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Abstract

We propose a training-free method for open-vocabulary
semantic segmentation using Vision-and-Language Models
(VLMs). Our approach enhances the initial per-patch pre-
dictions of VLMs through label propagation, which jointly
optimizes predictions by incorporating patch-to-patch rela-
tionships. Since VLMs are primarily optimized for cross-
modal alignment and not for intra-modal similarity, we use
a Vision Model (VM) that is observed to better capture these
relationships. We address resolution limitations inherent to
patch-based encoders by applying label propagation at the
pixel level as a refinement step, significantly improving seg-
mentation accuracy near class boundaries. Our method,
called LPOSS+, performs inference over the entire image,
avoiding window-based processing and thereby capturing
contextual interactions across the full image. LPOSS+
achieves state-of-the-art performance among training-free
methods, across a diverse set of datasets. Code: https:
//github.com/vladan-stojnic/LPOSS

1. Introduction

Semantic segmentation models are typically trained in a su-
pervised manner, requiring pixel-level annotations based on
a predefined set of categories or classes. These approaches
face significant scalability challenges due to the high cost of
annotation, and their applicability is limited by the fixed set
of classes they are trained to recognize. Open-vocabulary
semantic segmentation aims to generalize and allow the seg-
mentation of an image into any given list of classes provided
at inference time. This task is usually solved with the use of
a Vision-and-Language Model (VLM) [10, 22, 33].

VLMs produce aligned textual and visual features and
enable matching textual descriptions, such as class names,
to visual features. While highly effective for image-level
classification tasks, VLMs are less suited for dense pre-
diction tasks like semantic segmentation out-of-the-box,
as they are trained to align global image representations
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Figure 1. Open-vocabulary semantic segmentation with LPOSS
(patch-level LP) and LPOSS+ (pixel-level LP). Performance re-
ported via mIoU / Boundary IoU. Images from the Context and
COCO-Stuff datasets.

with textual data. Our work addresses this gap by propos-
ing a novel, training-free VLM enhancement for open-
vocabulary semantic segmentation.

Although segmentation is defined as pixel-wise labeling,
recent approaches, that rely on VLMs [26, 42, 46] utilizing
ViT [15] architecture, form predictions at the patch level
and simply up-sample the predictions. A ViT-based VLM
typically provides a class probability distribution indepen-
dently for each patch, yielding an initial prediction. Our
approach incorporates the initial prediction together with
patch relationships by making joint predictions across all
patches. This is achieved through minimizing a quadratic
cost function with unary and binary terms. This approach
ensures that final predictions remain close to initial ones
while nearby patches or patches with similar appearances
produce similar predictions, reflecting a common prior in
semantic segmentation. Optimization is performed through
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either an iterative Label Propagation (LP) [54] operation
on a patch graph or, equivalently, by solving a linear sys-
tem. The latter is computationally efficient due to the high
sparsity of the coefficient matrix and the use of GPU-based
solvers. Following prior work [23, 26, 46], and due to
the fact that VLMs optimize inter-modal rather than intra-
modal similarity, we leverage a strong Vision Model (VM),
specifically DINO [5], to effectively capture patch-to-patch
appearance and relationships. Using such an encoder, in-
stead of the VLM’s visual encoder, significantly improves
predictions at a patch level.

While operating at the patch level provides efficiency
benefits, it constrains pixel-level accuracy. In an experiment
where semantic segmentation ground truth is downsampled
to patch-level resolution, then upsampled and evaluated as
a prediction, we show that the resulting performance mea-
sured via mIoU averages approximately 85% across eight
datasets. To address this limitation, we perform a second
stage of LP on a pixel-level graph, using the patch-based
LP result as the initial prediction set. This refinement con-
sistently improves segmentation accuracy, particularly near
class boundaries, as we show by measuring the Boundary
IoU metric [9]. Figure 1 demonstrates examples of such
improvement using VLM and VM with a ViT backbone.

The strength of ViT architectures comes with limita-
tions. There is a strong bias introduced by their pre-
training settings, i.e. processing fixed-resolution square im-
ages. Consequently, current segmentation methods per-
form feature extraction and prediction in a sliding win-
dow fashion with overlapping windows. In contrast, we
move beyond this standard practice by performing predic-
tions jointly for the entire image, accounting for interac-
tions across all patches. However, we show that while
joint predictions are possible, joint feature extraction across
the whole image is not feasible without a noticeable per-
formance decrease. Our proposed method, called Label
Propagation over Patches (LPOSS) and Pixels (LPOSS+),
achieves state-of-the-art results across various datasets, out-
performing existing training-free methods on eight datasets.
Our contributions are summarized as follows:

• We establish a connection between classical label prop-
agation methods and vision-language models (VLMs) in
the context of dense prediction tasks.

• We introduce a training-free approach for semantic seg-
mentation that predicts and propagates labels at both
patch and pixel levels. This strategy leverages the pre-
training of foundation models and addresses the perfor-
mance limitations of coarse patch-level predictions.

• We propose to decouple feature extraction from class
prediction, enabling image-level inference and capturing
contextual interactions across the entire image.

2. Related work
The introduction of vision-language models [10, 22, 33]
opened up the possibilities of performing many recognition
tasks in the open-vocabulary setting [43], e.g., zero-shot
classification [33, 38, 41], semantic segmentation [17, 53],
object detection [44], etc. However, considering these mod-
els are usually trained only to optimize global image rep-
resentation, they do not excel in dense recognition tasks
such as segmentation [3, 53]. Because of this, consider-
able work is being done to improve their performance. This
is achieved by training specialized VLM for such tasks,
changing the VLM architecture during inference, and em-
ploying other vision models to aid VLMs.
Training VLMs for segmentation. One line of work trains
from scratch VLMs specialized for semantic segmentation
using varying levels of supervision: using segmentation
masks without class annotations [14, 17] and only image-
caption pairs [29, 34, 47, 48]. On the other hand, another
line of work trains additional modules on top of pre-trained
VLM to improve their localization abilities [6, 28, 31].
Training-free segmentation with VLMs. It is ob-
served [27, 42] that different VLM components are respon-
sible for VLMs bad localization performance and that the
performance can be substantially improved by removing or
changing them during inference. MaskCLIP [53] revisits
the global attention pooling of CLIP [33] and proposes to
remove its query and key embeddings while reformulating
the value embedding layer and the last linear layer into two
1×1 convolutions. SCLIP [42] proposes to replace the self-
attention layer of the ViT with correlative self-attention.
ClearCLIP [25] identifies residual connections as the pri-
mary source of VLMs’ bad localization performance. Be-
cause of this, it proposes to remove them from the last
layer. It additionally replaces self-attention with self-self-
attention and removes the feed-forward network from the
last layer. GEM [3] improves the semantic segmentation
abilities of VLMs by adding self-self-attention blocks par-
allel to self-attention layers. We consider these methods
complementary to ours as we apply our method on top of
MaskCLIP [53].
VLMs and VMs for segmentation. Vision models trained
in a self-supervised fashion show remarkable object local-
ization abilities [5, 13, 32, 36, 37]. Because of this, the
growing line of work investigates how to leverage them to
improve the ability of VLMs to perform open-vocabulary
semantic segmentation. CLIP-DIY [45] uses an unsu-
pervised object discovery method FOUND [37] to clear
and improve the open-vocabulary segmentation maps of
CLIP [33]. CLIP-DINOiser [46] proposes a training-free
variant that uses patch-to-patch affinity from DINO [5] to
refine CLIP’s image features. Additionally, it shows that
good localization capabilities can be extracted from CLIP
by training two small convolutional layers. ProxyCLIP [26]
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proposes replacing the attention matrix of the last layer of
CLIP [33] with an affinity matrix from a vision model such
as DINO [5]. LaVG performs panoptic segmentation us-
ing the normalized cut on top of DINO [5] features. The
discovered segments are then classified into a class using a
VLM. Our method falls into this group of methods and is
most similar to CLIP-DINOiser [46]. Compared to CLIP-
DINOiser, which uses affinity based on Euclidean similar-
ities between DINO patches, we propose to use geodesic
similarities obtained through label propagation. Addition-
ally, compared to all other works, we perform the prediction
jointly across all sliding windows, which are usually used in
such methods. Finally, we depart from performing predic-
tions only at the patch level and refine the predictions at the
pixel level by applying the same process on top of pixels.
Relation to CRFs. Conditional Random Fields (CRFs) [24,
40] have a long tradition in dense prediction tasks with
classical approaches [18, 24, 35]. In early deep models
for semantic segmentation, CRFs are used as a refinement
step to increase the accuracy and the resolution of the pre-
dictions [8]. There are also attempts to integrate a sim-
ilar objective function during end-to-end training [7, 50].
CRFs and LP both leverage pairwise connections to achieve
smooth label assignments. LP directly propagates labels
based on neighbors, while CRFs explicitly model these rela-
tionships in their energy function. We opt for an LP variant
that has theoretical convergence proofs and corresponds to
an intuitive quadratic cost function, which does not hold for
all existing LP variants [2]. LP is typically easy to imple-
ment, computationally efficient [54], and compatible with
GPU-based software implementations [38]. Consequently,
it is used in various computer vision and machine learning
tasks [19, 21, 38, 39], while in this work, LP is tailored
for semantic segmentation in the era of VLMs and ViT en-
coders.

3. Label propagation over patches and pixels
3.1. Problem formulation
In the task of open-vocabulary semantic segmentation we
are given an image X ∈ RH×W×3 and a list of class names
C = {c1, . . . , cC}. Our goal is to assign one of the classes
to every pixel or, conversely, tensor Y ∈ RH×W×C that
contains a segmentation mask for each of the C classes.

To solve such a task, one can utilize a Vision Language
Model (VLM), i.e. a model that is able to encode both the
class names as well as the image in the compatible feature
spaces. Let f : I → Rd×NP denote the vision encoder, i.e.
a ViT [15] with patch size P . The vision encoder extracts
feature vectors for all NP = ⌈H/P ⌉ · ⌈W/P ⌉ patches for
an image in I1. Also, let g : T → Rd represent the text

1We discard the representation corresponding to the CLS token usually
present in ViTs.

encoder of the VLM, with T representing the space of the
textual input. One can, therefore, perform open-vocabulary
semantic segmentation by obtaining the patch features for
an image Zvlm = f(X), class name features F = g(C) ∈
Rd×C , and calculating per patch class similarities

Yvlm = Z⊤
vlmF, (1)

which are further upsampled to pixel-wise class similarities
at the original image size. The class with the highest simi-
larity is then assigned to each pixel.

3.2. Preliminaries
Label propagation (LP). Let {n1, . . . , nN} be a set of
graph nodes and S ∈ RN×N be a symmetric, typically
very sparse, adjacency matrix with zero diagonal. We ob-
tain a symmetrically normalized adjacency matrix by Ŝ =
D− 1

2SD− 1
2 , where D = diag(S1N ) is a degree matrix and

1N is the all-ones N -dimensional vector. Given Ŝ, label
propagation [54] is an iterative process given by

Ŷ (t+1) = αŜŶ (t) + (1− α)Y (2)

until convergence, that refines initial node predictions Y ∈
RN×C across C classes based on the graph structure2.
Hyper-parameter α ∈ (0, 1) controls the amount of prop-
agation and refinement. It is possible to show [54] that this
iterative solution is equivalent to solving C N -variable lin-
ear systems

L(S)Ŷ = Y, (3)

where L(S) = I − αD− 1
2SD− 1

2 = I − αŜ is the graph
Laplacian. The closed-form solution of these linear systems

Ŷ = L(S)−1Y = Linv(S)Y, (4)

is not practical for large graphs as Linv(S) is a dense RN×N

matrix. However, given that L is positive-definite, it is
usual [20, 21] to solve (3) using the conjugate-gradient
method which is known to be faster than running the iter-
ative solution [20]. Matrix Linv provides geodesic similari-
ties between all pairs of nodes, as these are captured based
on the graph structure. Additionally, label propagation cor-
responds to minimizing the quadratic criterion

Q(Ŷ ) = (1−α)

N∑
i=1

||Ŷi−Yi||2+α

N∑
i,j=1

Sij ||D− 1
2 Ŷi−D− 1

2 Ŷj ||2.

(5)
The criterion (5) consists of two parts: the first one keeps
node predictions close to the initial ones, and the second
one pushes neighboring nodes in the graph to have the same
predictions.

2A common use of LP is to propagate from labeled to unlabeled nodes;
instead we refine predictions for all nodes which are already labeled.
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Exploiting a Vision Model (VM). VLMs are trained by
minimizing cross-modal similarities between correspond-
ing visual and textual features. This training approach re-
sults in suboptimal performance on dense prediction tasks,
such as open vocabulary semantic segmentation [53], for
two main reasons. First, VLMs are typically trained using a
loss on global image representations, which means they do
not explicitly optimize patch-level features. Second, VLM
training focuses solely on cross-modal similarities and does
not account for relationships across patches, making the re-
sulting representations less effective for capturing the inter-
patch relationships essential for semantic segmentation.

For these reasons, recent works [23, 26, 46] further uti-
lize a separate Vision Model (VM) to provide improved
patch-level representations. Let Zvm = h(X) denote patch-
level features from such a model, where h : I → Rd′×NP

is an encoder with a ViT architecture. The usual choice
for the vision model is DINO [5], an encoder trained with
self-supervised learning that exhibits strong performance
for dense prediction tasks [5, 36, 37].

The training-free variant of the CLIP-DINOiser [46] im-
proves VLM predictions Yvlm by refining VLM image fea-
tures Zvlm using patch relations from VM. They use image
features Zvm and compute an affinity matrix A = Z⊤

vmZvm.
This affinity is then used to refine the VLM predictions as

YDINOiser = AZ⊤
vlmF = AYvlm. (6)

This process propagates the patch features, or, equivalently,
due to linearity, the VLM predictions, over the affinity ma-
trix3. This is a smoothening operation, which we also per-
form in our method but in a more principled way.
Class prediction using a sliding window approach. Cur-
rent approaches [23, 26, 42, 46] perform feature extraction
and prediction in a sliding-window fashion to handle test
images of arbitrary resolution. Let W denote a set of K
sliding windows. Prediction typically proceeds in 3 steps:
1. Extract features Z

(wi)
vlm and obtain predictions Y

(wi)
vlm =

Z
(wi)
vlm

⊤
F independently for each window wi ∈ W .

2. Upsample patch-level predictions to the original window
resolution using function up(Y (wi)

vlm ).
3. Obtain per-pixel predictions by averaging predictions

over all sliding windows that contain each pixel and
combine them into an H × W class confidence map
Y

(img)
vlm = combine({up(Y (w1)

vlm ), . . . ,up(Y (wK)
vlm )}) .

The sliding window approach presented above is a re-
sult of the poor generalization of ViTs to resolutions and
aspect ratios different from the ones used during training.
All existing approaches couple feature extraction with class
prediction and perform both jointly, and independently in
each window before averaging predictions across windows.

3Their implementation ℓ2-normalizes features after propagation, i.e.
ℓ2(AX)F⊤, which breaks the equivalence but performs slightly better.

In the following sections, we decouple the two for our ap-
proach and perform predictions by looking across windows.

3.3. LPOSS: LP over patches
We observe that (6) and (4) can both be seen as differ-
ent forms of label refinement. In (6), the VLM-based la-
bels Yvlm are refined using matrix A of Euclidean similari-
ties across patches, while in (4), graph labels Y are refined
via the geodesic similarities Linv, computed over the graph.
This motivates us to utilize label propagation to refine the
VLM predictions. Not only is (4) optimizing (5), which
is a principled and intuitive objective function, but we also
expect geodesic similarities to capture more complex rela-
tions and contextual information, as they are computed by
considering the entire set of patch features together.

We assume a patch pi = (zvmi
,pi) is represented as a

tuple by its features zvmi
from the VM, i.e. the i-th column

of Zvm, and the location of its center pi in the image. We
then construct a graph with nodes {p1, . . . , pNP

} and adja-
cency matrix SP = Sa⊙Sp, where ⊙ denotes element-wise
multiplication. Sa is an appearance-based adjacency matrix
and saij

= (z⊤vmi
zvmj

)γ if zvmj
is in the k-nearest neighbors

of zvmi
, and 0 otherwise. Sp is a position-based adjacency

matrix that depends on the spatial distance between patches
with spij = exp

(
− ||pi−pj ||2

σ

)
. Having such a graph, we

apply label propagation by

Ylposs = Linv(SP)Yvlm (7)

to refine the VLM predictions. This process effectively re-
fines the predictions such that neighboring patches (patches
with high appearance similarity or spatial proximity) have
similar predictions, while keeping the final prediction not
far from the VLM predictions.

3.4. LPOSS across all windows
We propose to decouple the feature extraction process from
class prediction. First, we perform feature extraction on a
per-window basis to be consistent with the encoder’s train-
ing resolution. Unlike existing methods, however, we then
carry out predictions across windows, i.e., jointly for the en-
tire image. This approach enables us to explicitly account
for interactions across all patches.

Sliding-window extraction provides us with baseline
VLM predictions Y

(wi)
vlm for window wi with patches

p
(wi)
j , j = 1, . . . , NP , which we merge in Y

(W)
vlm =

[Y
(w1)

vlm

⊤
, . . . , Y

(wK)
vlm

⊤
]⊤, across all windows. We con-

struct affinity matrix S(W) ∈ RKNP×KNP over
nodes {p(w1)

1 , . . . , p
(w1)
NP

, . . . , p
(wK)
1 , . . . , p

(wK)
NP

} contain-
ing patches from all sliding windows, and perform LP
jointly for the whole image by

Y
(W)

lposs = Linv(S
W)Y

(W)
vlm . (8)
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Figure 2. Overview of LPOSS and LPOSS+. Processing steps: (1) input image window cropping (2) feature extraction with the VLM
and patch-level predictions per window (3) patch-level predictions jointly across all windows with LPOSS (4) upsampling of patch-level
predictions (5) combining window predictions into a single pixel-level image prediction (6) pixel-level prediction with LPOSS+. The
graphs of LPOSS and LPOSS+ are generated based on patch features extracted with the VM and pixel color values, respectively.

79.0/67.8

32.8/6.9

ground-truth ground-truth at patch-level res.

Figure 3. Visualization of artifacts caused by patch-level pre-
dictions. Ground-truth at patch-level resolution produced by
downsampling the ground-truth by the patch size P = 16 and then
upsampling to the original size. Performance reported via mIoU /
Boundary IoU.

We decompose the output prediction into parts associated

with each window by Y
(W)

lposs = [Y
(w1)

lposs

⊤
, . . . , Y

(wK)
lposs

⊤
]⊤,

and, similar to other approaches, upsample and combine by

Y
(img)

lposs = combine({up(Y (w1)
lposs ), . . . ,up(Y (wK)

lposs )}),
(9)

with Y
(img)

lposs ∈ RH×W×C . We show a graphical represen-
tation of this process in Figure 2.

3.5. LPOSS+: LP over pixels
Similar to related approaches, LPOSS performs predictions
at patch resolution, which are subsequently upsampled to
the original image resolution. However, we observe that
this process results in block-like artifacts in the predictions,
as shown in Figure 3.

To assess the impact of these artifacts on performance,
we conducted the following experiment on the ground-truth
maps: we downsampled the ground-truth map to patch-level
resolution by a factor corresponding to the patch size (e.g.,

P = 16), then upsampled it back to the original image
resolution. We treat the result as a prediction and evalu-
ate performance using mIoU and Boundary IoU [9] relative
to the ground truth. The average performance across eight
datasets was approximately 85% for mIoU and 70% for
Boundary IoU, as shown in Table 1 and Table 2, indicating
that patch-level predictions inherently limit performance.
To address this, we propose to apply label propagation at
the pixel level to further refine LPOSS predictions Y (img)

lposs .
We assume a pixel p̃i = (z̃i, p̃i) to be represented as a

tuple by its location p̃i within the image and its features
z̃i, which may be based on the RGB values or any en-
coder. Similar to the patch-level case, we construct a graph
with pixels as nodes and adjacency matrix SP̃ = Sã ⊙ Sp̃.
The position-based affinity Sp̃ is binary, with non-zero el-
ements within the r × r neighborhood of a pixel, and the
appearance-based affinity Sã has elements equal to sãij

=

exp
(
− ||z̃i−z̃j ||2

τ

)
.

We apply label propagation on top of the pixel-level
graph by

Ylposs+ = Linv(SP̃)Y
(img)

lposs , (10)

with Y
(img)

lposs+ ∈ RH×W×C , which, after argmax, becomes
the final segmentation mask. This process refines the pre-
dictions such that neighboring pixels have similar predic-
tions, while keeping the final prediction not far from the
LPOSS predictions. We call this approach LPOSS+ and
show its visualization in Figure 2.

4. Experiments
4.1. Datasets and evaluation metrics
We evaluate our method on eight datasets: PASCAL
VOC [16] (VOC), COCO Object [4] (Object), PASCAL
Context [30] (Context), PASCAL Context59 [30] (C59),
COCO Stuff [4] (Stuff), PASCAL VOC20 [16] (VOC20),
ADE20k [51, 52], and Cityscapes [12] (City), that are com-
monly used [23, 26, 42, 46] to evaluate open-vocabulary
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Method VM VOC Object Context C59 Stuff VOC20 ADE20k City Avg

Oracle (patch-level res.) - 91.5 83.8 86.6 86.8 86.0 92.8 80.6 73.6 85.2

MaskCLIP* [53] ✗ 32.9 16.3 22.9 25.5 17.5 61.8 14.2 25.0 27.0
GEM [3] ✗ 46.8 - 34.5 - - - 17.1 - -
SCLIP [42] ✗ 59.1 30.5 30.4 34.2 22.4 80.4 16.1 32.2 38.2
ClearCLIP [25] ✗ 51.8 33.0 32.6 35.9 23.9 80.9 16.7 30.0 38.1
CLIP-DIY† [45] ✓ 59.9 31.0 19.7 19.8 13.3 79.7 9.9 11.6 30.6
CLIP-DINOiser* [46] ✓ 62.2 34.7 32.5 36.0 24.6 80.8 20.1 31.1 40.2
ProxyCLIP* [26] ✓ 59.3 36.3 34.4 38.0 25.7 79.7 19.4 36.0 41.1
LaVG* [23] ✓ 61.8 33.3 31.5 34.6 22.8 81.9 14.8 25.0 38.2

LPOSS ✓ 61.1 33.4 34.6 37.8 25.9 78.8 21.8 37.3 41.3
LPOSS+ ✓ 62.4 34.3 35.4 38.6 26.5 79.3 22.3 37.9 42.1

Table 1. Performance comparison in terms of mIoU on 8 datasets using ViT-B/16 backbone for both VLM and VM. * denotes the
methods for which we reproduce the performance. † denotes numbers taken from Wysoczanska et al. [46].

Method VM VOC Object Context C59 Stuff VOC20 ADE20k City Avg

Oracle (patch-level res.) - 80.1 61.3 62.6 68.0 69.0 83.5 65.0 66.4 69.5

MaskCLIP [53] ✗ 17.2 7.0 9.2 12.0 9.3 38.6 8.2 17.2 14.8
CLIP-DINOiser [46] ✓ 47.4 17.5 15.7 22.4 15.6 71.1 12.3 22.1 28.0
ProxyCLIP [26] ✓ 45.0 19.7 17.4 23.0 15.9 69.4 12.9 28.4 29.0
LaVG [23] ✓ 49.5 19.1 18.3 23.6 15.4 74.3 9.2 15.7 28.1

LPOSS ✓ 48.5 18.4 19.1 24.8 17.9 70.1 14.9 28.4 30.3
LPOSS+ ✓ 51.2 20.4 21.6 27.1 19.2 71.7 16.0 29.5 32.1

Table 2. Performance comparison in terms of Boundary IoU on 8 datasets using ViT-B/16 backbone both for VLM and VM.

semantic segmentation. Following standard practice, we re-
port mean Intersection over Union (mIoU) metric and addi-
tionally Boundary IoU [9] that measures performance only
near the ground-truth mask boundaries.

4.2. Experimental setup
Backbones and textual prompts. We report the results
using ViT-B/16 backbones and use DINO [5] as a visual
model h and OpenCLIP [10] as a VLM (f, g). We fol-
low the setup of CLIP-DINOiser [46] and use the output
of DINO’s last layer’s value embedding as the visual model
features Zvm, while we use the output of MaskCLIP [53] as
the VLM features Zvlm and F . We use ImageNet prompt
templates from CLIP [33] as templates for the VLM, fol-
lowing standard practice [23, 26, 46, 53]. For datasets that
have a class background, we use text expansion for it and
expand background into, e.g. sky, wall, etc., follow-
ing SCLIP [42], ProxyCLIP [26], and LaVG [23].
Compared methods We compare our method with
methods that use only a VLM, by making small changes
during inference to the general ViT architecture, for
open-vocabulary semantic segmentation: MaskCLIP [53],
GEM [3], SCLIP [42], and ClearCLIP [25]. Additionally,
we compare with methods that utilize vision models to
aid VLMs: CLIP-DIY [45], CLIP-DINOiser [46]4,

4We use their trained model in our evaluation because it is publicly

ProxyCLIP [26], and LaVG [23].
Implementation details We reproduce results for CLIP-
DINOiser5, ProxyCLIP6, and LaVG7 following their offi-
cial implementations, while we reproduce MaskCLIP us-
ing the implementation provided by CLIP-DINOiser. We
report the performance of CLIP-DIY [45] as reported in
CLIP-DINOiser [46], while for GEM [3], SCLIP [42], and
ClearCLIP [25] we report the numbers provided by the orig-
inal papers. We implement our method using MMSegmen-
tation [11] using the sliding-window approach with window
size 224 × 224, window stride 112 × 112, and resizing the
input image to have the shorter side of 448 for all datasets.
We also fix the values of hyper-parameters α, k, γ, σ, r,
and τ for LPOSS and LPOSS+ to 0.95, 400, 3.0, 100, 13,
and 0.01, respectively, across all datasets. For pixel fea-
tures of LPOSS+, we use image pixels converted to Lab
color space. We discuss the design choices and show the im-
pact of different hyper-parameters of LPOSS and LPOSS+
in Section 7 of the supplementary.

4.3. Results
We present the quantitative results in Table 1 given by the
conventionally used mIoU metric. LPOSS achieves state-

available and performs similarly to the training-free variant.
5https://github.com/wysoczanska/clip_dinoiser
6https://github.com/mc-lan/ProxyCLIP
7https://github.com/dahyun-kang/lavg
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Image GT MaskCLIP CLIP-DINOiser ProxyCLIP LaVG LPOSS+

9.7/4.0 85.6/42.5 56.2/25.8 36.3/19.7 87.5/49.0

3.2/1.0 75.3/41.7 30.4/18.5 30.9/25.2 72.7/47.7

5.9/3.9 28.1/17.1 25.2/19.0 43.6/31.2 45.3/36.2

5.7/2.2 41.2/20.2 13.9/8.4 15.3/8.2 42.7/23.1

19.4/13.2 30.6/19.5 38.8/25.5 18.1/10.1 34.5/25.0

Figure 4. Qualitative comparison of open-vocabulary semantic segmentation. A comparison of LPOSS+ with the best perform-
ing methods: MaskCLIP [53], CLIP-DINOiser [46], ProxyCLIP [26], and LaVG [23]. On top of each segmentation map we show its
mIoU/Boundary IoU. Pixels shown in white are pixels that do not have a class in the ground-truth.

of-the-art performance on average, with competitive perfor-
mance across most datasets with only a few notable excep-
tions. One such exception happens on the VOC20 dataset
where LPOSS has low performance compared to others. We
observe this is the case because of the choice of the win-
dow size, something that we discuss in other experiments.
LPOSS+ further improves the results of LPOSS by 0.8%
on average and obtains state-of-the-art performance on all
datasets besides VOC20 and Object. ProxyCLIP is the only
method that significantly outperforms LPOSS+ on the Ob-
jects dataset, something that we attribute to the fact that it
employs dataset-specific thresholds to filter the background
class in this case, as well as for the VOC dataset.
Boundary IoU metric. Based on Table 1 we can already
see that going beyond patch-level predictions in LPOSS
to pixel-level predictions in LPOSS+ improves the results.
Improvements are even more visible when we look into
the Boundary IoU [9] metric, presented in Table 2, which
is representative of how well the predicted object bound-
aries match the ground truth. LPOSS+ outperforms all

other methods and achieves state-of-the-art on almost all
datasets. Interestingly, even LPOSS outperforms competi-
tors in this metric by a large margin. We attribute this to our
choice of the window size, as LPOSS achieves Boundary
IoU of 28.9% on average when we apply it with window
size 448×448 and window stride 224×224, which is com-
parable to the other approaches.

Additionally, in Table 1 and Table 2, we report mIoU
and Boundary IoU, respectively, for the oracle-based exper-
iment for patch-level resolution prediction. In this experi-
ment, we downsample the ground-truth map to the patch-
level resolution by a factor equal to the patch size and up-
sample it to the original image resolution, which we treat
as predictions. Both mIoU and especially Boundary IoU
are significantly impacted by this process, which shows that
patch-level predictions are significantly limiting the seg-
mentation performance.
Qualitative results. We present the qualitative results of
LPOSS+ and the most important competitors in Figure 4.
We observe that LPOSS+ obtains good results across a va-
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Method VOC Object Context C59 Stuff VOC20 ADE20k City Avg

No sliding windows
CLIP-DINOiser [46] 60.2 32.4 31.3 34.6 23.2 79.1 18.7 28.2 38.5
ProxyCLIP [26] 43.1 24.2 25.9 28.8 18.7 73.1 13.6 13.6 30.1
LaVG [23] 24.3 16.1 12.7 13.7 10.0 32.5 8.2 6.8 15.6
LPOSS 59.2 31.2 31.4 34.4 23.3 80.7 19.0 28.4 38.4
LPOSS+ 59.7 31.7 32.0 35.0 23.6 81.3 19.3 28.5 38.9

Window size: 448× 448, window stride: 224× 224
CLIP-DINOiser [46] 62.2 34.7 32.5 36.0 24.6 80.8 20.1 31.1 40.2
ProxyCLIP [26] 59.9 36.0 34.6 38.2 25.6 78.9 18.9 33.6 40.7
LaVG [23] 36.7 19.6 16.4 18.7 13.8 44.3 10.2 10.8 21.3
LPOSS 61.3 32.5 32.9 36.3 25.2 82.8 20.4 31.8 40.4
LPOSS+ 62.0 33.1 33.4 36.9 25.5 83.0 20.7 32.1 40.8

Window size: 224× 224, window stride: 112× 112
CLIP-DINOiser [46] 55.4 33.0 32.2 35.7 24.8 73.1 21.1 36.3 38.9
ProxyCLIP [26] 54.9 32.9 33.2 36.4 24.3 73.0 18.6 36.0 38.7
LaVG [23] 62.0 32.3 31.8 34.7 22.8 79.8 15.4 23.1 37.7
LPOSS 61.1 33.4 34.6 37.8 25.9 78.8 21.8 37.3 41.3
LPOSS+ 62.4 34.3 35.4 38.6 26.5 79.3 22.3 37.9 42.1

Ensemble of two setups above
CLIP-DINOiser [46] 63.0 35.9 34.1 37.8 26.3 79.6 22.1 35.9 41.8
ProxyCLIP [26] 59.0 35.1 35.3 38.9 26.1 78.1 19.8 36.8 41.1
LaVG [23] 51.4 27.3 24.3 28.4 20.1 63.7 14.7 20.3 31.3
LPOSS 62.9 34.1 35.1 38.6 26.5 82.1 22.2 36.5 42.3
LPOSS+ 63.9 35.0 35.8 39.3 27.0 82.5 22.7 37.0 42.9

Table 3. Impact of sliding windows for feature extraction. Feature extraction is performed with windows of different size/stride or
no windows at all. Following the original design choices, other methods perform window-based prediction, while LPOSS and LPOSS+
perform prediction jointly across all windows. Image resize of the smaller side to 448 is used and the reported metric is mIoU.

riety of images coming from different benchmark datasets.
Qualitatively, our output is closer to that of CLIP-DINOiser
due to the similarity of the approach. Nevertheless, ours
varies in a smoother way, boosting the performance, which
indicates that our LP-based formulation is a key ingredient.
Additionally, in Figure 1, we show the qualitative compar-
ison of LPOSS and LPOSS+. We observe that predictions
of LPOSS+ follow the object boundary much better than the
predictions from LPOSS.

Impact of sliding windows. In Table 3, we show the impact
of sliding windows. All methods are negatively impacted
when we depart from the use of sliding windows, with Prox-
yCLIP and LaVG being significantly more impacted than
others. The largest drop in the performance happens on the
Cityscapes dataset, which has an aspect ratio that is furthest
from the square aspect ratio that was used to train VLM and
VM. Besides that, CLIP-DINOiser and ProxyCLIP perform
better when used with larger sliding windows, while LaVG,
LPOSS, and LPOSS+ prefer smaller windows. We attribute
LPOSS’s and LPOSS+’s preference for smaller windows to
the fact that we decouple prediction and feature extraction.
We are thus able to select a (smaller) window size close to
the training resolution to get stronger features, but are still
able to propagate labels over the full image. Related meth-
ods lose performance in this setting because the prediction
happens with the smaller context. Additionally, based on

the analysis in Section 6 of the supplementary we propose
to ensemble the two different window sizes. We observe
that all methods, besides LaVG, benefit from the ensem-
ble. However, LPOSS and LPOSS+ benefit more than oth-
ers and obtain state-of-the-art results.
LPOSS++ as a refinement step for linear semantic seg-
mentation. LPOSS+ refines pixel-level predictions and, as
such, could potentially be applied to other dense predic-
tion tasks. To test this, we apply it on the predictions ob-
tained by training a linear segmentation head on top of DI-
NOv2 [32] features on the ADE20k dataset [51, 52]. Apply-
ing LPOSS+ out of the box, we are able to improve DINOv2
predictions and increase mIoU from 47.3% to 49.5%.

5. Conclusion

This work proposes a training-free method for open-
vocabulary segmentation, called LPOSS, that uses ViT-
based VLMs and VMs. We highlight the limitations of low-
resolution patch-based predictions and window-based pro-
cessing. LPOSS targets both issues and provides improve-
ments through an LP-based predictor that operates jointly
over patches of all windows, and over pixels. In a com-
prehensive benchmark across a variety of datasets and do-
mains, LPOSS surpasses the previous state-of-the-art, espe-
cially when evaluating near class boundaries.
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LPOSS: Label Propagation Over Patches and Pixels
for Open-vocabulary Semantic Segmentation

Supplementary Material

6. Analysis of performance

6.1. Quantitative analysis per image

In Figure 5a and Figure 5b, we present the comparison
of mIoU and Boundary IoU performance of LPOSS and
LPOSS+. We observe that LPOSS+ consistently improves
the performance of LPOSS with respect to both metrics.

Figure 5c presents the comparison of mIoU and Bound-
ary IoU performance of LPOSS+. We see that although the
two metrics are correlated to some extent, they are still com-
plementary to each other. Boundary IoU performance is
usually lower than mIoU performance, which is consistent
with the definition that Boundary IoU measures the fine-
grained performance at segment borders, which consist of
the hardest pixels to classify.

We present the comparison of the mIoU performance of
the oracle experiment and LPOSS in Figure 5d. We observe
that oracle performance varies a lot across images, which
we attribute to the differences in object size and shape. Ad-
ditionally, the oracle performance acts as an upper bound in
the majority of cases. Exceptions are justified by the effect
of bilinear interpolation and combining predictions across
many windows.

6.2. Per image/class comparison with MaskCLIP

LPOSS refines MaskCLIP predictions, so we look at how
successful LPOSS is in improving these predictions. Fig-
ure 6 shows the comparison of the mIoU for LPOSS and
MaskCLIP on the image and class level. We observe that
LPOSS successfully improves MaskCLIP predictions in the
vast majority of cases. Rarely, an image, with already very
low performance, is further harmed if the MaskCLIP output
is spatially very noisy, as shown in Figure 7.

6.3. The impact of window size
Furthermore, we look into the impact of window size on
CLIP-DINOiser and LPOSS. In Figure 8, we visualize the
results of both methods as well as MaskCLIP using two dif-
ferent window sizes. We observe that there are some cases
when MaskCLIP has better output for the large windows,
used by CLIP-DINOiser, vs the small ones, used by LPOSS.
In these cases, CLIP-DINOiser outperforms LPOSS. We
also observe that there are cases where LPOSS performs
well for both large and small window sizes, while CLIP-
DINOiser performs better for the larger window size. Based
on this, we propose to run our methods using an ensemble
of large and small window sizes, and observe that this fur-
ther improves the performance of LPOSS and LPOSS+, as
presented in Section 4.3.

7. Ablation study
Design of Sa and Sp. We construct Sa as a k-nearest
neighbor graph with edge weights in the form sγ , as it
is a common choice for the adjacency matrix in the label
propagation literature [21, 38]. Another choice could be
exp (− 1−s

σ ), which we found to perform slightly worse for
LPOSS (−0.1%). For Sp, we chose the RBF kernel as in
CRFs and bilateral filters. We further tested a linear kernel,
which performs a bit worse (−0.2%).

LPOSS and LPOSS+ construct adjacency matrices SP

and SP̃ in a different fashion. The primary difference comes
from the way they control the sparsity of the graph. LPOSS
uses k-nearest neighbors on top of the appearance-based
adjacency Sa. On the other hand, LPOSS+ controls the
sparsity using a binary spatial affinity Sp̃ that has non-
zero elements only within the r × r neighborhood of the
pixel. This difference is motivated by two reasons. First,
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(d) mIoU comparison of Oracle
(patch-level res.) and LPOSS

Figure 5. Analysis of LPOSS and LPOSS+ performance per image. The plot shows 5000 randomly selected test images from all eight
datasets used in the paper.
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Figure 6. Comparison of MaskCLIP and LPOSS performance
per image and per class. The plot shows 5000 randomly selected
test images and all classes from all eight datasets in our experi-
ments.

with LPOSS+, we aim to refine the predictions around the
boundaries, which can be accomplished by looking at the
neighborhood of each pixel. Second, the color-based fea-
tures used in LPOSS+ can be very noisy, which can create
issues for k-nearest neighbor search. To validate this, we
try implementing LPOSS+ using the functions of LPOSS.
However, we have found that this makes LPOSS+ ineffec-
tive and actually produces performance results worse than
LPOSS. Additionally, we also experiment with using an
RBF kernel in Sp̃ and find that it performs a bit worse than

Image(GT) MaskCLIP LPOSS

Figure 7. Examples of the LPOSS failure cases that are due
to the MaskCLIP noisy predictions. MaskCLIP produces very
spatially noisy predictions in some cases, which then translates to
the bad performance of LPOSS. Pixels shown in white are pixels
that do not have a class in the ground-truth.

Coupled feat.
extraction and
prediction

Method Sa Sp Pix. feature Avg

LPOSS DINO ✓ ✗ - 41.3
LPOSS CLIP ✓ ✗ - 38.3
LPOSS DINO ✗ ✗ - 40.6
LPOSS DINO ✓ ✓ - 39.2

LPOSS+ DINO ✓ ✗ Lab 42.1
LPOSS+ CLIP ✓ ✗ Lab 39.0
LPOSS+ DINO ✗ ✗ Lab 41.4
LPOSS+ DINO ✓ ✓ Lab 39.8
LPOSS+ DINO ✓ ✗ depth 42.2
LPOSS+ DINO ✓ ✗ Lab+depth 42.2

Table 4. Ablations for LPOSS and LPOSS+. We report mIoU
averaged across 8 datasets. Default setups used in the paper are
marked with .

the proposed method (achieving the same performance as
the proposed method when the RBF kernel converges to the
proposed binary values).

Features used in adjacency Sa. We replace DINO features
for the construction of Sa with CLIP features and observe a
significant drop in performance for both proposed methods,
as shown in Table 4.

Impact of spatial adjacency Sp. We remove the use of Sp

in the construction of SP , i.e. set it to a matrix full of ones,
and observe, as shown in Table 4, that using Sp improves
the results both for LPOSS and LPOSS+. Additionally, in
Figure 9, we visualize the impact of Sp on the predictions.
We observe that the use of Sp cleans the predictions.

Impact of window-based predictions. We perform an ex-
periment where we do feature extraction per window, as al-
ways, but also prediction per sliding window, as other meth-
ods do too [23, 26, 46]. We observe, as shown in Table 4
that our choice of performing prediction jointly across all
windows is indeed beneficial to the performance of LPOSS
and LPOSS+.

Pixel features. We switch pixel features from the de-
fault choice of Lab color space to depth predictions from
DepthAnythingV2 [49] and their combination. We observe,
as shown in Table 4, that using predicted depth marginally
improves the results, but we opt not to use it in our de-
fault setup as it introduces another model during inference.
We conclude that the use of different pixel-level features is
worth future exploration.

Impact of hyper-parameters k, σ, and r. In Figure 10, we
show the impact of hyper-parameters k, σ, and r on the per-
formance. Good performance is achieved over a wide range
of values. For LPOSS+, r controls the performance/speed
trade-off (via sparsity), and we found r = 13 to be a good
compromise.
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Image(GT) MaskCLIP@448 MaskCLIP@224 CLIP-DINOiser@448 CLIP-DINOiser@224 LPOSS@448 LPOSS@224

Figure 8. Impact of the window size on different methods. The top rows show examples where both CLIP-DINOiser and LPOSS benefit
from the large window size. The bottom rows show examples where LPOSS works well for both window sizes while CLIP-DINOiser
performs better for the larger window size. Pixels shown in white are pixels that do not have a class in the ground-truth. Default setup of
each method is shown in bold.

Image(GT) MaskCLIP LPOSS w/o Sp LPOSS w Sp

Figure 9. Impact of the spatial adjacency Sp. A comparison of segmentation maps of LPOSS when applied without or with Sp. Pixels
shown in white are pixels that do not have a class in the ground-truth.
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8. Additional results

8.1. Method comparison using a different VM.

Throughout the paper, we use DINO [5] with ViT-B/16
backbone as a VM. However, here we show that LPOSS
and LPOSS+ can be applied with other VM backbones as
well. Concretely, we use DINO [5] with ViT-B/8 backbone
and DINOv2 [5] with ViT-B/14 backbone. Considering that
the VM now uses a patch size different from that of a VLM,
the feature vectors coming from the VM and VLM are of a
different size. To apply LPOSS in such a situation, we up-
sample the VLM features to match the size of VM features.

We present the results of this experiment in Table 5 and
compare the results of LPOSS and LPOSS+ with Proxy-
CLIP [26] and LaVG [23], which also report the perfor-
mance of such experiments.
DINO with ViT-B/8. For DINO with ViT-B/8, we ob-
serve that both LPOSS and LPOSS+ outperform LaVG,
while ProxyCLIP outperforms LPOSS and performs on
par with LPOSS+. However, ProxyCLIP again signifi-
cantly outperforms LPOSS and LPOSS+ only on Object
and VOC20 datasets, for which we provide an explanation
in Section 4.3. We also observe that going to pixel-level
predictions in LPOSS+ improves the results even when the
patch size is as small as 8.

Additionally, we observe that after using ViT-B/8 back-
bone for the VM, the graph defined by S(W) in (8) has four
times as many nodes compared to the default setup of us-
ing ViT-B/16 backbone, with the increase coming from the
fact that there are four times more feature vectors for each
sliding-window. So we propose to just increase the value
of the hyper-parameter k from 400 to 800, while keeping
all other hyper-parameters fixed, to allow better connectiv-
ity between nodes coming from different sliding windows.
With this change, we observe that LPOSS performs on par
with ProxyCLIP, while LPOSS+ outperforms it, as shown
in Table 5.
DINOv2 with ViT-B/14. For DINOv2, we observe that
LPOSS and LPOSS+ perform slightly worse than for the
case of using DINO with ViT-B/16. However, LPOSS+

still outperforms ProxyCLIP, while LPOSS performs on par
with it. We note that due to the very different distribution of
similarities coming from DINOv2, compared with DINO,
we use a value of γ = 7.0 for LPOSS and LPOSS+.

8.2. Complementarity with other methods.
We build LPOSS and LPOSS+ by applying them on top
of initial predictions coming from the VLM; in particular
as MaskCLIP computes them. However, these initial pre-
dictions can come from any model, so here we show that
we can apply them on top of CLIP-DINOiser [46], by sim-
ply using YDINOiser instead of Yvlm. Compared to the main
paper experiments, we also use the sliding window setup
used in CLIP-DINOiser, as it significantly improves CLIP-
DINOiser performance as shown in Table 3.

We present the results of these experiments in Table 6.
We observe that LPOSS and LPOSS+ are complementary
to CLIP-DINOiser and that they can further improve its per-
formance. Additionally, we show that using a better ini-
tialization of CLIP-DINOiser compared to MaskCLIP im-
proves LPOSS and LPOSS+ results as well.

8.3. LPOSS+ vs. other post-processing methods.
We compare LPOSS+ with two other post-processing pixel
refinement methods, PAMR [1] and DenseCRF [24] by ap-
plying them on top of LPOSS predictions. PAMR, with 5
iterations and dilations 8 and 16, achieves 41.8 mIoU (vs.
42.1 of LPOSS+) while DenseCRF was unable to improve
LPOSS at all.

9. Computation requirements
We measure the average time necessary to perform the in-
ference per image on the VOC20 dataset using an NVIDIA
A100 GPU. LPOSS processes each image in under 0.1s,
which is comparable to all methods except LAVG (6.5s).
LPOSS+ for pixel-level post-processing takes 0.5s/image,
comparable to or faster than pixel-level post-processing
methods PAMR [1] (0.5s) or DenseCRF [24] (1.6sec). Note
that LPOSS+ speed can be controlled via hyper-parameter
r (see Figure 10).
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Figure 10. Impact of hyper-parameters k, σ, and r. We report mIoU averaged across 8 datasets. Default setups in the paper are marked
with ♦.
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Method VM VOC Object Context C59 Stuff VOC20 ADE20k City Avg

ProxyCLIP* [26] DINO(ViT-B/16) 59.3 36.3 34.4 38.0 25.7 79.7 19.4 36.0 41.1
LaVG* [23] DINO(ViT-B/16) 61.8 33.3 31.5 34.6 22.8 81.9 14.8 25.0 38.2

LPOSS DINO(ViT-B/16) 61.1 33.4 34.6 37.8 25.9 78.8 21.8 37.3 41.3
LPOSS+ DINO(ViT-B/16) 62.4 34.3 35.4 38.6 26.5 79.3 22.3 37.9 42.1

ProxyCLIP [26] DINO(ViT-B/8) 61.3 37.5 35.3 39.1 26.5 80.3 20.2 38.1 42.3
LaVG [23] DINO(ViT-B/8) 62.1 34.2 31.6 34.7 23.2 82.5 15.8 26.2 38.8

LPOSS DINO(ViT-B/8) 61.4 33.5 34.9 38.2 26.3 77.6 22.6 40.2 41.8
LPOSS (k = 800) DINO(ViT-B/8) 62.2 34.1 35.2 38.5 26.4 78.7 22.5 39.4 42.1
LPOSS+ DINO(ViT-B/8) 62.2 34.2 35.5 38.9 26.8 78.0 23.0 40.2 42.3
LPOSS+ (k = 800) DINO(ViT-B/8) 63.0 34.8 35.8 39.1 26.8 79.0 22.8 39.3 42.6

ProxyCLIP [26] DINOv2(ViT-B/14) 58.6 37.4 33.8 37.2 25.4 83.0 19.7 33.9 41.1

LPOSS (γ = 7.0) DINOv2(ViT-B/14) 59.7 33.3 34.3 37.5 25.6 80.0 21.9 36.0 41.0
LPOSS+ (γ = 7.0) DINOv2(ViT-B/14) 60.8 34.3 35.1 38.3 26.2 80.4 22.4 36.7 41.8

Table 5. Performance comparison in terms of mIoU on 8 datasets using ViT-B/16 backbone for VLM and DINO ViT-B/8, DINO
ViT-B/16, or DINOv2 ViT-B/14 backbone for VM. Default setups of hyper-parameters used in the paper are marked with . * denotes
the methods for which we reproduce the performance.

Method VOC Object Context C59 Stuff VOC20 ADE20k City Avg

MaskCLIP* [53] 32.9 16.3 22.9 25.5 17.5 61.8 14.2 25.0 27.0
LPOSS (MaskCLIP) 61.1 32.5 32.9 36.3 25.2 82.8 20.4 31.7 40.4
LPOSS+ (MaskCLIP) 61.8 33.2 33.4 36.9 25.6 83.1 20.7 31.9 40.8

CLIP-DINOiser* [46] 62.2 34.7 32.5 36.0 24.6 80.8 20.1 31.1 40.2
LPOSS (CLIP-DINOiser) 65.0 36.3 32.9 36.6 25.1 84.0 19.7 29.3 41.1
LPOSS+ (CLIP-DINOiser) 66.1 36.8 33.4 37.2 25.4 84.2 19.9 29.5 41.6

Table 6. Performance comparison in terms of mIoU on 8 datasets applying LPOSS and LPOSS+ on top of MaskCLIP (default choice
in the main paper) or CLIP-DINOiser [46]. ViT-B/16 backbone is used both for VLM and VM. Sliding-window size 448× 448 and stride
224× 224 as used in CLIP-DINOiser. * denotes the methods for which we reproduce the performance.
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