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Abstract

Bandit algorithms are increasingly used in real-world sequential decision-making
problems. Associated with this is an increased desire to be able to use the resulting
datasets to answer scientific questions like: Did one type of ad lead to more
purchases? In which contexts is a mobile health intervention effective? However,
classical statistical approaches fail to provide valid confidence intervals when used
with data collected with bandit algorithms. Alternative methods have recently
been developed for simple models (e.g., comparison of means). Yet there is a
lack of general methods for conducting statistical inference using more complex
models on data collected with (contextual) bandit algorithms; for example, current
methods cannot be used for valid inference on parameters in a logistic regression
model for a binary reward. In this work, we develop theory justifying the use of
M-estimators—which includes estimators based on empirical risk minimization as
well as maximum likelihood—on data collected with adaptive algorithms, including
(contextual) bandit algorithms. Specifically, we show that M-estimators, modified
with particular adaptive weights, can be used to construct asymptotically valid
confidence regions for a variety of inferential targets.

1 Introduction

Due to the need for interventions that are personalized to users, (contextual) bandit algorithms are
increasingly used to address sequential decision making problems in health-care [Yom-Tov et al.,
2017, Liao et al., 2020], online education [Liu et al., 2014, Shaikh et al., 2019], and public policy
[Kasy and Sautmann, 2021, Caria et al., 2020]. Contextual bandits personalize, that is, minimize
regret, by learning to choose the best intervention in each context, i.e., the action that leads to the
greatest expected reward. Besides the goal of regret minimization, another critical goal in these
real-world problems is to be able to use the resulting data collected by bandit algorithms to advance
scientific knowledge [Liu et al., 2014, Erraqabi et al., 2017]. By scientific knowledge, we mean
information gained by using the data to conduct a variety of statistical analyses, including confidence
interval construction and hypothesis testing. While regret minimization is a within-experiment
learning objective, gaining scientific knowledge from the resulting adaptively collected data is
a between-experiment learning objective, which ultimately helps with regret minimization between
deployments of bandit algorithms. Note that the data collected by bandit algorithms are adaptively

collected because previously observed contexts, actions, and rewards are used to inform what actions
to select in future timesteps.
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There are a variety of between-experiment learning questions encountered in real-life applications of
bandit algorithms. For example, in real-life sequential decision-making problems there are often a
number of additional scientifically interesting outcomes besides the reward that are collected during
the experiment. In the online advertising setting, the reward might be whether an ad is clicked on, but
one may be interested in the outcome of amount of money spent or the subsequent time spent on the
advertiser’s website. If it was found that an ad had high click-through rate, but low amounts of money
was spent after clicking on the ad, one may redesign the reward used in the next bandit experiment.
One type of statistical analysis would be to construct confidence intervals for the relative effect of the
actions on multiple outcomes (in addition to the reward) conditional on the context. Furthermore,
due to engineering and practical limitations, some of the variables that might be useful as context are
often not accessible to the bandit algorithm online. If after-study analyses find some such contextual
variables to have sufficiently strong influence on the relative usefulness of an action, this might lead
investigators to ensure these variables are accessible to the bandit algorithm in the next experiment.

As discussed above, we can gain scientific knowledge from data collected with (contextual) ban-
dit algorithms by constructing confidence intervals and performing hypothesis tests for unknown
quantities such as the expected outcome for different actions in various contexts. Unfortunately,
standard statistical methods developed for i.i.d. data fail to provide valid inference when applied to
data collected with common bandit algorithms. For example, assuming the sample mean of rewards
for an arm is approximately normal can lead to unreliable confidence intervals and inflated type-1
error; see Section 3.1 for an illustration. Recently statistical inference methods have been developed
for data collected using bandit algorithms [Hadad et al., 2019, Deshpande et al., 2018, Zhang et al.,
2020]; however, these methods are limited to inference for parameters of simple models. There is a
lack of general statistical inference methods for data collected with (contextual) bandit algorithms in
more complex data-analytic settings, including parameters in non-linear models for outcomes; for
example, there are currently no methods for constructing valid confidence intervals for the parameters
of a logistic regression model for binary outcomes or for constructing confidence intervals based on
robust estimators like minimizers of the Huber loss function.

In this work we show that a wide variety of estimators which are frequently used both in science and
industry on i.i.d. data, namely, M-estimators [Van der Vaart, 2000], can be used to conduct valid
inference on data collected with (contextual) bandit algorithms when adjusted with particular adaptive
weights, i.e., weights that are a function of previously collected data. Different forms of adaptive
weights are used by existing methods for simple models [Deshpande et al., 2018, Hadad et al., 2019,
Zhang et al., 2020]. Our work is a step towards developing a general framework for statistical
inference on data collected with adaptive algorithms, including (contextual) bandit algorithms.

2 Problem Formulation

We assume that the data we have after running a contextual bandit algorithm is comprised of contexts
{Xt}

T
t=1, actions {At}

T
t=1, and primary outcomes {Yt}

T
t=1. T is deterministic and known. We

assume that rewards are a deterministic function of the primary outcomes, i.e., Rt = f(Yt) for
some known function f . We are interested in constructing confidence regions for the parameters
of the conditional distribution of Yt given (Xt, At). Below we consider T ! 1 in order to
derive the asymptotic distributions of estimators and construct asymptotically valid confidence
intervals. We allow the action space A to be finite or infinite. We use potential outcome notation
[Imbens and Rubin, 2015] and let {Yt(a) : a 2 A} denote the potential outcomes of the primary
outcome and let Yt := Yt(At) be the observed outcome. We assume a stochastic contextual
bandit environment in which {Xt, Yt(a) : a 2 A}

i.i.d.
⇠ P 2 P for t 2 [1 : T ]; the contextual bandit

environment distribution P is in a space of possible environment distributions P. We define the history
Ht := {Xt0 , At0 , Yt0}

t
t0=1 for t � 1 and H0 := ;. Actions At 2 A are selected according to policies

⇡ := {⇡t}t�1, which define action selection probabilities ⇡t(At, Xt,Ht�1) := P (At|Ht�1, Xt).
Even though the potential outcomes are i.i.d., the observed data {Xt, At, Yt}

T
t=1 are not because the

actions are selected using policies ⇡t which are a function of past data, Ht�1. Non-independence of
observations is a key property of adaptively collected data.

We are interested in constructing confidence regions for some unknown ✓⇤(P) 2 ⇥ ⇢ Rd, which is a
parameter of the conditional distribution of Yt given (Xt, At). This work focuses on the setting in
which we have a well-specified model for Yt. Specifically, we assume that ✓⇤(P) is a conditionally
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maximizing value of criterion m✓, i.e., for all P 2 P,
✓⇤(P) 2 argmax

✓2⇥
EP [m✓(Yt, Xt, At)|Xt, At] w.p. 1. (1)

Note that ✓⇤(P) does not depend on (Xt, At) and it is an implicit modelling assumption that such a
✓⇤(P) exists for a given m✓. Note that this formulation includes semi-parametric models, e.g., the
model could constrain the conditional mean of Yt to be linear in some function of the actions and
context, but allow the residuals to follow any mean-zero distribution, including ones that depend on
the actions and/or contexts.

To estimate ✓⇤(P), we build on M-estimation [Huber, 1992], which classically selects the estimator ✓̂
to be the ✓ 2 ⇥ that maximizes the empirical analogue of Equation (1):

✓̂T := argmax
✓2⇥

1

T

TX

t=1

m✓(Yt, Xt, At). (2)

For example, in a classical linear regression setting with |A| < 1 actions, a natural choice for m✓ is
the negative of the squared loss function, m✓(Yt, Xt, At) = �(Yt �X>

t ✓At)
2. When Yt is binary,

a natural choice is instead the negative log-likelihood function for a logistic regression model, i.e.,
m✓(Yt, Xt, At) = �[YtX>

t ✓At � log(1 + exp(X>

t ✓At))]. More generally, m✓ is commonly chosen
to be a log-likelihood function or the negative of a robust loss function such as the Huber loss. If the
data, {Xt, At, Yt}

T
t=1, were independent across time, classical approaches could be used to prove

the consistency and asymptotic normality of M-estimators [Van der Vaart, 2000]. However, on data
collected with bandit algorithms, standard M-estimators like the ordinary least-squares estimator fail
to provide valid confidence intervals [Hadad et al., 2019, Deshpande et al., 2018, Zhang et al., 2020].
In this work, we show that M-estimators can still be used to provide valid statistical inference on
adaptively collected data when adjusted with well-chosen adaptive weights.

3 Adaptively Weighted M-Estimators

We consider a weighted M-estimating criteria with adaptive weights Wt 2 �(Ht�1, Xt, At) given

by Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
. Here {⇡sta

t }t�1 are pre-specified stabilizing policies that do not depend
on data {Yt, Xt, At}t�1. A default choice for the stabilizing policy when the action space is of size
|A| < 1 is just ⇡sta

t (a, x) = 1/|A| for all x, a, and t; we discuss considerations for the choice of
{⇡sta

t }
T
t=1 in Section 3.3. We call these weights square-root importance weights because they are the

square-root of the standard importance weights [Hammersley, 2013, Wang et al., 2017]. Our proposed
estimator for ✓⇤(P), ✓̂T , is the maximizer of a weighted version of the M-estimation criterion of
Equation (2):

✓̂T := argmax
✓2⇥

1

T

TX

t=1

Wtm✓(Yt, Xt, At) =: argmax
✓2⇥

MT (✓).

Note that MT (✓) defined above depends on both the data {Xt, At, Yt}
T
t=1 and weights {Wt}

T
t=1. We

provide asymptotically valid confidence regions for ✓⇤(P) by deriving the asymptotic distribution
of ✓̂T as T ! 1 and by proving that the convergence in distribution is uniform over P 2 P. Such
convergence allows us to construct a uniformly asymptotically valid 1� ↵ level confidence region,
CT (↵), for ✓⇤(P), which is a confidence region that satisfies

lim inf
T!1

inf
P2P

PP,⇡ (✓
⇤(P) 2 CT (↵)) � 1� ↵. (3)

If CT (↵) were not uniformly valid, then there would exist an ✏ > 0 such that for every sample size T ,
CT (↵)’s coverage would be below 1�↵� ✏ for some worst-case PT 2 P. Confidence regions which
are asymptotically valid, but not uniformly asymptotically valid, fail to be reliable in practice [Leeb
and Pötscher, 2005, Romano et al., 2012]. Note that on i.i.d. data it is generally straightforward to
show that estimators that converge in distribution do so uniformly; however, as discussed in Zhang
et al. [2020] and Appendix D, this is not the case on data collected with bandit algorithms.

To construct uniformly valid confidence regions for ✓⇤(P) we prove that ✓̂T is uniformly asymptoti-
cally normal in the following sense:

⌃T (P)�1/2M̈T (✓̂T )
p

T (✓̂T � ✓⇤(P))
D
! N (0, Id) uniformly over P 2 P, (4)
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where M̈T (✓) := @2

@2✓MT (✓) and ⌃T (P) := 1
T

PT
t=1 EP,⇡sta

t

⇥
ṁ✓⇤(P)(Yt, Xt, At)⌦2

⇤
. We define

ṁ✓ := @
@✓m✓. Similarly we define respectively m̈✓ and ...

m✓ as the second and third partial derivatives
of m✓ with respect to ✓. For any vector z we define z⌦2 := zz>.

3.1 Intuition for Square-Root Importance Weights

The critical role of the square-root importance weights Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
is to adjust for

instability in the variance of M-estimators due to the bandit algorithm. These weights act akin to
standard importance weights when squared and adjust a key term in the variance of M-estimators
from depending on adaptive policies {⇡t}

T
t=1, which can be ill-behaved, to depending on the pre-

specified stabilizing policies {⇡sta
t }

T
t=1. See Zhang et al. [2020] and Deshpande et al. [2018] for more

discussion of the ill-behavior of the action selection probabilities for common bandit algorithms,
which occurs particularly when there is no unique optimal policy.

As an illustrative example, consider the least-squares estimators in a finite-arm linear contextual
bandit setting. Assume that EP [Yt|Xt, At = a] = X>

t ✓⇤a(P) w.p. 1. We focus on estimating ✓⇤a(P)
for some a 2 A. The least-squares estimator corresponds to an M-estimator with m✓a(Yt, Xt, At) =
� At=a(Yt � X>

t ✓a)2. The adaptively weighted least-squares (AW-LS) estimator is ✓̂AW-LS
T,a :=

argmax✓a{�
PT

t=1 Wt At=a(Yt � X>

t ✓a)2}. For simplicity, suppose that the stabilizing policy
does not change with t and drop the index t to get ⇡sta. Taking the derivative of this criterion, we get
0 =

PT
t=1 Wt At=aXt

�
Yt �X>

t ✓̂AW-LS
T,a

�
, and rearranging terms gives

1
p
T

TX

t=1

Wt At=aXtX
>

t

⇣
✓̂AW-LS
T,a � ✓⇤a(P)

⌘
=

1
p
T

TX

t=1

Wt At=aXt

�
Yt �X>

t ✓⇤a(P)
�
. (5)

Note that the right hand side of Equation (5) is a martingale difference sequence with respect to
history {Ht}

T
t=0 because EP,⇡[Wt At=a(Yt �X>

t ✓⇤a(P))|Ht�1] = 0 for all t; by law of iterated
expectations and since Wt 2 �(Ht�1, Xt, At), EP,⇡[Wt At=a(Yt �X>

t ✓⇤a(P))|Ht�1] equals

EP

⇥
Wt⇡t(a,Xt,Ht�1)EP

⇥
Yt �X>

t ✓⇤a(P)|Ht�1, Xt, At = a
⇤ ��Ht�1

⇤

=
(i)

EP

⇥
Wt⇡t(a,Xt,Ht�1)EP

⇥
Yt �X>

t ✓⇤a(P)|Xt, At = a
⇤ ��Ht�1

⇤
=
(ii)

0.

(i) holds by our i.i.d. potential outcomes assumption. (ii) holds since EP [Yt|Xt, At = a] =
X>

t ✓⇤a(P). We prove that (5) is uniformly asymptotically normal by applying a martingale central
limit theorem (Appendix B.4). The key condition in this theorem is that the conditional vari-
ance converges uniformly, for which it is sufficient to show that the conditional covariance of
Wt At=a

�
Yt �X>

t ✓⇤a(P)
�

given Ht�1 equals some positive-definite matrix ⌃(P) for every t, i.e.,

EP,⇡

h
W 2

t At=aXtX
>

t

�
Yt �X>

t ✓⇤a(P)
�2 ��Ht�1

i
= ⌃(P). (6)

By law of iterated expectations, EP,⇡[W 2
t At=aXtX>

t (Yt �X>

t ✓⇤a(P))2
��Ht�1] equals

EP


EP,⇡


⇡sta(At, Xt)

⇡t(At, Xt,Ht�1)
At=aXtX

>

t

�
Yt �X>

t ✓⇤a(P)
�2
����Ht�1, Xt

� ����Ht�1

�
(7)

=
(a)

EP


EP,⇡sta


At=aXtX

>

t

�
Yt �X>

t ✓⇤a(P)
�2
����Ht�1, Xt

� ����Ht�1

�

=
(b)

EP


EP,⇡sta


At=aXtX

>

t

�
Yt �X>

t ✓⇤a(P)
�2
����Xt

� ����Ht�1

�

=
(c)

EP


EP,⇡sta


At=aXtX

>

t

�
Yt �X>

t ✓⇤a(P)
�2
����Xt

��

=
(d)

EP,⇡sta [ At=aXtX
>

t (Yt �X>

t ✓⇤a(P))2] =: ⌃(P).

Above, (a) holds because the importance weights change the sampling measure from the adaptive
policy ⇡t to the pre-specified stabilizing policy ⇡sta. (b) holds by our i.i.d. potential outcomes
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assumption and because ⇡sta is a pre-specified policy. (c) holds because Xt does not depend on Ht�1

by our i.i.d. potential outcomes assumption. (d) holds by the law of iterated expectations. Note
that ⌃(P) does not depend on t because ⇡sta is not time-varying. In contrast, without the adaptive
weighting, i.e., when Wt = 1, the conditional covariance of At=a

�
Yt �X>

t ✓⇤a(P)
�

on Ht�1 is a
random variable, due to the adaptive policy ⇡t.

In Figure 1 we plot the empirical distributions of the z-statistic for the least-squares estimator both
with and without adaptive weighting. We consider a two-armed bandit with At 2 {0, 1}. Let
✓⇤1(P) := EP [Yt(1)] and m✓1(Yt, At) := �At(Yt � ✓1)2. The unweighted version, i.e., the ordinary
least-squares (OLS) estimator, is ✓̂OLS

T,1 := argmax✓1
1
T

PT
t=1 m✓1(Yt, At). The adaptively weighted

version is ✓̂AW-LS
T,1 := argmax✓1

1
T

PT
t=1 Wtm✓1(Yt, At). We collect data using Thompson Sampling

and use a uniform stabilizing policy where ⇡sta(1) = ⇡sta(0) = 0.5. It is clear that the least-squares
estimator with adaptive weighting has a z-statistic that is much closer to a normal distribution.

Figure 1: The empirical distributions of the weighted and unweighted least-squares estimators for
✓⇤1(P) := EP [Yt(1)] in a two arm bandit setting where EP [Yt(1)] = EP [Yt(0)] = 0. We perform
Thompson Sampling with N (0, 1) priors, N (0, 1) errors, and T = 1000. Specifically, we plotqPT

t=1 At(✓̂OLS
T,1 � ✓⇤1(P)) on the left and

⇣
1

p
T

PT
t=1

q
0.5

⇡t(1)
At

⌘
(✓̂AW-LS

T,1 � ✓⇤1(P)) on the right.

The square-root importance weights are a form of variance stabilizing weights, akin to those
introduced in Hadad et al. [2019] for estimating means and differences in means on data col-
lected with multi-armed bandits. In fact, in the special case that |A| < 1 and �(Xt, At) =
[ At=1, At=2, ..., At=|A|]

>, the adaptively weighted least-squares estimator is equivalent to the
weighted average estimator of Hadad et al. [2019]. See Section 4 for more on Hadad et al. [2019].

3.2 Asymptotic Normality and Confidence Regions

We now discuss conditions under which the adaptively weighted M-estimators are asymptotically
normal in the sense of Equation (4). In general, our conditions differ from those made for standard
M-estimators on i.i.d. data because (i) the data is adaptively collected, i.e., ⇡t can depend on Ht�1

and (ii) we ensure uniform convergence over P 2 P, which is stronger than guaranteeing convergence
pointwise for each P 2 P.

Condition 1 (Stochastic Bandit Environment). Potential outcomes {Xt, Yt(a) : a 2 A}
i.i.d.
⇠ P 2 P

over t 2 [1 : T ].

Condition 1 implies that Yt is independent of Ht�1 given Xt and At, and the conditional distribution
Yt | Xt, At is invariant over time. Also note that action space A can be finite or infinite.
Condition 2 (Differentiable). The first three derivatives of m✓(y, x, a) with respect to ✓ exist for

every ✓ 2 ⇥, every a 2 A, and every (x, y) in the joint support of {P : P 2 P}.

Condition 3 (Bounded Parameter Space). For all P 2 P, ✓⇤(P) 2 ⇥, a bounded open subset of Rd
.

Condition 4 (Lipschitz). There exists some real-valued function g such that (i)

sup
P2P,t�1 EP,⇡sta

t
[g(Yt, Xt, At)2] is bounded and (ii) for all ✓, ✓0 2 ⇥,

|m✓(Yt, Xt, At)�m✓0(Yt, Xt, At)|  g(Yt, Xt, At)k✓ � ✓0k2.
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Conditions 3 and 4 together restrict the complexity of the function m in order to ensure a martingale
law of large numbers result holds uniformly over functions {m✓ : ✓ 2 ⇥}; this is used to prove the
consistency of ✓̂T . Similar conditions are commonly used to prove consistency of M-estimators based
on i.i.d. data, although the boundedness of the parameter space can be dropped when m✓ is a concave
function of ✓ for all Yt, At, Xt (as it is in many canonical examples such as least squares) [Van der
Vaart, 2000, Engle, 1994, Bura et al., 2018]; we expect that a similar result would hold for adaptively
weighted M-estimators.
Condition 5 (Moments). The fourth moments of m✓⇤(P)(Yt, Xt, At), ṁ✓⇤(P)(Yt, Xt, At), and

m̈✓⇤(P)(Yt, Xt, At) with respect to P and policy ⇡sta
t are bounded uniformly over P 2

P and t � 1. For all sufficiently large T , the minimum eigenvalue of ⌃T,P :=
1
T

PT
t=1 EP,⇡sta

t

⇥
ṁ✓⇤(P)(Yt, Xt, At)⌦2

⇤
is bounded above �ṁ2 > 0 for all P 2 P.

Condition 5 is similar to those of Van der Vaart [2000, Theorem 5.41]. However, to guarantee uniform
convergence we assume that moment bounds hold uniformly over P 2 P and t � 1.
Condition 6 (Third Derivative Domination). For B 2 Rd⇥d⇥d

, we define kBk1 :=Pd
i=1

Pd
j=1

Pd
k=1 |Bi,j,k|. There exists a function

...
m(Yt, Xt, At) 2 Rd⇥d⇥d

such that (i)

sup
P2P,t�1 EP,⇡sta

t

⇥
k

...
m(Yt, Xt, At)k21

⇤
is bounded and (ii) for all P 2 P there exists some ✏...m > 0

such that the following holds with probability 1,

sup
✓2⇥:k✓�✓⇤(P)k✏...m

k
...
m✓(Yt, Xt, At)k1  k

...
m(Yt, Xt, At)k1.

Condition 6 is again similar to those in classical M-estimator asymptotic normality proofs [Van der
Vaart, 2000, Theorem 5.41].
Condition 7 (Maximizing Solution).
(i) For all P 2 P, there exists a ✓⇤(P) 2 ⇥ such that (a) ✓⇤(P) 2

argmax✓2⇥ EP

⇥
m✓(Yt, Xt, At)

��Xt, At

⇤
w.p. 1, (b) EP

⇥
ṁ✓⇤(P)(Yt, Xt, At)

��Xt, At

⇤
= 0 w.p. 1,

and (c) EP

⇥
m̈✓⇤(P)(Yt, Xt, At)

��Xt, At

⇤
� 0 w.p. 1.

(ii) There exists some positive definite matrix H such that �
1
T

PT
t=1 EP,⇡sta

t

⇥
m̈✓⇤(P)(Yt, Xt, At)

⇤
⌫

H for all P 2 P and all sufficiently large T .

For matrices A,B, we define A ⌫ B to mean that A � B is positive semi-definite, as used above.
Condition 7 (i) ensures that ✓⇤(P) is a conditionally maximizing solution for all contexts Xt and
actions At; this ensures that {ṁ✓⇤(P)(Yt, Xt, At)}Tt=1 is a martingale difference sequence with
respect to {Ht}

T
t=1. Note it does not require ✓⇤(P) to always be a conditionally unique optimal

solution. Condition 7 (ii) is related to the local curvature at the maximizing solution and the
analogous condition in the i.i.d. setting is trivially satisfied; we specifically use this condition
to ensure we can replace M̈(✓⇤(P)) with M̈(✓̂T ) in our asymptotic normality result, i.e., that
M̈(✓⇤(P))�1M̈(✓̂T )

P
! Id uniformly over P 2 P.

Condition 8 (Well-Separated Solution). For all sufficiently large T , for any ✏ > 0, there exists some

� > 0 such that for all P 2 P,

inf
✓2⇥:k✓�✓⇤(P)k2>✏

⇢
1

T

TX

t=1

EP,⇡sta
t

⇥
m✓⇤(P)(Yt, Xt, At)�m✓(Yt, Xt, At)

⇤�
� �.

A well-separated solution condition akin to Condition 8 is commonly assumed in order to prove
consistency of M-estimators, e.g., see Van der Vaart [2000, Theorem 5.7]. Note that the difference
between Condition 7 (i) and Condition 8 is that the former is a conditional statement (conditional on
Xt, At) and the latter is a marginal statement (marginal over Xt, At, where At is chosen according
to stabilizing policies ⇡sta

t ). Condition 7 (i) means there is a ✓⇤(P) solution for all contexts Xt and
actions At that does not need to be unique, however Condition 8 assumes that marginally over Xt, At

there is a well-separated solution.
Condition 9 (Bounded Importance Ratios). {⇡sta

t }
T
t=1 do not depend on data {Yt, Xt, At}

T
t=1. For

all t � 1, ⇢min 
⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
 ⇢max w.p. 1 for some constants 0 < ⇢min  ⇢max < 1.
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Note that Condition 9 implies that for a stabilizing policy that is not time-varying, the action selection
probabilities of the bandit algorithm ⇡t(At, Xt,Ht�1) must be bounded away from zero w.p. 1.
Similar boundedness assumptions are also made in the off-policy evaluation literature [Thomas and
Brunskill, 2016, Kallus and Uehara, 2020]. We discuss this condition further in Sections 3.3 and 6.
Theorem 1 (Uniform Asymptotic Normality of Adaptively Weighted M-Estimators). Under Condi-

tions 1-9 we have that ✓̂T
P
! ✓⇤(P) uniformly over P 2 P. Additionally,

⌃T (P)�1/2M̈T (✓̂T )
p

T (✓̂T � ✓⇤(P))
D
! N (0, Id) uniformly over P 2 P. (8)

The asymptotic normality result of equation (8) guarantees that for d-dimensional ✓⇤(P),

lim inf
T!1

inf
P2P

PP,⇡

✓h
⌃T (P)�1/2M̈T (✓̂T )

p

T (✓̂T � ✓⇤(P))
i⌦2

 �2
d,(1�↵)

◆
= 1� ↵.

Above �2
d,(1�↵) is the 1 � ↵ quantile of the �2 distribution with d degrees of freedom. Note that

the region CT (↵) :=
�
✓ 2 ⇥ : [⌃T (P)�1/2M̈T (✓̂T )

p
T (✓̂T � ✓⇤(P))]⌦2

 �2
d,(1�↵)

 
defines a

d-dimensional hyper-ellipsoid confidence region for ✓⇤(P). Also note that since M̈T (✓̂T ) does not
concentrate under standard bandit algorithms, we cannot use standard arguments to justify treating
✓̂T as multivariate normal with covariance M̈T (✓̂T )�1⌃T (P)M̈T (✓̂T )�1. Nevertheless, Theorem 1
can be used to guarantee valid confidence regions for subset of entries in ✓⇤(P) by using projected
confidence regions [Nickerson, 1994]. Projected confidence regions take a confidence region for
all parameters ✓⇤(P) and project it onto the lower dimensional space on which the subset of target
parameters lie (Appendix A.2).

3.3 Choice of Stabilizing Policy

When the action space is bounded, using weights Wt = 1/
p
⇡t(At, Xt,Ht�1) is equivalent to using

square-root importance weights with a stabilizing policy that selects actions uniformly over A; this is
because weighted M-estimators are invariant to all weights being scaled by the same constant. It can
make sense to choose a non-uniform stabilizing policy in order to prevent the square-root importance
weights from growing too large and to ensure Condition 9 holds; disproportionately up-weighting
a few observations can lead to unstable estimators. Note that an analogue of our stabilizing policy
exists in the causal inference literature, namely, “stabilized weights" use a probability density in the
numerator of the weights to prevent them from becoming too large [Robins et al., 2000].

We now discuss how to choose stabilizing policies {⇡sta
t }t�1 in order to minimize the asymptotic

variance of adaptively weighted M-estimators. We focus on the adaptively weighted least-squares
estimator when we have a linear outcome model EP [Yt|Xt, At] = X>

t ✓At :

✓̂AW-LS := argmax
✓2⇥

⇢
1

T

TX

t=1

Wt

�
Yt �X>

t ✓At

�2
�
. (9)

Recall that our use of adaptive weights is to adjust for instability in the variance of M-estimators
induced by the bandit algorithm in order to construct valid confidence regions; note that weighted
estimators are not typically used for this reason. On i.i.d. data, the least-squares criterion is weighted
like in Equation (9) in order to minimize the variance of estimators under noise heteroskedasticity; in
this setting, the best linear unbiased estimator has weights Wt = 1/�2(At, Xt) where �2(At, Xt) :=
EP [(Yt � X>

t ✓⇤At
(P))2|Xt, At]; this up-weights the importance of observations with low noise

variance. Intuitively, if we do not need to variance stabilize, {Wt}t�1 should be determined by the
relative importance of minimizing the errors for different observations, i.e., their noise variance.

In light of this observation, we expect that under homoskedastic noise there is no reason to up-weight
some observations over others. This would recommend choosing the stabilizing policy to make Wt =p
⇡sta
t (At, Xt)/⇡t(At, Xt,Ht�1) as close to 1 as possible, subject to the constraint that the stabilizing

policies are pre-specified, i.e., {⇡sta
t }t�1 do not depend on data {Yt, Xt, At}t�1 (see Appendix C

for details). Since adjusting for heteroskedasticity and variance stabilization are distinct uses of
weights, under heteroskedasticity, we recommend that the weights are combined in the following
sense: Wt =

�
1/�2(At, Xt)

�p
⇡sta
t (At, Xt)/⇡t(At, Xt,Ht�1). This would mean that to minimize

variance, we still want to choose the stabilizing policies to make ⇡sta
t (At, Xt)/⇡t(At, Xt,Ht�1) as

close to 1 possible, subject to the pre-specified constraint.
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4 Related Work

Villar et al. [2015] and Rafferty et al. [2019] empirically illustrate that classical ordinary least squares
(OLS) inference methods have inflated Type-1 error when used on data collected with a variety of
regret-minimizing multi-armed bandit algorithms. Chen et al. [2020] prove that the OLS estimator is
asymptotically normal on data collected with an ✏-greedy algorithm, but their results do not cover
settings in which there is no unique optimal policy, e.g., a multi-arm bandit with two identical
arms (Appendix E). Recent work has discussed the non-normality of OLS on data collected with
bandit algorithms when there is no unique optimal policy and proposed alternative methods for
statistical inference. A common thread between these methods is that they all utilize a form of
adaptive weighting. Deshpande et al. [2018] introduced the W-decorrelated estimator, which adjusts
the OLS estimator with a sum of adaptively weighted residuals. In the multi-armed bandit setting,
the W-decorrelated estimator up-weights observations from early in the study and down-weights
observations from later in the study [Zhang et al., 2020]. In the batched bandit setting, Zhang et al.
[2020] show that the Z-statistics for the OLS estimators computed separately on each batch are
jointly asymptotically normal. Standardizing the OLS statistic for each batch effectively adaptively
re-weights the observations in each batch.

Hadad et al. [2019] introduce adaptively weighted versions of both the standard augmented-inverse
propensity weighted estimator (AW-AIPW) and the sample mean (AWA) for estimating parameters of
simple models on data collected with bandit algorithms. They introduce a class of adaptive “variance
stabilizing” weights, for which the variance of a normalized version of their estimators converges in
probability to a constant. In their discussion section they note open questions, two of which this work
addresses: 1) “What additional estimators can be used for normal inference with adaptively collected
data?” and 2) How do their results generalize to more complex sampling designs, like data collected
with contextual bandit algorithms? We demonstrate that variance stabilizing adaptive weights can be
used to modify a large class of M-estimators to guarantee valid inference. This generalization allows
us to perform valid inference for a large class of important inferential targets: parameters of models
for expected outcomes that are context dependent.

Recently, adaptive weighting has also been used in off-policy evaluation methods for when the
behavior policy (policy used to collect the data) is a contextual bandit algorithm [Bibaut et al., 2021,
Zhan et al., 2021]. In this literature the estimand is the value, or average expected reward, of a pre-
specified policy (note this is a scalar value). In contrast, in our work we are interested in constructing
confidence regions for parameters of a model for an outcome (that could be the reward)—for example,
this could be parameters of a logistic regression model for a binary outcome. We believe in the future
there could be theory that could unify these adaptive weighting methods for these different estimands.

An alternative to using asymptotic approximations to construct confidence intervals is to use high-
probability confidence bounds. These bounds provide stronger guarantees than those based on
asymptotic approximations, as they are guaranteed to hold for finite samples. The downside is that
these bounds are typically much wider, which is why much of classical statistics uses asymptotic
approximations. Here we do the same. In Section 5, we empirically compare our to the self-
normalized martingale bound [Abbasi-Yadkori et al., 2011], a high-probability bound commonly
used in the bandit literature.

5 Simulation Results

In this section, Rt = Yt. We consider two settings: a continuous reward setting and a binary reward
setting. In the continuous reward setting, the rewards are generated with mean EP [Rt|Xt, At] =
X̃>

t ✓⇤0(P) + AtX̃>

t ✓⇤1(P) and noise drawn from a student’s t distribution with five degrees of
freedom; here X̃t = [1, Xt] 2 R3 (Xt with intercept term), actions At 2 {0, 1}, and parameters
✓⇤0(P), ✓⇤1(P) 2 R3. In the binary reward setting, the reward Rt is generated as a Bernoulli with
success probability EP [Rt|Xt, At] = [1 + exp(�X̃>

t ✓⇤0(P) � AtX̃>

t ✓⇤1(P))]�1. Furthermore, in
both simulation settings we set ✓⇤0(P) = [0.1, 0.1, 0.1] and ✓⇤1(P) = [0, 0, 0], so there is no unique
optimal arm; we call vector parameter ✓⇤1(P) the advantage of selecting At = 1 over At = 0. Also
in both settings, the contexts Xt are drawn i.i.d. from a uniform distribution.

In both simulation settings we collect data using Thompson Sampling with a linear model for
the expected reward and normal priors [Agrawal and Goyal, 2013] (so even when the reward is
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binary). We constrain the action selection probabilities with clipping at a rate of 0.05; this means that
while typical Thompson Sampling produces action selection probabilities ⇡TS

t (At, Xt,Ht�1), we
instead use action selection probabilities ⇡t(At, Xt,Ht�1) = 0.05 _

�
0.95 ^ ⇡TS

t (At, Xt,Ht�1)
�

to select actions. We constrain the action selection probabilities in order to ensure weights Wt are
bounded when using a uniform stabilizing policy; see Sections 3.2 and 6 for more discussion on this
boundedness assumption. Also note that increasing the amount the algorithm explores (clipping)
decreases the expected width of confidence intervals constructed on the resulting data (see Section 6).

To analyze the data, in the continuous reward setting, we use least-squares estimators with a correctly
specified model for the expected reward, i.e., M-estimators with m✓(Rt, Xt, At) = �(Rt � X̃>

t ✓0 �
AtX̃>

t ✓1)2. We consider both the unweighted and adaptively weighted versions. We also compare to
the self-normalized martingale bound [Abbasi-Yadkori et al., 2011] and the W-decorrelated estimator
[Deshpande et al., 2018], as they were both developed for the linear expected reward setting. For the
self-normalized martingale bound, which requires explicit bounds on the parameter space, we set
⇥ = {✓ 2 R6 : k✓k2  6}. In the binary reward setting, we also assume a correctly specified model
for the expected reward. We use both unweighted and adaptively weighted maximum likelihood
estimators (MLEs), which correspond to an M-estimators with m✓(Rt, Xt, At) set to the negative
log-likelihood of Rt given Xt, At. We solve for these estimators using Newton–Raphson optimization
and do not put explicit bounds on the parameter space ⇥ (note in this case m✓ is concave in ✓ [Agresti,
2015, Chapter 5.4.2]). See Appendix A for additional details and simulation results.

In Figure 4 we plot the empirical coverage probabilities and volumes of 90% confidence regions
for ✓⇤(P) := [✓⇤0(P), ✓⇤1(P)] and ✓⇤1(P) in both the continuous and binary reward settings. While
the confidence regions based on the unweighted least-squares estimator (OLS) and the unweighted
MLE have significant undercoverage that does not improve as T increases, the confidence regions
based on the adaptively weighted versions, AW-LS and AW-MLE, have very reliable coverage. For
the confidence regions for ✓⇤1(P) based on the AW-LS and AW-MLE, we include both projected
confidence regions (for which we have theoretical guarantees) and non-projected confidence regions.
The confidence regions based on projections are conservative but nevertheless have comparable
volume to those based on OLS and MLE respectively. We do not prove theoretical guarantees for the
non-projection confidence regions for AW-LS and AW-MLE, however they perform well across in our
simulations. Both types of confidence regions based on AW-LS have significantly smaller volumes
than those constructed using the self-normalized martingale bound and W-decorrelated estimator.
Note that the W-decorrelated estimator and self-normalized martingale bounds are designed for
linear contextual bandits and are thus not applicable for the logistic regression model setting. The
confidence regions constructed using the self-normalized martingale bound have reliable coverage
as well, but are very conservative. Empirically, we found that the coverage probabilities of the
confidence regions based on the W-decorrelated estimator were very sensitive to the choice of tuning
parameters. We use 5, 000 Monte-Carlo repetitions and the error bars plotted are standard errors.

6 Discussion

Immediate questions We assume that ratios ⇡sta
t (At, Xt)/⇡t(At, Xt,Ht�1) are bounded for our

theoretical results; this precludes ⇡t(At, Xt,Ht�1) from going to zero for a fixed stabilizing policy.
For simple models, e.g., the AW-LS estimator, we can let these ratios grow at a certain rate and still
guarantee asymptotic normality (Appendix B.5); we conjecture similar results hold more generally.

Generality and robustness This work assumes that we have a well-specified model for the out-
come Yt, i.e., that ✓⇤(P) 2 argmax✓2⇥ EP [m✓(Yt, Xt, At)|Xt, At] w.p. 1. Our theorems use this
assumption to ensure that {Wtṁ✓(Yt, Xt, At)}t�1 is a martingale difference sequence with respect
to {Ht}t�0. On i.i.d. data it is common to define ✓⇤(P) to be the best projected solution, i.e.,
✓0(P) 2 argmax✓2⇥ EP,⇡ [m✓(Yt, Xt, At)]. Note that the best projected solution, ✓⇤(P), depends
on the distribution of the action selection policy ⇡. It would be ideal to also be able to perform
inference for a projected solution on adaptively collected data.

Another natural question is whether adaptive weighting methods work in Markov Decision Pro-
cesses (MDP) environments. Taking the AW-LS estimator introduced in Section 3.1 as an example,
our conditional variance derivation in Equation (7) fails to hold in an MDP setting, specifically
equality (c). However, the conditional variance condition can be satisfied if we instead use weights
Wt = {[⇡sta

t (At, Xt)psta(Xt)]/[⇡t(At, Xt,Ht�1)PP(Xt|Xt�1, At�1)]}1/2 where PP are the state
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Figure 2: Empirical coverage probabilities (upper row) and volume (lower row) of 90% confidence
ellipsoids. The left two columns are for the linear reward model setting (t-distributed rewards) and
the right two columns are for the logistic regression model setting (Bernoulli rewards). We consider
confidence ellipsoids for all parameters ✓⇤(P) and for advantage parameters ✓⇤1(P) for both settings.

transition probabilities and psta is a pre-specified distribution over states. In general though we do
not expect to know the transition probabilities PP and if we tried to estimate them, our theory would
require the estimator to have error op(1/

p
T ), below the parametric rate.

Trading-off regret minimization and statistical inference objectives In sequential decision-
making problems there is a fundamental trade-off between minimizing regret and minimizing
estimation error for parameters of the environment using the resulting data [Bubeck et al., 2009,
Dean et al., 2018]. Given this trade-off there are many open problems regarding how to minimize
regret while still guaranteeing a certain amount of power or expected confidence interval width, e.g.,
developing sample size calculators for use in justifying the number of users in a mobile health trial,
and developing new adaptive algorithms [Liu et al., 2014, Erraqabi et al., 2017, Yao et al., 2020].
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