidelines:674

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.675

• If the authors answer No, they should explain the special circumstances that require a676

deviation from the Code of Ethics.677

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-678

eration due to laws or regulations in their jurisdiction).679

10. Broader Impacts680

Question: Does the paper discuss both potential positive societal impacts and negative681

societal impacts of the work performed?682

Answer: [NA]683

Justification: The work does not have any obvious harmful applications or any potential684

negative societal impact.685

Guidelines:686
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• The answer NA means that there is no societal impact of the work performed.687

• If the authors answer NA or No, they should explain why their work has no societal688

impact or why the paper does not address societal impact.689

• Examples of negative societal impacts include potential malicious or unintended uses690

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations691

(e.g., deployment of technologies that could make decisions that unfairly impact specific692

groups), privacy considerations, and security considerations.693

• The conference expects that many papers will be foundational research and not tied694

to particular applications, let alone deployments. However, if there is a direct path to695

any negative applications, the authors should point it out. For example, it is legitimate696

to point out that an improvement in the quality of generative models could be used to697

generate deepfakes for disinformation. On the other hand, it is not needed to point out698

that a generic algorithm for optimizing neural networks could enable people to train699

models that generate Deepfakes faster.700

• The authors should consider possible harms that could arise when the technology is701

being used as intended and functioning correctly, harms that could arise when the702

technology is being used as intended but gives incorrect results, and harms following703

from (intentional or unintentional) misuse of the technology.704

• If there are negative societal impacts, the authors could also discuss possible mitigation705

strategies (e.g., gated release of models, providing defenses in addition to attacks,706

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from707

feedback over time, improving the efficiency and accessibility of ML).708

11. Safeguards709

Question: Does the paper describe safeguards that have been put in place for responsible710

release of data or models that have a high risk for misuse (e.g., pretrained language models,711

image generators, or scraped datasets)?712

Answer: [NA]713

Justification: The work does not pose any such risks.714

Guidelines:715

• The answer NA means that the paper poses no such risks.716

• Released models that have a high risk for misuse or dual-use should be released with717

necessary safeguards to allow for controlled use of the model, for example by requiring718

that users adhere to usage guidelines or restrictions to access the model or implementing719

safety filters.720

• Datasets that have been scraped from the Internet could pose safety risks. The authors721

should describe how they avoided releasing unsafe images.722

• We recognize that providing effective safeguards is challenging, and many papers do723

not require this, but we encourage authors to take this into account and make a best724

faith effort.725

12. Licenses for existing assets726

Question: Are the creators or original owners of assets (e.g., code, data, models), used in727

the paper, properly credited and are the license and terms of use explicitly mentioned and728

properly respected?729

Answer: [Yes]730

Justification: Where we have used or been inspired by previous work we have made sure731

that we have legal permission to use it and have clearly cited it in each case.732

Guidelines:733

• The answer NA means that the paper does not use existing assets.734

• The authors should cite the original paper that produced the code package or dataset.735

• The authors should state which version of the asset is used and, if possible, include a736

URL.737

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.738
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• For scraped data from a particular source (e.g., website), the copyright and terms of739

service of that source should be provided.740

• If assets are released, the license, copyright information, and terms of use in the741

package should be provided. For popular datasets, paperswithcode.com/datasets742

has curated licenses for some datasets. Their licensing guide can help determine the743

license of a dataset.744

• For existing datasets that are re-packaged, both the original license and the license of745

the derived asset (if it has changed) should be provided.746

• If this information is not available online, the authors are encouraged to reach out to747

the asset’s creators.748

13. New Assets749

Question: Are new assets introduced in the paper well documented and is the documentation750

provided alongside the assets?751

Answer: [Yes]752

Justification: The new Julia library contains well documented code which has a clear and753

accessible API. All our code for all experiments and applications is released under the CC754

BY 4.0 licence.755

Guidelines:756

• The answer NA means that the paper does not release new assets.757

• Researchers should communicate the details of the dataset/code/model as part of their758

submissions via structured templates. This includes details about training, license,759

limitations, etc.760

• The paper should discuss whether and how consent was obtained from people whose761

asset is used.762

• At submission time, remember to anonymize your assets (if applicable). You can either763

create an anonymized URL or include an anonymized zip file.764

14. Crowdsourcing and Research with Human Subjects765

Question: For crowdsourcing experiments and research with human subjects, does the paper766

include the full text of instructions given to participants and screenshots, if applicable, as767

well as details about compensation (if any)?768

Answer: [NA]769

Justification: This work did not involve crowdsourcing nor research with human subjects.770

Guidelines:771

• The answer NA means that the paper does not involve crowdsourcing nor research with772

human subjects.773

• Including this information in the supplemental material is fine, but if the main contribu-774

tion of the paper involves human subjects, then as much detail as possible should be775

included in the main paper.776

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,777

or other labor should be paid at least the minimum wage in the country of the data778

collector.779

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human780

Subjects781

Question: Does the paper describe potential risks incurred by study participants, whether782

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)783

approvals (or an equivalent approval/review based on the requirements of your country or784

institution) were obtained?785

Answer: [NA]786

Justification: This work did not involve crowdsourcing nor research with human subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790
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• Depending on the country in which research is conducted, IRB approval (or equivalent)791

may be required for any human subjects research. If you obtained IRB approval, you792

should clearly state this in the paper.793

• We recognize that the procedures for this may vary significantly between institutions794

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the795

guidelines for their institution.796

• For initial submissions, do not include any information that would break anonymity (if797

applicable), such as the institution conducting the review.798
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