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Abstract

A hybrid model involves the cooperation of an interpretable model and a complex black
box. At inference, any input of the hybrid model is assigned to either its interpretable or
complex component based on a gating mechanism. The advantages of such models over
classical ones are two-fold: 1) They grant users precise control over the level of trans-
parency of the system and 2) They can potentially perform better than a standalone black
box since redirecting some of the inputs to an interpretable model implicitly acts as reg-
ularization. Still, despite their high potential, hybrid models remain under-studied in the
interpretability/explainability literature. In this paper, we remedy this fact by presenting
a thorough investigation of such models from three perspectives: Theory, Taxonomy, and
Methods. First, we explore the theory behind the generalization of hybrid models from the
Probably-Approximately-Correct (PAC) perspective. A consequence of our PAC guarantee
is the existence of a sweet spot for the optimal transparency of the system. When such
a sweet spot is attained, a hybrid model can potentially perform better than a standalone
black box. Secondly, we provide a general taxonomy for the different ways of training hybrid
models: the Post-Black-Box and Pre-Black-Box paradigms. These approaches differ in the
order in which the interpretable and complex components are trained. We show where the
state-of-the-art hybrid models Hybrid-Rule-Set and Companion-Rule-List fall in this tax-
onomy. Thirdly, we implement the two paradigms in a single method: HybridCORELS,
which extends the CORELS algorithm to hybrid modeling. By leveraging CORELS, Hy-
bridCORELS provides a certificate of optimality of its interpretable component and precise
control over transparency. We finally show empirically that HybridCORELS is competitive
with existing hybrid models, and performs just as well as a standalone black box (or even
better) while being partly transparent.

1 Introduction

The ever-increasing integration of machine learning models in high-stakes decision-making contexts (e.g.,
healthcare, justice, finance) has fostered a growing demand for transparency in recent years. Current
workhorses to address transparency concerns in machine learning include black-box explanation and trans-
parent design techniques (Guidotti et al., 2018). Black-box explanation techniques aim at explaining complex
machine learning models in a post-hoc fashion with global explanations such as Trepan (Craven & Shav-
lik, 1995) and BETA (Lakkaraju et al., 2017) or local explanations such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg & Lee, 2017). On the other hand, transparent design concerns the development of inher-
ently interpretable models such as rule lists (Rivest, 1987; Angelino et al., 2017), rule sets (Rijnbeek & Kors,
2010), decision trees (Breiman, 2017), and scoring systems (Ustun & Rudin, 2016).

However, both black-box explanations and transparent design face performance and trustworthiness chal-
lenges that can prevent their wide adoption. On the one hand, while inherently interpretable models can be
more easily understood and adopted by non-domain experts, their out-of-the-box performance can be worst
than non-transparent models. Moreover, training such models to optimality is often NP-hard due to their
discrete nature. On the other hand, black boxes can effortlessly attain high performance but their decision
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Figure 1: Overview of Hybrid Interpretable Modeling. (a) General schematic of a Hybrid Model where, at
inference time, a gating mechanism determines whether to send the instance to the interpretable component
hs or to the complex one hc. (b) Letting transparency be the ratio of samples sent to the interpretable
component hs, the trade-off between accuracy and transparency can be measured and compared across
different Hybrid Models.

mechanisms are opaque and hard to understand by both experts and non-experts. Also, post-hoc explana-
tions of these complex models have been shown to be unreliable and highly manipulable by ill-intentioned
entities (Aïvodji et al., 2019; Slack et al., 2020; Dimanov et al., 2020; Laberge et al., 2022; Aïvodji et al.,
2021). This conundrum between black-box or transparent designs is colloquially referred to as the “accuracy-
transparency trade-off”, that is, one has to choose between transparent models with lower performance or
opaque models that perform well but whose explanations are not trustworthy. Still, this trade-off is not a
quantitative measure but rather a part of the collective imagination of researchers in interpretable machine
learning. For this reason, the accuracy-transparency trade-off has been heavily criticized and even labeled a
myth (Rudin, 2019). But the question remains, does such a trade-off exist? And if it does, is there a way to
quantitatively measure it? Or even optimize it?

To explore such questions, we will not treat black-box and transparent designs as dichotomies. Rather, we
will embrace both and explore the continuum between the two philosophies. More specifically, we will study
Hybrid Interpretable Models (Wang, 2019; Pan et al., 2020; Wang & Lin, 2021), which are systems that
involve the cooperation of an interpretable model and a complex black box. At inference time, any input of
the hybrid model is assigned to either its interpretable or complex component based on a gating mechanism,
see Figure 1 (a). The intuition behind this type of modeling is that not all examples in a dataset are hard
to classify.

In line with the literature (Wang, 2019; Pan et al., 2020; Wang & Lin, 2021), we define the system’s trans-
parency as the ratio of samples that are sent to the interpretable part. The higher the transparency, the
more model predictions one can actually understand and possibly certify. However, it is possible that the in-
terpretable component makes more errors on average meaning that the overall system suffers a performance
loss. Therefore, an integral part of hybrid modeling is to empirically explore the accuracy-transparency
trade-off and find the best compromises, see Figure 1 (b). We note that the accuracy-transparency trade-off
becomes something we measure and optimize. This is why we believe Hybrid Models are a very interesting
research direction in the quest for interpretable machine learning.
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Still, despite their high potential, hybrid models remain under-studied and under-used in the interpretabili-
ty/explainability literature. One of the reasons for this under-exploration could be that learning interpretable
models is very hard (often NP-Hard), and fitting a Hybrid Model on top can only be harder. To address this
issue, past studies have optimized such models using local search heuristics (Wang, 2019; Pan et al., 2020).
Nevertheless, we show in this study that the inherent stochasticity of these local search algorithms hinders
the ability of practitioners to consistently attain a target level of transparency. Simply put, hybrid models
are currently not user-friendly enough to promote widespread study and application.

Given the recent development of highly efficient libraries for training interpretable models to optimality (e.g.,
CORELS for rule-lists (Angelino et al., 2017), GOSDT for decision trees (Hu et al., 2019))), we believe it
is now possible to practically train Hybrid Models to optimality, even when adding a hard constraint on
transparency level.

To sensitize the community to the immediate potential of hybrid models and to encourage additional re-
search, we offer a fundamental investigation of such models from three perspectives: Theory, Taxonomy, and
Methods. From the theory point of view, we explore Probably-Approximately-Correct (PAC) generalization
guarantees of hybrid models. A consequence of our PAC guarantee is the existence of a sweet spot for the
optimal transparency of the system. When such a sweet spot is attained, a hybrid model can potentially per-
form better than a standalone black box. Secondly, we provide a general taxonomy for the different ways of
training hybrid models: the Post-Black-Box and Pre-Black-Box paradigms. These approaches differ in the
order in which the interpretable and complex components are trained. We show where state-of-the-art hybrid
models fall in this taxonomy. Thirdly, we implement the two paradigms in a single method: HybridCORELS,
which extends the library CORELS to hybrid modeling. By leveraging CORELS, HybridCORELS provides
a certificate of optimality of its interpretable component and precise control over transparency. We finally
show empirically that HybridCORELS is competitive with existing hybrid models, and performs just as well
as a standalone black box (or even better) while being partly transparent. To resume, our contributions are:

• We theoretically study hybrid models under the PAC-Learning framework and derive generalization
bounds. We show that such bounds depend on the amount of data classified by each part of the
hybrid model and that an optimal transparency value exists.

• We introduce a taxonomy of hybrid models’ learning methods, identifying two main families: the Pre-
Black-Box paradigm and the Post-Black-Box paradigm. We instantiate the proposed Pre-Black-Box
paradigm with a generic framework, using a key notion of black-box specialization via re-weighting.
In a nutshell, it leverages the fact that in the Pre-Black-Box paradigm, the part of the input space
handled by the black-box component is already defined before it is trained. One can then specialize
it in such region by assigning larger weights to the appropriate training examples.

• We review state-of-the-art methods for learning hybrid models, and show that they all fall into the
Post-Black-Box category.

• We modify a state-of-the-art algorithm for learning optimal sparse rule lists, named CORELS.
More precisely, we propose a method for learning rule-based hybrid models with the Post-Black-Box
paradigm. Our method, called HybridCORELSPost, is the first to provide optimality guarantees and
explicit control of the model transparency.

• We propose another modified version of CORELS for learning rule-based hybrid models with the Pre-
Black-Box paradigm. This method, named HybridCORELSPre, is the first one using the proposed
framework for the Pre-Black-Box paradigm. Again, it provides optimality guarantees and explicit
control of the model transparency.

• We empirically show, using the proposed HybridCORELSPre algorithm, that the Pre-Black-Box
paradigm is suitable for learning accurate hybrid models with transparency constraints.

• We empirically compare both HybridCORELSPre and HybridCORELSPost with state-of-the-art
methods for learning rule-based hybrid models. We show that both methods offer competitive trade-
offs between accuracy and transparency, while also providing facilitated control over the latter, and
optimality guarantees.

3



Under review as submission to TMLR

(a) Example of a region Ω (shown as a thick square) where
a complex model hc ∈ Hc (with |Hc| = 236) is overly
complex.

(b) The complex model hc can be replaced by a simpler
one hs ∈ Hs (with |Hs| = 24). Overall, this hybrid model
space has size |Hyb| = 224.

Figure 2: Toy example with X = [0, 1]× [0, 1]. Here the complex models Hc are all the ways to color the 36
width-1 squares. The simpler models Hs are all the ways to color the 4 width-2 squares in the middle.

2 Hybrid Interpretable Models: a Theoretical Analysis

In this section, we formally introduce hybrid interpretable models and analyze them under the PAC-Learning
framework. We derive generalization bounds and show that an optimal trade-off between accuracy and trans-
parency (the proportion of data classified by the interpretable component) exists, leveraging the advantages
of both parts of the model.

2.1 Definitions

Let X be the input space and let Hc,Hs be two sets of binary classifiers h : X → {0, 1}. We shall impose
that |Hs| < |Hc| < ∞ so that Hs represents a simple set of models while Hc represents a complex set of
models. Finally, we let P be a set of subsets of X (for instance, P may be the power set of X , or the set
of linear half-spaces). The intuition behind hybrid modeling is that there may exist a region Ω ∈ P where
a complex model hc ∈ Hc is overkill and hence it could be replaced by a simpler model hs ∈ Hs on that
region without significant loss in terms of classification performance. Formally, a hybrid model is a triplet
⟨hc, hs, Ω⟩ ∈ Hyb := Hc ×Hs × P which instantiates a function of the form

∀x ∈ X , ⟨hc, hs, Ω⟩(x) =
{

hs(x) if x ∈ Ω,

hc(x) otherwise.

Figure 2 presents an informal argument favoring this modeling choice. We will additionally assume that
the smaller hypothesis space Hs involves models that are interpretable by design such as rule lists, sparse
decision trees, scoring systems, etc. This assumption will not affect the theoretical analysis, which will just
rely on |Hs| being small, but it will specify the desiderata of the hybrid model. Indeed, if hs is interpretable,
then we would like the region Ω on which it operates to be as big as possible without hindering performance.
Letting D be a distribution over X × {0, 1} that represents a specific binary classification task, we want the
transparency CΩ := Px∼D[x ∈ Ω] to be as large as possible.

The rest of this section is structured as follows: in Section 2.2 we prove that finite hybrid models (i.e.,
|Hyb| < ∞) are PAC-Learnable. That is if we learn a hybrid model on a finite dataset with sufficiently
many examples, then we can guarantee that the model will generalize to new unseen samples. This is an
important first step in the fundamental understanding of hybrid models. Afterward, in Section 2.3, we
study the impact of transparency on the looseness of the bound and show that a “sweet spot” for transparency
exists.

4



Under review as submission to TMLR

2.2 Finite Hybrid Models are PAC-Learnable

We are going to study distributions D where a perfect model ⟨h⋆
c , h⋆

s, Ω⋆⟩ ∈ Hyb exists:

LD(⟨h⋆
c , h⋆

s, Ω⋆⟩) := P
(x,y)∼D

[⟨h⋆
c , h⋆

s, Ω⋆⟩(x) ̸= y] = 0. (1)

Intuitively, the predictions of the optimal hybrid interpretable model ⟨h⋆
c , h⋆

s, Ω⋆⟩ match the true label y of
every example (x, y) ∈ (X × {0, 1}) drawn from distribution D. To learn such a model, we can employ
the Empirical Risk Minimization (ERM) principle, which consists of sampling a dataset of M iid examples
S := {(x(i), y(i))}M

i=1 ∼ DM , defining the empirical risk

L̂S(⟨hc, hs, Ω⟩) :=
M∑

i=1
1[⟨hc, hs, Ω⟩(x(i)) ̸= y(i)], (2)

and minimizing it across Hyb

⟨hc, hs, Ω⟩S := ERMHyb(S) = arg min
⟨hc,hs,Ω⟩∈Hyb

L̂S(⟨hc, hs, Ω⟩).

One can notice that we do not scale the empirical risk by a factor 1
M as multiplication by a constant factor

does not affect ERM. The following theoretical result characterizes the generalization of hybrid models
learned with ERM.

Theorem 1 Given a finite hybrid model space (|Hyb| < ∞) and some ϵ > 0, letting CΩ := Px∼D[x ∈ Ω]
be the transparency of Ω, then for any distribution D where there exists a triplet ⟨h⋆

c , h⋆
s, Ω⋆⟩ with zero

generalization error (as defined in (1)), the following holds for a training set of size M :

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M),

where

B(ϵ, CΩ,Hc,Hs, M) := (1− |Hc|)CM
Ω + (1− |Hs|)CM

Ω + |Hc|(CΩe−ϵ + CΩ)M + |Hs|(CΩe−ϵ + CΩ)M .

If we assume that the optimal subset Ω ≡ Ω⋆ is known in advance, then the bound tightens

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ B(ϵ, CΩ,Hc,Hs, M). (3)

Important point: B(ϵ, CΩ,Hc,Hs, M) is positive despite the presence of the negative terms (1 − |Hc|)CM
Ω +

(1−|Hs|)CM
Ω . Indeed, these terms are outweighed by the remaining two terms, which are larger and positive.

Proof The complete proof is provided in Appendix A.
This generalization bound involves several key quantities: the amount of data M , the transparency CΩ and
its complement CΩ as well as the complexities of the hypothesis spaces |Hs| and |Hc|. We will see in the
coming subsection how these various parameters impact the looseness of the bound.

We note some of the limitations of these theoretical bounds. First, taking CΩ = 0, we obtain a trivial bound
1 + |Hc|e−ϵM . The same thing occurs when setting CΩ = 1. Basically, the bound is trivial unless input
samples are shared between the complex and simple models. Secondly, the bound requires the knowledge of
transparency CΩ := Px∼D[x ∈ Ω] which cannot be computed exactly in practice since the data-generating
distribution D is unknown. The only way to practically estimate this quantity is to count how many data
instances land in the region Ω. Thirdly, the bound is loose as its computation relies on applying the union
bound repeatedly over P, Hc, and Hs. Still, for CΩ ∈]0, 1[, and any ϵ ∈]0, 1] the bound decreases as M
increases which implies that learning hybrid models is possible in theory.
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(a) Region Ω1 (b) Region Ω2 (c) Region Ω3 (d) Region Ω4

Figure 3: Four hybrid models that are functionally equivalent but have different regions Ω.

2.3 Fine-Tuning the Transparency

A particular property of hybrid models is that the optimal model ⟨h⋆
c , h⋆

s, Ω⋆⟩ from Equation (1) need not be
unique. Indeed, given the flexibility of choosing the region Ω on which the simple model is applied, we could
have two hybrid models with the same functional output. Figure 3 presents a toy example of four hybrid
models that are all functionally equivalent but with different regions Ω.

Now the hypothesis that the optimal region Ω⋆ is known in advance could be replaced with the knowledge
of a set of optimal regions {Ω⋆

i }R
i=1. If such is the case, which region should be returned by the learning

algorithm? Using the empirical error as a criterion would not work since any ERM fitted using these optimal
regions would return an error of 0. We propose to leverage the theoretical bound to decide which region to
employ. Specifically, if we fix some region Ω⋆

i for the ERM algorithm, then Equation (3) provides a bound
B(ϵ, CΩ,Hc,Hs, M) on the probability of having an error that exceeds ϵ for any ϵ ∈ ]0, 1]. Taking the average
value of the bound highlights its looseness

B(CΩ⋆
i
,Hc,Hs, M) :=

∫ 1

0
B(ϵ, CΩ⋆

i
,Hc,Hs, M)dϵ ∀i = 1, 2, . . . , R.

Hence, by studying B(CΩ⋆
i
,Hc,Hs, M) as a function of CΩ⋆

i
, one can theoretically decide which region to use

in the final model.

In the following example, we have defined Hs as the set of all binary depth-3 decision trees (7 internal nodes
and 8 leaves with binary outcomes) fitted on 200 binary features (X = {0, 1}200). This hypothesis space has
a size |Hs| = 28 × 200× 1992 × 1984 ≈ 3.11× 1018. We have defined Hc to be any hypothesis space that is
larger than Hs by some factor |Hc| = N × |Hs|.

Figure 4 presents the looseness of the generalization bound as a function of the transparency for this hypo-
thetical example. We observe that, given Hc, Hs, and M , there is a “sweet spot” where the bound on error
is the tightest

Ω⋆⋆(Hc,Hs, M) = arg min
i=1,2,...,R

B(CΩ⋆
i
,Hc,Hs, M).

Looking more specifically at Figure 4 (a), increasing N reduces the transparency that reaches the minimal
looseness. This means that the more complex Hc is, the more input samples must be sent to train hc so it
does not overfit. Inspecting Figure 4 (b), the optimal transparency increases as M increases. This means
that as we reach large values of M , we can afford to train the black box on a smaller ratio of the data without
over-fitting.

We conclude this example by emphasizing that Figure 4 is mostly of theoretical interest so practitioners must
take it with a grain of salt. More precisely, the exact values of the “sweet spot” for transparency are not
indicative of the values one would obtain in real-life experiments. This is because our analysis is performed
on a loose upper bound which we hope still captures the generalization dynamics of hybrid models. In
real-life applications, the existence of an optimal transparency must be assessed experimentally. Still, the
theory suggests the existence of such a “sweet spot”, which in itself is an interesting result.
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(a) Varying N with M = 5000.
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Figure 4: Normalized Bound Looseness (i.e., B/|Hs|) of the theoretical upper bound as a function of trans-
parency CΩ. We observe a “sweet spot” with minimal Looseness which depends on N (ratio of the hypothesis
spaces’ sizes |Hc|

|Hs| ) and M (size of the training dataset).

2.4 Takeaways

Although the bound makes strong assumptions that may not hold in practical applications, our theoretical
analysis leads to fundamental insights into training hybrid models:

1. Training hybrid interpretable models is theoretically possible given enough data.

2. Important parameters that influence generalization are the complexities |Hs| and |Hc|, the trans-
parency CΩ, and the number of data points M .

3. There exists a “sweet spot” of the bound in terms of transparency which varies with Hc, Hs, and M .
Henceforth, in practical applications, we should sweep over possible values of transparency. Some of
the resulting hybrid models may attain better generalization.

3 Learning Hybrid Interpretable Models: Taxonomy and Methods

We now introduce our proposed taxonomy of hybrid models learning frameworks. We then show how rule-
based classifiers can be used to implement hybrid interpretable models. Finally, we position state-of-the-art
methods within the proposed taxonomy.

3.1 Taxonomy of Hybrid Models Learning Frameworks

A major challenge in training hybrid models is that two models must be trained instead of one. Given the
proliferation of out-of-the-box implementations of complex model hc, such as Scikit-Learn and XGBoost
classifiers, it would be simpler to rely on them via their pre-existing fit and predict methods. Henceforth,
we encourage hybrid model training procedures to be agnostic to the type of black box hc. This makes
hybrid models a lot more versatile and user-friendly because any practitioner could just plug in their favorite
black box implementation.

Given the technical constraint of black box agnosticism, we now leverage the previous PAC generalization
bound to derive a learning objective. As a reminder, in previous section defined the data-generating distribu-
tion D, the training set S := {(x(i), y(i))}M

i=1 ∼ DM , and the transparency CΩ := Px∼D[x ∈ Ω] ≈ |S∩Ω|/|S|.
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It was also demonstrated that two important quantities guaranteeing generalization are the complexity of
the simple hypothesis space Hs and the transparency CΩ. Since “smaller is better” in any learning objective,
we should actually minimize the complement of transparency CΩ = (1 − CΩ) ≈ |S ∩ Ω|/|S|. A general
regularized learning objective would then be

obj(⟨hc, hs, Ω⟩, S) = L̂S(⟨hc, hs, Ω⟩)
|S|

+ λ ·KHs + β · |S ∩ Ω|
|S|

, (4)

where KHs
is a complexity measure of Hs and λ, β ≥ 0 are regularization hyper-parameters that respectively

control the cost of increasing the complexity ofHs (for instance considering depth), and that of increasing the
black box part coverage CΩ (equivalently decreasing the interpretable part coverage CΩ, which constitutes
the model’s transparency).

Equation (4) presents the learning of hybrid models in its most abstract form and we shall make it more
specific shortly. We first present several ways to minimize the objective over the space Hyb = Hc ×Hs × P
that differ on the order in which the simple hs and the black box hc parts are trained.

3.1.1 The Post-Black-Box Paradigm: Wrapping an Interpretable Model around the Complex One

A common approach encompassing all state-of-the-art methods for learning hybrid models consists in training
a black box first and then wrapping an interpretable model on top of it. We coin this strategy as the Post-
Black-Box paradigm. In this setting, the interpretable components hs and Ω can be seen as a way to
simplify the model in regions where it is overkill. A key advantage of this paradigm is that a user owning a
pre-trained black box with high performance can easily wrap an interpretable model on top of it to get an
increase of transparency (and possibly a generalization improvement as suggested by our theoretical analysis
of Section 2.3). Furthermore, the interpretable part of the hybrid model is able to correct the mistakes
made by the black box, as its predictions are known in advance. We illustrate the Post-Black-Box paradigm
in Figure 5 (Top).

3.1.2 The Pre-Black-Box Paradigm: black box Specialization by Reweighting

Another possibility for learning hybrid models consists in first learning the interpretable part of the model
before training a black box model on the remaining examples. We label this approach Pre-Black-Box. The
objective of the initial training of the interpretable part is to identify the easiest examples from the data
and train a simple model on them. Then, the black box part will only have to classify the examples not sent
to the simple part (x /∈ Ω). Leveraging the black box complexity to specialize it on such part of the input
space could hence lead to enhanced performances. However, it could also cause overfitting, especially when
the interpretable part transparency is high (and the black box only deals with a small portion of the input
space/a reduced number of examples). In our proposed framework, this issue is tackled by training the black
box on a reweighted version of the entire training set, with weights

∀i ∈ {1, 2, . . . , M}, wi = eα1[x(i)∈Ω ]∑M
j=1 eα1[x(j)∈Ω ]

, (5)

that are higher for instances not classified by hs. The non-uniform weights rely on a specialization coef-
ficient α ≥ 0. The higher α, the more the black box focuses on the data not captured by the interpretable
part of the model. On the other hand, low values of α (e.g., for α = 0, all examples’ weights are equal) lead
to a more generalist black box model. Since this trade-off is non-trivial, the hyperparameter α will need
to be fine-tuned in practice. Figure 5 (Bottom) illustrates the Pre-Black-Box paradigm pipeline. We note
that many classifiers in the Scikit-Learn and XGBoost packages support non-uniform data weights in their
training procedure. Hence, the Pre-Black-Box paradigm is also black box-agnostic.

This paradigm intrinsically comes with several drawbacks and advantages. On the one side, the Pre-Black-
Box paradigm limits the possible collaboration between both parts of the hybrid model. Indeed, the inter-
pretable part (characterized by hs and Ω) is trained first, defining the data split with the black box part.
Then, there is no possibility to redefine the data split between the two parts of the hybrid model in the
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Dataset S

Train hs

and Ω Fit hc with
weights wi

Train hc

Fit hs and
Ω on top

Figure 5: Two paradigms for learning hybrid models. (Top) In the Post-Black-Box paradigm, a black box is
first trained on the whole dataset. Then, the interpretable components are fitted on top of the black box to
simplify it in regions where it is overkill. (Bottom) In the Pre-Black-Box paradigm, the interpretable part of
the model is trained to identify a region where the task is simple. Afterward, the black box model is fitted
on the data with specialization weights wi to encourage high performance on instances outside of Ω. Here
the weights are visualized as the markers’ size.

second phase of the learning (black box training). Consequently, there can be no correction of one part of
the model’s errors by the other, as was done in the Post-Black-Box paradigm. On the other side, because
the data split is perfectly defined while training the black box, it is possible to adapt the black box training
procedure to leverage its complexity and specialize it on its support region Ω.

3.1.3 Another Perspective: End-to-end Approach

Finally, a last possible strategy consists in training both parts of a hybrid model simultaneously. While this
approach could theoretically provide the best performances (as it allows for a global optimality guarantee),
it is also very challenging, as it requires encoding both the simple and black box parts of the hybrid model
within a unified framework.

One key applicability advantage of both Pre-Black-Box and Post-Black-Box paradigms is their black box-
agnostic nature: there is no limitation over the type of black box used nor its training procedure. This
would not hold anymore in an end-to-end paradigm, and we let such an approach as an interesting avenue
for future works.

In the coming subsection, we discuss how rule-based models can be used for implementing the triplet
⟨hc, hs, Ω⟩.

3.2 Rule-Based Modeling

One of the important design choices of a hybrid model is the space P of possible subsets Ω where the
interpretable model will operate. An example from previous work is to model these sets via thresholded
linear models (Wang & Lin, 2021). An alternative way to encode the input subsets Ω is by employing a
rule-based model r (e.g., a rule list or a rule set) and defining Ωr as

Ωr := {x ∈ X : cover(r, x) = 1},

where cover(r, x) = 1 if x respects the condition in at least one of the rules in r (we say that x is captured
by r). The advantage of using rule-based models to partition the input space is that they are interpretable
by design, hence they can also serve as the simple hypothesis space Hs. That is, we can assign a label to an
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input depending on which rule captures it. Hereafter is an example of a hybrid model involving a rule list r
containing two rules.

if 18 ≤ Age ≤ 22 and gender=male then
return y = 1

else if Prior-Crimes > 3 then
return y = 1

else
return hc(x)

Since a rule-based model encodes both the region Ω and the simple function hs on this region, we can think of
rule-based hybrid models as a tuple ⟨hc, r⟩ ∈ Hc ×Hs instead of a triplet ⟨hc, hs, Ω⟩. The learning objective
on the training set S becomes

obj(⟨hc, r⟩, S) = L̂S(⟨hc, r⟩)
|S|

+ λ · |r|+ β · |S ∩ Ωr|
|S|

, (6)

where we measure the complexity of a rule-list (rule-set) r by its length |r|.

3.3 Rule-Based Post-Black-Box Hybrid Models

Now that we have introduced several learning paradigms as well as a modeling choice for the hybrid model
based on rules, we can describe two approaches in the literature that apply the Post-Black-Box paradigm
with rule-sets and rule-lists.

3.3.1 Hybrid Rule-Set (HyRS)

if cover(r+, x) then
return 1

else if cover(r−, x) then
return 0

else
return hc(x)

Figure 6: Hybrid Rule-Set.

This hybrid model has been introduced by Wang (2019) and consid-
ers a rule set r = r+ ∪ r− that combines a set of positive rules r+
and a set of negative rules r−. The resulting hybrid model ⟨hc, r⟩
takes the form of Figure 6.

The complexity of the interpretable model is the total number of
rules |r| and so the learning objective of Equation 6 is used. The
minimization of this combinatorial problem is tackled by a local
search algorithm where neighborhoods are defined as random per-
turbations of the rule-sets r+ and r−.

One of the drawbacks of HyRS is that the user does not have precise
control over the transparency CΩ of the resulting hybrid model. There are two design choices in HyRS
that lead to this issue. First of all, the only way to control the desired transparency is to increase the
hyper-parameter β which will incentivize the rule sets to cover more examples. Still, because the objective is
extremely complex, it is not clear what β is high enough to ensure a certain level of transparency. Secondly,
since the local search algorithm employed to find the rules is inherently stochastic, several runs of the
training procedure with the same hyperparameters can lead to very different models and, by extension,
different transparencies. Figure 7 shows different reruns of HyRS on two datasets for 20 different values
of β that span four orders of magnitude. We see that the relation between transparency and β is hardly
monotonic because of the variance between reruns. Moreover, the transparency does not vary smoothly w.r.t
β as seen in the UCI Adult Income dataset, where the transparency jumps from 0 to 0.5 at around β = 10−2.

3.3.2 Companion Rule-List (CRL)

An alternative method called Companion-Rule-List (CRL) has later been developed in order to address
previous limitations (Pan et al., 2020). Notably, CLR streamlines the accuracy-transparency tradeoff by
returning multiple hybrid models with increasing transparency instead of a single model. To encode multiple
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(b) UCI Adult Income dataset

Figure 7: Instability of the transparency of HyRS for different random seeds. A small jitter was applied to
the points to remove juxtapositions.

hybrid models, note that, given a rule list, one can insert the black box at any level of the else-if statements.
For instance, Figure 8 presents three hybrid models ⟨hc, r⟩ that are derived from the same list of three rules
r = [r1, r2, r3].

if cover(r1, x) then
return 1

else
return hc(x)

if cover(r1, x) then
return 1

else if cover(r2, x) then
return 0

else
return hc(x)

if cover(r1, x) then
return 1

else if cover(r2, x) then
return 0

else if cover(r3, x) then
return 1

else
return hc(x)

Figure 8: A rule list r = [r1, r2, r3] encodes three hybrid models ⟨hc, r⟩ with increasing transparency (from
left to right).

Returning multiple hybrid models allows users to decide what hybrid model to use based on their desired
transparency. The training objective of CRL is no longer the accuracy but rather the Area-Under-the-Curve
(AUC) of the accuracy-transparency curve of the different hybrid models. A regularization λ·|r| is also added
to the objective to avoid long rule-lists. Similarly to HyRS, CRL is trained with a local search algorithm
where neighbourhoods are defined as random perturbations of the rule-list r. Although CRL offers more
possibilities for transparency, we find that the inherent stochasticity of the learning procedure still hinders
the ability to consistently reach target transparency. Figure 9 presents simple experiments conducted on the
COMPAS and UCI Adult Income where a CRL model was fitted for 10 different random seeds. We present
the different levels of transparency attained by each run. For the COMPAS dataset, if a user wishes for a
transparency of at least 0.5, then on half of the runs, they would need to go up to about 0.75 transparency
using the CRL framework (which may excessively conflict with predictive accuracy). For the UCI Adult
Income dataset, if an end-user requires transparency of at least 0.25, then on half of the runs, they would
need to go up to 0.5 transparency. These experiments highlight that CRL does not provide full control over
the desired level of transparency of the hybrid models.
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Figure 9: Instability of the transparency of CRL for different random seeds each indicated by a different
color. The dots represent the transparency attained by the many hybrid models returned from a single run
of CRL.

4 HybridCORELS: Learning Optimal Hybrid Interpretable Models

We now present our methods for learning optimal hybrid models. First, we introduce the CORELS algorithm,
which was proposed to learn optimal rule lists. Then, we describe the integration of the transparency require-
ments within our proposed methods. Finally, we propose HybridCORELSPost (resp. HybridCORELSPre),
a modified version of CORELS to learn optimal hybrid models following the Post-Black-Box (respectively,
Pre-Black-Box) framework.

4.1 Learning Optimal Rule Lists: the CORELS Algorithm

Rule lists are interpretable classifiers formed by an ordered list of if-then rules r, followed by a default
prediction q0 (Rivest, 1987). The set of ordered rules preceding the default prediction is called a prefix.
One can observe that any rule list d = (r, q0) represents a classification function, while any prefix r defines
a partial classification function, defined within its support Ωr (examples matching at least one of the rules
within r) .

To learn Certifiable Optimal RulE ListS, Angelino et al. (2017) proposed CORELS, a branch-and-bound
algorithm. It represents the search space of rule lists using a prefix tree, in which each node corresponds to
a prefix r. Adding a default prediction q0 to r allows the building of a rule list d = (r, q0). In CORELS’
prefix tree, the children nodes of r correspond to prefixes formed by adding exactly one rule at the end of
r. Thus, the r-rooted sub-tree corresponds to all possible extensions of r. CORELS’ objective function for
rule list d = (r, q0) on dataset S is a weighted sum of classification error and sparsity:

obj(d, S) = L̂S(d)
|S|

+ λ · |r| (7)

where L̂S(d) measures the number of errors (incorrect classifications) made by d on S (as defined in (2)),
and |r| is the length (number of rules) of rule list d’s prefix r.

Let Sr = S ∩Ωr be the subset of S made of all examples of S captured by some prefix r (i.e., the examples
classified by r’s partial classification function). Just like any branch-and-bound algorithm, CORELS uses an
objective lower bound to prune the prefix tree, and eventually guide the search in a best-first search fashion.
For each node of the prefix tree (corresponding to a prefix r), it measures the best objective function value
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that may be reached by extending prefix r. If this value is worse than the best solution (rule list) known
so far, then the r-rooted sub-tree can be pruned safely. Let L̂Sr

(r) counts the number of mistakes made by
prefix r (measured on its support set Sr), and incons(S) denote the minimum number of examples of S that
can never be classified correctly, because they have the exact same features vector as some other examples,
but with a different label (due to potential dataset inconsistencies). CORELS’ objective lower bound for
prefix r on dataset S is then computed as follows:

lb(r, S) = L̂Sr
(r) + incons(S \ Sr)

|S|
+ (|r|+ 1) · λ (8)

Intuitively, L̂Sr
(r) + incons(S \ Sr) corresponds to the minimum number of errors that any extension of r

can make, given the errors made by r and the errors that can not be avoided due to data inconsistency.

CORELS uses several efficient data structures to speed up the computation by breaking down symme-
tries (Angelino et al., 2017). For instance, a prefix permutation map ensures that only the most accurate
permutation of every set of rules is kept. These data structures are still valid in our setup. Finally, we
can leverage the efficiency of the CORELS’ machinery to learn optimal hybrid models, by only modifying
CORELS’ objective function and providing a valid lower bound on the new objective function. For ref-
erence, we provide the pseudo-code of the branch-and-bound underlying CORELS within Algorithm 1 in
Appendix B.2. In particular, our modified algorithms will only learn prefixes (which will constitute the inter-
pretable parts of our hybrid models), and hence will never care about the default prediction. In sections 4.3
and 4.4, we show how the objective function (7) and its lower bound (8) can be modified to learn hybrid
models implementing the Post-Black-Box and Pre-Black-Box paradigms (respectively).

4.2 Ensuring a User-Defined Transparency Level

State-of-the-art methods for learning hybrid models integrate transparency requirements using a regulariza-
tion term, as described in sections 3.3.1 and 3.3.2. However, this approach does not allow the user to have
a precise control over the desired transparency level, and several runs with the exact same hyperparameters
but different random seeds can lead to hybrid models with significantly different transparency levels. To
address this issue, we build on the flexibility of the branch and bound algorithm underlying CORELS and
integrate transparency as a hard constraint, stating that the learnt prefix r must capture at least a proportion
of min_transp ∈ [0, 1] of the examples within dataset S:

|Sr|
|S|
≥ min_transp (9)

where, as aforementioned, Sr = S ∩ Ωr is the subset of S made of all examples of S captured by prefix r.
Both our proposed approaches implement this hard-constraint approach. It allows for the building of hybrid
models whose transparency (on the training set) is guaranteed to be at least min_transp. To the best of our
knowledge, our approach is the first to implement such direct control of the transparency level. Compared
to state-of-the-art hybrid learning methods (which use a regularization term to encourage transparency),
this approach allows for a tight control of the desired transparency, which can help build denser sets of
tradeoffs between transparency and utility using ϵ-constrained methods. To enforce constraint (9) using
the CORELS branch-and-bound algorithm, we simply modify the best solution update subroutine, to only
perform the update operation if the candidate prefix satisfies the transparency requirement. This guarantees
that any returned solution will satisfy (9) while maintaining optimality as the exploration and bounds are
not modified.

Even if constraint (9) ensures the strict respect of a user-defined transparency level, we also integrate
transparency using a regularization term. This allows to break ties: if two models exhibit the same accuracy
and sparsity levels, then this regularization term will favor the one with higher transparency. In practice,
we set the associated regularization coefficient β to a value small enough to only break ties. Indeed, because
it is already enforced through hard constraint (9), we do not want transparency to trade-off with accuracy
nor sparsity in the objective function (i.e., we will always prefer any non-zero improvement on the accuracy
or sparsity term over any improvement on the transparency term). Just like in constraint (9), transparency
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is measured using |Sr|
|S| ∈ [0, 1] (as Sr ⊆ S). Thus, we penalize (un)transparency as |S\Sr|

|S| ∈ [0, 1] in the
objective function, and set β < 1

|S| ≤ λ for both approaches. Finally, our objective functions (10) and (11)
both add this (β · |S\Sr|

|S| ) term.

4.3 Post-Black-Box framework: HybridCORELSPost

We now introduce HybridCORELSPost, a modified version of the CORELS algorithm to produce optimal
hybrid models using the state-of-the-art Post-Black-Box paradigm. More precisely, HybridCORELSPost first
trains a black-box model (or takes as input a pre-trained black-box model). This first step is totally agnostic
to the type of black-box and its training algorithm. Then, given a minimum transparency constraint (9), it
builds a prefix optimizing the overall model’s accuracy and sparsity.

Objective Given a black-box hc’s training set predictions, HybridCORELSPost builds a prefix r capturing
at least a proportion of min_transp of the training data (transparency constraint (9)), and minimizing the
following objective function:

objpost(r, S) = L̂S(⟨hc, r⟩)
|S|

+ λ · |r|+ β · |S \ Sr|
|S|

=
L̂Sr

(r) + L̂S\Sr
(hc)

|S|
+ λ · |r|+ β · |S \ Sr|

|S|
.

(10)

Here, L̂Sr (r)+L̂S\Sr (hc)
|S| is the exact accuracy of the overall hybrid model. Indeed, because the black-box

predictions are fixed, the interpretable part is able to correct the mistakes made by the pre-trained black-
box model.

Objective lower bound CORELS’ original objective lower bound (8) (leveraging both the prefix’s errors
and the inconsistent examples among the uncaptured ones) is still valid and tight in this setup, so we do
not need to modify it. Indeed, the error term lower bound L̂Sr (r) + incons(S \ Sr) is unchanged, as all
remaining black-box errors L̂S\Sr

(hc) may potentially be corrected by extending r, but the errors already
made by prefix r and those related to remaining inconsistencies can not be avoided. Then, the transparency
regularization term can not be used within the objective lower bound, as this term can always reach 0.0 by
sufficiently extending prefix r. Finally, the lower bound over the sparsity regularization term still holds: any
extension of prefix r must have at least |r|+ 1 rules.

Finally, HybridCORELSPost is an exact method: it provably returns a prefix r for which objpost(r, S) (10)
is the smallest among those satisfying the transparency constraint (9). This means that, given fixed black-
box predictions and desired transparency level, it produces an optimal hybrid interpretable model in terms
of accuracy/sparsity. We provide a detailed pseudo-code of HybridCORELSPost in Algorithm 2 in the
Appendix B.3.

4.4 Pre-Black-Box framework: HybridCORELSPre

HybridCORELSPre is the first algorithm to implement our proposed Pre-Black-Box paradigm for learning
hybrid interpretable models. It first builds a prefix optimizing accuracy and sparsity, given a minimum
transparency constraint (9). Then, it trains the black-box part of the hybrid model, specializing it on the
uncaptured examples, using the weighting scheme (5). As aforementioned in Section 3.1.2, the Pre-Black-
Box paradigm intrinsically limits the possible collaboration between both parts of the hybrid model, as it is
not possible for the black-box part to correct the mistakes made by the interpretable part. However, it is
possible to consider the inconsistencies left to the black-box part while training the interpretable part, which
implements a form of collaboration.

Objective HybridCORELSPre builds a prefix r capturing at least min_transp of the training data (trans-
parency constraint (9)), and minimizing the overall hybrid model’s classification error lower bound (based
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on both prefix r’s errors and the inconsistencies let to the black-box part) and sparsity:

objpre(r, S) = L̂Sr (r) + incons(S \ Sr)
|S|

+ λ · |r|+ β · |S \ Sr|
|S|

(11)

where the error term L̂Sr (r)+incons(S\Sr)
|S| corresponds to the entire hybrid model accuracy if the black-box

performs perfectly (i.e., correctly classifies all examples except the inconsistent ones). It hence provides a
tight upper-bound on the entire hybrid model accuracy.

Objective lower bound CORELS’ original objective lower bound lb(r, S) (8) (leveraging both the prefix’s
errors and the inconsistent examples among the uncaptured ones) is still valid and tight in this setup, so
we do not need to modify it. Indeed, the error term is tight: it is not possible for any extension of r to
avoid the errors already made by r nor the inconsistencies within the remaining examples. The sparsity
term is also tight as any extension of r must have a length of at least |r| + 1. As for HybridCORELSPost,
the (un)transparency term can not be used within the objective lower bound, as it can always reach 0.0 (if
the built prefix captures all the training examples). An interesting observation is that lb(r, S) > objpre(r, S)
for any prefix r (since β < λ as indicated in Section 4.2). This means that, for any prefix r with sufficient
transparency (i.e., satisfying the transparency constraint (9)), the algorithm will always discard any of its
extensions as they increase the sparsity term and can not lower the error term (they can only equal it if they
add no additional error). In fact, extending a prefix r can only worsen its objective function (again, assuming
that β < λ), and so an extension will only be performed in order to meet the transparency constraint (9).

Finally, HybridCORELSPre is an exact method: it provably returns a prefix r for which objpre(r, S) (11)
is the smallest among those satisfying the transparency constraint (9). This means that, given desired
transparency level, it produces an optimal prefix (interpretable part of the final hybrid model) in terms of
overall hybrid model accuracy upper bound and sparsity. If the black-box performs perfectly, then the overall
model is certifiably optimal. We provide a detailed pseudo-code of HybridCORELSPre in Algorithm 3 in the
Appendix B.3.

We additionally introduce in the Appendix C another possible implementation of the Pre-Black-Box
paradigm based on the CORELS algorithm but optimizing an objective function different from that of
HybridCORELSPre. This new variant HybridCORELSPre,NoCollab learns a prefix by maximizing its accu-
racy on the subset Sr, without accounting for the task left to the black-box part. Appendix C.1 provides
a description of this algorithm and Appendix C.2 empirically compares it with HybridCORELSPre. The
experiments confirm that HybridCORELSPre,NoCollab is not competitive with HybridCORELSPre in medium
to high transparency regimes, due to the lack of collaboration between both parts of the hybrid model.

5 Experiments

In this section, we empirically evaluate our proposed algorithms. We first introduce our experimental setup.
Then, we use HybridCORELSPre to show that the Pre-Black-Box paradigm is suitable to learn hybrid in-
terpretable models exhibiting interesting trade-offs between accuracy and transparency. We explore the
parameters of this paradigm, such as the specialization coefficient, to assess their effect and utility. Af-
terwards, we compare HybridCORELSPre and HybridCORELSPost with two state-of-the-art methods for
learning hybrid interpretable models: Hybrid-Rule-Set (HyRS) and Companion-Rule-List (CRL). Our thor-
ough experimental study demonstrates that our proposed approaches are strongly competitive with the state
of the art, while also providing optimality guarantees and allowing tight control of the desired transparency.

5.1 Setup

Datasets In our experiments, we consider several datasets with various prediction tasks and sizes:
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• The COMPAS dataset1(analyzed by Angwin et al. (2016)) contains 6,150 records from criminal
offenders in the Broward County of Florida collected from 2013 and 2014. The corresponding binary
classification task is to predict whether a person will re-offend within two years.

• The UCI Adult Income dataset (Dua & Graff, 2017) stores demographic attributes of 48,842
individuals from the 1994 U.S. census. Its binary classification task is to predict whether or not a
particular person makes more than 50K USD per year.

• The ACS Employment dataset (Ding et al., 2021) is an extension of the UCI Adult Income
dataset that includes more recent Census data (2014-2018). The goal is to predict if a person is em-
ployed/unemployed based on 10 socioeconomic factors. The specific dataset contained information
on 203,358 constituents of the Texas state in 2018.

Rules mining To ensure a fair comparison between hybrid models, we pre-mined a set of rules Υ for each
dataset. The various hybrid models were then restricted to select rules r ∈ Υ and, therefore, any difference
in performance between models is solely attributable to the learning algorithms and not the quality of the
rules. To mine the rules, the datasets were first binarized using quantile for numerical features and one-hot
encoding for categorical features. Afterwards, the FP-Growth algorithm (Han et al., 2000) was applied to
identify rules of cardinality 1-2 and support of at least 1%. To these sets of rules, we also added the negation
of each rule in the original binarized dataset. Finally, the 300 rules with the largest support were kept to
generate Υ. We ended up with |Υ| = 230 rules on COMPAS and |Υ| = 300 on the UCI Adult Income and
ACS Employment datasets.

Black-boxes In all experiments we used the following Scikit-learn (Pedregosa et al., 2011) classifiers as
black-boxes: a RandomForestClassifier, an AdaBoostClassifier, and a GradientBoostingClassifier.
Such black-boxes are in line with the setup considered in the literature (Wang, 2019). We further detail the
hyper-parameters tuning of these models in sections 5.2 and 5.3. We note that the Hybrid models studied
(HyRS, CRL, and HybridCORELS) are not tied to any specific black-box, nor to a specific implementation.
Indeed they are black-box-agnostic by design.

Implementation details Our algorithms HybridCORELSPost and HybridCORELSPre (as well as its
HybridCORELSPre,NoCollab variant discussed in the Appendix C) are integrated into a user-friendly Python
module, provided in the supplementary material. They build upon the original CORELS (Angelino et al.,
2017) C++ implementation2 and its Python wrapper3. All experiments are run on a computing grid over a
set of homogeneous nodes using Intel Platinum 8260 Cascade Lake @2.4Ghz CPU.

HybridCORELS transparency regularization coefficient β setting In all our experiments us-
ing HybridCORELSPre or HybridCORELSPost, we set the transparency regularization coefficient β =
min( 1

2·|S| ,
λ
2 ) to only break ties but ensure that no accuracy nor sparsity will be traded-off for transparency,

which is already enforced as a hard constraint (as discussed in Section 4.2).

5.2 Exploring the Pre-Black-Box Paradigm

Objective The objective of this subsection is to assess the appropriateness of the proposed Pre-Black-Box
paradigm for learning accurate hybrid interpretable models. To this end, we use our proposed algorithm
implementing this framework: HybridCORELSPre, depicted in Section 4.4. More precisely, we aim to
explore the effect of the specialization coefficient on the performances of the produced models.

Setup For the three datasets presented in Section 5.1, we use HybridCORELSPre to produce hybrid
interpretable models for several transparency levels: low (0.25), medium (0.5), high (0.75, 0.85) and very high
(0.95). For the prefix building part, we optimize the hyperparameters of HybridCORELSPre using grid search

1https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv
2https://github.com/corels/corels
3https://github.com/corels/pycorels
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over the following values: λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10}, and the objective-guided,
lower-bound-guided, and BFS search policies. For each experiment, the prefix yielding the best (training)
accuracy upper-bound (considering the prefix’s errors as well as the inconsistencies left to the black-box part,
as depicted in (11)) is retained. Indeed, as discussed, this upper-bound precisely quantifies the accuracy that
the overall hybrid model can reach if the black-box part makes no mistakes (other than those which can not
be avoided due to inconsistencies): there exists a classification function for the black-box part which allows
reaching such accuracy. The black-box part of the final hybrid model is then trained, and experiments are run
for three different Scikit-learn (Pedregosa et al., 2011) black-boxes: an AdaBoostClassifier with default
parameters, a GradientBoostingClassifier with default parameters and a RandomForestClassifier with
min_samples_split = 10 and max_depth = 10. Each black-box is retrained using different values for the
specialization coefficient α, ranging from 0 (no specialization) to 10 (highly specialized). Experiments are
run for five different train/test splits, with 80% of the data used for training and the remaining 20% for
testing.

Results The train and test performances of the learned prefixes are presented in Figure 10. As expected,
when the enforced transparency level increases, the number of errors made by the interpretable part increases,
and so does the overall hybrid model error lower bound (computed by the objective function (11)). We note
that the actual prefix transparency on the training set is very close to the enforced constraint, with very
small standard deviations. This illustrates the conflict between accuracy and transparency. Indeed, if a
prefix with very high accuracy and transparency were available, the learning algorithm would systematically
select it irrespective of the transparency constraint. However, the fact that transparencies are very close to
their enforced constraint means that increasing the coverage of the prefix hinders the performance. This
empirical observation meets the theoretical discussion of Section 4.4 (Objective lower bound paragraph).
We also observe that transparency generalizes well: the test set transparency levels are very close to the
training set ones. Again, the standard deviation across dataset splits is very small.

We report results for the AdaBoostClassifier black-box in Figure 11 for the three datasets. Results for
the two other black-boxes are provided in the supplementary material4 and show the same trends. As
expected, higher values of the specialization coefficient α lead to higher training accuracy of the black-box
part. Indeed, the black-box component is evaluated on the subset of the data that is not captured by the
interpretable part. Hence, specializing it on this subset is expected to raise its performances on these samples.
Note that small variations exist, which can be explained by the heuristic nature of the considered black-box
training algorithms. Overall, a reasonable specialization is usually beneficial. For low transparency values,
the improvements brought by specialization are relatively modest (check the y-axis scales). This is explained
by the fact that, in such contexts, the black-box subset of the data already represents most of the dataset.
For very high transparency values, the black-box subset is relatively small, and an excessive specialization
may not always pay off due to overfitting (as is the case with the UCI Adult Income experiment). For
medium to high transparency values, specialization (with carefully chosen specialization coefficient α) is
always beneficial in these experiments. Here, specialization allows for black-box test accuracy absolute
improvements up to 2.27 pps (experiment using the ACS Employment dataset, with minimum transparency
0.95). Considering all the experiments run with the AdaBoostClassifier black-box, the improvement rate
(proportion of experiments for which specialization allowed improvements of the black-box test accuracy) is
the highest for α = 2, with a 93.33% improvement rate. Considering all the run experiments (including runs
for the three datasets and the different transparency levels), the improvement rate values are the highest
for α ∈ {1, 2}. This confirms the usefulness of specialization but highlights the need to use reasonable
specialization coefficient values α. Observe that, when α = 1, misclassifying an example belonging to the
(training) black-box subset costs e1

e0 ≈ 2.72 times more than misclassifying a training example outside this
set (in the optimized loss function). When α = 2, it costs e2

e0 ≈ 7.39 times more.

4HybridCORELS-code/paper/paper_5.2_results.zip
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(a) ACS Employment dataset.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Min. Transparency Constraint

0.83

0.84

0.85

0.86

0.87

0.88

Ov
er

al
l A

cc
ur

ac
y 

Up
pe

r B
ou

nd

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

tu
al

 P
re

fix
 C

ov
er

ag
e

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Min. Transparency Constraint

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Ov
er

al
l A

cc
ur

ac
y 

Up
pe

r B
ou

nd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
tu

al
 P

re
fix

 C
ov

er
ag

e

(b) UCI Adult Income dataset.
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(c) COMPAS dataset.

Overall Accuracy Upper Bound (train)
Actual Prefix Coverage (train)

Overall Accuracy Upper Bound (test)
Actual Prefix Coverage (test)

Figure 10: Training and test performances of the prefixes learnt using HybridCORELSPre. We report the
actual transparency (prefix coverage) and overall accuracy upper bound (considering both the prefix’s errors
and the remaining inconsistencies) - which corresponds to the hybrid model accuracy if the black-box classifies
correctly all consistent examples. The plots show both average values and standard deviation.
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.
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(c) COMPAS dataset.

Black-box Accuracy (train) Black-box Accuracy (test) Black-box Accuracy (test) - Best

Figure 11: Training and test performances of the black-box parts (AdaBoostClassifier) of the hybrid
interpretable models learnt using HybridCORELSPre on different datasets, for different transparency levels.
The plots show both average values and standard deviation.

5.3 Tradeoffs and Comparison with the State-of-the-Art

Objective The aim of this subsection is to explore the trade-offs between the accuracy and transparency
of several hybrid interpretable models learning frameworks: the state-of-the-art HyRS and CRL methods,
as well as our proposed HybridCORELSPost and HybridCORELSPre algorithms. These experiments serve
the dual purpose of quantitatively comparing the various methods, but also to advertise the considerable
amounts of transparency that can be attained while maintaining high performance.

Setup For these experiments, each dataset was split into training (60%), validation (20%), and test (20%)
sets. We randomly generate five such splits and average the results over them. More precisely, for each split,
the training set is used to train the models (both the black-box and the interpretable parts). The models’
hyperparameters are optimized using the (separate) validation set. This allows a fair comparison between
the methods while also encouraging generalization. Finally, the resulting hybrid models are evaluated on the
(separate) test set. Note that while we hereafter focus on such test performances, the training and validation
curves show similar trends, and the associated results are all provided within the supplementary material5.
Hereafter, we detail the training and hyper-parameters optimization procedures for both the black-boxes
and the hybrid interpretable models themselves.

5HybridCORELS-code/paper/results_part_4.zip
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Pre-Black-Box method setup The experiments using the HybridCORELSPre algorithm are divided
into two phases. First, for each dataset (out of 3) and each random split (out of 5), we learn prefixes for
12 different minimum transparency constraints (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.925, 0.95, 0.975)
trying the following hyperparameters values: λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10}, and the
objective-guided, lower-bound-guided, and BFS search policies for HybridCORELSPre. Each prefix learning
is limited to a maximum CPU time of 1 hour and a maximum memory use of 8 GB. For each experiment
(dataset - random split - minimum transparency), the prefix yielding the best validation accuracy is retained.
In a second phase, for each retained prefix, we try three different Scikit-learn (Pedregosa et al., 2011)
black-boxes: a RandomForestClassifier, an AdaBoostClassifier, and a GradientBoostingClassifier.
The black-box hyperparameters are tuned using the Hyperopt (Bergstra et al., 2013) Python library and its
Tree of Parzen Estimators (TPE) algorithm, with 100 iterations. Just like the prefixes in the first phase, the
black-boxes are trained using the training split (60%) and the hyperparameters are selected based on the
validation split (20%) performances. Note that, as for the training set, the validation set loss is weighted to
encourage the black-box to accurately classify the examples belonging to its assigned part of the input space
(which is fixed as the prefix was trained first - which allows specialization, as previously discussed). Based
on the observations from Section 5.2, we set the specialization coefficient α = 1, which corresponds to a
moderate black-box specialization.

Post-Black-Box methods setup Three methods correspond to the Post-Black-Box paradigm:
HybridCORELSPost, along with the two state-of-the-art HyRS (Wang, 2019) and CRL (Pan et al., 2020)
methods. The experiments using these methods are divided into two phases. First, for each dataset (out of
3) and each random split (out of 5), we train three different Scikit-learn (Pedregosa et al., 2011) black-
boxes: a RandomForestClassifier, an AdaBoostClassifier, and a GradientBoostingClassifier. The
black-box hyperparameters are tuned using the Hyperopt (Bergstra et al., 2013) Python library and its Tree
of Parzen Estimators (TPE) algorithm, with 100 iterations. The black-boxes are trained using the training
split (60%) and their hyperparameters are selected based on the validation split (20%) performances. In the
second phase of the experiments, we train the interpretable parts of the hybrid models for the three compared
methods, using the black-boxes learned in the previous phase. For each of the three methods, we try different
hyperparameter values. Again, the training is performed on the training split (60%), while the hyperpa-
rameters values are selected based on the validation split (20%) performances. For HybridCORELSPost, we
consider 12 different minimum transparency constraints (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.925, 0.95,
0.975), and the following hyperparameters values: λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10},
and the objective-guided, lower-bound-guided, and BFS search policies. For the HyRS method, similarily to
what was done in (Wang, 2019), we use 10 different values for its λ hyperparameter (ranging logarithmically
between 10−3 and 10−2) and 10 different values for its β hyperparameter (ranging logarithmically between
10−3 and 100). For CRL, we consider 10 different values for its temperature hyperparameter (ranging linearly
between 10−3 and 10−2) and 10 different values for its λ hyperparameter (ranging logarithmically between
10−3 and 10−1). For all three methods HybridCORELSPost, HyRS, and CRL, the hyperparameter grid is
roughly of size 100. As in the HybridCORELSPre experiments, the interpretable parts building is limited to
a maximum CPU time of 1 hour and a maximum memory use of 8 GB.

Final results computation After tuning the hyper-parameters, we are left with a Pareto front represent-
ing the hybrid models that are not dominated in terms of both validations set accuracy and transparency.
Still, since the black box and hybrid models were fine-tuned on the validation set, we argue that this Pareto
front will be an over-optimistic description of the true generalisation of our hybrid models. For this reason,
we decided to take the Pareto-optimal models on validation, and compute their accuracy and transparency
on the test set, which has not been used yet in this experiment. Hence, we can obtain unbiased measures of
the accuracy and transparency for these models. These final measures of accuracy/transparency are used as a
means to compare the different approaches and assess if increasing transparency can lead to equivalent/better
generalization.

Results The test set accuracy/transparency trade-offs of the different hybrid models learning frameworks
are shown in Figure 12 for each dataset and black-box type. We highlight three main insights from these
results.
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.65

0.66

0.67

0.68

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.66

0.67

0.68

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.65

0.66

0.67

0.68

Ac
cu

ra
cy

(c) COMPAS dataset.

CRL HyRS HybridCORELSPost HybridCORELSPre

Figure 12: Test set accuracy/transparency trade-offs for various hybrid models learning frameworks and
datasets. The Pareto front for each method is represented as a line and the filled bands encode the std
across the five data split reruns. Results are provided for several black-boxes: (Left) AdaBoost, (Middle)
Random Forests, (Right) Gradient Boosted Trees.
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i f [ " age_medium " and " No Cognitive difficulty " ] then 1
else i f [ " age_high " ] then 0
else

AdaBoost ( )

(a) HyRS: Test Accuracy 72.8%, Transparency 64.3%

i f [ " age_high " and " Female " ] then 0
else i f [ " age_high " and " Native " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else i f [ " Husband / wife " and " No disability " ] then 1
else i f [ " Cognitive difficulty " and " not own child of householder " ] then 0
else

AdaBoost ( )

(b) CRL: Test Accuracy 73.7%, Transparency 75.8%.

i f [ " Disability " and " age_high " ] then 0
else i f [ " Husband / wife " and " Male " ] then 1
else i f [ " age_high " and " Native " ] then 0
else i f [ " age_high " and " Female " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else i f [ " Bachelor degree " ] then 1
else

AdaBoost ( )

(c) HybridCORELSPre: Test Accuracy 74.0%, Transparency 70.1%.

i f [ " age_high " and " Female " ] then 0
else i f [ " Husband / wife " and " No disability " ] then 1
else i f [ " age_high " and " Native " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else

AdaBoost ( )

(d) HybridCORELSPost : Test Accuracy 73.7%, Transparency 73.0%.

Figure 13: Example hybrid interpretable models obtained by the different methods on the same data split
of the ACS Employment dataset with a AdaBoost black-box.

First, on almost all datasets and black-box types, the methods HybridCORELSPre and HybridCORELSPost
are better or equivalent to HyRS and CRL. The only exception is HybridCORELSPre in high transparency
regimes (0.85-1.0) on the ACS Employment dataset. The reason HybridCORELS is so competitive with
state-of-the-art methods is that it solves its objective to optimality, exploring the whole search space of
prefixes (which methods based on local search can hardly achieve). Hence, given a learning paradigm
and a transparency constraint, it builds the prefix that maximizes accuracy. Furthermore, unlike other ap-
proaches, HybridCORELS offers precise control over the desired level of transparency. In Figure 13, we show
example hybrid models for each of the four methods fitted on the same data split (train/validation/test)
of the ACS Employment dataset with an AdaBoost black-box. These models were selected on the basis
of having the highest test accuracies for test transparencies restricted between 0.6 and 0.8. We note that
HybridCORELSPre and HybridCORELSPost are competitive with CRL and even employ similar rules, for ex-
ample, ["age_high" and "Female"], ["Reference person" and "No disability"], and ["age_high" and
"Native"]. HyRS on the other hand, performs worst than the other three since it has a lesser accuracy and
transparency.

Secondly, using HybridCORELS on the ACS Employment and UCI Adult Income datasets, one can reach
high transparency values (0.7) while retaining the same performance as the black-box (0.0 transparency).
This observation is consistent across all black-box types, which suggests that complex models are often
overkill in certain regions of the input space and can safely be replaced by a simpler model on those inputs.
From the point of view of certification/maintenance of a machine learning model, being able to assign a
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i f [ " Prior - Crimes =0 " and " Age >=30 " ] then 0
else i f [ " Prior - Crimes >5 " and " Age =24 -30 " ] then 1
else i f [ " Prior - Crimes =1 -3 " and " Age >=30 " ] then 0
else

RandomForest ( )

(a) HybridCORELSPre: Test Accuracy 68.1%, Transparency 42.7%

Figure 14: Example hybrid interpretable model obtained by HybridCORELSPre on the COMPAS dataset
with a Random Forest black-box. Consistent with Figure 12, this model generalizes better than the black-
box alone.

majority of inputs to an interpretable component is a tremendous step forward. For instance, since rule lists
are interpretable, one might be able to certify that the hybrid model works properly/safely on the region Ωr

that will contain the majority of examples seen in deployment. For the minority of instances that fall outside
the region, certification might require the verification of the opaque decisions by a committee of domain
experts. Such verification might be time-consuming but, the higher the transparency, the fewer examples
this committee would need to verify regularly.

Thirdly, when studying HybridCORELSPre fitted on COMPAS, one can consistently observe a “sweet spot”
for transparency where the generalization is maximal and even better than the standalone black-box. The
existence of such a “sweet spot” is predicted by our theory of Section 2.3 and highlights the regularization
effect of the hybrid modeling. Although retaining the same level of performance while increasing the trans-
parency is enough to argue in favor of hybrid modeling (as was the case with the ACS Employment and UCI
Adult Income datasets), it is interesting to see that hybrid models can also improve the generalization per-
formance. This generalization improvement is mainly observed with the HybridCORELSPre method, which
constitutes an argument in favor of the Pre-Black-Box paradigm. We report in Figure 14 an example model
learned with HybridCORELSPre on COMPAS, which generalizes better than a standalone black-box. As we
observe, just adding three simple rules before the black-box model allows for test accuracy improvements.

6 Conclusion

In this paper, we laid the foundations for a promising line of work that was initiated some years ago:
hybridizing interpretable and black-box models to “take the best of both worlds". More precisely, we first
provided theoretical evidence that such models have generalization advantages, while also being easier to
certify and understand. We then proposed a taxonomy of learning algorithms aimed at producing such
models, along with a generic framework implementing the (new) Pre-Black-Box paradigm. We introduced
algorithms belonging to two identified paradigms, namely Pre-Black-Box and Post-Black-Box. Compared
to state-of-the-art methods, our proposed approaches, coined HybridCORELSPre and HybridCORELSPost,
certify the optimality of the learned models and provide direct control over the desired transparency level.
Our thorough experiments demonstrated the ability of the proposed Pre-Black-Box paradigm and the high
competitivity of our algorithms with the state-of-the-art. Furthermore, empirical findings suggest that this
new paradigm may lead to better-generalizing models. Investigating the reasons for this observation is
an interesting future work. Adapting other optimal search-based learning algorithms (as was done with
CORELS in this work) - for instance those producing optimal sparse decision trees - to produce new forms of
hybrid interpretable models (beyond rule-based ones) is also a promising research avenue. Finally, designing
fully end-to-end and certifiably optimal hybrid interpretable models’ learning algorithms is an open challenge,
whose main difficulty consists in encoding both parts of the model within a unified framework to train them
jointly.
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A Proof of Theorem 1

Theorem 1 Given a finite hybrid model space (|Hyb| < ∞) and some ϵ > 0, letting CΩ := Px∼D[x ∈ Ω]
be the transparency of Ω, then for any distribution D where there exists a triplet ⟨h⋆

c , h⋆
s, Ω⋆⟩ with zero

generalization error (as defined in (1)), the following holds for a training set of size M :

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M),

where

B(ϵ, CΩ,Hc,Hs, M) := (1− |Hc|)CM
Ω + (1− |Hs|)CM

Ω + |Hc|(CΩe−ϵ + CΩ)M + |Hs|(CΩe−ϵ + CΩ)M .

If we assume that the optimal subset Ω ≡ Ω⋆ is known in advance, then the bound tightens

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ B(ϵ, CΩ,Hc,Hs, M).

Proof The distribution D is fixed apriori and our only assumption is that it can be perfectly solved by a hy-
brid model in Hyb. Since we assume a perfect model exists in Hyb, we must have L̂S(⟨hc, hs, Ω⟩S) = 0. Given
ϵ > 0, our main objective is to upper bound the probability PS∼DM [LD(⟨hc, hs, Ω⟩S) > ϵ] which corresponds
to the probability of “failure” by the model. Letting Hybϵ := {⟨hc, hs, Ω⟩ ∈ Hyb : LD(⟨hc, hs, Ω⟩) > ϵ} be
the set of all “failing” hybrid models, we have that

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

≤
∑
Ω∈P

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0], (12)

where we have used the union bound over all Ω ∈ P. From this point on, we will assume that the domain
Ω is fixed. Letting CΩ := Px∼D[x ∈ Ω] and Ω := X \ Ω, we can see the distribution D as a mixture of
two distributions Dc,Ds with disjoint supports Ω and Ω. Formally, we have D = CΩDc + CΩDs. The edge
cases supp(D) ⊂ Ω and supp(D) ⊂ Ω are covered by setting CΩ =1, CΩ =0 and CΩ =0, CΩ =1 respectivelly.
Sampling from such a mixture distribution D can be seen as a two-step process. First, we choose a number of
instances m ∼ Bin(CΩ, M) from a binomial law of M trials and probability CΩ of success. Then we sample
m simple examples Ss ∼ Dm

s , and sample M −m hard examples Sc ∼ DM−m
c . We get

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

= P
m∼Bin(CΩ,M)

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss
(⟨hc, hs, Ω⟩) = 0]

=
M∑

m=0
b(m; CΩ, M) P

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss(⟨hc, hs, Ω⟩) = 0],

(13)

where we have introduced b(m; CΩ, M) :=
(

M
m

)
Cm

Ω (1 − CΩ)M−m as the binomial coefficients. In this
formula, there are two extreme edges cases m = 0 and m = M which occur with probability CM

Ω and CM
Ω

respectively. The issue with both of these extreme cases is that we are meant to bound the population loss
of the whole hybrid model while only one of its sub-models is evaluated on empirical data. We decide to
employ trivial bounds which will become less and less dominant when the probability of these extreme cases
goes to zero as M →∞, assuming CΩ ∈]0, 1[.

Case m = 0
P

Sc∼DM
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc(hc) = 0] ≤ 1
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Case m = M
P

Ss∼DM
s

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Ss(hs) = 0] ≤ 1

Case 0 < m < M Since the expected loss can be rewritten

LD(⟨hc, hs, Ω⟩) = CΩLDc(hc) + CΩLDs(hs),

we have that
LDc

(hc) ≤ ϵ and LDs
(hs) ≤ ϵ⇒ LD(⟨hc, hs, Ω⟩) ≤ ϵ,

which implies
⟨hc, hs, Ω⟩ ∈ Hybϵ ⇒ hc ∈ Hc,ϵ or hs ∈ Hs,ϵ, (14)

where Hc,ϵ := {hc ∈ Hc : LDc
(hc) > ϵ} and Hs,ϵ := {hs ∈ Hs : LDs

(hs) > ϵ} are the sets of complex and
simple models “failing” on the distributions Dc and Ds. Note that the “or" in (14) is not exclusive and both
parts of the model may fail simultaneously, although it is not necessary. Therefore the following holds

P
Ss∼Dm

s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss(⟨hc, hs, Ω⟩) = 0]

≤ P
Ss∼Dm

s

Sc∼DM−m
c

[{∃hc ∈ Hc,ϵ s.t. L̂Sc
(hc) = 0} or {∃hs ∈ Hs,ϵ s.t. L̂Ss

(hs) = 0}]

≤ P
S∼DM−m

c

[∃hc ∈ Hc,ϵ s.t. L̂S(hc) = 0] + P
S∼Dm

s

[∃hs ∈ Hs,ϵ s.t. L̂S(hs) = 0]

≤ |Hc|e−ϵ(M−m) + |Hs|e−ϵm,

where we have used the inequality PS∼Dm
s

[∃hs ∈ Hs,ϵ s.t. L̂S(hs) = 0] ≤ |Hs|e−ϵm (Equation 2.9 of Shalev-
Shwartz & Ben-David (2014)), and a similar one for Hc. Going back to Equation (13), we get

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

=
M∑

m=0
b(m; CΩ, M) P

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss(⟨hc, hs, Ω⟩) = 0]

≤ CM
Ω + CM

Ω +
M−1∑
m=1

b(m; CΩ, M)
(
|Hc|e−ϵ(M−m) + |Hs|e−ϵm

)
= CM

Ω + CM
Ω + |Hc|

M−1∑
m=1

b(m; CΩ, M)e−ϵ(M−m) + |Hs|
M−1∑
m=1

b(m; CΩ, M)e−ϵm

= CM
Ω + CM

Ω + |Hc|
M−1∑
m=1

b(m; CΩ, M)e−ϵm + |Hs|
M−1∑
m=1

b(m; CΩ, M)e−ϵm

≤ CM
Ω + CM

Ω + |Hc|
M∑

m=1
b(m; CΩ, M)e−ϵm + |Hs|

M∑
m=1

b(m; CΩ, M)e−ϵm

= (1− |Hc|)CM
Ω + (1− |Hs|)CM

Ω + |Hc|
M∑

m=0
b(m; CΩ, M)e−ϵm + |Hs|

M∑
m=0

b(m; CΩ, M)e−ϵm

= (1− |Hc|)CM
Ω + (1− |Hs|)CM

Ω + |Hc|(CΩe−ϵ + CΩ)M + |Hs|(CΩe−ϵ + CΩ)M

:= B(ϵ, CΩ,Hc,Hs, M)

where for the second-to-last step we have used the identity
M∑

m=0
b(m; CΩ, M)e−ϵm = (CΩe−ϵ + CΩ)M .
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Finally, combining this with Equation (12),

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M),

which is the first desired result.

Now assuming that the optimal region Ω ≡ Ω⋆ is known in advance, then the logic of the proof is identical
except that we do not employ a union bound over all Ω ∈ P as in Equation (12).

B Pseudo-Codes of the HybridCORELS algorithms

While the CORELS algorithm and our proposed HybridCORELS variants were already introduced in Sec-
tion 4, we describe them in more detail in this appendix section. We first introduce some necessary notation
that we later use to provide a detailed pseudo-code and description of the CORELS algorithm. We then
depict our proposed variants HybridCORELSPost and HybridCORELSPre for learning hybrid interpretable
models.

B.1 Notations

To formally describe the pseudo-code of the CORELS algorithm and those of our modified HybridCORELS
variants, we first need to introduce some more detailed notation. As mentioned in Section 4.1, a rule list
d consists in an ordered set of rules r, called a prefix, followed by a default decision q0. Then, we note:
d = (r, q0). Each individual rule ri involved within prefix r consists of an antecedent ai (“if" part of the
rule, consisting in a Boolean assertion over the features’ values) and a consequent qi (“then" part of the rule,
consisting in a prediction). We note: ri = ai → qi, and r = (r1, r2, . . . , r|r|) with |r| the length of prefix r.

B.2 CORELS

The pseudo-code of the CORELS algorithm is provided within Algorithm 1. As mentioned in Section 4.1,
CORELS is a branch-and-bound algorithm exploring a prefix tree, in which each node corresponds to a prefix
r and its children are prefixes formed by extending r. At each step of the exploration, the nodes belonging
to the exploration frontier are sorted within a priority queue Q, ordered according to a given search policy.
CORELS implements several such policies, including Breadth First Search, Depth First Search, and several
Best First Searches. While these policies define the order in which the nodes of the prefix tree are ordered
(and may affect the convergence speed), note that they do not affect optimality, and must all lead to the
same optimal objective function value given sufficient time and memory. At each step of the exploration, the
most promising prefix r is popped from the priority queue Q (line 4). If its lower bound is greater than the
best objective found so far (i.e., r can not lead to a rule list improving the current best objective function),
it is discarded. Otherwise, it is used to build a rule list by appending a default prediction q0 (line 6). If
the resulting rule list d has a better objective function than the best one reached so far, the current best
solution is updated at line 9. Finally, each possible extension of r formed by adding a new rule at the end
of r gives a new node which is pushed into the priority queue at line 12. The exploration is completed (and
optimality is proved) once the priority queue is empty. Note that efficient data structures are used to cut
the prefix tree symmetries: for instance, a prefix permutation map ensures that only the best permutation
of every set of rules is kept.

B.3 HybridCORELS

A key difference between our proposed HybridCORELS algorithms and the original CORELS is that our
methods aim at learning prefixes (expressing partial classification functions) while CORELS’ purpose is to
learn rule lists (classification functions). Both HybridCORELSPost and HybridCORELSPre return prefixes
(and not rule lists) and take as input an initial best known prefix r0 satisfying the transparency constraint
(while the original CORELS takes as input an initial rule list d0). A simple choice for the initial prefix
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Algorithm 1 CORELS
Input: Training data S with set of pre-mined antecedents Υ; initial best known rule list d0 such that
obj(d0, S) = z0

Output: (d∗, z∗) in which d∗ is a rule list with the minimum objective function value z∗

1: (dc, zc)← (d0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: d← (r, q0) ▷ Set default prediction q0 to minimize training error
7: z ← obj(d, S) = L̂S(d)

|S| + λ · |r| ▷ Compute objective obj(d, S)
8: if z < zc then
9: (dc, zc)← (d, z) ▷ Update best rule list and objective

10: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r
11: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
12: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

13: (d∗, z∗)← (dc, zc)

r0 satisfying the transparency constraint is a constant majority prediction: r0 ← [(True → q0)] (whose
transparency is 1.0). In practice, we use such trivial initial solution for all our experiments.

Algorithm 2 HybridCORELSPost
Input: Training data S with set of pre-mined antecedents Υ; minimum transparency value min_transp;
initial prefix r0 such that |Sr0 |

|S| ≥ min_transp; pre-trained black-box model hc

Output: (r∗, z∗) in which r∗ is a prefix with the minimum objective function value z∗

1: (rc, zc)← (r0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: z ← L̂Sr (r)+L̂S\Sr (hc)

|S| + λ · |r|+ β · |S\Sr|
|S| ▷ Compute objective objpost(r, S)

7: if z < zc and |Sr|
|S| ≥ min_transp then

8: (rc, zc)← (r, z) ▷ Update best prefix and objective
9: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r

10: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
11: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

12: (r∗, z∗)← (rc, zc)

The pseudo-code of HybridCORELSPost is provided in Algorithm 2. Key modifications include the use of
a different objective function (10) at line 6, aimed at evaluating the overall hybrid interpretable model’s
performances. One can note that the computation of the new objective function objpost(r, S) requires access
to the pre-trained black-box hc, which is part of the algorithm’s inputs. The original CORELS’ lower bound
is valid and tight for our new objective (as discussed in Section 4.3) so we keep this computation unchanged
at line 5. Finally, to ensure that the built prefix satisfies a given transparency constraint (9), this condition
is verified at line 7 before updating the current best solution at line 8.

The pseudo-code of HybridCORELSPre is provided in Algorithm 3. Again, the objective function computa-
tion is modified at line 6 to use our proposed objpre(r, S) objective (11). As before, the original lower bound is
still valid (as discussed in Section 4.4) so we leave it unchanged at line 5. Just like for HybridCORELSPost,
the transparency constraint (9) is checked line 7, right before the current best solution update (line 8).
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Algorithm 3 HybridCORELSPre
Input: Training data S with set of pre-mined antecedents Υ; minimum transparency value min_transp;
initial prefix r0 such that |Sr0 |

|S| ≥ min_transp

Output: (r∗, z∗) in which r∗ is a prefix with the minimum objective function value z∗

1: (rc, zc)← (r0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: z ← L̂Sr (r)+incons(S\Sr)

|S| + λ · |r|+ β · |S\Sr|
|S| ▷ Compute objective objpre(r, S)

7: if z < zc and |Sr|
|S| ≥ min_transp then

8: (rc, zc)← (r, z) ▷ Update best prefix and objective
9: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r

10: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
11: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

12: (r∗, z∗)← (rc, zc)

Once the optimal prefix r∗ is known, the black-box part can be trained (which is not represented in the
pseudo-code) using our proposed specialization scheme as described in Section 3.1.2.

Finally, both our proposed approaches are anytime: the user can specify any desired running time and
memory limits, and the algorithm returns the current best solution and objective value (rc, zc) if one of the
limits is hit and the priority queue is not empty. Even if optimality is not guaranteed in such case, the ability
to precisely bound running times and memory footprints is a very practical feature for real-life applications.

C Another Pre-Black-Box Implementation for HybridCORELS

In this appendix section, we describe another possible implementation of the Pre-Black-Box paradigm based
on the CORELS algorithm but optimizing a different objective function. We discuss the theoretical differ-
ences with the HybridCORELSPre algorithm introduced in Section 4.4 and empirically compare the two
methods.

C.1 HybridCORELSPre,NoCollab: Theoretical Presentation

We now introduce another possible variant of CORELS implementing the Pre-Black-Box paradigm. We
coin it HybridCORELSPre,NoCollab, because contrary to the HybridCORELSPre algorithm introduced in
Section 4.4, the prefix learning phase of HybridCORELSPre,NoCollab does not account for the task left
to the black-box part. Instead, the prefix is learned to maximize its own accuracy, which results in the
remaining examples (that will be handled by the black-box model) being the hardest ones to classify. While
black-box specialization could be helpful to deal with such difficult tasks, we observe that, in practice, it has
to deal with many inconsistent examples, which considerably lowers its performances.

Objective HybridCORELSPre,NoCollab builds a prefix r capturing at least a proportion of min_transp of
the training data (transparency constraint (9)), and minimizing the weighted sum of r’s classification error
and sparsity:

objpre,nocollab(r, S) = L̂Sr (r)
|Sr|

+ λ · |r|+ β · |S \ Sr|
|S|

(15)

Objective lower bound CORELS’ original lower bound (8) does not hold for objective function (15).
Indeed, the difficulty here is that objpre,nocollab quantifies a prefix’s error only on the subset of examples
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that it classifies (Sr), hence it is not possible to directly consider the inconsistent examples incons(S \ Sr)
as in lb (8): an extension of r may not capture them at all. To obtain a tight lower bound lbpre,nocollab,
one needs to consider simultaneously the support Sr and errors L̂Sr (r) of prefix r, as well as the labels
cardinalities among each group of inconsistent examples (also called set of equivalent points in the context of
CORELS (Angelino et al., 2017)). A pre-processing step computes a list G of inconsistent groups of examples.
Each group g ∈ G, g ⊂ S is defined by its number of minority examples ming (those with the least frequent
label among group g), and its number of majority examples majg. In fact, our previously introduced count
of unavoidable errors uses such groups for its computation: incons(S) =

∑
g∈G (ming). For each group g ∈ G

not captured by prefix r (g ̸⊂ Sr), we verify whether capturing its examples could lower the current prefix’s

error rate: cp,g = 1

[
ming

ming+majg
≤ L̂Sr (r)

|Sr|

]
. Then:

lbpre,nocollab(r, S) =
L̂Sr (r) +

∑
g∈G,g ̸⊂Sr

cp,g ·ming

|Sr|+
∑

g∈G,g ̸⊂Sr
cp,g · (ming + majg)

+ (Kr + 1) · λ (16)

Finally, lbpre,nocollab precisely quantifies the best objective function that can be reached based on prefix r, by
only capturing inconsistent groups of examples that improve the objective function (lowering the error rate).
The definition of cp,g uses a less or equal operator because in case the error rate is unchanged after capturing
an additional group of inconsistent examples, the operation should be performed as it would increase the
coverage (and the associated regularisation term). There exists a (partial) classification function whose error
rate is exactly the one computed in lbpre,nocollab, so this bound is tight.

Finally, HybridCORELSPre,NoCollab is an exact method: it provably returns a prefix r for which
objpre,nocollab(r, S) (15) is the smallest among those satisfying the transparency constraint (9). This means
that, given desired transparency level, it produces an optimal prefix (interpretable part of the final hybrid
model) in terms of accuracy/sparsity. The pseudo-code of HybridCORELSPre,NoCollab is similar to that
of HybridCORELSPre presented in Algorithm 3, except that the objective function objpre(r, S) and lower
bound lb(r, S) on lines 6 and 5 are replaced by objpre,nocollab(r, S) and lbpre,nocollab(r, S), as introduced in
equations (15) and (16).

Again, note that within this proposed implementation, the prefix learning phase does not consider the
difficulty of the task let to the black-box learning part. For datasets containing inconsistent examples, this
could result in sub-optimal overall accuracy in regimes of medium to high transparency, when collaboration
between both parts of the hybrid interpretable model is required.

C.2 HybridCORELSPre,NoCollab: Empirical Evaluation

We ran the experiments of Section 5.3 using HybridCORELSPre,NoCollab (with the same setup
as HybridCORELSPre), and provide a comparison with HybridCORELSPre within Figure 15. The results
show that for very low transparency values, HybridCORELSPre,NoCollab and HybridCORELSPre have very
close performances. Indeed, in such regimes, most of the classification task is handled by the black-box part
of the model and the absence of collaboration with the interpretable part does not really matter. We observe
the same phenomenon in regimes of very high transparency, where most of the examples are classified by
the interpretable part. However, in regimes of medium to high transparency, we observe a significant drop
of HybridCORELSPre,NoCollab’s performances. This trend is particularly visible with the ACS Employment
dataset. It can be explained by the absence of collaboration between both parts of the model: the prefix
learning sacrifices the black-box performances (sending it most of the inconsistent examples) to obtain the
most accurate prefix possible. While this policy leads to slightly more accurate interpretable parts compared
to the prefixes learned by HybridCORELSPre, it also harms the overall model accuracy considerably, and
the obtained trade-offs are not competitive with those produced by HybridCORELSPre. As observed in Sec-
tion 5.3 with HybridCORELSPre, on the COMPAS dataset, hybrid models with intermediate transparency
values exhibit better test accuracies than the standalone black-box, due to better generalization. Again, this
constitutes an argument in favor of the Pre-Black-Box paradigm, as this trend was not observed with the
other Post-Black-Box methods.
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We provide in Figure 16 examples of hybrid models found with HybridCORELSPre and
HybridCORELSPre,NoCollab on the same data splits of the ACS Employment dataset and trans-
parencies roughly 80%. We observe, as aforementioned, that the black-boxes trained after
the HybridCORELSPre,NoCollab prefixes exhibit considerably lower performances. On the other hand, the
prefix and black-box parts of the models trained using HybridCORELSPre have comparable classification
performances, as the former was trained while accounting for the inconsistent samples that would be left for
the later to classify.

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.70

0.71

0.72

0.73

0.74

0.75

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.70

0.71

0.72

0.73

0.74

0.75

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Transparency

0.70

0.71

0.72

0.73

0.74

0.75

Ac
cu

ra
cy

(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.
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(c) COMPAS dataset.

HybridCORELSPre HybridCORELSPreNoCollab

Figure 15: Test set accuracy/transparency trade-offs for our two Pre-Black-Box variants of HybridCORELS.
The Pareto front for each method is represented as a line and the filled bands encode the std across the five
data split reruns. Results are provided for several black-boxes: (Left) AdaBoost, (Middle) Random Forests,
(Right) Gradient Boosted Trees.
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i f [ " age_high " and " Female " ] then 0 ( acc 71.3%)
else i f [ " Husband / wife " and " No disability " ] then 1 ( acc 71.9%)
else i f [ " age_high " and " Native " ] then 0 ( acc 64.5%)
else i f [ " Bachelor ’s degree " and " No disability " ] then 1 ( acc 84.8%)
else i f [ " Reference person " and " No disability " ] then 1 ( acc 82.3%)
else i f [ " high school diploma " and " No disability " ] then ( acc 60.0%)
else

AdaBoost ( ) ( acc 71.9%)

(a) HybridCORELSPre: Test Accuracy 73.7%, Transparency 80.2%.

i f [ " age_low " and " Reference person " ] then 1 ( acc 82.2%)
else i f [ " Disability " ] then 0 ( acc 77.7%)
else i f [ " age_medium " ] then 1 ( acc 79.2%)
else i f [ " age_low " and " Married " ] then 1 ( acc 69.1%)
else i f [ " Husband / wife " and " Female " ] then 0 ( acc 68.6%)
else i f [ " age_low " and " not own child of householder " ] then ( acc 59.0%)
else

AdaBoost ( ) ( acc 60.4%)

(b) HybridCORELSPre,NoCollab : Test Accuracy 71.7%, Transparency 80.3%.

Figure 16: Examples of hybrid interpretable models obtained on the ACS Employment dataset with Ad-
aBoost black-boxes and the same train/validation/test split. The models with transparency closest to
80% were selected. We note that the black-box has worst performance in HybridCORELSPre,NoCollab than
HybridCORELSPre seeing as the prefix sent it the inconsistent examples.
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