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ABSTRACT

While recent advancements in speech language modeling have achieved signif-
icant progress, they face remarkable challenges in modelling the long acoustic
sequence of neural audio codecs. Previous speech language models are com-
pelled to learn acoustic tokens through a multi-stage generation process, which
hinders their performance due to error propagation and information loss. In this
paper, we introduce Generative Pre-Trained Speech Language Model (GPST), a
hierarchical transformer designed for efficient speech language modeling. GPST
quantizes audio waveforms into two distinct types of discrete speech representa-
tions and integrates them within a hierarchical transformer architecture, allowing
for a unified one-stage generation process and enhancing Hi-Res audio generation
capabilities. By training on large corpora of raw audio waveforms in an end-to-
end unsupervised manner, GPST can generate syntactically consistent speech with
diverse speaker identity unconditionally. When provided a brief 3-second prompt,
GPST is able to produce natural and coherent personalized speech, demonstrat-
ing in-context learning abilities. Moreover, our approach can be easily extended
to spoken cross-lingual speech generation by incorporating multi-lingual seman-
tic tokens and universal acoustic tokens. Experimental results indicate that GPST
significantly outperforms the existing speech language models in terms of word
error rate, speech quality and speaker similarity.

1 INTRODUCTION

Speech quantization has emerged as a crucial technique for speech language models to generate con-
trollable, high-quality speech waveforms (Borsos et al., 2023a; Lakhotia et al., 2021; Wang et al.,
2023a; Kreuk et al., 2022; Kharitonov et al., 2023; Borsos et al., 2023b). Specifically, a speech wave-
form can be quantized into two distinct types of discrete representations: semantic tokens (Lakhotia
et al., 2021) and acoustic tokens Défossez et al. (2022); Zeghidour et al. (2021). The semantic
tokens are typically obtained by applying the K-means clustering algorithm to the continuous ac-
tivation space of self-supervised speech models (Hsu et al., 2021; Baevski et al., 2020). Notably,
GSLM (Lakhotia et al., 2021) finds that auto-regressive models trained on the semantic tokens can
capture high-level linguistic content, supporting language modeling and resynthesis (Polyak et al.,
2021). However, semantic tokens fail to retain acoustic details such as speaker identity, resulting in
suboptimal reconstruction. In contrast, acoustic tokens generated by neural codec models (Zeghi-
dour et al., 2021; Défossez et al., 2022) effectively compress speech at low bitrates while capturing
the nuances of speech waveforms. Consequently, a speech language model can maintain long-term
consistency with semantic tokens and produce high-quality synthesis with acoustic tokens.

However, neural codec models require an excessive number of codes for high-quality speech syn-
thesis. For example, EnCodec (Défossez et al., 2022) generates codec embeddings at 75 Hz for
audio waveforms at 24 kHz. Subsequently, these codec embeddings are modeled using residual
vector quantization (RVQ), wherein high quality synthesis typically requires eight or more hier-
archical quantizers with 1024 entries. Therefore, a mere 10-second waveform results in at least
75 × 8 × 10 = 6000 codes, which constitutes an excessively long sequence for language models
to learn due to the quadratic complexity with respect to the sequence length for calculating self-
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attention (Vaswani et al., 2017). Consequently, addressing the trade-off between perceptual quality
and complexity remains a core challenge for speech language models.

Recently, some methods have been proposed to address the issue of long acoustic sequences. The
acoustic tokens inherently possess a hierarchical structure because of residual vector quantization:
tokens from the preceding quantizers restore acoustic properties such as speaker identity, while the
subsequent quantizers capture finer acoustic details. Each quantizer is trained to model the resid-
uals from the previous quantizers. Recent approaches (Borsos et al., 2023a; Wang et al., 2023a;
Kharitonov et al., 2023) treat the acoustic token generation process as a multi-stage framework to
avoid learning too long sequences. AudioLM (Borsos et al., 2023a) and SPEAR-TTS (Kharitonov
et al., 2023) divide acoustic tokens into coarse and fine parts, to which two separate auto-regressive
models are applied respectively with semantic tokens as conditions. Although they reduce the se-
quence lengths that individual models need to handle, they can only generate very short fine speech
waveforms. VALL-E (Wang et al., 2023a) uses phonemes as input and acoustic tokens as output
for TTS. It conducts auto-regressive generation of the acoustic tokens from the first quantizer and
non-auto-regressive generation of the acoustic tokens from subsequent quantizers, which limits the
performance of fine acoustic token generation. These multi-stage generative models induce signif-
icant error propagation issues, which can negatively impact the overall performance. Additionally,
obstructing the information flow among hierarchical quantizers would degrade the model’s perfor-
mance, especially in Hi-Res speech generation that requires more residual quantizers.

In this work, we present Generative Pre-Trained Speech Language Model (GPST), a model that
facilitates controllable, high-quality speech generation in a single stage. Our approach combines
speech quantization with the architecture of a hierarchical transformer (Lee et al., 2022; Yu et al.,
2023). Specifically, we follow AudioLM (Borsos et al., 2023a) and discretize raw audio wave-
forms into semantic tokens and acoustic tokens. We adopt the the semantic extraction model in the
multilingual speech translation system SeamlessM4T (Barrault et al., 2023) to support multilingual
speech generation. For Hi-Res audio generation, we incorporate the neural codec model EnCodec
(Défossez et al., 2022) as the universal acoustic extraction model. The acoustic tokens are repre-
sented as a stack of D discrete codes, where D corresponds to the number of residual quantizers
in the neural codec model. GPST initially models the semantic sequence with a next token pre-
diction task, followed by modelling the acoustic sequence with the task of predicting the next D
stack codes. The semantic sequence serves as a prefix for the acoustic token as a condition. We
design a specialized hierarchical architecture to model the underlying hierarchical structure of the
acoustic sequence, which comprises of a large global transformer and a small local transformer.
The global transformer focuses on learning the high level relationships between the semantic tokens
and the stacked acoustic tokens, while the local transformer concentrates on modeling the hierar-
chical details in the stacked acoustic codes. By incorporating semantic and acoustic tokens within
one hierarchical transformer, GPST can significantly reduce the computational costs and effortlessly
learn the long-term interactions of semantic tokens and local dependencies among residual codes.
Furthermore, we propose a training technique called “local-drop” to further improve the training ef-
ficiency for Hi-Res speech generation with a large number of residual quantizers, which is typically
impractical in current speech language models. Consequently, our model can generate high-quality
and semantically coherent speeches in one stage efficiently.

Our main contributions are summarized as follows.

• We propose a novel generative pre-trained speech language model GPST that enables con-
trollable, high-quality speech generation in a single stage. By integrating semantic tokens
and acoustic tokens within a hierarchical transformer, GPST significantly reduces compu-
tational costs while efficiently learning the long-term interactions of semantic tokens and
local dependencies among residual codes simultaneously.

• We demonstrate GPST’s capacity not only in generating coherent speech unconditionally,
but also generating speech while preserving the speaker identity with only 3-second short
prompt. Experimental results reveal its superiority over existing speech language models
with only 33% parameters.

• To the best of our knowledge, GPST is the first work that supports spoken multilingual
speech generation and Hi-Res speech synthesis.
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2 RELATED WORK

2.1 DISCRETE SPEECH REPRESENTATION

Speech quantization has become a fundamental technique in speech language modeling (Borsos
et al., 2023a; Kreuk et al., 2022; Wang et al., 2023a; Kharitonov et al., 2023). Typically, a speech
waveform can be quantized into two distinct types of discrete representations: semantic tokens and
acoustic tokens. Benefiting from the development of self-supervised learning in the filed of speech
understanding, Textless NLP (Lakhotia et al., 2021; Polyak et al., 2021) proposes to model speech
based on HuBERT codes (Hsu et al., 2021) or semantic tokens, which are obtained by applying a
K-means clustering algorithm on the activation hidden space of HuBERT. GSLM (Lakhotia et al.,
2021) suggests that semantic tokens can capture local dependencies (phonetics) and global long-term
structures (language syntax and semantic content). Auto-regressive modeling of these tokens can
facilitate generating syntactically and semantically plausible speech continuations. SeamlessM4T
(Barrault et al., 2023) learns a spoken multi-lingual SSL model XLSR (Babu et al., 2021) on a large-
scale speech dataset to build a multi-lingual semantic vocabulary for speech translation. However,
semantic tokens fail to synthesize the acoustic details in speech such as the speaker identity. To
address the limitation of suboptimal reconstruction, neural audio codecs (Zeghidour et al., 2021;
Défossez et al., 2022) are proposed to quantize speech into stacked codes with residual vector quan-
tization (RVQ) at low bitrates while preserving high-quality reconstruction. These acoustic tokens
can capture the details of audio waveforms as diverse as multi-speaker speech (Borsos et al., 2023a),
music (Agostinelli et al., 2023) and audio effects (Kreuk et al., 2022). In comparison, the proposed
GPST integrates semantic tokens and acoustic tokens within one model in a single stage, effectively
unifying the strengths of them.

2.2 SPEECH LANGUAGE MODELS

Recently, speech language models have achieved remarkable progress in generating controllable,
high-quality speech waveforms. Among them, SpeechGPT (Zhang et al., 2023a) conducts further
pre-training and instruction tuning on a speech dataset of semantic tokens, empowering text-based
LLMs such as LLaMA (Touvron et al., 2023) to handle cross-modal instruction recognition and
speech dialogues. AudioLM (Borsos et al., 2023a) introduces acoustic tokens into semantic token
modeling and proposes a multi-stage generative framework to model semantic tokens, coarse acous-
tic tokens and fine acoustic tokens simultaneously, resulting in semantically coherent and expressive
speech generation. SPEAR-TTS (Kharitonov et al., 2023) extends AudioLM to the TTS task by ad-
ditionally training a text to semantic token model. SoundStrom (Borsos et al., 2023b) speeds up the
generation process of AudioLM by introducing confidence-based parallel decoding on acoustic to-
kens. VALL-E (Wang et al., 2023a) proposes a multi-stage language model for TTS with phonemes
as input and acoustic tokens as output. VALL-E X (Zhang et al., 2023b) extends VALL-E to cross-
lingual TTS tasks. However, it is based on text-based translation system, failing to handle languages
without a written system. Viola (Wang et al., 2023b) proposes a multi-task framework built upon
VALL-E to support speech recognition, speech synthesis, and translation tasks. However, they are
compelled to model the acoustic tokens in a multi-stage framework due to the high complexity of
learning long acoustic sequences. The proposed GPST avoids this limitation by proposing a hier-
archical transformer architecture that unifies the semantic tokens and stacked hierarchical acoustic
tokens within one stage.

3 GENERATIVE PRE-TRAINED SPEECH LANGUAGE MODEL (GPST)

In this section, we start with the formulation of speech language modeling, along with the modeling
challenges in speech generation. Next, we elaborate our proposed model GPST in detail, followed
by an efficient training technique for GPST to generate Hi-Res speech. Additionally, we discuss
various inference modes with in-context learning.

3.1 GENERATIVE SPEECH PRE-TRAINING

Given an audio waveform sequence x ∈ RT , we quantize it into the sequence of semantic to-
kens S = (s1, . . . , sT1) ∈ {1, . . . , Ns}T1 and acoustic tokens A = (a11, . . . , a

D
1 , . . . , aDT2

) ∈
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Figure 1: The comparison of frameworks for generative speech pre-training. (a) AudioLM is a
three-stage model. (b) VALL-E is a two-stage model. (c) GPST is a one-stage model.

{1, . . . , Na}T2×D, with T1, T2 ≪ T . The acoustic sequence is a two-dimensional matrix and has
a hierarchical structure such that aqt is derived from the residual of the previous token aq−1

t . The
learning objective of the speech language model can be auto-regressively factorized as

p(S,A) = p(S)p(A|S) =
T1∏
t=1

p(st|s<t)

D,T2∏
q,t=1

p(aqt |a
≤D
<t , a<q

t , S) (1)

A naive approach can unfold the acoustic sequence A into a one-dimensional sequence of length
T2×D in raster-scan order and feed it to a transformer model. However, T2×D is typically a large
number, and the transformer would suffer from the quadratic cost of its self-attention mechanism.

AudioLM (Borsos et al., 2023a) adopts a three-stage approach for modeling speech, as depicted in
Figure 1(a). The first stage involves auto-regressive pre-training on semantic tokens to capture the
long-term temporal structure. Next, the acoustic sequence, which is of size T2×D, is divided into a
coarse part of size T2×D′ and a fine part of size T3× (D−D′), where D′is typically much smaller
than D − D′. The fine part is a small subset of the coarse sequence to reduce the sequence length
since T2 × (D −D′) is still too large. AudioLM designs two individual transformers to model the
coarse and fine acoustic sequences separately. The learning objective is approximately factorized as

p(S,A) = p(S)p(A|S)

≈
T1∏
t=1

p(st|s<t; θS)

D′,T2∏
q1,t=1

p(aq1t |a≤D′

<t , a<q1
t , S; θC)

D,T3∏
q2=D′+1,t=1

p(aq2t |a<q2
<t , a<q2

t , a≤D′

≤T3
; θF )

(2)

where q1 ≤ D′ < q2 ≤ D and T3 < T2. The fine acoustic transformer only models a small subset
of the coarse acoustic tokens to reduce the sequence length. The learnable parameters θS , θC , θF
correspond to three independent transformers respectively.

As shown in Figure 1(b), VALL-E (Wang et al., 2023a) uses phoneme sequences derived from text
with a G2P tool as the condition, rather than semantic tokens. We slightly abuse the notation here
since phonemes serve a similar purpose with semantic tokens. VALL-E also divides the acous-
tic token generation process into two stages, where the acoustic tokens from first quantizer layer
are generated in an auto-regressive manner while the subsequent acoustic tokens are generated in
non-auto-regressively. Note that VALL-E can not generate semantically coherent sequences uncon-
ditionally since it does not model p(S). The learning objective is approximately factorized as

p(A|S) =
D,T2∏
q,t=1

p(aqt |a
≤D
<t , a<q

t , S) ≈
T2∏
t=1

p(a1t |a1<t, S; θAR)

D,T2∏
q=2,t=1

p(aqt |a
<q
≤T2

, S; θNAR) (3)

where θAR, θNAR refer to different models respectively.

The speech language models above are necessitated to split the acoustic generation into a multi-stage
process due to the considerable length of acoustic sequences.
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Figure 2: An overview of the framework. The framework is composed of three components: (1) The
semantic token extractor with a speech SSL model and K-means for speech discretization. (2) The
acoustic token extractor with the neural codec model for speech discretization. (3) The proposed
GPST model, which is composed of a global transformer and a local transformer.

3.2 EFFICIENT HIERARCHICAL TRANSFORMER

Considering the hierarchical structure underlying acoustic sequence, we propose GPST, a hierarchi-
cal transformer architecture to effectively and efficiently learn the codes extracted by EnCodec. As
shown in Figure 2, GPST is composed of (1) a semantic token extractor that integrates a speech SSL
encoder and a K-means clustering model (Barrault et al., 2023), as well as a neural codec model
EnCodec (Défossez et al., 2022), (2) a large global transformer that contextualizes representations
by applying self-attention over previous semantic tokens and stacked acoustic tokens, and (3) a
smaller local transformer that takes a contextualized hidden state from the global model, and auto-
regressively predicts subsequent acoustic codes. We adopt the setting of a large global module with
a small local module to simulate potential applications that use LLMs as the global module, which
we leave for future work. The learning objective is exactly factorized as

p(S,A) = p(S)p(A|S) =
T1∏
t=1

p(st|s<t; θglobal)

D,T2∏
q,t=1

p(aqt |a
≤D
<t , a<q

t , S; θglobal, θlocal) (4)

The end-to-end learning process is within one model in one stage, which avoids information loss
and mitigates the significant error propagation issues that can arise in a multi-stage formulation.

Global Transformer. The global transformer is an Ng layer decoder-only transformer with a causal
mask. It has two types of tokens concatenated into a single sequence as input. The first type com-
prises semantic tokens, which can capture long-term consistency. The second type is the sum of the
acoustic tokens obtained by RVQ

E(st) = Es(st) + PEg(t), for 1 ≤ t ≤ T1

E(at) =

D∑
q=1

Ea(a
q
t ) + PEg(t+ T1), for 1 ≤ t ≤ T2

ht = GlobalTransformer(s1, . . . , sT1 , a1, . . . , aT2), 1 ≤ t ≤ T1 + T2

(5)

where Es and Ea are embedding functions for semantic and acoustic tokens respectively. PEg is a
positional embedding for the global transformer. We add special tokens at the first position and the
segment boundary of the sequence to inform the model to switch the generation space.

Local Transformer. The local transformer consists of Nl layers. Given the contextualized hidden
states ht from the global transformer, the local transformer auto-regressively predicts D acoustic
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codes a1t , . . . , a
D
t at position t

E(aqt ) = Ea(a
q
t ) + PEl(q), 1 ≤ q ≤ D

at = LocalTransformer(ht, a
1
t , . . . , a

D
t )

(6)

where PEl is a positional embedding for the local transformer, which is shared across position t.
GPST is trained to minimize the negative log-likelihood:

L =

T1∑
t=1

− log p(st|s<t; θglobal)−
T2∑
t=1

D∑
q=1

log p(aqt |a
<q
t , S; θglobal, θlocal) (7)

Local-drop. The number of residual quantizers increases when generating Hi-Res speech, which
would cause high computation complexity. Since the local transformer only models individual stacks
of acoustic tokens, it has an input shape of (Batch × T2, D). The dimension of acoustic sequence
length T2 is unfolded to the first batch dimension, which means the stack of codes are not attended by
self-attention. We propose a technique named local-drop to further improve the training efficiency
of GPST. We randomly drop some tokens a≤D

t to decrease the size of the first dimension.

3.3 INFERENCE

Speech language models can generate semantically coherent speech for unseen speakers with in-
context learning, which is an emerging capability of auto-regressive pre-trained language models
like GPT (Brown et al., 2020) for zero shot learning. Suppose we have the semantic tokens Sp and
the acoustic tokens Ap from the prompt, the semantic tokens St and the acoustic tokens At from the
target. Based on the usage of the prompt, we can categorize the generation mode into four cases.

Unconditional Generation. In this setting, we unconditionally generate the semantic tokens, which
are subsequently used as the condition for acoustic generation. The randomly sampled semantic
sequence can generate diverse, syntactically and semantically consistent linguistic content. The
acoustic tokens vary in speaker identity, prosody with the semantic content serving as a guideline.
We provide some transcription cases in Appendix A.1.

Semantic to Acoustic. In this setting, we use the ground-truth semantic tokens St as condition for
acoustic generation, which is similar to the task of TTS. The generated speech preserves the content
of the spoken sentence while varying in speaker identity. We also follow SPEAR-TTS (Kharitonov
et al., 2023) and train a toy decoder-only transformer named GPST-TTS on the LibriSpeech 960h
dataset to generate semantic tokens with text as condition, supporting the TTS task.

Speaker Identity Transfer. In this setting, we are interested in the task of voice conversion that
transfers the speaker identity of the prompt speech into the target speech. The sequence input to
the model is concatenated in the following order [Sp, St, Ap]. GPST is encouraged to generate
subsequent acoustic tokens that share the speaker identity with Ap while remaining consistent with
the content of St. We find that directly concatenating linguistically inconsistent Sp and St together
would cause unstable generation around the interface boundary. To address this issue, we propose
artificially inserting a very short silence excerpt (0.1 second) between Sp and St to explicitly break
the linguistic continuation. In this way, the model would not struggle to mitigate the discontinuity
of Sp and St and is able to generate stable speeches.

Acoustic Continuations. Different from the speaker identity transfer mode that the prompt and
target are from different utterance, the prompt of the acoustic continuations mode is the first 3
seconds of the target. The model is asked to generate the acoustic continuations after 3 seconds.

3.4 SPOKEN MULTILINGUAL LEARNING

We adopt the multi-lingual XLSR encoder from SeamlessM4T (Barrault et al., 2023) as the semantic
token extractor. The semantic vocabulary of SeamlessM4T naturally supports the multi-lingual
speech representation. For acoustic tokens, we adopt the pre-trained neural audio codec model
EnCodec (Défossez et al., 2022) as the acoustic token extractor. Although EnCodec is trained on
the English data, we find that it can synthesize other languages as well. We take it as a universal
acoustic extractor.
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3.5 EFFICIENCY ANALYSIS

Transformer (Vaswani et al., 2017) is criticized for the quadratic complexity with respect to se-
quence lengths during self-attention calculations. Considering an acoustic matrix A of size T2 ×D,
the naive approach of unfolding it into a one-dimensional sequence like AudioLM would result
in a computational complexity of O(NT 2

2D
2), where N is the number of transformer layers. In

contrast, GPST has Ng global layers and Nl local layers, with the global transformer dealing with a
sequence length of T2 and the local transformer with a sequence length of D. Suppose N = Ng+Nl

for simplicity. The overall computational complexity for GPST is O(NgT
2
2 + NlT2D

2), which is
smaller than O(NT 2

2D
2). Furthermore, self-attention is not the main computational cost factor of

large transformers. The embedding size and the dimension of the feedforward network dominate
the model’s overall computational cost (Kaplan et al., 2020). A forward pass with a large trans-
former with m non-embedding parameters on a sequence of length T2 uses roughly 2mT2 FLOPS.
Therefore, for GPST with a global dimension mg and a local dimension ml, the required FLOPS is
2T2(mg + mlD). Since ml is typically much smaller than mg , the FLOPS for GPST is approxi-
mately 2T2mg , which is D times faster than the normal transformer with 2T2Dmg FLOPS.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

4.1.1 DATASETS

We follow Borsos et al. (2023a) and use LibriLight (Kahn et al., 2020) as the training data which
contains 60K hours of unlabelled speech in English. We randomly crop 10 seconds out of each audio
clip for training. We choose LibriSpeech test-clean dataset (Panayotov et al., 2015) for evaluation
since there is no speaker overlap with LibriLight. Following Borsos et al. (2023a); Wang et al.
(2023a), we select the samples with lengths between 4 and 10 seconds as the test dataset. For
the multi-lingual task, we test in a bi-lingual setting with the tone language Chinese and non-tone
language English for simplicity. We choose LibriSpeech 960h as the English training data and
Aishell-2 1000h (Du et al., 2018) as the Chinese training data, both of which share similar sizes. All
experiments are conducted three times and the average scores are reported.

We leverage the XLSR v2 (Babu et al., 2021) model released by SeamlessM4T (Barrault et al., 2023)
to extract semantic tokens, resulting in a rate of 50 tokens per second. We remove the consecutive
duplicate semantic tokens since such duplicates would cause the generation failures (Lakhotia et al.,
2021). We adopt the neural audio codec model EnCodec (Défossez et al., 2022) to extract acoustic
tokens, which produce codes at 75 Hz. We choose 8 hierarchical quantizers as the default setting
as VALL-E, leading to 75 × 8 = 600 tokens per second. We also test a larger bitrate setting for
GPST-Hi-Res with 16 quantizers, which is not applicable to other baselines.

4.1.2 IMPLEMENTATION DETAILS

Each layer of the global transformer in GPST has 16 attention heads, an embedding size of 1024
with a feed-forward layer dimension of 4096. Each layer of the local transformer is smaller than
the global transformer, with 8 attention heads, an embedding size of 512, and a feed-forward layer
dimension of 2048. We set the probability of a local drop to 0.5 only for Hi-Res generation. We
provide more training details in Appendix A.2.

4.1.3 BASELINES

We choose speech language models GSLM (Lakhotia et al., 2021), AudioLM (Borsos et al., 2023a)
and VALL-E Wang et al. (2023a) as baselines, together with YourTTS (Casanova et al., 2022) as the
TTS baseline. We notice that SoundStorm (Borsos et al., 2023b) improves the multi-stage acoustic
generation. However, SoundStorm takes duplicate semantic tokens as the condition, which is an in-
appropriate setting for other baselines since all the other models remove the consecutive repetitions,
and duplicate semantic tokens would reduce the difficulty of acoustic generation. Also, duplicate
semantic tokens would cause failures in the generation of semantic tokens (Lakhotia et al., 2021)
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Table 1: Evaluation results of speech generation on LibriSpeech test-clean dataset. The WER result
of AudioLM is obtained by a Conformer Transducer model, while others are obatined by HuBERT-
Large finetuned on LibriSpeech 960h. AudioLM and SpearTTS use the neural codec model Sound-
Stream (Zeghidour et al., 2021) while VALL-E and GPST use Encodec (Défossez et al., 2022).

Model WER ↓ SPK ↑ DNSMOS↑ # codec # params

GroundTruth 2.2 0.754 -

Semantic to Acoustic
GSLM (Lakhotia et al., 2021) 12.4 - - - -
AudioLM⋆ (Borsos et al., 2023a) 6.0 - - 12 300M+300M
GPST-TTS (ours) 4.3 - - 8 182M+190M
GPST (ours) 4.0 - - 8 190M
GPST-Hi-Res (ours) 6.4 - - 16 207M

Speaker Identity Transfer
YourTTS (Casanova et al., 2022) 7.7 0.337 - - -
AudioLM (Borsos et al., 2023a) - 0.460 - 12 300M+300M
SPEAR-TTS (Kharitonov et al., 2023) - 0.560 3.68 3 97M
VALL-E (Wang et al., 2023a) 5.9 0.580 3.87 8 165M+172M
GPST (ours) 4.2 0.605 3.89 8 190M
GPST-Hi-Res (ours) 5.3 0.587 4.02 16 207M

Acoustic Continuations
VALL-E (Wang et al., 2023a) 3.8 0.508 - 8 165M+172M
GPST (ours) 2.8 0.536 - 8 190M
GPST-Hi-Res (ours) 3.5 0.529 - 16 207M

Table 2: Evaluation results on multi-lingual
datasets. We use WER for En and CER for
Zh.

WER/CER SPK

Zh-GroundTruth 26.4 0.453

En 4.1 0.501
Zh 30.2 0.430

Zero-Shot Corss-Lingual Transfer
Zh 33.3 0.417

Table 3: Ablation study of the model architec-
ture. The model is tested in Acoustic Continu-
ations inference mode.

Ng +Nl WER ↓ SPK ↑ # params

11 + 4 3.2 0.531 190M
10 + 8 3.1 0.532 190M
9 + 12 2.8 0.536 190M

that limits the application in speech generation Kharitonov et al. (2023) and resynthesis for speech
translation system (Lee et al., 2021). Therefore, we do not take SoundStorm for comparison here.

4.1.4 EVALUATION METRICS

The synthesized speech should align with the semantic input and match the voice of the prompt.
Therefore, we are interested in the following metrics for speech language models: (1) word error rate
(WER), (2) speaker similarity (SPK), and (3) speech quality (DNSMOS). We employ the HuBERT-
Large (Hsu et al., 2021) model as the ASR model for English to calculate WER and Wav2Vec2-
XLSR-53 (Baevski et al., 2020) for Chinese to calculate CER. We take the publicly available speaker
verification model WavLM-TDNN (Chen et al., 2022) to evaluate the speaker similarity between the
prompt and the synthesized speech. We use a MOS estimator DNSMOS (Reddy et al., 2021) to
estimate the perceived audio quality of the generated samples. Since the baselines are not open-
sourced, we compare DNSMOS with the examples provided on VALL-E’s demo page for fairness.
Appendix A.3 lists all the evaluation tools.

4.2 RESULTS AND ANALYSIS

LibriSpeech Evaluation. Table 1 summarizes the results of different inference modes. Compared
to the baseline models, GPST achieves the best results in terms of WER, SPK, and DNSMOS. In
the semantic to acoustic mode, GPST reaches the lowest WER score with only 33% parameters of

8
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(a) (b)

Figure 3: The comparison of mel-spectrograms generated by GPST with (a) 6kbps and (b) 12kbps
(Hi-Res). The harmonic energy in the high-frequency of 12kbps is richer.

AudioLM. The quality of semantic tokens is constrained due to the use of a toy model for text to
semantic generation, resulting in a minor performance drop of GPST-TTS. We expect that more
training data would further improve the TTS performance. We also notice a performance drop
in GPST-Hi-Res, which indicates that Hi-Res speech generation, with more quantizers, is still a
tough task for speech language models. In the speaker identity transfer mode, GPST achieves the
best scores in all the metrics, validating that GPST can better transfer the speaker identity while
maintaining the spoken content. It is worth noting that GPST-Hi-Res gets better DNSMOS than
GPST, largely because more quantizers can preserve more acoustic details.

Multilingual Evaluation. Table 2 shows the results of GPST on multi-lingual datasets. Although
trained on a small dataset, GPST demonstrates its generalization ability in multi-lingual settings.
Since the Aishell-2 Chinese dataset is noisy, the CER score is low even for the GroundTruth. How-
ever, GPST can still achieve a score close to the GroundTruth, which proves the robustness of the
model. We also design a Zero-Shot Cross-Lingual Transfer for Multi-lingual settings. We adopt the
model trained on English LibriLight only, while inference is conducted on Chinese Aishell-2 with
Acoustic Continuations mode without any further training. GPST shows the performance close to
the model especially trained on Chinese Aishell-2, which demonstrates GSPT’s support for spoken
multi-lingual tasks and its strong in-context learning capability of speech language models.

Effect of Model Architecture Settings: We conduct an ablation study on the number of layers for
the global and local transformer. To match the parameters of every stage in AudioLM or VALL-E
for comparison, both of which consist of a global transformer with 12 layers, we adjust the total
parameters of the global transformer and local transformer in GSPT to be approximately equal.
Since the parameters of one global transformer layer equals four local transformer layers, we adopt
the setting of (12 − x) × Ng + 4 × x × Nl, where x ∈ [1, 11]. Table 3 shows that increasing the
layer number of the local transformer helps GPST learn acoustic tokens better, further improving
the performance of acoustic generation.

On the Hi-Res Quality. We plot the mel-spectrograms of the same speech generated by GPST
with 6kbps (8 quantizers) and 12kbps (16 quantizers) respectively in Figure 3. Generally, richer
harmonic energy in the high-frequency regions indicates higher speech quality. As observed, the
speech generated by GPST with more quantizers exhibits more details in the mel-spectrogram.

5 CONCLUSION

We introduce GPST, a generative pre-trained speech language model that integrates semantic tokens
and acoustic tokens within a hierarchical transformer architecture, allowing for a unified one-stage
generation process. GPST demonstrates its capability to generate coherent speech and speaker iden-
tity transfer with in-context learning. Furthermore, we show that GPST can generate Hi-Res speech
and spoken multi-lingual speech as well.

9
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6 REPRODUCIBILITY AND ETHICS STATEMENT

To ensure the work is as reproducible as possible, all the tools we adopt in the paper are open-
sourced for easy reproduction and the links are listed in Appendix A.3. We have described the
implementation details in Section 4.1 and Appendix A.2.

GPST can be directly attached to the Multilingual Multimodal Machine Translation system (Bar-
rault et al., 2023), empowering the system to generate human-like and personalized speech with a
brief 3-second sample speech. However, GPST also presents new risks, such as the potential for
malicious actors to impersonate public figures or commit fraud. To mitigate such risks, it is possible
to watermark the generated speech that is invisible to humans but algorithmically detectable.
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A APPENDIX

A.1 UNCONDITIONAL GENERATION CASES

Table 4: Transcriptions of some unconditional generation samples.

SO WE ARRIVED DRIVING ON FURTHER BUT THEN THE WORSE PRESENTS
RECEIVED HIM TO BED END OF CHAPTER SEVENTEEN THE RECORDING
BY GRACE SANDERS

SPEECH OF THE PRESIDENT IS WITHOUT DIFFICULTY AND WITHDRAWAL
AND FROM THAT DEATH OF THE OFFICER HIS KING SAYS BEFORE HE
WENT UNTO THE PAPERS AND THE

IS FAIR IN THE BACK ROOM AND BETTER WIND TO THE FARTHER SEA
THAN THIS BUT STILL AS TO THE SEA SHE FELT HIM IN CRY AND
THEN SAID THAT MAN COMING

TO THE SAME SOULS AS TO STAND ONWARDS WE SAW HER SUNSET FORTH
TO OUR HANDS TOGETHER WITH ONE ANOTHER THE TALES OF PRAYER
AND TALENTS INSTINCTIVE

THE SIZE OF THE BRANCH OF THE WINTER UNTIL IT WAS TOLD THAT
MOSES CALLED POULTRY CORPORATION TO THE FEMALE SO THAT ALL
THE SAVAGES ENBODIES IN THE BODIES OR IN THE BLISS IF

A.2 IMPLEMENTATION DETAILS

The models are trained on LibriLight using 16 NVIDIA TESLA V100 32GB GPUs with a batch
size of 64 for 1M steps, which takes about 1 week. The multi-lingual models are trained for 400K
steps. We use the Adam optimizer with a learning rate of 0.0005 and an inverse square root learning
rate decay schedule with 10K warm-up steps. To prevent over-fitting, we use label smoothing of 0.1
for training.

A.3 OPEN-SOURCED TOOLS

ASR HuBERT-Large: https://github.com/facebookresearch/fairseq/tree/
main/examples/hubert

ASR Wav2Vec2-Large-XLSR-53-Chinese-zh-cn-gpt: https://huggingface.co/
ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt

Speaker verification WavLM-TDNN: https://github.com/microsoft/UniSpeech/
tree/main/downstreams/speaker_verification

DNSMOS: https://github.com/microsoft/DNS-Challenge/tree/master/
DNSMOS

12

https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
https://huggingface.co/ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt
https://huggingface.co/ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/DNS-Challenge/tree/master/DNSMOS
https://github.com/microsoft/DNS-Challenge/tree/master/DNSMOS


Under review as a conference paper at ICLR 2024

VALL-E demo page more samples: https://www.microsoft.com/en-us/research/
project/vall-e-x/vall-e

SeamlessM4T: https://github.com/facebookresearch/seamless_
communication

EnCodec: https://github.com/facebookresearch/encodec
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