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ABSTRACT

Out-of-distribution (OOD) generalization on graphs is drawing widespread atten-
tion. However, existing efforts mainly focus on the OOD issue of correlation shift.
While another type, covariate shift, remains largely unexplored but is the focus of
this work. From a data generation view, causal features are stable substructures
in data, which play key roles in OOD generalization. While their complementary
parts, environments, are unstable features that often lead to various distribution
shifts. Correlation shift establishes spurious statistical correlations between en-
vironments and labels. In contrast, covariate shift means that there exist unseen
environmental features in test data. Existing strategies of graph invariant learn-
ing and data augmentation suffer from limited environments or unstable causal
features, which greatly limits their generalization ability on covariate shift. In
view of that, we propose a novel graph augmentation strategy: Adversarial Causal
Augmentation (AdvCA), to alleviate the covariate shift. Specifically, it adversari-
ally augments the data to explore diverse distributions of the environments. Mean-
while, it keeps the causal features stable across diverse environments. It maintains
the environmental diversity while ensuring the invariance of the causal features,
thereby effectively alleviating the covariate shift. Extensive experimental results
with in-depth analyses demonstrate that AdvCA can outperform 14 baselines on
synthetic and real-world datasets with various covariate shifts.

1 INTRODUCTION
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Figure 1: Ptrain and Ptest denote the train-
ing and test distributions. Pdrop and Pours

represent the distributions of augmented
data via DropEdge and AdvCA. AdvCA
establishes a smaller covariate shift (↔)
with test distribution than DropEdge (↔).

Graph learning mostly follows the assumption that
training and test data are independently drawn from an
identical distribution. Such an assumption is difficult
to be satisfied in the wild, due to out-of-distribution
(OOD) issues (Shen et al., 2021), where the training
and test data are from different distributions. Hence,
OOD generalization on graphs is attracting widespread
attention (Li et al., 2022b). However, existing stud-
ies mostly focus on correlation shift, which is just one
type of OOD issue (Ye et al., 2022; Wiles et al., 2022).
While another type, covariate shift, remains largely
unexplored but is the focus of our work.

Covariate shift is in stark contrast to correlation shift
w.r.t. causal and environmental features of data1.
Specifically, from a data generation view, causal fea-
tures2 are the substructures of the entire graphs that
truly reflect the predictive property of data, while their
complementary parts are the environmental features
that are noncausal to the predictions. Following prior
studies (Arjovsky et al., 2019; Wu et al., 2022b), we assume causal features are stable across distri-
butions, in contrast to the environmental features. Correlation shift denotes that environments and
labels establish inconsistent statistical correlations in training and test data; whereas, covariate shift

1We provide detailed discussions of these two distribution shifts in Appendix C.
2We provide a formal definition in Assumption 1.
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means that the environmental features in test data are unseen in training data (Ye et al., 2022; Wiles
et al., 2022; Gui et al., 2022). For example, in Figure 1, the environmental features ladder and
tree are different in training and test data, which forms the covariate shift (↔). Taking molecular
property predictions as another example, functional groups (e.g., nitrogen dioxide (NO2)) are causal
features that determine the predictive property of molecules. While scaffolds (e.g., carbon rings)
are irrelevant patterns (Wu et al., 2018), which can be seen as the environments. In practice, we
often need to use molecular graphs collected in the past to train models, hoping that the models can
predict the properties of molecules with new scaffolds in the future (Hu et al., 2020).

Because of the differences between correlation and covariate shifts, we take a close look at the exist-
ing efforts on graph generalization. Existing efforts (Li et al., 2022b) mainly fall into the following
research lines, each of which has inherent limitations to solve covariate shift.

• Invariant graph learning (Wu et al., 2022b; Liu et al., 2022; Sui et al., 2022) gradually becomes
a prevalent paradigm for OOD generalization. The main idea is to capture the causal features by
minimizing the empirical risks within different environments. Unfortunately, it implicitly makes
a prior assumption that all test environments are available during training. This assumption is
unrealistic owing to the obstacle of training data covering all possible test environments. Learning
in limited environments can only alleviate the spurious correlations that are hidden in the training
data, but fail to extrapolate test distributions with unseen environments.

• Graph data augmentation (Ding et al., 2022; Zhao et al., 2022) perturbs graph features to enrich
the distribution seen during training for better generalization. It can be roughly divided into
node-level (Kong et al., 2022), edge-level (Rong et al., 2020), and graph-level (Wang et al., 2021;
Han et al., 2022) with random (You et al., 2020) or adversarial strategies (Suresh et al., 2021).
However, they are prone to destroy the causal features, which easily loses control of the perturbed
distributions. For example, in Figure 1, the random strategy of DropEdge (Rong et al., 2020) will
inevitably perturb the causal features (highlighted by red circles). As such, it fails to alleviate the
covariate shift (↔), even degenerating the generalization ability.

Scrutinizing the limitations of the aforementioned studies, insufficient environments and unstable
causal features largely hinder the ability of these generalization efforts against the covariate shift.
Hence, we naturally ask a question: “Can the augmented samples simultaneously preserve the di-
versity of environmental features and the invariance of causal features?”

Towards this end, we first propose two principles for graph augmentation: environmental diversity
and causal invariance. Specifically, environmental diversity encourages the augmentation to extrap-
olate unseen environments; meanwhile, causal invariance shortens the distribution gap between the
augmented data and test data. To achieve these principles, we design a novel graph augmentation
strategy: Adversarial Causal Augmentation (AdvCA). Specifically, we augment the graphs by a
network, named adversarial augmenter. It adversarially generates the masks on edges and node fea-
tures, which makes OOD exploration for improving the environmental diversity. To maintain the
stability of the causal features, we adopt another network, named causal generator. It generates the
masks that capture causal features. Finally, we delicately combine these masks and apply them to
graph data. As shown in Figure 1, AdvCA only perturbs the environmental features, while keeping
the causal parts untorched. Our quantitative experiments also verify that AdvCA can narrow the
distribution gap between the augmented data and test data, as illustrated in Figure 1 (↔), thereby
effectively overcoming the covariate shift issues. Our contributions can be summarized as:

• Problem: We are exploring one specific type of OOD issue in graph learning: covariate shift,
which is of great need but largely unexplored.

• Method: We design a graph augmentation method, AdvCA, which focuses on covariate shift
issues. It maintains the stability of causal features while ensuring environmental diversity.

• Experiment: We conduct extensive experiments on synthetic and real datasets. The experimental
results with in-depth analyses demonstrate the effectiveness of AdvCA.

2 PRELIMINARIES

In this section, we first give the formal definitions of causal features, environmental features, and
graph covariate shift. Then we present the problem of graph classification under covariate shift.
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2.1 NOTATIONS

We define the uppercase letters (e.g., G) as random variables. The lower-case letters (e.g., g) are
samples of variables, and the blackboard bold typefaces (e.g., G) denote the sample spaces. Let g =
(A,X) ∈ G denote a graph, where A and X are its adjacency matrix and node features, respectively.
It is assigned with a label y ∈ Y with a fixed labeling rule G→ Y. LetD = {(gi, yi)} denote a dataset
that is divided into a training set Dtr = {(gei , yei )}e∈Etr and a test set Dte = {(gei , yei )}e∈Ete . Etr and
Ete are the index sets of training and test environments, respectively. In this work, we focus on graph
classification scenario, which aims to train models with Dtr and infer the labels in Dte.

2.2 DEFINITIONS AND PROBLEM FORMATIONS

Following studies (Arjovsky et al., 2019; Wu et al., 2022b), we assume that the inner mechanism of
the labeling rule G→ Y usually depends on the causal features, which are particular subparts of the
entire data. Causal invariance denotes that the relationship between the causal feature and label is
invariant across different environments or distributions, which makes OOD generalization possible
(Ye et al., 2022). While the complement of causal parts, environmental features, are noncausal for
predicting the graphs. Now we give a formal definition of these features.

Assumption 1 (Causal & Environmental Feature) Assume input graph G containing two fea-
tures Gcau, Genv, and they satisfy: Gcau ∪ Genv = G. If they obey the following conditions: i)
(sufficiency condition) P (Y ∣Gcau) = P (Y ∣G); ii) (independence condition) Y á Genv ∣ Gcau, then
we define Gcau and Genv as the causal feature and environmental feature, respectively.

Sufficiency condition requires that causal features should be sufficient to preserve the critical infor-
mation of data G related to the label Y . While the independence indicates that causal feature can
shield the label from the influence of the environment feature. It makes causal features establish an
invariant relationship with labels across different environments. Hence, distribution shifts are only
caused by the environmental features rather than causal features. Recent studies (Ye et al., 2022;
Gui et al., 2022) have pointed out that OOD issue can be specifically divided into correlation shift
and covariate shift. Since we mainly focus on the latter, we put detailed discussions between them
in Appendix C. Now we give a formal definition of the covariate shift on graphs.

Definition 1 (Graph Covariate Shift) Let Ptr and Pte denote the probability functions of the train-
ing and test distributions. We measure the covariate shift between distributions Ptr and Pte as

GCS(Ptr, Pte) =
1

2
∫S ∣Ptr(g) − Pte(g)∣dg, (1)

where S = {g ∈ G∣Ptr(g) ⋅Pte(g) = 0}, which covers the features (e.g., environmental features) that
do not overlap between the two distributions.

GCS(Ptr, Pte) is always bounded in [0,1]. The issue of graph covariate shift is very common
in practice. For example, the chemical properties of molecules are mainly determined by specific
functional groups, which can be regarded as causal features to predict these properties (Arjovsky
et al., 2019; Wu et al., 2022b). While their scaffold structures (Wu et al., 2018), which are often
irrelevant to their properties, can be seen as environmental features. In practice, we often need to
train models on past molecular graphs, and hope that the model can predict the properties of future
molecules with novel scaffolds (Hu et al., 2020). Hence, this work focuses on the covariate shift
issues. Now we give a formal definition of this problem as follows.

Problem 1 (Graph Classification under Covariate Shift) Given the training and test sets with en-
vironment sets Etr and Ete, they follow distributions Ptr and Pte, and they satisfy: GCS(Ptr, Pte) >
0. We aim to use the data collected from training environments Etr, and learn a powerful graph
classifier f∗ ∶ G→ Y that performs well in all possible test environments Ete:

f∗ = argmin
f

sup
e∈Ete

Ee[ℓ(f(g), y)], (2)

where Ee[ℓ(f(g), y)] is the empirical risk on the environment e, and ℓ(⋅, ⋅) is the loss function.

Problem 1 states that it is unrealistic for the training set to cover all possible environments in the
test set. It means that we have to extrapolate unknown environments by using the limited training
environments at hand, which makes this problem more challenging.
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3 METHODOLOGY

In this section, we first propose two principles for graph data augmentation. Guided by these prin-
ciples, we design a new graph augmentation strategy that can effectively solve Problem 1.

3.1 TWO PRINCIPLES FOR GRAPH AUGMENTATION

Scrutinizing Problem 1, we observe that the covariate shift is mainly caused by the scarcity of
training environments. Existing efforts (Liu et al., 2022; Sui et al., 2022; Wu et al., 2022b) make
intervention or replacement of the environments to capture causal features. However, these environ-
mental features still stem from the training distribution, which may result in a limited diversity of
the environments. Worse still, if the environments are too scarce, the model will inevitably learn the
shortcuts between these environmental features, resulting in suboptimal learning of the causal parts.
To this end, we propose the first principle for data augmentation:

Principle 1 (Environmental Diversity) Given a set of graphs {g} with distribution function P .
Let T (⋅) denote an augmentation function that augments graphs {T (g)} to distribution function P̃ .
Then T (⋅) should meet GCS(P, P̃ )→ 1.

Principle 1 states that P̃ should keep away from the original distribution P . Hence, the distribu-
tion of augmented data tends not to overlap with the original distribution, which encourages the
diversity of environmental features. However, from a data generation perspective, causal features
are stable and shared across environments (Kaddour et al., 2022), so they are essential features for
OOD generalization. Since Principle 1 does not expose any constraint on the invariant property of
the augmented distribution, we here propose the second principle for augmentation:

Principle 2 (Causal Invariance) Given a set of graphs {g} with a corresponding causal feature set
{gcau = (Acau,Xcau)}. Let T (⋅) denote an augmentation function that augments graphs {T (g)}
with a corresponding causal feature set {g̃cau = (Ãcau, X̃cau)}. Then T (⋅) should meet E[∥Acau −
Ãcau∥2F ]→ 0 and E[∥Xcau − X̃cau∥2F ]→ 0, where ∥ ⋅ ∥2F is the Frobenius norm.

Principle 2 emphasizes the invariance of the graph structures and node features in causal parts after
data augmentation. As illustrated in Figure 1, Principle 1 keeps the distribution of augmented data
away from the training distribution; meanwhile, Principle 2 restricts the distribution of augmented
data not too far from the test distribution. These two principles complement each other, and further
cooperate together to alleviate the covariate shift.

3.2 OUT-OF-DISTRIBUTION EXPLORATION

Given a GNN model f(⋅) with parameters θ, we decompose f = Φ ○ h, where h(⋅) ∶ G → Rd is a
graph encoder to yield d-dimensional representations, and Φ(⋅) ∶ Rd → Y is a classifier. To comply
with Principle 1, we need to do OOD exploration. Inspired by distributionally robust optimization
(Sagawa et al., 2020), we consider the following optimization objective:

min
θ
{ sup

P̃

{EP̃ [ℓ(f(g), y)] ∶D(P̃ , P ) ≤ ρ}} , (3)

where P and P̃ denote the original and explored data distributions, respectively. D(⋅, ⋅) is a distance
metric between two probability distributions. The solution to Equation 3 guarantees the generaliza-
tion within a distance ρ of the distribution P . To better measure the distance between distributions,
as suggested by Sinha et al. (2018), we adopt the Wasserstein distance (Arjovsky et al., 2017; Volpi
et al., 2018) as the distance metric. The distance metric function can be defined as:

D(P̃ , P ) ∶= inf
µ∈Γ(P̃ ,P )

Eµ[c(g̃, g)], (4)

where Γ(P̃ , P ) is the set of all couplings of P̃ and P , c(⋅, ⋅) is the cost function. Studies (Dosovitskiy
& Brox, 2016; Volpi et al., 2018) also suggest that the distances in representation space typically
correspond to semantic distances. Hence, we define the cost function in the representation space and
give the following transportation cost:

c(g̃, g) = ∥h(g̃) − h(g)∥22. (5)
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Figure 2: The overview of Adversarial Causal Augmentation (AdvCA) Framework.

It denotes the “cost” of augmenting the graph g to g̃. We can observe that it is difficult to set a proper
ρ in Equation 3. Instead, we consider the Lagrangian relaxation for a fixed penalty coefficient γ.
Inspired by Sinha et al. (2018), we can reformulate Equation 3 as follows:

min
θ
{ sup

P̃

{EP̃ [ℓ(f(g), y)] − γD(P̃ , P )} = EP [ϕ(f(g), y)]} , (6)

where ϕ(f(g), y) ∶= supg̃∈G{ℓ(f(g̃), y)− γc(g̃, g)}. And we define ϕ(f(g), y) as the robust surro-
gate loss. If we conduct gradient descent on the robust surrogate loss, we will have:

∇θϕ(f(g), y) = ∇θℓ(f(g̃∗), y), (7)

where g̃∗ = argmax
g̃∈G

{ℓ(f(g̃), y) − γc(g̃, g)}. (8)

g̃∗ is an augmented view of the original data g. Hence, to achieve OOD exploration, we just need to
perform data augmentation via Equation 8 on the original data g.

3.3 ADVERSARIAL CAUSAL AUGMENTATION

Equation 8 endows the ability of OOD exploration to data augmentation, which makes the aug-
mented data meet Principle 1. In addition, to achieve Principle 2, we also need to implement causal
feature learning based on the sufficiency and independence conditions in Assumption 1. Hence,
we design a novel graph augmentation strategy: Adversarial Causal Augmentation (AdvCA). The
overview of the proposed framework is depicted in Figure 2, which mainly consists of two com-
ponents: adversarial augmenter and causal generator. Adversarial augmenter achieves OOD ex-
ploration through adversarial data augmentation, which encourages the diversity of environmental
features; meanwhile, the causal generator keeps causal feature invariant by identifying causal fea-
tures from data. Below we elaborate on the implementation details.

Adversarial Augmenter & Causal Generator. We design two networks, adversarial augmenter
Tθ1(⋅) and causal generator Tθ2(⋅), which generate masks for nodes and edges of graphs. They
have the same structure and are parameterized by θ1 and θ2, respectively. Given an input graph
g = (A,X) with n nodes, mask generation network first obtains the node representations via a GNN
encoder h̃(⋅). To judge the importance of nodes and edges, it adopts two MLP networks MLP1(⋅)
and MLP2(⋅) to generate the soft node mask matrix Mx ∈ Rn×1 and edge mask matrix Ma ∈ Rn×n
for graph data, respectively. In summary, the mask generation network can be decomposed as:

Z = h̃(g), Mx
i = σ(MLP1(hi)), Ma

ij = σ(MLP2([zi,zj])), (9)

where Z ∈ Rn×d is node representation matrix, whose i-th row zi = Z[i, ∶] denotes the representation
of node i, and σ(⋅) is the sigmoid function that maps the mask values Mx

i and Ma
ij to [0,1].

Adversarial Causal Augmentation. To estimate g̃∗ in Equation 8, we define the adversarial learn-
ing objective as:

max
θ1
{Ladv = EPtr[ℓ(f(Tθ1(g)), y) − γc(Tθ1(g), g)]} . (10)

Then we can augment the graph by Tθ1(g) = (A⊙Ma
adv,X⊙Mx

adv), where ⊙ is the broadcasted
element-wise product. Although adversarially augmented graphs guarantee environmental diversity,
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it inevitably destroys the causal parts. Therefore, we utilize the causal generator Tθ2(⋅) to capture
causal features and combine them with diverse environmental features. Following the sufficiency
and independence conditions in Assumption 1, we define the causal learning objective as:

min
θ,θ2
{Lcau = EPtr[ℓ(f(Tθ2(g)), y) + ℓ(f(g̃), y)]} , (11)

where g̃ = (A ⊙ M̃a,X ⊙ M̃x) is the augmented graph. It adopts the mask combination strategy:
M̃a = (1a −Ma

cau) ⊙Ma
adv +Ma

cau and M̃x = (1x −Mx
cau) ⊙Mx

adv +Mx
cau, where Ma

cau and
Mx

cau are generated by Tθ2(⋅), 1a and 1x are all-one matrices, and if there is no edge between node
i and node j, then we set 1a

ij to 0.

Now we explain this combination strategy. Taking M̃x as an example, since Mx
cau denotes the cap-

tured causal regions via Tθ2(⋅), 1x −Mx
cau represents the complementary parts, which are environ-

mental regions. Mx
adv represents the adversarial perturbation, so (1x −Mx

cau)⊙Mx
adv is equivalent

to applying the adversarial perturbation on environmental features, meanwhile, sheltering the causal
features. Finally, +Mcau indicates that the augmented data should retain the original causal features.
Hence, this combination strategy achieves both environmental diversity and causal invariance. In-
specting Equation 11, the first term indicates that causal features are enough for predictions, thus
satisfying the sufficiency condition. While the second term encourages causal features to make right
predictions after perturbing the environments, thereby satisfying the independence condition.

Regularization. For Equation 10, the adversarial optimization tends to remove more nodes and
edges, so we should also constrain the perturbations. Although Equation 11 satisfies the suf-
ficiency and independence conditions, it is necessary to impose constraints on the ratio of the
causal features to prevent trivial solutions. Hence, we first define the regularization function
r(M, k, λ) = (∑ij Mij/k − λ) + (∑ij I[Mij > 0]/k − λ), where k is the total number of ele-
ments to be constrained, I ∈ {0,1} is an indicator function. The first term penalizes the average ratio
close to λ, while the second term encourages an uneven distribution. Given a graph with n nodes
and m edges, we define the regularization term for adversarial augmentation and causal learning as:

Lreg1 = EPtr[r(Mx
adv, n, λa) + r(Ma

adv,m,λa)], (12)
Lreg2 = EPtr[r(Mx

cau, n, λc) + r(Ma
cau,m,λc)], (13)

where λc ∈ (0,1) is the ratio of causal features, we set λa = 1 for adversarial learning, which can
alleviate excessive perturbations. The detailed algorithm of AdvCA is provided in Appendix A.1.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following Research Questions:

• RQ1: Compared to existing efforts, how does AdvCA perform under covariate shift?
• RQ2: Can the proposed AdvCA achieve the principles of environmental diversity and causal

invariance, thereby effectively alleviating the covariate shift?
• RQ3: How do the different components of AdvCA affect performance?

4.1 EXPERIMENTAL SETTINGS

Datasets. We use graph OOD datasets (Gui et al., 2022) and OGB datasets (Hu et al., 2020), which
include Motif, CMNIST, Molbbbp and Molhiv. Following Gui et al. (2022), we adopt the base,
color, size and scaffold data splitting to create various covariate shifts. The details of the datasets,
metrics and implementation details of AdvCA are provided in Appendix A.2 and A.3.

Baselines. We adopt 14 baselines, which can be divided into the following three specific categories:

• Generalization Algorithms: Empirical Risk Minimization (ERM), IRM (Arjovsky et al., 2019),
GroupDRO (Sagawa et al., 2020), VREx (Krueger et al., 2021).

• Graph Invariant Learning and Generalization: DIR (Wu et al., 2022b), CAL (Sui et al., 2022),
GSAT (Miao et al., 2022), OOD-GNN (Li et al., 2022a), StableGNN (Fan et al., 2021).

• Graph Data Augmentation: DropEdge (Rong et al., 2020), GREA (Liu et al., 2022), FLAG
(Kong et al., 2022), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022).
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Table 1: Performance on synthetic and real-world datasets. Numbers in bold indicate the best
performance, while the underlined numbers indicate the second best performance.

Method Motif CMNIST Molbbbp Molhiv

base size color scaffold size scaffold size

ERM 68.66±4.25 51.74±2.88 28.60±1.87 68.10±1.68 78.29±3.76 69.58±2.51 59.94±2.37

IRM 70.65±4.17 51.41±3.78 27.83±2.13 67.22±1.15 77.56±2.48 67.97±1.84 59.00±2.92

GroupDRO 68.24±8.92 51.95±5.86 29.07±3.14 66.47±2.39 79.27±2.43 70.64±2.57 58.98±2.16

VREx 71.47±6.69 52.67±5.54 28.48±2.87 68.74±1.03 78.76±2.37 70.77±2.84 58.53±2.88

DIR 62.07±8.75 52.27±4.56 33.20±6.17 66.86±2.25 76.40±4.43 68.07±2.29 58.08±2.31

CAL 65.63±4.29 51.18±5.60 27.99±3.24 68.06±2.60 79.50±4.81 67.37±3.61 57.95±2.24

GSAT 62.80±11.41 53.20±8.35 28.17±1.26 66.78±1.45 75.63±3.83 68.66±1.35 58.06±1.98

OOD-GNN 61.10±7.87 52.61±4.67 26.49±2.94 66.72±1.23 79.48±4.19 70.46±1.97 60.60±3.77

StableGNN 57.07±14.10 46.93±8.85 28.38±3.49 66.74±1.30 77.47±4.69 68.44±1.33 56.71±2.79

DropEdge 45.08±4.46 45.63±4.61 22.65±2.90 66.49±1.55 78.32±3.44 70.78±1.38 58.53±1.26

GREA 56.74±9.23 54.13±10.02 29.02±3.26 69.72±1.66 77.34±3.52 67.79±2.56 60.71±2.20

FLAG 61.12±5.39 51.66±4.14 32.30±2.69 67.69±2.36 79.26±2.26 68.45±2.30 60.59±2.95

M-Mixup 70.08±3.82 51.48±4.91 26.47±3.45 68.75±0.34 78.92±2.43 68.88±2.63 59.03±3.11

G-Mixup 59.66±7.03 52.81±6.73 31.85±5.82 67.44±1.62 78.55±4.16 70.01±2.52 59.34±2.43

AdvCA (ours) 73.64±5.15 55.85±7.98 36.37±4.44 70.79±1.53 81.03±5.15 71.15±1.81 61.64±3.37

Improvement ↑ 2.17% ↑ 1.72% ↑ 3.17% ↑ 1.07% ↑ 1.53% ↑ 0.37% ↑ 0.93%

4.2 MAIN RESULTS (RQ1)

To demonstrate the superiority of AdvCA, we first make comprehensive comparisons with baseline
methods. The implementation settings and details of baselines are provided in Appendix A.4. All
experimental results are summarized in Table 1. We have the following Observations.

Obs1: Most generalization and augmentation methods fail under covariate shift. Generaliza-
tion and data augmentation algorithms perform well on certain datasets or shifts. VREx achieves a
2.81% improvement on Motif (base). For two shifts of Molhiv, data augmentation methods GREA
and DropEdge obtain 1.20% and 0.77% improvements. The invariant learning methods DIR and
CAL also obtain 4.60% and 1.53% improvements on CMNIST and Molbbbp (size). Unfortunately,
none of the methods consistently outperform ERM. For example, GREA and DropEdge perform
poorly on Motif (base), ↓11.92% and ↓23.58%. DIR and CAL also fail on Molhiv. These show that
both invariant learning and data augmentation methods have their own weaknesses, which lead to
unstable performance when facing complex and diverse covariate shifts from different datasets.

Obs2: AdvCA consistently outperforms all baseline methods. Compared with ERM, AdvCA
can obtain significant improvements. For two types of covariate shifts on Motif, AdvCA surpasses
ERM by 4.98% and 4.11%, respectively. In contrast to the large performance variances on differ-
ent datasets achieved by baselines, AdaCA consistently obtains the leading performance across the
board. For CMNIST, AdvCA achieves a performance improvement of 3.17% compared to the best
baseline DIR. For Motif, the performance is improved by 2.17% and 1.72% compared to VREx and
GREA. These results illustrate that AdvCA can overcome the shortcomings of invariant learning
and data augmentation. Armed with the principles of environmental diversity and causal invariance,
AdvCA achieves stable and consistent improvements on different datasets with various covariate
shifts. In addition, although we focus on covariate shift in this work, we also carefully check the
performance of AdvCA under correlation shift, and the results are presented in Appendix D.1.

4.3 COVARIATE SHIFT AND VISUALIZATIONS (RQ2)

In this section, we conduct quantitative experiments to demonstrate that AdvCA can shorten the
distribution gap, as shown in Figure 1. Specifically, we utilize GCS(⋅, ⋅) as the measurement to
quantify the degree of covariate shift. The detailed estimation procedure is provided in Appendix
B. To make comprehensive comparisons, we select four different types of covariate shift: base, size,
color and scaffold, to conduct experiments. We choose three data augmentation baselines, DropE-
dge, FLAG and G-Mixup, which augment graphs from different views. The experimental results are
shown in Table 2. We calculated covariate shifts between the augmentation distribution Paug with
the training Ptr or test distribution Pte. “Aug-Train” and “Aug-Test” represent GCS(Paug, Ptr) and
GCS(Paug, Pte), respectively. From the results in Table 2, we have the following observations.
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Original graphs

…

…

Augmented graphs

Figure 3: Visualizations of the augmented graphs via AdvCA.

Table 2: Covariate shift comparisons with different augmentation strategies.

Method Motif (base) Motif (size) CMNIST (color) Molbbbp (scaffold)

Aug-Train Aug-Test Aug-Train Aug-Test Aug-Train Aug-Test Aug-Train Aug-Test

Original 0 0.557±0.141 0 0.522±0.421 0 0.490±0.226 0 0.419±0.079

DropEdge 0.772±0.213 0.515±0.033 0.851±0.138 0.161±0.271 0.627±0.186 0.539±0.260 0.758±0.192 0.737±0.211

FLAG 0.001±0.001 0.533±0.016 0.002±0.018 0.507±0.121 0.003±0.002 0.442±0.062 0.001±0.001 0.413±0.088

G-Mixup 0.690±0.186 0.472±0.043 0.816±0.154 0.299±0.343 0.408±0.228 0.351±0.318 0.551±0.258 0.545±0.231

AdvCA 0.369±0.169 0.462±0.063 0.649±0.143 0.098±0.070 0.516±0.106 0.307±0.108 0.422±0.049 0.393±0.028

Obs3: AdvCA effectively closes the distribution gap with test distribution. “Original” rep-
resents the original training distribution without augmentation. We observe that there exist large
covariate shifts between the training and test distributions, ranging from 0.419 to 0.557. DropEdge
greatly enlarges Aug-Train, i.e., 0.627∼0.851. While it fails to reduce Aug-Test, e.g., on CMNIST
(0.490→0.539) and Molbbbp (0.419→0.737). FLAG only perturbs the node features, leading to
small values in Aug-Train and an inability to reduce Aug-Test. G-Mixup significantly increases
Aug-Train by generating OOD samples, while it cannot guarantee a decrease in Aug-Test. Finally,
our proposed AdvCA enlarges the gap with training distribution by augmenting the environmen-
tal features. Meanwhile, the invariance of causal features significantly reduces Aug-Test, e.g., on
Motif-base (0.557→0.462), Motif-size (0.522→0.098) and CMNIST (0.490→0.408).

To verify the environmental diversity and causal invariance of AdvCA, we plot the augmented graphs
in Figure 3. These augmented graphs are randomly sampled during training. More visualizations
are depicted in Appendix D.3. The Motif and CMNIST graphs are displayed in the first and second
rows. Figure 3 (Left) shows the original graphs. For Motif, the green part represents the motif-graph,
whose type determines the label. While the yellow part denotes the base-graph that contains environ-
mental features. For CMNIST, the red subgraph contains causal features while the complementary
parts contain environmental features. Figure 3 (Right) displays the augmented samples during train-
ing. Nodes with darker colors and edges with wider lines indicate higher soft-mask values. From
these visualizations, we have the following observations.

Obs4: AdvCA can achieve both environmental diversity and causal invariance. We can observe
that AdvCA only perturbs the environmental features while keeping the causal parts invariant. For
Motif dataset, the base-graph is a ladder and the motif-graph is a house. After augmentation, the
nodes and edges of the ladder graph are perturbed. In contrast, the house part remains invariant
and stable during training. The CMNIST graph also exhibits the same phenomenon. The envi-
ronmental features are frequently perturbed, while the causal subgraph that determines label “2”
remains invariant and stable during training. These visualizations further demonstrate that AdvCA
can simultaneously guarantee environmental diversity and causal invariance.

4.4 ABLATION STUDY (RQ3)

Adversarial augmentation v.s. Causal learning. They are two vital components that achieve en-
vironmental diversity and causal invariance. The results are depicted in Figure 4 (Left). “w/o Adv”
and “w/o Cau” refer to AdvCA without adversarial augmentation and without causal learning, re-
spectively. RDCA stands for a variant that replaces the adversarial augmentation in AdvCA with
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Figure 4: (Left): Performance comparisons of different components in AdvCA. (Middle): Perfor-
mance over different causal ratios λc. (Right): Performance over different penalties γ.

random augmentation (i.e., random masks). Compared to AdvCA, utilizing either causal learning
or adversarial augmentation alone will degrade the performance. On the one hand, removing adver-
sarial perturbations loses the invariance condition in causal learning, leading to suboptimal causal
features. On the other hand, using adversarial augmentation alone will destroy the causal features,
thereby impairing generalization. RDCA exceeds ERM, but is worse than AdvCA, suggesting that
randomness will also encourage diversity, even if it is less effective than the adversarial strategy.

Sensitivity Analysis. The causal ratio λc and penalty coefficient γ determine the extent of causal
features and the strength of adversarial augmentation, respectively. We also study their sensitivities.
The experimental results are shown in Figure 4 (Middle) and (Right). Dashed lines denote the
performance of ERM. λc with 0.3∼0.8 performs well on Motif and Molbbbp, while Molhiv is better
in 0.1∼0.3. It indicates that the causal ratio is a dataset-sensitive hyper-parameter that needs careful
tuning. For the penalty coefficient, the appropriate values on the three datasets range from 0.1∼1.5.

5 RELATED WORK

Invariant Causal Learning (Lu et al., 2021) exploits causal features for better generalization. IRM
(Arjovsky et al., 2019) minimizes the empirical risks within different environments. Chang et al.
(2020) minimize the performance gap between environment-aware and environment-agnostic pre-
dictors to discover rationales. Motivated by these efforts, DIR (Wu et al., 2022b) constructs multiple
interventional environments for invariant learning. GREA (Liu et al., 2022) and CAL (Sui et al.,
2022) learn causal features by challenging different environments. However, they only focus on
correlation shift issues. The limited environments hinder their successes on covariate shift.

Graph Data Augmentation (Ding et al., 2022; Zhao et al., 2022; Yoo et al., 2022) enlarges the
training distribution by perturbing features in graphs. Recent studies (Ding et al., 2021; Wiles et al.,
2022) observe that it often outperforms other generalization efforts (Arjovsky et al., 2019; Sagawa
et al., 2020). DropEdge (Rong et al., 2020) randomly removes edges, while FLAG (Kong et al.,
2022) augments node features with an adversarial strategy. M-Mixup (Wang et al., 2021) interpolates
graphs in semantic space. However, studies (Arjovsky et al., 2019; Lu et al., 2021) point out that
causal features are the key to OOD generalization. These augmentation efforts are prone to perturb
the causal features, which easily loses control of the perturbed distributions. Due to the space
constraints, we put more discussions about OOD generalization in Appendix F.

6 CONCLUSION & LIMITATIONS

In this work, we focus on the graph generalization problem under covariate shift, which is of great
need but largely unexplored. We propose a novel graph augmentation strategy, AdvCA, which
is based on the principle of environmental diversity and causal invariance. Environmental diversity
allows the model to explore more novel environments, thereby better generalizing to possible unseen
test distributions. Causal invariance closes the distribution gap between the augmented and test
data, resulting in better generalization. We make comprehensive comparisons with 14 baselines and
conduct in-depth analyses and visualizations. The experimental results demonstrate that AdvCA
can achieve excellent generalization ability under covariate shift. In addition, we also provide more
discussions about the limitations of AdvCA and future work in Appendix G.
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ETHICS STATEMENT

This paper does not involve any human subjects and does not raise any ethical concerns. We propose
a graph data augmentation method to address the OOD issue of covariate shift. We conduct experi-
ments on public datasets and validate the effectiveness on graph classification tasks. Our proposed
method can be applied to practical applications, such as the prediction of molecular properties.

REPRODUCIBILITY STATEMENT

To help researchers reproduce our results, we provide detailed instructions here. For the implemen-
tation process of AdvCA, we provide the detailed algorithm in Appendix A.1. For datasets, we
use publicly available datasets, and a detailed introduction is provided in Appendix A.2. For train-
ing details, we provide training settings of AdvCA and baseline settings in Appendix A.3 and A.4,
respectively. Furthermore, we also provide an anonymous code link: https://anonymous.
4open.science/r/AdvCA-68BF
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In ICML, pp. 214–223, 2017.
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A IMPLEMENTATION DETAILS

A.1 ALGORITHM

We summarize the detailed implementations of AdvCA in Algorithm 1. Inspired by Suresh et al.
(2021), we alternately optimize the adversarial augmenter and causal generator with the backbone
model, in lines 13 and 14. We adopt the causal features for predictions in the inference stage.

Algorithm 1: Adversarial Causal Augmentation
Require: Training set Dtr; Adversarial augmenter Tθ1(⋅); Causal generator Tθ2(⋅); GNN classifier

f(⋅) with parameters θ; Learning rates α,β; Batch size N ; Causal ratio λc; Penalty γ.
1: Randomly initilize θ, θ1, θ2
2: while not converge do
3: Sample a batch Btr ← {(gi, yi)}Ni=1 ⊂ Dtr

4: for each (gi, yi) ∈ Btr do
5: Ma

adv,M
x
adv ← Tθ1(gi) // adversarial perturbations

6: Ma
cau,M

x
cau ← Tθ2(gi) // regions of causal features

7: M̃a ← (1 −Ma
cau)⊙Ma

adv +Ma
cau // augment edges

8: M̃x ← (1 −Mx
cau)⊙Mx

adv +Mx
cau // augment nodes

9: g̃i ← (Ai ⊙ M̃a,Xi ⊙ M̃x) // augmented graph
10: end for
11: Compute Ladv −Lreg1

via Equation 10 and Equation 12
12: Compute Lcau +Lreg2

via Equation 11 and Equation 13
13: Update parameters of adversarial augmenter via gradient ascent:

θ1 ← θ1 + α∇θ1(Ladv −Lreg1
)

14: Update parameters of GNN and causal generator via gradient descent:
θ ← θ − β∇θ(Lcau +Lreg2

); θ2 ← θ2 − β∇θ2(Lcau +Lreg2
)

15: end while

A.2 DATASETS AND METRICS

Datasets. In this paper, we conduct experiments on graph OOD datasets (Gui et al., 2022) and OGB
datasets (Hu et al., 2020), which include Motif, CMNIST, Molbbbp and Molhiv. We follow Gui et al.
(2022) to create various covariate shifts, according to base, color, size and scaffold splitting. Base,
color, size and scaffold are features of the graph data and do not determine the labels of the data,
so they can be regarded as environmental features. The statistics of the datasets are summarized in
Table 3. Below we give a brief introduction to each dataset.

• Motif: It is a synthetic dataset from Spurious-Motif (Wu et al., 2022b; Sui et al., 2022). As shown
in original graphs in Figure 5, each graph is composed of a base-graph (wheel, tree, ladder, star,
path) and a motif (house, cycle, crane). The label is only determined by the type of motif. We
create covariate shift according to the base-graph type and the graph size (i.e., node number). For
base covariate shift, we adopt graphs with wheel, tree, ladder base-graphs for training, star for
validation and path for testing. For size covariate shift, we use small-size of graphs for training,
while the validation and the test sets include the middle- and the large-size graphs, respectively.

• CMNIST: Color MNIST dataset contains graphs transformed from MNIST via superpixel tech-
niques (Monti et al., 2017). We define color as the environmental features to create the covariate
shift. Specifically, we color digits with 7 different colors, where five of them are adopted for
training while the remaining two are used for validation and testing.

• Molbbbp & Molhiv: These are molecular datasets collected from MoleculeNet (Wu et al., 2018).
We define the scaffold and graph size (i.e., node number) as the environmental features to create
two types of covariate shifts. For scaffold shift, we follow (Gui et al., 2022) and use scaffold split
to create training, validation and test sets. For size shift, we adopt the large-size of graphs for
training and the smaller ones for validation and testing.

Metrics. We adopt classification accuracy as the metric for Motif and CMNIST. As suggested by Hu
et al. (2020), we use ROC-AUC for Molhiv and Molbbbp datasets. In addition, we use GCS(P,Q)
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Table 3: Statistics of graph classification datasets.
Dataset Motif CMNIST Molbbbp Molhiv

Covariate shift base size color scaffold size scaffold size

Train
Graph# 18000 18000 42000 1631 1633 24682 26169

Avg. node# 17.07 16.93 75.00 22.49 27.02 26.25 27.87
Avg. edge# 48.89 43.57 1392.76 48.43 58.71 56.68 60.20

Val
Graph# 3000 3000 7000 204 203 4113 2773

Avg. node# 15.82 39.22 75.00 33.20 12.06 24.95 15.55
Avg. edge# 33.00 107.03 1393.73 71.84 24.27 54.53 32.77

Test
Graph# 3000 3000 7000 204 203 4108 3961

Avg. node# 14.97 87.18 75.00 27.51 12.26 19.76 12.09
Avg. edge# 31.54 239.65 1393.60 59.75 24.87 40.58 24.87

Class# 3 3 10 2 2 2 2

Table 4: Hyper-parameter details of AdvCA.
Dataset Motif CMNIST Molbbbp Molhiv

Covariate shift base size color scaffold size scaffold size

Backbone (layer-hidden) 4-300 4-300 4-300 4-64 4-32 4-128 4-128
Augmenter (layer-hidden) 2-300 2-300 2-300 2-64 2-32 2-128 2-128
Generator (layer-hidden) 2-300 2-300 2-300 2-64 2-32 2-128 2-128

Epoch 100 100 100 100 100 100 100
Optimizer Adam Adam Adam Adam Adam Adam Adam
Batch size 512 512 512 32 128 32 512
Learning rate α 1e-3 1e-3 1e-3 1e-3 5e-3 1e-3 1e-2
Learning rate β 5e-3 5e-3 5e-3 1e-3 5e-3 1e-2 1e-2
Causal ratio λ2 0.5 0.5 0.5 0.5 0.5 0.1 0.1
Adversarial penalty γ 0.2 0.2 0.2 0.5 0.5 0.5 0.5

to measure the covariate shift between distributions P and Q. For all experimental results, we
perform 10 random runs and report the mean and standard derivations.

A.3 TRAINING SETTINGS

We use the NVIDIA GeForce RTX 3090 (24GB GPU) to conduct all our experiments. To make
a fair comparison, we adopt GIN (Xu et al., 2019) as the default architectures to conduct all ex-
periments. We tune the hyper-parameters in the following ranges: α and β ∈ {0.01,0.005,0.001};
λ2 ∈ {0.1, ...,0.9}; γ ∈ {0.01,0.1,0.2,0.5,1.0,1.5,2.0,3.0,5.0}; batch size ∈ {32,128,256,512};
hidden layers ∈ {32,64,128,300}. The hyper-parameters of AdvCA are summarized in Table 4.

A.4 BASELINE SETTINGS

For a more comprehensive comparison, we selected 14 baselines. In this section, we give a detailed
introduction to the settings of these methods.

• For ERM, IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020), VREx (Krueger et al.,
2021), and M-Mixup (Wang et al., 2021), we report the results from the study (Gui et al., 2022)
by default and reproduce the missing results on Molbbbp.

• For DIR (Wu et al., 2022b), CAL (Sui et al., 2022), GSAT (Miao et al., 2022), DropEdge (Rong
et al., 2020), GREA (Liu et al., 2022), FLAG (Kong et al., 2022) and G-Mixup (Han et al., 2022),
they provide source codes for the implementations. We adopt default settings from their source
codes and detailed hyper-parameters from their original papers.

• For OOD-GNN (Li et al., 2022a) and StableGNN (Fan et al., 2021), their source codes are not
publicly available. We reproduce them based on the codes of StableNet (Zhang et al., 2021).
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• For RDCA in Section 4.4, it is a variant that replaces the adversarial augmentation in AdvCA
with random augmentation. In our implementation, we use all-one matrices to create the initial
node and edges masks. Then we randomly set 20% of nonzero elements to zero in these masks.
Finally, we apply these masks to the graphs for random data augmentation. The process of causal
learning is consistent with AdvCA.

B ESTIMATION OF GRAPH COVARIATE SHIFT

In this section, we elaborate on the implementation details of estimating the graph covariate shift.
Without loss of generality, we start with the example of estimating the graph covariate shift between
the training and test distributions. Given training set and test setDtr andDte, they follow probability
distribution functions Ptr and Pte. The process of estimating GCS(Ptr, Pte) is summarized in the
following two steps:

• Firstly, it is intractable to directly estimate the distribution in graph space G. Inspired by Ye
et al. (2022), we can obtain the graph features and estimate the distribution in feature space F.
Specifically, given a sample, we train a binary GNN classifier f to distinguish which distribution
it comes from, where f(⋅) = Φ ○ h, h(⋅) ∶ G → F is a graph encoder, and Φ(⋅) ∶ F → {0,1} is a
binary classifier. Then we can adopt the pre-trained GNN encoder h to extract graph features.

• Secondly, we prepare the features and estimate the distribution of the data via Kernel Density Es-
timation (KDE) (Parzen, 1962). Finally, we adopt the Monte Carlo Integration under importance
sampling (Binder et al., 1993) to approximate the integrals in Definition 1.

We summarize these implementations in Algorithm 2. In lines 4 and 5, to avoid the label shift (Ye
et al., 2022), we adopt sample reweighting to ensure the balance of each class.

Algorithm 2: Estimation of Graph Covariate shift
Require: Training dataset Dtr and test dataset Dte; Batch size N ; Loss function ℓ; GNN

f = Φ ○ h; Importance sampling size M ; Threshold ϵ.
Ensure: Estimated covariate shift GCS(Ptr, Pte).

1: Initialize parameters of f
2: # Train a graph classifier
3: while not converge do
4: Sample a batch Btr ← {(gi, yi)}Ni=1 ⊂ Dtr and relabel all yi ← 0
5: Sample a batch Bte ← {(gi, yi)}Ni=1 ⊂ Dte and relabel all yi ← 1
6: B ← Btr ∪ Bte
7: for each (gi, yi) ∈ B do
8: Compute loss ℓ(f(gi), yi) and back-propagate gradients
9: end for

10: Update the parameters of f via gradient descent and reset the gradients
11: end while
12: # Prepare the features for the estimation
13: Extract training and test feature sets Ftr and Fte via encoder h
14: F ← Ftr ∪Fte

15: Scale F to zero mean and unit variance
16: ω̂ ← fit by KDE the distribution of F
17: Split F to recover the original partition F ′tr,F ′te
18: P̂tr, P̂te ← fit by KDE the distributions of F ′tr,F ′te
19: # Estimate the covariate shift
20: Initialize GCS(Ptr, Pte)← 0
21: for t← {1, ...,M} do
22: z ← sample from ω̂

23: if P̂tr(z) < ϵ or P̂te(z) < ϵ then
24: GCS(Ptr, Pte)← GCS(Ptr, Pte) + ∣P̂tr(z) − P̂te(z)∣/ω̂(z)
25: end if
26: end for
27: GCS(Ptr, Pte)← GCS(Ptr, Pte)/2M
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C CORRELATION SHIFT & COVARIATE SHIFT

From Assumption 1, we can observe that environmental features easily change outside the train-
ing distribution, owing to their noncausal nature. Hence, distribution shifts are only caused by
the environmental features. Specifically, we define the joint distribution of training and test
data as Ptr(G,Y ) and Pte(G,Y ), respectively. Since their joint distribution can be rewritten as
Ptr(G,Y ) = Ptr(Y ∣G)Ptr(G) and Pte(G,Y ) = Pte(Y ∣G)Pte(G), we can find that there exist two
main reasons that lead to distribution shift Ptr(G,Y ) ≠ Pte(G,Y ).

• Correlation shift Ptr(Y ∣G) ≠ Pte(Y ∣G). If the statistical correlation of environmental features
and labels is inconsistent in training and test data, a well-fitted model in training data may fail
in test data, which is also known as spurious correlation or correlation shift (Ye et al., 2022).
Formally, correlation shift describes the conditional distribution Ptr(Y ∣G) ≠ Pte(Y ∣G).

• Covariate shift Ptr(G) ≠ Pte(G). If there exist environmental features in the test distribution
that the model has not seen during training, it will also result in performance drop. This unseen
distribution shift is well known as covariate shift (Gui et al., 2022). It means that the environ-
mental features in test data are unseen in training data, which leads to Ptr(G) ≠ Pte(G). Hence,
in Assumption 1, we quantitatively measure the covariate shift between Ptr(G) and Pte(G).

D MORE EXPERIMENTAL RESULTS

D.1 RESULTS ON CORRELATION SHIFT

Table 5: Performance comparisons on synthetic
and real-world datasets with correlation shift.

Method Motif CMNIST Molhiv

ERM 81.44±2.54 42.87±1.37 63.26±1.25

IRM 80.71±2.81 42.80±1.62 59.90±1.17

VREx 81.56±2.14 43.31±1.03 60.23±1.60

DIR 82.25±2.15 44.87±1.56 64.65±1.34

CAL 81.94±1.20 41.82±0.85 62.36±1.42

OOD-GNN 80.22±2.28 39.03±1.24 57.49±1.08

DropEdge 78.97±3.41 38.43±1.94 54.92±1.73

FLAG 80.91±1.04 43.41±1.38 66.44±2.32

M-Mixup 77.63±1.12 40.96±1.21 64.87±1.36

AdvCA (ours) 82.51±2.81 49.73±1.70 68.11±1.82

Although this work focuses on the OOD is-
sue of covariate shift, for completeness, we
also evaluate the performance of AdvCA un-
der correlation shift. Following Gui et al.
(2022), we choose three graph OOD datasets
(i.e., Motif, CMNIST, Molhiv) with three dif-
ferent graph features (i.e., base, color, size)
to create correlation shifts. For baselines, we
choose three generalization algorithms (i.e.,
ERM, IRM (Arjovsky et al., 2019), VREx
(Krueger et al., 2021)), three graph general-
ization methods (i.e., DIR (Wu et al., 2022b),
CAL (Sui et al., 2022), OOD-GNN (Li et al.,
2022a)) and three data augmentation methods
(i.e., DropEdge (Rong et al., 2020), FLAG
(Kong et al., 2022), M-Mixup (Wang et al., 2021)). The experimental results are shown in Table 5.
We can observe that AdvCA can also effectively alleviate the correlation shift. These results demon-
strate that AdvCA learns better causal features by encouraging environmental diversity, which can
effectively break spurious correlations that are hidden in the training data.

D.2 RESULTS ON COMMONLY USED DATASETS

To demonstrate the effectiveness of the proposed AdvCA, we also conduct experiments on com-
monly used TU datasets (Morris et al., 2020), which include MUTAG, NCI1, PROTEINS, COL-
LAB, IMDB-B, IMDB-M. These are real world datasets and have negligible distribution shift. For
training settings, we follow CAL (Sui et al., 2022) and adopt GIN (Xu et al., 2019) as our backbone
model. The experimental results are shown in Table 6. For the results, we can observe that our
method can achieve the best performance over different datasets.
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Table 6: Performance comparisons on TU datasets.

Method MUTAG NCI1 PROTEINS COLLAB IMDB-B IMDB-M

ERM 89.42±7.40 82.71±1.52 76.21±3.83 82.08±1.51 73.40±3.78 51.53±2.97

CAL 89.91±8.34 83.89±1.93 76.92±3.31 82.68±1.25 74.13±5.21 52.60±2.36

DropEdge 86.11±9.41 82.35±3.77 74.40±3.10 80.59±2.14 72.34±5.83 51.06±3.04

FLAG 89.45±7.20 82.67±2.12 76.89±3.66 82.48±1.79 73.37±4.94 52.16±2.70

M-Mixup 89.83±7.67 83.89±2.38 76.76±3.40 82.90±1.43 74.07±4.76 52.89±2.84

AdvCA (ours) 90.34±7.75 84.12±2.64 77.92±3.72 82.98±1.76 74.23±5.10 53.02±2.76

Original graphs Augmented graphs

Figure 5: Visualizations of the augmented graphs via AdvCA.

D.3 MORE VISUALIZATIONS

We display more visualizations of the augmented graph via AdvCA in Figure 5. To demonstrate the
superiority our method, we also visualize the captured causal features by AdvCA and compare with
other baselines. The results are displayed in Figure 6. From the results, we can easily observe that
our method can find causal parts more accurately than other baseline methods.

E COMPLEXITY ANALYSES

Firstly, we define the average numbers of nodes and edges per graph in the dataset to be n and m,
respectively. Let N denote the batch size, l, la and lc denote the numbers of layers in the GNN
backbone, adversarial augmenter and causal generator, respectively. d, da and dc are the dimensions
of hidden layers in the GNN backbone, adversarial augmenter and causal generator, respectively.

Time complexity. The time complexity of the adversarial learning objective is O(N(lamda +
2lmd)). For the causal learning objective, the time complexity is O(N(lcmdc + 2lmd)). For the
regularization terms, the time complexity is O(2N(n +m)). For simplicity, we assume la = lc and
da = dc. Hence, the time complexity of a forward propagation is O(2N(lamda + 2lmd + n +m)).
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Original graphs AdvCA (Ours)GREA DropEdgeCAL

Figure 6: Visualization comparisons.

Model size. In addition to the GNN backbone model, we also introduce two small networks for
adversarial augmentation and causal learning. In our implementations, the parameters of AdvCA
are around twice as large as those of the original GNN model.

F MORE RELATED WORKS

OOD Generalization (Shen et al., 2021) has been widely explored. Recent studies (Ye et al., 2022;
Gui et al., 2022; Wiles et al., 2022) point out that OOD falls into two specific categories: correlation
shift and covariate shift. Correlation shift denotes that the environmental features and labels establish
a statistical correlation that is inconsistent in training and test data. Thus, the models prefer to learn
spurious correlations and rely on shortcut features (Geirhos et al., 2020) for predictions, resulting in
a large performance drop. In contrast, covariate shift indicates that there exist unseen environmental
features in test data. The limited training environment makes this issue intractable. In recent years,
OOD generalization on graphs is drawing widespread attention (Li et al., 2022a;b; Fan et al., 2021;
Wu et al., 2022a;b; Miao et al., 2022; Yu et al., 2022; Sui et al., 2022; Liu et al., 2022; Chen et al.,
2022). However, these efforts mainly focus on correlation shift. While the issue of graph covariate
shift is of great need but largely unexplored.

Comprehensive Comparisons with EERM (Wu et al., 2022a). Although EERM share similar
goals with us, generating several environments through augmentation, there exist many technical
and contribution differences. Firstly, EERM ignores the distinction between correlation shift and
covariate shift problems, so it is not specifically designed for covariate shift. Different from them,
we distinguish these two shifts in detail and design a novel framework specifically for covariate
shift. Secondly, EERM does not model causal and environmental features, which results in the in-
ability to explicitly distinguish them. In contrast, we explicitly model the environmental and causal
features. Hence, we can effectively identify causal and environmental features and explicitly sepa-
rate them from data. Thirdly, we also design a metric, GCS(P̃ , P ), which can effectively measure
the diversity of the environmental features for our augmented data. And we directly encourage the
environmental diversity of the augmented samples by maximizing GCS(P̃ , P ). However, EERM
does not provide any evaluation metric for environmental diversity. To encourage the diversity, they
“blindly” maximize the variance of the empirical risk in K environments. Finally, for generalization
scope, EERM is based on the IRM (Arjovsky et al., 2019) by minimizing the empirical risk in K en-
vironments. In contrast, inspired by DRO (Sagawa et al., 2020), we can guarantee the generalization
within the robust radius ρ. We summarize the above detailed discussions in Table 7.

G LIMITATION & FUTURE WORK

Although AdvCA outperforms numerous baselines and can achieve outstanding performance under
various covariate shifts, we also prudently introspect the following limitations of our method. And
we leave the improvements of these limitations as our future work.
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Table 7: Comparisons with EERM.
EERM Our AdvCA

Scope Is it specifically designed
for covariate shift? ✗ ✓

Separability Can environmental/causal
features be separated? ✗ ✓

Environmental
Diversity

Can environmental features
be identified explicitly? ✗ ✓

How to model
environmental features? - Mask model Tθ1(⋅)

Metric for
environmental diversity - GCS(P̃ , P )
Generation principle for
environmental features “Blindly” maximize Ve[R(e)] Maximize GCS(P̃ , P )

Causal
Invariance

Can causal features
be identified explicitly? ✗ ✓

How to model
causal features? - Mask model Tθ2(⋅)

Learning principles for
causal features minθVe[R(e)] Sufficiency/Independence

Generalization
Theoretical basis IRM DRO

Generalization scope K environments
Robust radius ρ
D(P̃ , P ) ≤ ρ

• AdvCA performs OOD exploration through an adversarial data augmentation strategy to achieve
environmental diversity. However, it only perturbs the existing graph data in a given training set,
such as perturbing original graph node features or graph structures. Hence, it is possible that there
still exist some overlaps between the augmented distribution and training distribution, so Principle
1 cannot be thoroughly achieved. In future work, we will attempt to design more advanced data
augmentation methods, such as graph generation-based strategies (Zhu et al., 2022), to generate
more unseen and novel graph data, for pursuing Principle 1.

• For model training, we adopt adversarial training and causal learning to alternately optimize the
adversarial augmenter, causal generator and backbone GNN. This training strategy may make
the training process unstable, so the performance of AdvCA may experience a large variance.
In addition, these two networks also involve additional parameters. Optimizing these parameters
separately will also increase the time complexity, as shown in Appendix E. Hence, in future work,
we will explore how to utilize more advanced optimization methods and lightweight models to
achieve the principles of environmental diversity and causal invariance.
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