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Abstract

Real world uses of deep learning require predictable model behavior under distribution shifts. Mod-
els such as CLIP show emergent natural distributional robustness comparable to humans, but may
require hundreds of millions of training samples. Can we train robust learners in a domain where
data is limited? To rigorously address this question, we introduce JANuS (Joint Annotations and
Names Set), a collection of four new training datasets with images, labels, and corresponding cap-
tions, and perform a series of careful controlled investigations of factors contributing to robustness
in image classification. Using JANuS as a testbed, we show that standard ResNet-50 trained with the
cross-entropy loss on 2.4 Mn image samples can attain comparable robustness to a CLIP ResNet-50
trained on 400 Mn samples. To our knowledge, this is the first result showing near state-of-the-art
distributional robustness on a very limited data budget.

1 Introduction

Motivation. A natural distribution shift is defined as evaluation data which differs from the data on which a model
was trained due to natural factors. Real world uses of deep image classifiers require predictable model behavior under
such shifts. Unfortunately, the majority of standard deep computer vision models for image classification perform
significantly worse under natural shifts Hendrycks & Dietterich (2019); Miller et al. (2021), in contrast with human
vision (Recht et al., 2019).

Vision-Language (VL) models such as CLIP, introduced in Radford et al. (2021), showed emergent natural distribu-
tional robustness comparable to humans across a wide range of shifts of ImageNet, at the cost of base accuracy. Jia
et al. (2021) showed CLIP-like models can be carefully fine-tuned to be robust as well as achieve high base accuracy.
However, VL models require massive amounts of data for training; in some cases, orders of magnitude higher than
standard supervised models (Pham et al., 2021). These results raise challenging questions: are data scaling laws at
work for robust computer vision, similar to those discovered in NLP? Does robustness only emerge when models are
trained on massive datasets? And is vision-language pre-training necessary for robustness?

Radford et al. (2021) argue that VL pre-training in CLIP offers unique advantages when compared to conventional
large-data model training techniques. By contrast, Fang et al. (2022) and Nguyen et al. (2022) argue that VL robustness
is a consequence of the training data diversity and quantity, with vision-language pretraining playing little role.

In most real-world applications, data is limited, and unlikely to be accompanied by informative natural language
captions. For example, the PCam medical imaging dataset from Veeling et al. (2019) has only ~ 320,000 images.
Nevertheless, distributional robustness is of paramount importance in the setting.

What can be done to train robust models in data-limited settings, without access to informative captions? Can we
take advantage of other attributes of model training which have largely been disregarded in the literature, such as
architecture, model size, and image resolution?

Our Contributions. To clearly delineate the potential sources of emergent distributional robustness, we evaluate a
vast suite of existing models trained on diverse data budgets. We also supplement with dozens of new models trained
from scratch. Our key contributions are as follows:

1. For the first time, we show that it is possible to train highly robust and accurate models, using conventional cross-
entropy (CE) loss, even when both data and model size are limited (See Fig. 1).
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Figure 1: Under a data budget, standard CE-loss models outperform VL-loss models in both accuracy and
robustness. We train ResNet-50 models using both CE-loss and VL-loss across a wide range of data scales, and
find that accuracy of VL-loss and CE-loss models is extremely similar at small scales. For scaling 4X and above,
CE-loss models exhibit superior robustness; the CE-loss model trained on just 2.4 Mn JANuS samples has comparable
robustness, as well as comparable accuracy, to the CLIP ResNet-50 trained on 400 Mn samples. (See Tab. 2 for
information on the JANuS dataset, which we create and use to train these models.) Image best viewed in color.

2. We introduce JANuS (Joint Annotations and Names Set), a new class-balanced dataset with images, labels, and
captions. To our knowledge, this is the first such dataset of its kind. (See Tab. 2).

3. We conduct the largest (to date) robustness analysis of image classification models (numbering over 650), including
many recent architectures, and show that even with relatively modest model and data scaling (compared to Brown
et al. (2020), Radford et al. (2021)), one can train robust models on both large and fine-grained label sets. (See
Fig. 2 and Fig. 3)

4. We outline useful heuristics to improve distributional robustness when data budgets are limited. (See Sec. 7).

5. In order to enable future research and reproducibility, we release our code, our dataset, and a complete description
of our results (see supplemental attachments).

2 Related Work

Our paper follows a series of recent works studying robustness under distribution shift in the context of image classi-
fication (Recht et al., 2019; Taori et al., 2020; Miller et al., 2021; Fang et al., 2022; Nguyen et al., 2022). This line of
inquiry into distributional robustness focused on the linear fit between in-distribution and out-of-distribution accuracy
found between common image classification datasets (such as ImageNet) and their distribution shifts. In contrast to
most of these earlier papers, our analysis takes place in a realistic setting where models are trained on a wide range of
datasets. Therefore, following the results in Nguyen et al. (2022), we do not use linear fit measures in our analysis,
instead relying on average out-of-distribution robustness.

Jiaetal. (2021); Pham et al. (2021) showed that human-level distributional robustness is possible even as base accuracy
approaches state-of-the-art, as long as sufficient data is available for training. The gains are not limited to CLIP; other
VL-loss (vision-language loss) functions also achieve strong distributional robustness (Yu et al., 2022; Wang et al.,
2022b). We discuss some of these alternate approaches in Appendix Sec. A, while noting that none of these exhibit
superior robustness than CLIP.
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The internals of CLIP differ from those of typical models in several important ways: the choice of loss function,
the training dataset, and the use of natural language captions as labels. However, it is still an open question as to
which of these differences lead to CLIP’s extraordinary robustness. Recent works have addressed this question, and
have reached various interesting conclusions. Fang et al. (2022) argue that intrinsic diversity of training image data
is the main source of the distributional robustness gains of VL models in the zero-shot setting, with factors such as
language supervision contributing little to no distributional robustness. However, in a different (transfer learning)
setting, Santurkar et al. (2022) argue that, given a sufficiently large pretraining dataset and descriptive, low variability
captions, contrastively trained VL models are more robust than self-supervised image-only models trained with the
SIMCLR-loss. We conduct controlled comparisons between vision-language classifiers and conventional classifiers,
and find that when controlling for data quantity and diversity, high accuracy VL-loss models are actually less robust
than high accuracy CE-loss models.

Nguyen et al. (2022) is an important precursor to our work. Their extensive experiments on vision-language models
in the low accuracy regime showed that controlling for the pretraining dataset was essential for understanding dis-
tributional robustness. We extend this understanding, and show that model architecture, size, image resolution, and
even the label set selected for the classification problem can all have substantial effects on robustness. Finally, unlike
Nguyen et al. (2022), all our results are shown in both low and high accuracy regimes, and across different test sets.

In their paper investigating the role of language on robustness, Fang et al. (2022) introduced ImageNet-Captions,
which added Flickr-captions to nearly 450,000 ImageNet images. We extend this work by introducing JANuS, which
add over 50,000 new human-supervised samples to 100 classes in ImageNet-Captions in order to rebalance the classes,
as it has been shown that CE-loss models often struggle with imbalanced classes (Phan & Yamamoto, 2020).

3 Preliminaries

Training Datasets and Distribution Shifts. Our principal tool for measuring robustness in this paper is model ac-
curacy on natural distribution shifts. We focus on the ImageNet dataset which has extensively been studied in the
literature on distributional robustness. Following Radford et al. (2021), we focus on the following four distribution
shifts: Imagenet-Sketch (IN*-s), Imagenet-R (IN*-r), Imagenet-A (IN*-a), and Imagenet-V2 (IN*-v2) for our evalua-
tion. Additional details on our pretraining datasets and distribution shifts are in Appendix Sec. B and Sec. C.

Definition of data budgets. Traditionally, the problem of image classification has been conceptually divided between
pre-train and fine-tune approaches and fully supervised approaches. Both approaches require large amounts of labeled
data; this motivates our focus on data budgets. What data budget is reasonable is, of course, dependent on the problem.
Since our analysis focuses on ImageNet, we define our data budget in multiples of the approximate per-class size of
the original ImageNet dataset. For example, for a 100-class label set, a budget of 1 million samples would be a 10x
data budget. Throughout this paper, we provide scaling experiments which cover a wide range of data budgets.

Metrics for distributional robustness. Our primary metric is average robustness (abbv: Avg. Rob.), which is the
average test-set accuracy of a model on all distribution shifts; in our case, four. Although this measure is easy to
interpret, it can conceal substantial performance differences between shifts; therefore, we also include shift-specific
accuracy in Appendix Sec. B.

Another metric we reference is effective robustness, introduced by Taori et al. (2020), primarily to situate our work
within the existing literature. This metric is defined in Taori et al. (2020) as a graphical tool to describe how robust
a model is on natural distribution shifts. Humans have been shown to be perfectly robust; therefore, a graph of base-
versus-shift test accuracy follows the y = « trendline; for neural networks this trend-line typically is parallel to and is
generally below y = .

Finally, we include Effective Robustness Ratio (abbv: E.R.R.), from Feuer et al. (2022) in our appendix tables. This is
defined as the ratio of average robustness over base task accuracy. We find that this is an effective measure when we
limit our comparisons to models with roughly similar base accuracy.

Glossary. For ease of understanding, we provide a glossary of common terms and abbreviations.

Loss functions. We examine models trained with two types of losses. VL-loss refers to the InfoNCE loss used by
CLIP (Radford et al., 2021). CE-loss is the typical cross-entropy loss used to train the vast majority of models for
image classification.
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Label types. CE-loss models use integer labels (referring to discretely labelled classes), and VL-loss models use
caption labels. We refer to human-annotated labels (whenever available) as ground-truth. We refer to labels generated
by automated processes as either synthetic or subset-matched (defined below in Sec. 5).

Data filtration. We define data filtration as any strategy which sub-selects image-caption pairs.

4 Experimental Design

The models used in our robustness evaluation experiments are drawn from three sources; the pytorch-image-models
(timm) Wightman (2019) repository, the open-clip repository Ilharco et al. (2021), and models trained by us. We
provide details about all studied models in the Appendix; see Sec. E. We do not consider models which are not
publicly available.

We divide our study into one /000-class evaluation and two 100-class evaluations. The 1000-class evaluation is
ImageNet-1k (IN1000-Val, IN1000-V2, etc), and the 100-class evaluations are both subsets of ImageNet.

We evaluate on both 1000-class and 100-class label set sizes because we found dramatic differences in model per-
formance depending on the task; models trained on many-class problems become more accurate and robust when
the label set size is reduced to a subset of those classes at inference time, and the improvements are not necessarily
proportionate (Tab. 1.). Hence, considering both label set sizes offers a more complete picture of model robustness.

Model Name Average Validation Accuracy  Average Robust Accuracy
CLIP-RNS50 (1000-class) 0.5985 0.4306
CLIP-RN50 (Avg. 100-class) 0.8517 0.7182
SWSL-RN50 (1000-class) 0.8362 0.6857
SWSL-RNS50 (Avg. 100-class) .9524 0.7612

Table 1: Zero-shot model robustness is affected by the difficulty of the task. Both quantity and quality of labels
alters model accuracy and robustness under shift; it also changes the comparative performance of VL-loss and CE-loss
models. In this table, we transform the 1000-class IN1000 label set into ten 100-class label sets, and find that the
resulting predictions are far more accurate and robust, particularly those of the VL-loss model. This finding motivates
our choice to study model robustness on multiple label set sizes.

Within the 100-class label set size, we consider a broad-scope classification problem (IN100-Val, IN100-V2, etc),
as well as a fine-grained classification problem (IN100-Dogs, IN100-Dogs-V2, etc), a 100-class subset of ImageNet
which consists entirely of dog breeds.

We report IN100-Val results separately for pretrained models with large amounts of data and our own models trained
on various data budgets. The exact class indices for each shift can be found in the Appendix (Sec. I).

5 JANuS: A Benchmark Dataset for Robust Model Training

Challenges of robust model training. Training robust models from scratch on IN1000 presents resource challenges
for researchers, particularly vision-language models. Prior works such as Fang et al. (2022) have cited low-accuracy
results and relied on the linear fit hypothesis to project those results to high accuracy regimes. However, as observed
in Nguyen et al. (2022), researchers cannot rely on trends observed in low-accuracy regimes to persist in high-accuracy
regimes unless the training dataset and loss function are fixed in advance. Following from our observations about
the effect of label set size on model performance, we postulate that a 100-class, broad scope problem is ideal for
comparative studies of robustness in high-accuracy regimes. However, no training dataset exists which is designed
for 100-class ImageNet problems and is sufficiently diverse to train high accuracy, high-robustness models with both
VL-loss and CE-loss objectives.

To resolve this challenge, we introduce JANuS (Joint Annotations and Names Set), a collection of four new training
datasets with images, labels and corresponding captions. Each dataset in JANuS builds upon an existing dataset by
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Dataset G.T. Label Machine - La- Caption Supervised  Filtered Balanced
bel Source

ImageNet-100 (IN100) v v Flickr, BLIP Yes Human Yes

OpenImages-100 (OI100) v v Flickr, BLIP, annotated Yes None No

LAION-100 (LAION100) X v alt-text No CLIP No

YFCC-100 (YFCC100) X v Flickr No Algo No

Table 2: The JANuS dataset allows for controlled comparisons between VL-loss and CE-loss models in a high
accuracy regime. The experiments in Fig. | were conducted using a combination of the four main datasets in
JANuS, which are described here. G.T. Lbl. indicates the presence of human-annotated ground truth labels in the
dataset. Machine Lbl. indicates availability of synthetic labels; labeling strategies are detailed in D. Caption Src.
lists the sources for captions in the dataset. Supervised indicates when ground truth labels exist for the dataset. CE-
loss models benefit most from supervised data. Filtered indicates when the dataset contents were processed in some
way prior to inclusion in the dataset. VL-loss models struggle on unfiltered data. Balanced indicates whether the
dataset is approximately class-balanced.

selecting or adding data from a known data source. Data sources for which ground truth labels exist are filtered
by class. For unsupervised data sources, we use a technique called subset matching to prefilter JANuS. A detailed
explanation of this technique can be found in Sec. H.1. The primary advantage of JANuS over its constituent datasets
is that every sample has descriptive captions as well as class labels (either as human annotated or synthetic labels),
and is compatible with IN100 classification. This allows for JANuS to be used to fairly compare both image and
image-text training approaches while controlling for dataset size and quality. We propose that JANuS be used as both
a standard benchmark and a source of high quality training data. The constituent datasets are the following:

1. ImageNet-100 (IN100): The 100 largest ImageNet-Captions classes from Fang et al. (2022), followed by class
rebalancing by addition of over 50,000 new image samples annotated with human-authored ground-truth labels.

2. Openlmages-100 (OI100): A subset of the Openlmages dataset, Kuznetsova et al. (2018), with restored original
Flickr-captions, and new BLIP-captions; samples selected by mapping human-labeled Openlmages-100 classnames
to ImageNet-100 classnames.

3. LAION-100 (LAION100): A subset of the unlabeled LAION dataset, Schuhmann et al. (2021), with samples
selected via subset matching on ImageNet-100 classes.

4. YFCC-100 (YFCC100): A subset of the unlabeled YFCC dataset, Thomee et al. (2016), with samples selected via
subset matching on ImageNet-100 classes.

We compare some of the key properties of each component of JANuS in Tab. 2. Detailed information on the process
used to create JANuS, as well as the composition of each subset, is available in Sec. D.

Performance Variations in JANuS. In order to ensure that the baseline performance of VL-loss and CE-loss models
is comparable on IN100 and the standard ImageNet despite the newly added images, we train a VL (using the standard
“A photo of a SCLASSNAME” prompt) and CE-loss model from scratch on IN100, and compare it to a CE-loss
model trained for 256 epochs on the same 100-class subset of ImageNet. Controlling for size, we find that our dataset
performs slightly worse than the baseline, but considerably better than that subset of ImageNet-captions alone.

Despite the fact that OI100 is a slightly larger than IN100, we find that models trained on OI100 perform worse on
IN100-Val than models trained on IN100. We find that the extreme class imbalance shown in Fig. D.1 is the cause
of most, but not all, of the decrease in accuracy (See models (in100-sup, 0i100-sup-int, 0i100-sup-int-classbal) in the
Appendix, Table Sec. H).

VL-loss class imbalances (detected by searching for exact-match classnames in caption strings) are also present in the
other web-scraped datasets in JANuS, LAION and YFCC; this may contribute to the lower performance of VL-loss
models on long-tailed classification.

Training on JANuS. In order to minimize differences in model architecture, we train two families of models: A
ResNet-50 for CE-loss models, and a VL-loss model with a ResNet-50 vision backbone. The only difference in the
two architectures is that for CE models, we append a ResNet-50 with a 1000-class linear head; we allow this since, as
noted in Radford et al. (2021); Santurkar et al. (2022), this does not affect CLIP performance. To control for dataset
size, we train models on various subsets of JANuS and measure base accuracy and distributional robustness.
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We train with mixed precision, at a batch size of 256, and do not use gradient clipping. We use the AMP library to
implement the training process. Model hyperparameters are chosen via grid search. Models are typically distributed
across a single node with 4 NVIDIA GPUs; our largest models were trained on 16 NVIDIA GPUs. We train non-
JANuS models for 32 or 64 epochs unless otherwise specified. All JANuS models were trained for 256 epochs.

Following Santurkar et al. (2022), we use SimCLR augmentations (resize, crop, flip, jitter, blur, grayscale) rather than
CLIP augmentations (resize and crop) for model training. We share our code for reproducibility.

Evaluation for models trained on JANuS. Following Nguyen et al. (2022), we measure performance on IN100-Val,
regardless of the choice of pretraining dataset. We report best accuracy scores, with ”best” being determined by the
model’s peak performance on IN100-Val rather than shifts. For ImageNet-R and ImageNet-A, which are subsets of
ImageNet, we evaluate only the 35 shared classes.

6 Controlled ablation studies

In order to better understand which factors are most decisive in distributional robustness, in this section, we group
and evaluate the models according to various factors which are thought to contribute strongly to it; specifically, we
compare across VL-loss and CE-loss groups, utilizing ViT from Dosovitskiy et al. (2021) and convolution-based
architectures, number of parameters, and size of training dataset. We also provide Spearman rank correlations for each
feature in Tab. 3. We establish ordinal rankings based on the ordering we would expect based on the current “folk
wisdom” about robustness: VL-loss > CE-loss, ViT > CNN; larger model size, and more training data leads to greater
robustness.

Comparing VL-loss and CE-loss models. Large VL-loss models such as those of Radford et al. (2021); Pham et al.
(2021) have been conventionally presented as robust generalist models which can handle arbitrary (open vocabulary)
classification tasks.

Setting aside the appeal of their versatility, is it actually the case that VL-loss models performing some classification
task are more robust than fully trained CE-loss models on that same task? We propose to examine this question from
the perspective of model inference, as well as model training. First, we compare the performance of pretrained VL-loss
and CE-loss models on three classification tasks, controlling for dataset size. Second, we train VL-loss and CE-loss
models from scratch on JANuS and evaluate them on IN100, again controlling for dataset size.

Model Attr. IN1000 IN100 IN100-Dogs
VL-loss -.059 025 -.092
ViT .38 384 358
More training data 328 352 .188
Model size 453 439 378
Image resolution 541 319 252

Table 3: Large ViT-based architectures are positively correlated with model robustness; VL-loss has mixed,
weak correlations. We calculate the Spearman’s rank correlation of each model attribute we consider for the 650
models in our study. Negative scores indicate negative correlation between the named attribute and average robustness.
Boldface indicates the attribute with the strongest correlation. Choosing a ViT over a convolution-based architecture
correlates positively with model robustness, as does increasing number of model parameters.

Model inference comparison. For dataset sizes below 400 million samples, we find no reliable evidence that VL-loss
models are more robust than CE-loss models in absolute terms on IN1000 or IN100-Dogs; see Fig. 3 (R). We also
note that VL-loss models have lower base accuracy on these problems.

VL-loss models do show a robustness advantage on IN100. This is in part because smaller label sets are easier to
disambiguate using natural language; in Sec. F we provide per-class accuracies for a VL-loss and CE-loss ResNet-50
trained on many samples, and note that several of the classes on IN1000 where VL models substantially underper-
form have identical natural language descriptions, making classification impossible; in IN1000, OpenAI’s classnames
include two classes labeled “missile” and two classes labeled “sunglasses”, reflecting ambiguities in the underlying
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problem (Radford et al., 2021; Beyer et al., 2020). It is also the case that vision-language models have significantly
higher parameter counts than standard computer vision models, due to their multimodal architecture.

In Fig. 3, we observe that increasing the parameter count produces larger gains on IN100 than on our other evaluations;
increased model size could explain VL-loss’s strong performance on this benchmark. We postulate that the difference
in robustness is attributable, at least in part, to VL-loss’s general difficulty with fine-grained class distinctions.

We train a VL-loss model on 10 million YFCC samples, filtering out all samples which contain a matching term with
an ImageNet class, and find that the resulting model achieves just 3% accuracy on IN100-Dogs, but achieves 33%
accuracy on IN100; in the absence of ground truth labels, the model ‘guesses better’, in essence, when classes are
dissimilar. See Tab. 4.

Model Dataset IN1000 Val. Acc. IN100 Val. Acc. IN100-Dogs Val. Acc.
ResNet-50  YFCC-10Mn-N.L 127 329 .034
ResNet-50 YFCC-15Mn 324 741 .086

Table 4: VL-loss models trained on web-scraped caption labels learn classes unevenly. VL-loss models learn
a lot about broad distinctions between classes from captions, and little about fine-grained class boundaries. This
finding holds even when we remove all samples which match with any term in the OpenAl ImageNet classnames
from the YFCC-15Mn dataset (YFCC-10Mn-N.I.). Robustness scores can be found in our main results table in the
supplementary attachment.

Above 400 million samples, our investigation is limited by the fact that relatively few public models have been trained
on such huge datasets; our largest CE-loss models were trained on half the data of the largest VL-loss models, and
they have few other architectural features in common. Limited evidence, however, indicates that VL-loss models have
a robustness advantage at massive data scales.

Model training comparison. Ground-truth labels have been shown to improve base accuracy of VL-loss models.
Fang et al. (2022) found that a ResNet-50 VL-loss model trained on ImageNet-1k with ground truth labels ("A photo
of the CLASSNAME") achieved accuracy and robustness parity with a CE-loss ResNet-50 for IN1000 classification.
In Fig. 1, we show that this is also the case for ResNet-50 models trained and evaluated on IN100. However, these
models have low average robustness. When we attempt to increase the average robustness of the VL-loss model
by augmenting the training dataset, we find that on IN100, the VL-loss models are consistently less robust than the
CE-loss models when we control for dataset size.

Overall, we conclude that for the vast majority of real-world problems and data budgets, CE-loss will offer more robust
performance than VL-loss.

ViT and convolution-based architectures.  Another important component we consider when evaluating model
robustness is the architecture.

The 650 models in our analysis include 385 convolution-based architectures and 204 vision transformers; despite the
relative overrepresentation of convolution architectures in the study, of the 100 timm models with the highest average
robustness on IN1000, 60 are ViTs and 40 are convolution-based architectures. On IN100, the split is 70 / 30, and on
IN100-Dogs, 72 / 28.

Comparing the top 100 most robust models for each problem, we find that ViTs are, on average, substantially more
robust, and the advantage grows at massive data scales (see Fig. 2 (L)). When we select the two largest models which
are identical in all other respects, we see the same result in Tab. 5. The evidence in our study addresses datasets at least
the size of ImageNet; for datasets substantially smaller than ImageNet, we recommend supplementing the dataset with
ImageNet classes to improve the model’s generalization ability.

Effects of scaling model parameters. In our analysis, 438 of the models have fewer than 50 million parameters, 126
have between 50 and 100 million, and 86 have over 100 million parameters. Of the top 100 most robust models, 13
have fewer than 50 million, 33 have between 50 and 100 million, and 54 have over 100 million parameters.
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Model Param. Count. Val. Acc. Avg. Rob.
CAIT-m48-448 356m .863 .630
ResNet-V2-101x3-bitm-448 388m .854 573

Table 5: ViTs are more robust when controlling for other factors. We select two of the largest models in our
study, a CAIT (Touvron et al., 2021) vision transformer and a Big Transfer ResNet (Kolesnikov et al., 2019), with
approximately similar parameter counts, identical input image resolution and identical training data (ImageNet-1k).
The ViT is substantially more robust.
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Figure 2: (L) ViT and CNN comparative robustness. (R) Comparative robustness as image resolution increases.
(L) We compare average robustness of ViT and CNN architectures across all three label sets; individual marks on the
graph represent the average robustness of the ten most robust models for each evaluation. Trend lines follow the group
average. The ViT models have an advantage on all evaluations. (R) We evaluate average robustness of models in the
study when grouped by input image resolution, and find a weak positive association on IN100-Dogs and IN1000. The
trend lines follow the best performing model in each group.

In Fig. 3 (L), we compare model performance on our three evaluation metrics, grouped by parameter count. We find
that average robustness improves reliably with model size across all evaluations, although the gains are most significant
on IN100.

Effects of scaling input image resolution. In Fig. 2 (R), we plot average robustness against image resolution, ex-
pressed as the ratio of actual model resolution to maximum model resolution in the study (800px). We find that
increasing input image resolution leads to gains in robustness on IN1000 and IN100-Dogs, but that these effects are
smaller than choice of architecture and number of model parameters.

Effects of scaling data quantity. Researchers in robustness such as Fang et al. (2022) have argued that diverse, and
presumably large, training distributions account for the strong robustness of VL-loss models, and that among CE-loss
models, factors other than data have little impact on robustness, except insofar as they increase base accuracy (Taori
et al., 2020). However, these studies were conducted prior to the surge in popularity of ViT-based architectures, which
show greater robustness than convolution-based architectures. (See Sec. 6, ViT vs CNN).

In Tab. 6, we contrast the marginal robustness gain of going from a VGG-16 from Simonyan & Zisserman (2014)
to the best model trained on ImageNet-1k alone, ImageNet-21k, and any amount of data. We find that the average
robustness gain from scaling data alone ranges from 3.6% to 12.1%, depending on the label set. While these gains are
substantial, they are nevertheless much smaller than the combined effect of other factors; a large and diverse dataset is
a necessary, but far from sufficient, condition for optimal robustness.

100-class problems. On 100-class problems, we find that the robustness advantage of large-data models is most
prominent when there are relatively few classes and their visual differences are relatively large. On fine-grained
problems, the situation is actually reversed; it is the small-data models which have the advantage (in base accuracy).

Controlled experiments in data scaling. To better understand how and when robustness emerges during training, we
conduct scaling experiments on JANuS which control for architecture, model size, image resolution and data diversity.
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Model IN1000 Avg. Rob. IN100 Avg. Rob. IN100-Dogs Avg. Rob.
Best (Any Data) 759 .929 811
Best (14 Mn) 745 .861 784
Best (1.2 Mn) .682 .760 749
VGG-16 (1.2 Mn) 266 402 433

Table 6: The impact of massive data is limited for most image classification problems. The best-performing model
on an arbitrary data budget shows only minor improvements in average robustness compared to the best model trained
on ImageNet-21k; gains are largest on IN100. The combined improvement from going from a VGG-16 (Simonyan
& Zisserman, 2014) baseline to the most robust model trained on ImageNet-1k alone contributes far more to model
robustness than training data in isolation.
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Figure 3: (L) Comparative robustness as parameter count increases. (R) Comparative robustness of VL-loss
and CE-loss models on arbitrary data budgets. (L) When we compare the average robustness of models in the
study by their parameter count, we see reliable improvements as model size increases; larger models are more robust
on all label sets. (R) We compare the most robust VL-loss and CE-loss models for every tier of dataset size across
three different evaluation metrics. Models trained on fewer than 1.5m samples are trained exclusively on supervised
data; larger models are trained on a mix of supervised and semi-supervised data. VL-loss models are more robust on
IN100. CE-loss models are more robust on IN1000 and IN100-Dogs, and when less data is available.

In this setting, we find that increasing the quantity of training data steadily increases robustness, up to and including
20x scaling, the largest amount of data we evaluated on JANuS (see Fig. 1).

Taken together, we conclude that in lower data regimes, scaling data reliably improves robustness, but that the benefits
tail off sharply as the scaling multiple grows.

Image diversity in pretraining datasets. Massive training datasets have a inherent property of being very diverse,
specifically displaying large intra-class variance. Naturally, distributional robustness being an effect of generalization,
we therefore study the effect of image diversity on robustness.

We compare two recent computer vision architectures with three ResNet-50 architectures trained on different quantities
of per-class data, and find that architecture is the key factor in determining how robustly models generalize between
classes (see Tab. 7.) Since the specifics of CLIP’s training data are unknown, we model average class frequency in
CLIP’s dataset using term matching on the public CC12m dataset, averaging across all classes. (Changpinyo et al.,
2021)

The size of the combined JANuS dataset is very similar to the size of ImageNet-1k. The label set size of JANuS,
however, is 1/10th that of ImageNet-1k. When we control for model architecture, the difference in robustness is stark;
the model trained on JANuS has a large advantage compared to the model trained on ImageNet-1k.

More recent architectures such as VOLO (Yuan et al., 2021) and ConvNeXT (Liu et al., 2022), however, which are
pretrained on ImageNet-1k, achieve robustness comparable to the JANuS model, despite seeing far fewer in-class
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examples. Selecting a robust architecture, then, offers the additional benefit of requiring fewer per-class examples
during training.

Model Dataset Size  Approx. Class Size  Val. Acc. Avg. Rob.
ConvNext-L 1.2m 1,200 973 .662
volo-d4 1.2m 1,200 977 707
ResNet-50 1.2m 1,200 956 504
ResNet-50 (JANuS+yfcc) 2.4m 24,000 927 701
ResNet-50 (CLIP) 400m 82,400 9 707

Table 7: Recent architectures perform better under a data budget. We compare two recent computer vision archi-
tectures (ConvNeXT and VOLO) with three ResNet-50 architectures, trained on different quantities of per-class data.
When comparing between ResNet-50 models, data scaling improves model robustness; however, modern architectures
achieve comparable robustness with far fewer per-class examples.

7 Discussion and Useful Heuristics

Our detailed ablation studies in Section 6 demonstrate the effects of various model and data choices on distributional
robustness.

We conclude with a summary of takeaway points, along with a list of suggested useful heuristics for training robust
models under various data budgets and problem sizes.

1. For few-class problems where either the classes themselves or their visual properties (color, shape, a type of
<SUPERCLASS>) are easily disambiguated using text alone, the most robust and most efficient approach is to
use a zero-shot VL model. On such problems, even a small ResNet-50 CLIP model performs quite well, and the
larger CLIP models are consistently the most robust, at the cost of almost no loss in base accuracy.

2. However, for fine-grained classification problems, problems with ambiguous class names, and many-class prob-
lems, the best approach is to train a CE-loss model with a large ViT-based robust architecture at high image res-
olution. To choose an appropriate robust architecture for any particular label set, we refer to our table of complete
results, which can be found in the supplementary materials.

3. Transformer architectures, such as ViTs, benefit from data scaling even when data is not in the target label
set. Therefore, on low data budgets, it is best to conduct some pretraining. One practical approach with small
dataset sizes is to fine-tune an existing pretrained model. Another approach is to train the model on a large label
set, supplementing in-class training images with labeled images from ImageNet-21k, and then zero out unneeded
class logits during inference.

Future work. As computer vision models and datasets grow in size, and multimodal generative models such as OFA
from Wang et al. (2022a) introduce and solve new, complex problems, the task of developing a prescriptive set of
“scaling laws” for emergent distributional robustness will only increase in importance (Cherti et al., 2022). Equally
important will be comparing the behavior of models on distribution shifts for datasets other than ImageNet. Finally, a
comprehensive understanding of model performance on long-tailed classification problems (such as iNaturalist) will
shed more light on the robustness profile of models in the real world.
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Figure 4: Wise-FT, optimized to balance id/ood accuracy, fits the LiT-tuned effective robustness line. Both Wise-
FT and LiT-tuning exhibit lower effective robustness than conventional vision-language pretraining.

A Transfer learning in vision-language models

Another approach to robust classification in VL is using some form of transfer learning instead of training from scratch.
The robustness advantages of transfer learning are well understood in conventional computer vision (see Kolesnikov
et al. (2019)), and many recent model releases include variants which are pretrained on ImageNet-21k. Such models
generally exhibit improved robustness when compared to models trained on ImageNet-1k alone (See main table in
supplemental attachments).

There are a few prominent strategies for transfer learning in VL-loss models as well; we catalog them below and
discuss their strengths and weaknesses.

Fine-tuning VL models.  Unfortunately, the unique robustness properties of VL-loss models are not conserved
when the image tower alone is fine-tuned. As reported in Radford et al. (2021), fine-tuning the VL-loss vision tower
using a CE-loss objective improves base accuracy but degrades robustness. This effect grows stronger the longer the
model is fine tuned, making fine-tuning the image-tower an inefficient solution for problems where robustness is a
consideration.

A similar effect takes place if both vision and language towers are fine-tuned on ground-truth caption data; after
4 epochs of fine tuning on IN1000, a ViT-L-14 CLIP base accuracy improves from .76 to .83; however, average
robustness declines from .72 to .69. (See main table in supplemental attachments).

Wise-FT, introduced by Wortsman et al. (2022) is a fine-tuning method which interpolates the weights of zero-shot
CLIP with its fine-tuned counterparts. For certain distribution shifts, it is possible to find a ’sweet spot” where both
i.d. and o.0.d. accuracy increase. However, Wise-FT models lose zero-shot capability, and are still not as robust as
VL-loss models with the same base accuracy.4

LiT-tuning. LiT-tuning, or locked-image text-tuning, is an alternate approach to vision-language training in which
a pretrained image tower is aligned with an untrained language model. LiT-tuned models are somewhat more data-
efficient than VL models trained from scratch, but they, too, are not as robust as VL-loss models with the same base
accuracy. (See 4).

Additionally, we observe the following;

14



Under review as submission to TMLR

Imagenet v Average Robustness: ViT-B-32

& wiseft
lit
& v
o7 € conventional
@
wDB’
5
3
2 *
14
g os L 2
[l
o
bt
£
044
03 ‘

045 EI;O IJ‘SS Elé() IJ‘65 EI%O IJ‘?S 0.80
ImageNet Base Accuracy

Figure 5: LiT-tuning on a VL-trained image tower reduces accuracy without altering effective robustness, sug-
gesting that VL pretraining is at least as robust as LiT-tuning. Wise-FT tuning greatly increases base accuracy and
slightly improves effective robustness, at the cost of zero-shot capability. CE from-scratch training matches Wise-FT
accuracy, but sacrifices effective robustness and zero-shot.

1. Like Wise-FT, LiT-tuning produces models whose i.d. / 0.0.d accuracy trade-off fits a line between that
of traditional models and VL models — more robust than the former, less robust than the latter. The only
exception we found was when we LiT-tuned the vision tower of a ViT trained on the CLIP objective — in
this case, LiT-tuning decreased base accuracy while holding effective robustness constant (the near-opposite
effect of Wise-FT)

2. LiT-tuning offers negative benefit for fully trained VL models, suggesting that it can only hope to approach,
rather than exceed, the accuracy of its baselines (See 5)

3. LiT-tuning performance tends to closely correlate to the base accuracy of the underlying vision model

4. Intriguingly, we find that this is true regardless of the specific dataset used for LiT-tuning — LiT-tuned models
trained on small amounts of data are able to recover accuracy on out-of-distribution tasks even when very
little data from that distribution shift appears in the pretraining data

5. These experiments suggest that some degree of effective robustness is "locked away" in many vision models,
but is lost during the training process, but that certain techniques are able to increase effective robustness
disproportionate to the loss in base accuracy, pushing the model ’above the line’ we would normally expect.
Furthermore, if the distribution shift of interest is known and well-defined, it is possible to select a tuning to
optimize for that shift

B Distribution Shifts

ImageNet is a large-scale visual ontology of images built upon the backbone of the WordNet structure. ImageNet
aims to populate the majority of the 80,000 synsets of WordNet with an average of 500—1000 clean and full resolution
images, making it a roughly class-balanced, fully supervised dataset. Deng et al. (2009)

ImageNet-21k, the largest version of ImageNet, contains 14,197,087 images in 21,841 classes.

There now exist a wide range of distribution shifts on ImageNet. These are novel test datasets designed to overcome
some of the limitations of the original benchmark. While they cannot remedy issues with the labeling scheme, these
datasets do provide challenging new contexts in which to analyze classifier performance.
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ImageNet-V2 was designed to duplicate, as closely as possible, the original ImageNet test set. It was intended to
answer the question of whether ImageNet-trained classifiers could successfully generalize even to the most mild of
distribution shifts.Recht et al. (2019)

Imagenet-Sketch is a distribution shift covering sketches, paintings, drawings and illustrations of ImageNet classes.
This test set is very large and comprehensive.Wang et al. (2019a)

Imagenet-R is a 200-class subset of ImageNet-2012 focused on renditions of everyday objects, defined broadly as
drawings, paintings, photographs of food art, etc.Hendrycks et al. (2021a)

Imagenet-A is a 200-class subset of ImageNet-2012 which was algorithmically selected — the natural distribution
shift captured here is the set of ImageNet-class images which most often fool a RN50. This test is challenging, and
tends to include a lot of images with challenges such as occlusion, changes in angle or position, and changes in
brightness.Hendrycks et al. (2021b)

B.1 Different shifts respond to different interventions

Recent works such as Fang et al. (2022) demonstrate the power of effective robustness as an explanatory tool for
performance differences in VL models; Miller et al. (2021) showed that there exists a strong correlation between most
models trained on random subsets of a data distribution, and the fully trained model. However, these authors also
caution that it has significant limitations — Taori et al. (2020) and Nguyen et al. (2022) show that models trained on
more (or different data) can significantly change the effective robustness line of a particular model, and also that these
changes were shift-specific, with stronger fits on shifts like ImageNet-V2 and weaker fits on shifts like ImageNet-A.

We find that ImageNet-V2 responds more to model architecture than other shifts, with the handful of non-ResNet
models we evaluated outperforming nearly all other models, regardless of training objective.

ImageNet-R and ImageNet-Sketch both showed high sensitivity to the training data, with the CC12M and LAION-15m
distributions considerably outperforming even the best YFCC-trained models. These types of shifts are particularly
amenable to subset matching strategies.11, 9

On ImageNet-A, CE models significantly underperformed compared to VL models regardless of the data, and all
models significantly underperformed compared to the ViT-L CLIP.10

We also note that there is no readily apparent logit-scaled linear trend in these distribution shifts when one consid-
ers models trained on a wide range of different datasets, underscoring the importance of a well-chosen baseline for
comparison.

We find that different shifts tend to disadvantage different kinds of models, which makes improving on all of them
simultaneously very challenging. The fact that ViT-L. CLIP was able to do is both impressive and, given the vital
importance of the underlying data distribution in such measures, a mystery which is unlikely to ever be solved. Even
the massive public datasets such as LAION are unable to match the performance of the dataset CLIP was trained on,
although other factors might possibly have played a role.

A standardized benchmark of distribution shifts on ImageNet would be a welcome contribution to this area of research.

C Pretraining Datasets

Today, many SOTA models are pretrained on web-scale unsupervised data. We utilized three such datasets in our
experiments. We observe that one major challenge of conducting research on unsupervised datasets is that the links
provided as part of the dataset fail more and more over time, leading to each group getting a different version of the
dataset. Therefore, to the extent possible, we report the details of each dataset in the appendix, and encourage other
researchers working with these datasets to do the same.

CC-12M is a lightly supervised web-scale dataset created by Google. The image-caption pairs in CC-12M were
filtered and selected for the purposes of training models to caption images.Changpinyo et al. (2021) Our version of
CCI12M contained 9703885 image-caption pairs.
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Label: wallaby

Label: mashed potato Label: grand piano Label: macaque Label: bee

Flickr. alice taken m telegraph from stati... Flickr. Thanksgiving Spread Mashed potatoes. Flickr: of m a room piano u grand spaces p Flickr: JaphighlightsIMG_3476-01 Macaque Flickr: breakfast wasp insekt wespenfrihst
BLIP: an animal with it's eyes open, on t

BLIP: three different types of food BLIP: a monkey sitting on a large rock. BLIP: 2 wasp insect.

Label: espresso Label: jellyfish
Flickr: Rainy Day Espresso espresso coffe. Flickr: jellyfish m 34440131245 aquarium a... Flickr: Ipod Vending Machine An Ipod vendin...
BLIP: two different people and their drin_ BLIP: a jellyfish and two other jelly fis. BLIP: a woman pointing at an information

Label: hay
Flickr: Hay stack Explored! noff landscape..
BLIP: 2 hay field

Label: marimba
Flickr: Marimba band - Seinustu Sudur Afrfk.
BLIP: a guy playing some instruments.

Label: vending machine

7
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Figure 6: ImageNet-100 samples from JANuS.

Label: Bee Label: Espresso
Flickr: IMG_4911 nan nan._ Flickr: Vanilla latte. Large. #sealofapprov.
BLIP: ['an insect and some purple flowers. BLIP: In the picture there is a coffee cu.
0

Label: Menu
Flickr: Hotel Riu panamv*® hotel riu ciudad
BLIP: ['the buffet at the hotel].

Label: Laptop Label: Menu
Flickr: IMG_0968PVD paul van dyk dj electrv Flickr: Maksettavia laskuja nan nan. -
BLIP: ['the man with headphones in front .. BLIP: ['papers with the receipt]

Label: Cotton Label: Lion Label: Lion . Label: Umbrella Label: Laptop
Flickr: Cotton cotton Cotton. Flickr: Untitled lioness grr roar purr lol . Flickr: Noorder Dierenpark noorderdierenpar... Flickr: AB3ES ® . AEEu=%s [ “A§BA» OAE/E, AC instagr... Flickr: DIY Church Night @ Marquee, May the..
BLIP: ['cotton’]... BLIP: ['the lion at the z00']. BLIP: [*a lion on the side of a hill, wit... BLIP: ['the temple in itsuko, japan’].. BLIP: ['my room’

Figure 7: Openlmages-100 samples from JANusS.

YFCC-15M is a subset of YFCC-100M, which is 100M image-metadata pairs taken from Yahoo-Flickr in 2016. The
subset was selected by OpenAl. This dataset contains images and metadata, which includes a "title" and a "description”
field. These fields are combined and processed in various ways by researchers in order to generate captions for models
to train on.Thomee et al. (2016) Our version of YFCC contained 14825134 image-caption pairs.

LAION is a 5B image-caption dataset recently created by LAION.ai. It is the first publicly available dataset which
matches the scale of the datasets used by the large companies to train their best models.Schuhmann et al. (2021) The
subset of LAION we refer to as LAION-15m contained 13775512 image-caption pairs.

D Details on JANuUS

The most important new contribution in JANuS is ImageNet-100. To the best of our knowledge, ImageNet-100 is
the only version of ImageNet which duplicates the original distribution’s class balance and supervision properties
(ImageNet is not perfectly class balanced, but it does not contain any long-tail classes; all classes in ImageNet have at
least 750 samples), while also being fully captioned with original web-scraped labels. We find that both VL and CE
models trained on relatively small amounts of data can achieve high base accuracy on some JANuS subsets, making it
possible for the first time to compare model distributional robustness while controlling for base accuracy.

In Table8, we discuss in detail the supervision strategy used for JANuS, with a per-class breakdown of each class.

An overview of the supervision process follows;
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Label: necklace Label: spindle

Flickr: Joie Women's Cartel Plaid Cotton Sh.

Label: mongoose
Flickr: 2 year old Mongoose bike has a brok...

Label: ram

Flickr: 2017 Ram 2500 Crew Cab 4x4 Pickup #

Label: pillow
Flickr: Monstera, Pillow.

Fn\l(Kr Swirl Necklace in 9ct Yellow and Wh.
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Label: necklace Label: cucumber Label: spindle Label: menu Label: scuba_diver
Flickr: Pearl Pendant Necklace.. Flickr: homemade tacos with salmon, onion, Flickr: Country cotton striped dress.__ Flickr: Octoberfest menu, plate of sausages. Flickr: 6000Lm Scuba Diving 4x CREE XML T6 ..
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Figure 8: LAION-100 samples from JANuS.
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Figure 9: Non-linearities in ImageNet-Sketch. ImageNet-sketch performance is not linear, with only the very largest

VL models showing a reliable improvement over CEly trained models, when controlling for dataset size.

» All samples were supervised by the authors of the paper

» Samples were sourced from flickr using the available API, sorted by ’interesting’, with safesearch enabled,

searching only samples with Creative Commons licenses

* Additional filtering terms were passed to the API in order to eliminate commonly encountered confounds in

the search terms

¢ After the search term was selected, items were downloaded in bulk

* All downloaded samples were then individually tagged by the researchers as either "IN-class" or "out-of-

class", using reference photographs from each class as a baseline comparison

We found that classes varied widely along several vectors;
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Imagenet v Imagenet-A: VL vs Conventional
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Figure 10: ImageNet-A is learnable by all models at extremely high base accuracy. Although VL models seem to

learn ImageNet-A faster than CE models, CE models reach near-parity with VL models when base accuracy gets very
high.

Imagenet v Imagenet-R: VL vs Conventional

caption_changes
imagenet_filtering
VL objective
conventional
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Imagenet-R

01 02 03
ImageNet Base Accuracy

Figure 11: VL performance on ImageNet-R outstrips base accuracy. On ImageNet-R, which is a 200-class subset
of ImageNet, VL models are able to achieve higher accuracy than on ImageNet itself. VL continues to outperform CE
models on this dataset, even at very high accuracies.

* Some classes had far greater availability than others (ranging from 450,000 to 283 available samples)
* Some classes were much cleaner than others (ranging from 100 percent clean to around 25 percent)

* Some classes tended to be the ’subject’ of photographs, such as dog breed, while others, such as mashed
potato, tended to be featured as secondary items in the background of a photograph of something else
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0i100 vs in100 class distributions
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Figure 12: This log-scale figure shows the extreme class imbalance of the unfiltered OI1100 dataset, compared to the
prefiltered IN100 dataset; certain classes which are very common in web-scraped images, such as laptops, are over-
rrepresented, while others are not represented at all. The OI100 class imbalance is produced by a difference in dataset
labeling strategies. VL-loss class imbalances (detected by searching for exact-match classnames in caption strings),
which are present in the other web-scraped datasets in JANuS, LAION and YFCC, co-occur with comparatively low
accuracy scores on fine-grained classification tasks.

D.1 Dataset Construction

The 100 classes in JANuS were selected randomly from a subset of all classes with more than 600 captions available in
ImageNet-Captions (Fang et al., 2022). The list of classes selected is available in Section I. We note that this approach
introduces a potential bias in class selection, since it may be that captions were still available for those images ten
years after ImageNet was originally constructed for some reason that correlates with properties we are interested in
studying; however, we feel that the risk of this is outweighed by the many benefits of having such a dataset available
for study.
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Table 8: JANuS Supervision: Search Terms and Sample Quality
Since many of the findings in our paper highlight the importance of both
the amount and type of label noise, this table records statistics pertaining
to our filtration process for the new samples in IN100. In the search term
field, a - symbol indicates that all samples which included that word in
the title, tags or description were NOT matched. Boolean OR, AND, and
"" symbols behave as they typically do.

inlk classname search term good samples | total samples | avail. samples | pct. good
lion lion 962 1000 450000 0.96
wine bottle wine bottle 925 1000 29500 0.93
book shop bookstore 816 984 83000 0.83
parking meter parking meter 377 1000 9500 0.38
african elephant african elephant 885 1000 44000 0.89
bagel bagel 699 988 20500 0.71
tarantula tarantula 667 981 9000 0.68
ice cream ice cream 741 984 154500 0.75
fig fig 517 1000 46000 0.52
shoe shop shopping shoes 425 1000 13000 0.43
french bulldog french bulldog 887 996 7500 0.89
hen hen 412 1000 73000 0.41
guacamole guacamole 683 998 6500 0.68
broccoli broccoli 679 997 19000 0.68
howler monkey howler monkey 817 847 9000 0.96
scuba diver scuba diver 827 1000 15000 0.83
spindle "spindle wool, spindle -wool thread" 311 867 867 0.36
lhasa lhasa dog 719 1000 2500 0.72
traffic light stoplight 622 991 5500 0.63
lionfish lionfish 552 897 6500 0.62
popsicle popsicle -animal -sticks -animals -insect | 638 943 7500 0.68

-insects -icicle -garden -sticks -icicles -

gardens -toes -label -labels
lampshade lampshade 446 807 6500 0.55
spiderweb spiderweb -spiderman -halloween - | 832 996 17500 0.84

pumpkin -butterfly -pleiades -nebula

-stars
lifeboat lifeboat 572 1000 13000 0.57
cucumber cucumber -sea -spider -beetle -flower - | 730 999 26500 0.73

spiral
english springer english springer spaniel 772 993 3500 0.78
macaw macaw 972 1000 13500 0.97
mailbox mailbox 900 1000 36500 0.9
peacock peacock -butterfly 966 999 72000 0.97
bee bumblebee OR wasp OR hornet -jet | 686 761 110000 0.9

-airplane -helicopter -navy -aircraft

-comic -RIAT -military -Helicopter

-Helicopters  -helicopters  -aviation

-Hudson -car -basketball -sports -

Transformers  -cosplay  -disfrazado

-costume -transformer AND flower
dungeness crab dungeness AND crab -restaurant - | 474 1000 1500 0.47

breakfast -lunch -dinner -shack -creels

-traps -cannery
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banana

banana -plant -blossom -flower -seed -
seedlings -tree -spider -leaf -abstract -bay
-band -festival -doll -sexy -sexiest -bread
-soup -puree -smoothie -car -plantation
-cake -cream -monkey -pudding -zoo -
republic -boxes -buying -selling -vendor
-bridge -scone -moon

793

995

65000

0.8

corn

corncob

354

1000

1000

0.35

lemon

lemon -plant -blossom -flower -seed -
seedlings -tree -spider -leaf -abstract -
bay -band -festival -doll -sexy -sexiest
-bread -soup -puree -smoothie -car -
plantation -scent -fresh -cleaner -butterfly
-grove -shots -car -sunrise -paint -graffiti
-origami -cake -cream -pudding -boxes -
buying -selling -vendor -bridge -scone -
don -lime

693

1000

65000

0.69

marimba

marimba instrument

127

283

283

0.45

orange

orange food fruit -plant -blossom -flower
-seed -seedlings -tree -spider -leaf -
abstract -bay -band -festival -doll -sexy
-sexiest -bread -soup -puree -smoothie -
car -plantation -cake -cream -monkey -
pudding -zoo -republic -boxes -buying -
selling -vendor -bridge -scone -moon -
cupcake -cake -sales -seller -pancakes
-crepes -crep -crepe -pancake -cookie
-flavored -juice -soda -pop -beach
island -cove -grove -street -drive -tea
curd -marmalade -bars -cabs -chicken
cheesecake -pie -milk

744

1000

4000

0.74

bell pepper

bell pepper vegetable -plant -blossom -
flower -seed -seedlings -tree -spider -
leaf -abstract -bay -band -festival -doll
-sexy -sexiest -bread -soup -puree -
smoothie -car -plantation -cake -cream -
monkey -pudding -zoo -republic -boxes
-buying -selling -vendor -bridge -scone
-moon -cupcake -cake -sales -seller -
pancakes -crepes -crep -crepe -pancake -
cookie -flavored -juice -soda -pop -beach
-island -cove -grove -street -drive -tea -
curd -marmalade -bars -cabs -chicken -
cheesecake -pie -milk -market -spice

392

505

505

0.78

€Spresso

espresso coffee -maker -machine -beans
-building -exterior -window

828

1000

22000

0.83

mashed potato

mashed potato

635

996

10000

0.64

stingray

stingray water -dolphin -shark -cruise -
boat -scuba -fish

600

983

2000

0.61

flagpole

flagpole -lighthouse -church -bank -
station

614

991

7000

0.62
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teapot teapot -tea -flower -tower -building - | 660 997 10500 0.66
dome -art -fashion -vase -store -stores
-shop -shops -Sagittarius -project365 -
fountain -candle -mug -teacup -keg -
vessel -amphora -urn -coffeepot
umbrella umbrella 911 1000 126000 0.91
beer bottle beer bottle -house -door -brewery -glass | 909 1003 19000 0.91
-cap
barn barn -swallow -owl -bird 980 1000 115000 0.98
christmas stocking | christmas stocking fireplace 317 779 779 0.41
magpie magpie -screenshots -moth -butterfly - | 736 983 25500 0.75
coprinopsis -thieving -mushroom
mitten mitten glove 800 995 1500 0.8
ram ram sheep -Church -window -Window - | 742 1000 3000 0.74
church -school -dance -parade -festival -
celebration -festivities -community -fair -
ewe -fox -lamb -bird -cat -dog -Dodge
warthog warthog animal -zebra -cheetah -leopard | 946 997 2500 0.95
-giraffe -gazelle -hippo -rhino -donkey
-armadillo -elephant -crocodile -lion -
leopard -impala -cat -monkey -bird
goose geese 474 500 69000 0.95
bubble soap bubble -dancer -dance -fairy -tree | 414 500 5000 0.83
-leaf -leaves -flowers -water -toy -art -
abstract -museum -dog -cat -butterfly -
food -wine -beer -chocolate -Chocolate
cougar cougar animal -warthog -mascot -zebra - | 297 500 1000 0.59
cheetah -leopard -giraffe -gazelle -hippo
-thino -donkey -armadillo -elephant -
crocodile -lion -leopard -impala -cat -
monkey -bird -lake -Lake -river -River -
blonde -Blonde -woman -girl -milf -bear
-cliff -Cliffs -cliffs -military -wallaby -
horse -jet -print
daisy daisy flower 500 500 52000 1
menu menu 431 500 92000 0.86
bald eagle bald eagle 475 500 33500 0.95
necklace necklace jewelry -brooch -pendant - | 478 500 12500 0.96
creation -earring -earrings -bracele -ring
-Engraver -bauble -anklet
chickadee chickadee bird -Goldfinch -goldfinch - | 494 500 9000 0.99
robin -thrush -jay -cardinal -woodpecker
-wren -hawk -raven -titmouse -nuthatch
stone wall """stone wall""" 424 500 32000 0.85
flamingo flamingo bird 476 500 38500 0.95
gas pump gas station 348 500 41000 0.7
vulture vulture bird -hawk -crow -eagle 489 500 15500 0.98
pizza """pizza pie"" -Fest -festival -summit - | 305 500 1000 0.61

experience -party -band -moon -parade -
Parade -harvard -mosaic -montage"
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wallaby wallaby -warthog -mascot -zebra - | 369 500 10000 0.74
cheetah -leopard -giraffe -gazelle -hippo
-thino -donkey -armadillo -elephant
-crocodile -lion -leopard -impala -cat
-monkey -bird -koala -sports -kangaroo
-soccer -football -food -church -hills -
stadium -tribute -grass -rugby -apartment
-car
hay haystack field -hole -trail -poster -sign 360 500 1000 0.72
grand piano "kawai grand piano, steinway grand pi- | 312 455 455 0.69
ano"
laptop laptop 443 500 98000 0.89
dishwasher dishwasher appliance 191 268 268 0.71
cricket cricket -batting -sports -team -match 337 500 44000 0.67
sea slug nudibranch 468 500 12500 0.94
mongoose mongoose -bike -bicycle -park -tree -joe | 379 500 5000 0.76
-rocket -military -airplane -toy -car
siamese cat siamese cat -bangkok -flower -snake | 416 500 13000 0.83
-campaign -wat -costume -cosplay -
festival
freight car freight car 491 500 70500 0.98
vending machine """vending machine""" 411 500 13000 0.82
bottlecap bottlecap -tab 448 500 3500 0.9
acorn acorn -woodpecker -fairy -squirrel - | 352 500 25000 0.7
weevil -travel -squash -street
feather boa feather boa 135 500 2000 0.27
macaque macaque 485 500 14500 0.97
bolete boletus 444 500 3500 0.89
border terrier """border terrier""" 422 500 1500 0.84
barbell barbells 352 500 1000 0.7
fly housefly 398 500 1500 0.8
suspension bridge | suspension bridge 432 500 33500 0.86
jellyfish jellyfish 477 500 46500 0.95
barbershop barbershop -quartet -singers 430 500 9000 0.86
koala koala 458 500 32500 0.92
bannister bannister staircase 174 183 183 0.95
pillow pillow -talk -fight -cat -dog -moss -sky - | 420 500 34500 0.84
cloud -sky
bib baby bib -shower -food 406 500 1500 0.81
junco junco bird -finch -sparrow -thrush - | 475 500 7000 0.95
cardinal -woodpecker -jay
chainlink fence chainlink fence 375 500 3500 0.75
soccer ball """soccer ball"" -match -game -milky - | 349 500 2500 0.7
beach -Lewes"
stupa stupa 418 500 23500 0.84
quail quail bird -finch -sparrow -thrush - | 396 500 11000 0.79
cardinal -woodpecker -jay -partridge -
rabbit -hawk -avocet -deer -dog -wolf -
coyote -gopher -eagle -vole -molerat -
butterfly
padlock padlock 378 500 9500 0.76
great white shark """great white shark""" 309 500 2000 0.62
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totem pole """totem pole"" wood" 383 500 1000 0.77
ant ant insect 447 500 18000 0.89
bison bison 429 500 41500 0.86
greenhouse greenhouse 407 500 82000 0.81
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Adding BLIP Captions to JANuS

Since we could not find human-authored captions for Ima-
geNet, we used BLIP Li et al. (2022a) to generate descrip-
tive captions on ImageNet-100. BLIP often uses word
fragments to describe objects, so we used a spell checker
as a simple intervention to improve the quality of BLIP
captions. Finally, because BLIP’s vocabulary does not
include many of the specialized classes available in Im-
ageNet, we augmented the BLIP captions with Flickr im-
age titles, the form of text which is most commonly avail-
able for an image. We used top p=0.9, max length=40,
min length=5, repetition penalty=1.1.

We repeated the process for Openlmages-100. However,
we used human-authored captions sourced from Pont-
Tuset et al. (2020) instead of BLIP whenever available;
around 16,000 out of the 135,000 Openlmages-100 sam-
ples had human-authored captions.

E Model Training Details

F Classwise Shifts
F.1 Per class accuracies for CLIP RN50 and
SWSL RN50

In the supplementary files, we provide per-class confu-
sion matrices on IN1000 for CLIP ResNet-50, trained on
400 Mn samples, as well as a semi weakly supervised
ResNet-50 trained by Facebook on 1 Bn samples.Yalniz
et al. (2019)

In addition to classnames which are literally identical
(there are two instances of the class "missile" and two
instances of the class "sunglasses" in the OpenAl class-
names for IN1000), we find that the model struggles
to disambiguate short words with similar starting token
strings, such as "quail", "quilt" and "quill", and classes
that start with common (and contextually misleading)
words, such as "night snake".

G Details on models in study

Our meta-analysis made extensive use of the popular
timm Wightman (2019) computer vision library, includ-
ing models from Zhang et al. (2021); Bao et al. (2022);
Kolesnikov et al. (2019); Srinivas et al. (2021); Touvron
et al. (2021); Xu et al. (2021); Dai et al. (2021); d’ Ascoli
et al. (2021); Touvron et al. (2022); Huang et al. (2016);
Yu et al. (2017); Chen et al. (2017); Maaz et al. (2022);
Li et al. (2022b); Xie et al. (2020); Tan & Le (2019);
Wu et al. (2018); Han et al. (2020); Wang et al. (2019b);
Vaswani et al. (2021); Graham et al. (2021); for the com-
plete list, please refer to the timm repository. In our sup-
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plementary results spreadsheet, the name field for each
model is the same as that model’s name in the timm repos-
itory — where model names have been modified between
the time our evalutions took place and the time the pa-
per was completed, we note the new names in the up-
dated name column. CE-loss models evaluated in the
study which can be cross-referenced by looking them up
on timm.

Pretrained VL-loss model weights are taken from the
open-clip Ilharco et al. (2021) repository, and can be
cross-referenced on the repository’s github page. The re-
maining models were trained by us for this study, and are
described in the name field of the spreadsheet.

H Abbreviated JANuUS Results

H.1 Subset matching strategies

For unsupervised web-scraped captioned datasets (such as
LAION and YFCC), ground-truth class labels do not ex-
ist. Therefore, we must choose a strategy to assign class
labels to samples in such datasets. VL-loss models use
captions as labels. There is no easy way for CE-loss mod-
els to directly use captions as labels. To facilitate this, we
propose a strategy we call subset matching, a modification
of the “substring matching” technique proposed by Fang
et al. (2022).

This strategy, illustrated in detail in 13, labels samples as
follows. First, construct a dict of integers and “match-
ing terms”. A matching term is a string judged to be a
good text representation of an image class, such as the
string ‘elephant’ for an image of an elephant. Our stan-
dard choice of matching terms is based on Radford et al.
(2021).

If a sample caption contains a matching term, then the
corresponding integer class label is applied. If the sample
caption contains multiple matching terms, then we apply
one of three strategies, which we label strict, multi-class
(mc) and single-class (sc) matching, explained in detail
in H.1; we use single-class matching whenever possible,
since it usually performs best. If the sample caption con-
tains no matching terms for any class, then no label is
applied and the image is dropped from the training set.
Otherwise, the caption is replaced with the corresponding
integer-valued label.

A subset matching strategy is an algorithmic method for
applying machine labels to images, based on caption la-
bels. All of these methods share in common the same
underlying approach, as seen in 13.

In this section, we fully define and describe some impor-
tant variations on the basic subset matching strategy as
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Table 9: Captioning strategy can affect model distributional robustness and accuracy. VL models perform
better on OpenImages when flickr-captions are replaced with synthetic captions (BLIP+Title captions), but the same

captioning method provides no benefits on ImageNet-100.

Model Technique Val. Acc. (IN100) Avg. Rob. E.R.R.

ImageNet-100 BLIP-Caption VL 0.574 £0.014 0.216 £0.008 0.376

ImageNet-100 Flickr-Caption VL 0.574 £0.014 0.217 £0.008 0.378

Openlmages-100 BLIP+Human-Caption VL 0.283 £0.012 0.131 £0.008 0.464

Openlmages-100 Flickr+Human-Caption VL 0.225 + 0.012 0.11 £ 0.008  0.489

Openlmages-100 Flickr-Caption VL 0.197 + 0.012 0.095 + 0.008  0.482
Subset Matching

| Image-caption Pair |

Title: Elephant
Desc: One of the younger elephants in the|
exhibit. @504 can't remember which zoo.

Caption({Title} {Desc.} {Tags): elephant one of the younger
elephants in the exhibit cant remember which zoo elephant

Int-Language kv pairs:
{ 10: [elephant,pachyderm)],
12: [dog, canine,bulldog],

14: [zoo, zoos,] }

Caption Processing

Linear Matching l

Ngrams: {elephant, elephant
one, elephant one of, one,
one of, one of the, ...}

Strict Single-class Multi-class

Tags: elephant

Figure 13: Subset matching; an overview. Subset matching is a simple labeling strategy for unsupervised image-
caption pairs. The caption is processed and converted to n-grams which are then matched against a database of terms

which point to integer-label classes.

described in the main paper. All of our subset matching
experiments utilized one of these three strategies.

Strict: Strict subset matching means that the model only
applies the label to the image if the caption contains
term(s) which map to exactly one class.

Strict subset matching was generally the most accurate
method on ImageNet — we believe this is because of the
ImageNet dataset filtration strategy, in which label selec-
tion is strongly dependent on caption contents.

It was generally less accurate method than single-class on
Openlmages, where labels and caption contents are inde-
pendently derived.
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We find that strict matching performance tends to degrade
when the pool of matching terms grow; it also tends to
punish synthetic captions, which use a smaller vocabulary
than web-scraped or annotated captions.

Single class: In single-class subset matching, the model
greedily takes the first matching term to be the true class
and ignores all subsequent matching terms.

As a general matter, we found that single-class matching
struck the best balance between dataset utilization and ac-
curacy, and we used this method for most of our experi-
ments.

Multi class: In multi-class subset matching, we match up
to 25 classes per sample (if we see multiple terms for a
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single class, we ignore those additional terms, and we do
not attempt to rank classes by frequency).

The cross-entropy loss of the model is then given by the
sum of the loss on each class; in other words, we reward
the model for applying a high probability on each label
assigned to the sample and for applying a low probability
to each label which was not assigned to the sample.

This approach, while intriguing, was challenging because
we only had one ground-truth label for each image; there-
fore, multi-class matching was always less accurate than
single-class matching in direct comparison.

Since our cross-entropy model used a softmax loss, we
found that model error tended to be high as the number
of matched classes grew. We also found empirically that
images which actually required multiple labels were not
particularly common in our dataset. Perhaps for these
reasons, this approach performed worse than single-class
matching in most experiments.

Additional term definitions.

Label accuracy. On datasets for which supervised
ground-truth labels exist, we report label accuracy as the
count of machine-generated labels which match ground
truth labels, divided by the total number of samples in the
dataset.

Dataset utilization. Dataset utilization (Ds. Util) of a
model on a dataset is the ratio of correctly labeled sam-
ples to total number of samples (including correct, incor-
rect and unlabeled samples). We use this metric to judge
how useful a labeling strategy is; ground truth labels have
a utilization of 100%; automated labeling methods gives
typically significantly less utilization.

Abbreviated results table.
Please see Tab. H.1

I Class Frequency Counts for IN100
subset matching distributions,
openai labels, mc matching

.1 ImageNet-100

orange’: 1820, ’lion’: 1788, ’barn’: 1695, ’macaw’:
1684, ’'umbrella’: 1583, *banana’: 1500, *mitten’: 1500,
warthog’: 1488, 'magpie’: 1438, ’lemon’: 1437, ’koala’:
1435, ’espresso’: 1400, ’bagel’: 1376, "howler mon-
key’: 1337, ’tarantula’: 1331, ’broccoli’: 1299, ’fig’:
1295, ’ice cream’: 1285, ’cucumber’: 1272, ’goose’:
1231, ’daisy’: 1224, ’junco’: 1207, ’chickadee’: 1193,
’teapot’: 1175, ’french bulldog’: 1166, ’vulture’: 1150,
’stingray’: 1142, *guacamole’: 1134, *flamingo’: 1126,
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’lifeboat’: 1120, ’ant’: 1114, ’suspension bridge’: 1109,
“greenhouse’: 1100, ’Thasa apso’: 1093, *wallaby’: 1073,
’stupa’: 1073, ’bald eagle’: 1063, ’lionfish’: 1057, "fly’:
1055, ’english springer spaniel’: 1051, "necklace’: 1048,
’bison’: 1047, ’barbell’: 1042, mailbox’: 1041, ’quail’:
1037, *macaque’: 1032, ’padlock’: 1026, "hen’: 1024,
‘pizza’: 995, *pillow’: 995, ’acorn’: 993, ’vending ma-
chine’: 976, ’bottle cap’: 969, ’stone wall’: 968, "pop-
sicle’: 955, ’spider web’: 949, ’totem pole’: 934, ’spin-
dle’: 920, ’bookstore’: 903, ’bubble’: 893, ’border ter-
rier’: 889, "'mongoose’: 888, *corn’: 874, *parking meter’:
866, "flagpole’: 864, ’dungeness crab’: 862, marimba’:
862, ’peafowl’: 848, ’bee’: 840, ’bell pepper’: 821,
‘menu’: 758, *wine bottle’: 734, ’great white shark’: 733,

“jellyfish’: 703, ’dishwasher’: 701, ’soccer ball’: 700,
"beer bottle’: 663, ’grand piano’: 600, ’bolete’: 576,
“hay’: 547, ’gas pump’: 541, ’christmas stocking’: 534,
‘traffic light’: 479, ’cougar’: 471, ’scuba diver’: 470,

"feather boa’: 435, ’african bush elephant’: 408, ’siamese
cat’: 358, ’lampshade’: 352, ’barbershop’: 349, ’baby
bib’: 258, ’freight car’: 119, ’laptop computer’: 46, 'sea
slug’: 37, ’shoe store’: 32, ’cricket insect’: 19, ’baluster
handrail’: 2

1.2 YFCC-100

grand piano’: 62610, ’orange’: 37182, 'fly’: 30889,
’lion’: 16043, ’bee’: 14164, ’pizza’: 12084, ’barn’:
11854, *goose’: 11200, ’ice cream’: 10556, ’greenhouse’:
9479, menu’: 7463, ’umbrella’: 7164, ’banana’: 6933,
’bubble’: 6838, ‘corn’: 6835, ’cougar’: 6619, ’lemon’:
6439, ’daisy’: 5386, ’scuba diver’: 5044, ’cricket in-
sect’: 4702, ’laptop computer’: 4601, *ant’: 4465, *hay’:
4427, *peafowl’: 4140, *pillow’: 4137, *flamingo’: 3735,
"bookstore’: 3668, "necklace’: 3201, *bald eagle’: 2912,
ram adult male sheep’: 2617, ’jellyfish’: 2482, ’vul-
ture’: 2462, ’suspension bridge’: 2439, ’espresso’: 2189,
’mailbox’: 2125, *bison’: 2073, ’flagpole’: 2012, ’fig’:
1973, ’hen’: 1896, ’cucumber’: 1815, ’bagel’: 1746,
"koala’: 1592, magpie’: 1366, ’stone wall’: 1337, ’spi-
der web’: 1296, *acorn’: 1277, *popsicle’: 1226, ’balus-
ter handrail’: 1182, *vending machine’: 1118, broccoli’:
1114, ’junco’: 1113, ’quail’: 1108, ’stupa’: 1043, *feather
boa’: 1018, ’stingray’: 971, ’macaw’: 961, ’wallaby’:
942, ’sea slug’: 832, ’chickadee’: 783, ’lifeboat’: 781,
"baby bib’: 774, 'mitten’: 748, ’teapot’: 728, 'macaque’:
661, ’traffic light’: 638, *'mashed potatoes’: 625, ’african

bush elephant’: 600, "tarantula’: 593, *barbershop’: 537,
gas pump’: 520, ’padlock’: 517, ’beer bottle’: 433,
’warthog’: 430, mongoose’: 407, ’siamese cat’: 395,
"guacamole’: 393, 'parking meter’: 381, ’spindle’: 379,
"wine bottle’: 370, *dishwasher’: 361, ’lampshade’: 358,

’lhasa apso’: 356, howler monkey’: 314, ’lionfish’: 296,
’shoe store’: 285, ’soccer ball’: 260, marimba’: 168,
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Model Name Val V2 Sketch | R A AvgRob | EffRob | Label Acc. | DS Util.
in100-384-res 0.877 | 0.805 | 0.322 | 0.356 | 0.176 | 0.415 0.473 1 1
in100-RN50x4 0.874 | 0.805 | 0.336 | 0.369 | 0.19 | 0.425 0.486 1 1
in100-sup 0.87 | 0.791 | 0.373 0.378 | 0.153 | 0.42375 | 0.487 1 1
in100-jpeg10 0.809 | 0.728 | 0.341 0.345 | 0.131 | 0.386 0.478 1 1
in100-cliplabel 0.813 | 0.717 | 0.278 0.328 | 0.127 | 0.363 0.446 0.9 1
in100-size-sbm-ttd 0.801 | 0.7 0.267 0.311 | 0.124 | 0.351 0.438 0.89 1
in100-sbm-ttd 0.754 | 0.674 | 0.285 0.331 | 0.123 | 0.353 0.468 0.89 0.72
in100-sbm-tags 0.723 | 0.636 | 0.251 0.297 | 0.109 | 0.323 0.447 0.87 0.58
in100-sbm-title 0.686 | 0.603 | 0.237 0.301 | 0.107 | 0.312 0.455 0.94 0.49
in100-gtcaps 0.849 | 0.768 | 0.37 0.373 | 0.17 | 0.421 0.495 1 1
in100-gtcaps-tokscramble 0.837 | 0.765 | 0.372 | 0.399 | 0.162 | 0.425 0.507 1 1
in100-jpegl0 0.75 | 0.682 | 0.311 0.352 | 0.144 | 0.372 0.496 1 1
in100-gtcaps-vitl14 0.715 | 0.617 | 0.164 | 0.205 | 0.116 | 0.276 0.385 1 1
in100-ttd 0.587 | 0.487 | 0.162 | 0.173 | 0.085 | 0.227 0.386 0.89 0.72
in100-ttd-tokstrip 0.585 | 0.475 | 0.145 0.19 | 0.081 | 0.223 0.381 0.89 0.72
in100-blipcap 0.405 | 0.351 | 0.138 0.165 | 0.07 | 0.181 0.447 0.61 0.28
in100-classname-only 0.236 | 0.218 | 0.122 | 0.1 0.05 | 0.123 0.521 1 1
01100-sup-int-classbal 0.812 | 0.734 | 0.39 0.399 | 0.167 | 0.423 0.520 1 1
0i100-sup-int 0.667 | 0.595 | 0.316 | 0.399 | 0.156 | 0.367 0.549 1 1
0i100-cliplabel 0.631 | 0.553 | 0.273 0.343 | 0.134 | 0.326 0.516 0.9 1
0i100-submat-ttd 0.369 | 0.304 | 0.109 | 0.2 0.104 | 0.17925 | 0.486 0.48 0.08
0i100-gtcaps 0.694 | 0.644 | 0.35 0.423 | 0.177 | 0.399 0.574 1 1
0i100-ttd 026 | 0.22 | 0.065 0.121 | 0.066 | 0.118 0.454 0.53 0.11
01100-blipcap+annotcap 0.343 | 0.291 | 0.09 0.174 | 0.055 | 0.152 0.443 0.46 0.14
0i100-blipcap 0.298 | 0.28 | 0.095 0.151 | 0.065 | 0.148 0.495 0.42 0.12
JANuS-gt+swinlabels-1.1m 0.908 | 0.863 | 0.678 0.731 | 0.349 | 0.655 0.721 N/A N/A
JANuS-gt+submat-1.1m 0.871 | 0.817 | 0.625 0.659 | 0.276 | 0.594 0.682 N/A N/A
JANuS-gt+ttd-1.1m 0.846 | 0.757 | 0.447 0.506 | 0.204 | 0.478 0.566 N/A N/A
JANuS-ofa-1.1m 0.67 | 0.587 | 0.392 | 0.453 | 0.147 | 0.395 0.589 N/A N/A
JANuS+yfcclSm-int-cliplabels-2.4m | 0.927 | 0.877 | 0.7 0.78 | 0.449 | 0.702 0.757 N/A N/A
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“freight car’: 114, ’great white shark’: 104, ’christmas
stocking’: 100, ’dungeness crab’: 97, ’french bulldog’:
94, ’bottle cap’: 85, ’bolete’: 80, ’chain link fence’: 51,
’barbell’: 23, ’english springer spaniel’: 22, *border ter-
rier’: 19

1.3 LAION-100

’spindle’: 68186, 'necklace’: 59079, ’orange’: 52221,
"pillow’: 41020, ’laptop computer’: 23319, ’lion’: 14246,
’lemon’: 12769, ’ram adult male sheep’: 11550, *bub-
ble’: 11079, *barn’: 9909, ’pizza’: 9597, ’daisy’: 8331,
‘umbrella’: 8323, *banana’: 7690, *corn’: 7140, 'menu’:
6788, *cougar’: 6714, ’ice cream’: 6539, ’cricket insect’:
5696, ’peafowl’: 4662, ’espresso’: 4227, ’flamingo’:
4029, *goose’: 3532, ’soccer ball’: 3532, ’barbershop’:
2963, *dishwasher’: 2853, *bald eagle’: 2678, *fig’: 2635,
greenhouse’: 2460, ’broccoli’: 2348, ’teapot’: 2298,
’acorn’: 2164, ’cucumber’: 2053, hay’: 2023, *wine bot-
tle’: 1824, ’scuba diver’: 1818, ’bison’: 1736, ’lamp-
shade’: 1497, ’mitten’: 1457, ’french bulldog’: 1435,
stone wall’: 1402, ’koala’: 1394, ’bee’: 1296, ’mail-
box’: 1199, ’padlock’: 1126, ’stingray’: 1115, ’book-
store’: 1069, ’spider web’: 976, 'macaw’: 964, ’bar-
bell’: 913, *christmas stocking’: 887, ’traffic light’: 825,
vending machine’: 808, ’popsicle’: 780, ’quail’: 768,
"chickadee’: 744, ’bagel’: 714, ’baluster handrail’: 713,
“jellyfish’: 706, ’bottle cap’: 648, ’beer bottle’: 603,
*flagpole’: 589, ’bell pepper’: 553, ’grand piano’: 544,
’guacamole’: 520, *magpie’: 481, ’suspension bridge’:
477, *african bush elephant’: 459, *baby bib’: 451, *wal-
laby’: 423, ’stupa’: 399, macaque’: 350, ’gas pump’:
335, *great white shark’: 333, 'mongoose’: 308, "junco’:
302, ’siamese cat’: 291, ’marimba’: 289, ’hen’: 272,
tarantula’: 257, ’lifeboat’: 236, ’lionfish’: 205, ’totem
pole’: 199, ’english springer spaniel’: 192, ’warthog’:
186, ’shoe store’: 166, ’border terrier’: 145, ’vulture’:
118, *feather boa’: 116, ’lhasa apso’: 105, ’sea slug’:
90, howler monkey’: 85, ’fly’: 83, ’parking meter’: 54,
*freight car’: 50, ’ant’: 44, ’dungeness crab’: 36, ’chain
link fence’: 33, 'bolete’: 14

J Per Class Accuracy for Subset
Matching, openai classnames, sc

J.1 ImageNet-100

’macaw’: 0.81, ’barn’: 0.9, 'umbrella’: 0.85, ’lion’: 0.92,
‘mitten’: 0.89, 'warthog’: 0.9, magpie’: 0.87, ’koala’:
0.88, ’banana’: (.88, ’espresso’: (.89, ’bagel’: 0.88,
howler monkey’: 0.87, ’tarantula’: 0.87, *orange’: 0.86,
’lemon’: 0.87, ’fig’: 0.87, *broccoli’: 0.85, *cucumber’:
0.84, ’ice cream’: 0.84, ’junco’: 0.83, ’goose’: 0.83,
"chickadee’: 0.83, ’teapot’: (.82, ’daisy’: 0.82, ’french
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bulldog’: 0.82, ’vulture’: 0.82, ’stingray’: 0.81, ’gua-
camole’: 0.81, flamingo’: 0.81, ’lifeboat’: 0.81, ’suspen-
sion bridge’: 0.81, ’greenhouse’: 0.8, 'lhasa apso’: 0.81,
ant’: 0.8, stupa’: 0.8, *wallaby’: 0.8, ’bald eagle’: 0.8,
"lionfish’: 0.82, ’english springer spaniel’: 0.82, *bison’:
0.82, ’barbell’: 0.82, macaque’: 0.82, 'mailbox’: 0.85,
'necklace’: 0.84, ’quail’: 0.84, ’padlock’: 0.85, ’hen’:
0.84, ’acorn’: 0.83, ’pillow’: 0.82, 'fly’: 0.83, ’vending
machine’: 0.83, ’stone wall’: 0.83, ’bottle cap’: 0.83,
"popsicle’: 0.83, ’spider web’: 0.82, ’totem pole’: 0.82,
"pizza’: 0.82, ’spindle’: 0.81, *bookstore’: 0.79, mon-
goose’: 0.79, *border terrier’: 0.78, *parking meter’: 0.77,
‘marimba’: 0.77, *flagpole’: 0.77, ’dungeness crab’: 0.78,
‘peafowl’: 0.77, *bubble’: 0.74, bell pepper’: 0.74, *bee’:
0.7, ’corn’: 0.68, 'menu’: 0.68, ’great white shark’: 0.67,
’wine bottle’: 0.67, ’dishwasher’: 0.65, ’soccer ball’:
0.65, ’jellyfish’: 0.65, ’beer bottle’: 0.59, ’grand piano’:
0.56, ’bolete’: 0.55, ’gas pump’: 0.52, ’christmas stock-
ing’: 0.51, *hay’: 0.48, ’traffic light’: 0.45, ’scuba diver’:
0.45, ’cougar’: 0.45, ’feather boa’: 0.42, ’african bush
elephant’: 0.4, ’siamese cat’: 0.35, ’lampshade’: 0.35,
"barbershop’: 0.35, ’baby bib’: 0.26, ’freight car’: 0.11,
"laptop computer’: 0.05, ’sea slug’: 0.04, ’shoe store’:
0.03, ’cricket insect’: 0.02, *baluster handrail’: 0.0

J.2 Openimages-100

bee’: 0.03, ’pizza’: 0.08, *goose’: 0.09, 'menu’: 0.23,
’lion’: 0.21, ’banana’: 0.14, "umbrella’: 0.21, ’jellyfish’:
0.21, ’ice cream’: 0.24, *orange’: 0.21, ’ant’: 0.2, "koala’:
0.2, ’necklace’: 0.22, flamingo’: 0.24, ’vulture’: 0.25,
fly’: 0.24, ’lemon’: 0.21, ’wine bottle’: 0.22, ’broc-
coli’: 0.26, ’bison’: 0.29, ’barn’: 0.27, ’bald eagle’: 0.3,
"hen’: 0.27, ’stupa’: 0.27, ’spider web’: 0.24, pillow’:
0.24, ’padlock’: 0.23, macaw’: 0.24, ’totem pole’: 0.23,
“traffic light’: 0.23, ’laptop computer’: 0.23, ’bubble’:
0.23, ’chickadee’: 0.23, cucumber’: 0.24, ’daisy’: 0.24,
'warthog’: 0.24, ’parking meter’: 0.24, ’teapot’: (.24,
“junco’: 0.22, ’spindle’: 0.22, ’lionfish’: 0.22, ’bagel’:
0.22, ’cougar’: 0.22, ’french bulldog’: 0.21, *mailbox’:
0.19, ’hay’: 0.19, ’stingray’: 0.19, *'magpie’: 0.19, *wal-
laby’: 0.19, ’vending machine’: 0.19, 'macaque’: 0.19,
“greenhouse’: 0.19, ’espresso’: 0.18, ’quail’: 0.17, ’bottle
cap’: 0.17, ’grand piano’: 0.16, ’acorn’: (.15, ’siamese
cat’: 0.14, ’guacamole’: 0.13, "gas pump’: 0.13, *mit-
ten’: 0.12, "bell pepper’: 0.12, *fig’: 0.12, *bookstore’:
0.11, ’barbershop’: 0.11, ’lifeboat’: 0.11, "peafowl’: 0.11,
"great white shark’: 0.11, 'mongoose’: 0.11, ’suspension
bridge’: 0.11, ’tarantula’: 0.11, 'marimba’: 0.11, ’dish-
washer’: 0.11, ’stone wall’: 0.1, ’christmas stocking’:
0.09, *bolete’: 0.09, ’lhasa apso’: 0.09, ’soccer ball’: 0.09,
“beer bottle’: 0.1, *border terrier’: 0.09, *howler monkey’:
0.09, ’lampshade’: 0.09, ’african bush elephant’: 0.05,
’scuba diver’: 0.06, 'mashed potatoes’: 0.05, ’english
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springer spaniel’: 0.04, ’cricket insect’: 0.04, ’feather
boa’: 0.04, ’dungeness crab’: 0.05, ’shoe store’: 0.04,
“freight car’: 0.04, *barbell’: 0.04, *baby bib’: 0.03, ’sea
slug’: 0.03

K JANuS Spreadsheet Column
Explanations

JANuS contains many different kinds of metadata, and the
meaning of some of the column labels used may not be
immediately apparent to the reader.

We do not provide explanations for metadata columns
which are explained in one of the original dataset de-
scriptions; for those, we recommend referring to the orig-
inal authors of the datasets. (Deng et al., 2009; Fang
et al., 2022; Schuhmann et al., 2021; Thomee et al., 2016;
Kuznetsova et al., 2020)

BLIPCaption refers to captions generated by us using a
BLIP captioning model. BLIPTitle captions are a com-
bination of the BLIP caption and the title field of flickr
captions. Li et al. (2022a)

FlickrCaption refers to captions sourced from flickr.

annot_caption refers to Openlmages captions that were
authored by human image annotators. prose_caption
combines BLIP and annotator captions, favoring the latter
when available.

clip_idx are ImageNet labels chosen by a zero-shot CLIP
ViT-L model from OpenAl.

idx_ labels refer to labels generated using various subset-
matching strategies.

mc is multiclass, sc is single class, strict is strict. Ours,
default, openai refer to the three different sets of class
labels we experimented with throughout this paper.
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