
Published in Transactions on Machine Learning Research (05/2025)

NeoBERT: A Next-Generation BERT

Lola Le Breton1,2,3 Quentin Fournier2 John X. Morris4 Mariam El Mezouar5

Sarath Chandar1,2,3,6

1Chandar Research Lab 2Mila – Quebec AI Institute 3Polytechnique Montréal
4Cornell University 5Royal Military College of Canada 6Canada CIFAR AI Chair

Reviewed on OpenReview: https://openreview.net/forum?id=TJRyDi7mwH

Abstract

Recent innovations in architecture, pre-training, and fine-tuning have led to the remarkable
in-context learning and reasoning abilities of large auto-regressive language models such as
LLaMA and DeepSeek. In contrast, encoders like BERT and RoBERTa have not seen the
same level of progress despite being foundational for many downstream NLP applications.
To bridge this gap, we introduce NeoBERT, a next-generation encoder that redefines the
capabilities of bidirectional models by integrating state-of-the-art advancements in archi-
tecture, modern data, and optimized pre-training methodologies. NeoBERT is designed for
seamless adoption: it serves as a plug-and-play replacement for existing base models, re-
lies on an optimal depth-to-width ratio, and leverages an extended context length of 4,096
tokens. Despite its compact 250M parameter footprint, it achieves state-of-the-art results
on the massive MTEB benchmark, outperforming BERTlarge, RoBERTalarge, NomicBERT,
and ModernBERT under identical fine-tuning conditions. In addition, we rigorously evaluate
the impact of each modification on GLUE and design a uniform fine-tuning and evaluation
framework for MTEB. We release all code, data, checkpoints, and training scripts to accel-
erate research and real-world adoption 1,2.

1 Introduction

Auto-regressive language models have made tremendous progress since the introduction of GPT (Radford
et al., 2018), and modern large language models (LLMs) such as LLaMA 3 (Dubey et al., 2024), Mistral (Jiang
et al., 2023), OLMo (Groeneveld et al., 2024), and DeepSeek-r1 (DeepSeek-AI et al., 2025) now exhibit
remarkable reasoning and in-context learning capabilities. These improvements result from scaling both the
models and the web-scraped text datasets they are trained on, as well as from innovations in architecture
and optimization techniques. However, while decoders have continuously evolved, encoders have not seen the
same level of progress. Worse, their knowledge has become increasingly outdated despite remaining critical
for a wide range of downstream NLP tasks that depend on their embeddings, notably for retrieval-augmented
generation (Ram et al., 2023) and toxicity classification (Hartvigsen et al., 2022). Despite being five years
old, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) remain widely used, with more than 110
million combined downloads from Hugging Face as of the writing of this paper.

Similar to decoders, which undergo multi-stage processes of pre-training, instruction-tuning, and alignment,
encoders also require successive training phases to perform well on downstream tasks. First, encoders go
through self-supervised pre-training on large corpora of text with the masked language modeling objective.
By predicting masked or replaced tokens, this stage enables models to learn the structural patterns of
language and the semantics of words. However, the pre-training task is disconnected from downstream
applications, and models require additional training to achieve strong performance in clustering or retrieval.

1https://huggingface.co/chandar-lab/NeoBERT
2https://github.com/chandar-lab/NeoBERT

1

https://openreview.net/forum?id=TJRyDi7mwH
https://huggingface.co/chandar-lab/NeoBERT
https://github.com/chandar-lab/NeoBERT

Published in Transactions on Machine Learning Research (05/2025)

Thus, a second fine-tuning phase is often achieved through multiple stages of semi-supervised contrastive
learning, where models learn to differentiate between positive and negative sentence pairs, refining their
embeddings in the latent space.

Recently, substantial progress has been made in improving the fine-tuning stage of pre-trained encoders,
with models like GTE (Li et al., 2023b), jina-embeddings (Sturua et al., 2024), SFR-embeddings (Meng
et al., 2024), and CDE (Morris & Rush, 2024) significantly outperforming previous encoders on the MTEB
leaderboard, a recent and challenging benchmark spanning 7 tasks and 56 datasets. However, all these
approaches focus on proposing complex fine-tuning methods and do not address the inherent limitations of
their pre-trained backbone models.

As a result, there is a dire need for a new generation of BERT-like pre-trained models that incorporate
up-to-date knowledge and leverage both architectural and training innovations, forming stronger backbones
for these more advanced fine-tuning procedures.

In response, we introduce NeoBERT, a next-generation BERT that integrates the latest advancements in
architecture, data, and pre-training strategies. The improvements are rigorously validated on GLUE by fully
pre-training 10 different models that successively incorporate the modifications. This validation ensures that
the improvements benefit encoder architectures and highlights how some design choices drastically affect
the model’s abilities. Additionally, we design and experimentally validate a two-stage training procedure to
increase NeoBERT’s maximum context window from 1, 024 to 4, 096. To ensure a fair evaluation of NeoBERT
against existing baselines and to isolate the impact of fine-tuning procedures, we propose a model-agnostic
and systematic fine-tuning strategy with straightforward contrastive learning. All models are fine-tuned
using this standardized approach and subsequently evaluated on the MTEB benchmark.

On MTEB, NeoBERT consistently outperforms all competing pre-trained models while being 100M param-
eters smaller than the typical large-sized encoders. With a context window of 4,096 tokens, it processes
sequences 8× longer than RoBERTa (Liu et al., 2019) and two times longer than NomicBERT (Nussbaum
et al., 2024). It is also the fastest encoder of its kind, significantly outperforming ModernBERT base and
large in terms of inference speed. Despite its compact 250M parameter size, NeoBERT is trained for over 2T
tokens, prioritizing training over scale to maximize accessibility for both academic researchers and industry
users without requiring large-scale compute resources. This makes NeoBERT the most extensively trained
model among modern encoders, ensuring robust generalization and superior downstream performance. Fur-
thermore, NeoBERT maintains the same hidden size as base models, allowing for seamless plug-and-play
adoption without modifications to existing architectures. As the only fully open-source model of its kind, we
release the code, data, training scripts, and model checkpoints, reinforcing our commitment to reproducible
research.

2 Related work

In 2019, Devlin et al. (2019) introduced BERT, a novel approach to embedding text using bi-directional
Transformers pre-trained without supervision on large corpora. Shortly after, Liu et al. (2019) improved
over BERT’s pre-training by removing the next-sentence prediction objective and drastically increasing the
amount of data, leading to RoBERTa. Since then, the primary focus of the community has shifted towards
optimizing the fine-tuning phase of these models through contrastive learning, where the model is trained to
maximize the similarity between positive text pairs while pushing them apart from negative samples.

Among the earliest contrastive learning approaches designed for encoders, SimCSE (Gao et al., 2022) demon-
strated that sentence pairs could be easily generated by feeding the same input to the model twice and
applying dropout to introduce noise. However, this simple approach was soon outperformed by models like
GTE (Li et al., 2023b), which introduced more advanced contrastive learning techniques. GTE employed
a weakly supervised stage that takes advantage of the vast number of successive sentence pairs available
in traditional unlabeled datasets, followed by a semi-supervised stage incorporating labeled sentence pairs
from high-quality datasets such as NLI (Bowman et al., 2015) and FEVER (Thorne et al., 2018). Recently,
fine-grained strategies have emerged to better adapt models to both task and context. For instance, Jina-
embeddings (Sturua et al., 2024) introduced task-specific Low-Rank Adaptation (LoRA) adapters. As of

2

Published in Transactions on Machine Learning Research (05/2025)

January 2025, CDE (Morris & Rush, 2024) ranks at the top of the MTEB leaderboard for models under
250M parameters thanks to two key innovations: grouping samples with related contexts into the same batch
and providing contextual embeddings for the entire corpus in response to individual queries.

However, pre-training has not seen the same level of effort, and thus progress, most likely due to its pro-
hibitively high computational cost. RoBERTa, for instance, required a total of 1, 024 V100 days for its pre-
training. As a result, GTE, Jina-embeddings, and CDE all rely on pre-trained BERT, XLM-RoBERTa (Con-
neau et al., 2020), and NomicBERT (Nussbaum et al., 2024) to initialize their respective models. The latter,
NomicBERT, represents a recent effort to refine BERT’s architecture and pre-training. NomicBERT incor-
porates architectural improvements such as SwiGLU and RoPE, utilizes FlashAttention, and extends the
context length to 2, 048 tokens. Despite these innovations, NomicBERT still relied on sub-optimal choices,
as discussed in section 3. In parallel with the development of NeoBERT, Warner et al. (2024) released
ModernBERT with the goal of further refining the pre-training of NomicBERT. Although we share some of
the modifications, we make distinct design choices and conduct thorough ablations that ultimately lead to
greater performance on MTEB.

3 NeoBERT

The following section describes NeoBERT’s improvements over BERT and RoBERTa, as well as the recent
NomicBERT and ModernBERT models. Since GTE and CDE use BERT and NomicBERT as their pre-
trained backbone, they inherit their respective characteristics. Table 1 summarizes the modifications.

Table 1: Comparison of Model Architectures, Training Data, and Pre-Training Configurations.
BERT RoBERTa NomicBERT ModernBERT NeoBERT

base large base large base base large medium

Layers 12 24 12 24 12 22 28 28
Hidden Size 768 1, 024 768 1, 024 768 768 1, 024 768
Attention Heads 12 16 12 16 12 12 16 12
Parameters 120M 350M 125M 355M 137M 149M 395M 250M
Activation Function GeLU SwiGLU GeGLU SwiGLU
Positional Encoding Positional Embeddings RoPE RoPE RoPE
Normalization Post-LayerNorm Post-LayerNorm Pre-LayerNorm Pre-RMSNorm

Data Sources BooksCorpus
Wikipedia

BooksCorpus
OpenWebText

Stories / CC-News

BooksCorpus
Wikipedia

Undisclosed RefinedWeb

Dataset Size 13GB 160GB 13GB - 2.8TB
Dataset Year 2019 2019 2023 - 2023
Tokenizer Level Character Byte Character Character Character
Vocabulary Size 30K 50K 30K 50K 30K

Sequence Length 512 512 2, 048 1, 024 → 8, 192 1, 024 → 4, 096
Objective MLM + NSP MLM MLM MLM MLM
Masking Rate 15% 15% 30% 30% 20%
Masking Scheme 80/10/10 80/10/10 - - 100
Optimizer Adam Adam AdamW StableAdamW AdamW
Scheduler - - - WSD CosineDecay
Batch Size 131k tokens 131k 8M 448k to 5M 2M
Tokens Seen 131B 131B - ∼ 2T 2.1T

Training DDP DDP
DeepSpeed

FlashAttention

Alternate Attention
Unpadding

FlashAttention

DeepSpeed
FlashAttention

3

Published in Transactions on Machine Learning Research (05/2025)

3.1 Architecture

The Transformer architecture has been refined over the years and has now largely stabilized, with models like
LLaMA 3 being essentially the same as the original LLaMA. NeoBERT integrates the latest modifications
that have, for the most part, become standard.

Depth-to-Width The concept of depth efficiency has long been recognized in neural network architectures.
In the case of Transformers, stacking self-attention layers is so effective that it can quickly saturate the
network’s capacity. Recognizing this, Levine et al. (2020) provided theoretical and empirical evidence for
an optimal depth-to-width ratio in Transformers. Their findings suggested that most language models
were operating in a “depth-inefficiency” regime, where allocating more parameters to width rather than
depth would have improved performance. In contrast, small language models like BERT, RoBERTa, and
NomicBERT are instead in a width-inefficiency regime. To maximize NeoBERT’s parameter efficiency while
ensuring it remains a seamless plug-and-play replacement, we retain the original BERTbase width of 768 and
instead increase its depth to achieve this optimal ratio.

Positional Information Transformers inherently lack the ability to distinguish token positions. Early
models like BERT and RoBERTa addressed this by adding absolute positional embeddings to the token
embeddings before the first Transformer block. However, this approach struggles to generalize to longer
sequences and requires the positional information to be propagated across layers. To overcome these limi-
tations, Su et al. (2023) proposed Rotary Position Embeddings (RoPE), which integrate relative positional
information directly into the self-attention mechanism. RoPE has quickly become the default in modern
Transformers due to its significant improvements in performance and extrapolation capabilities. NeoBERT,
like all newer encoders, integrates RoPE. Nevertheless, degradation still occurs with sequences significantly
longer than those seen during training. As a solution, Peng et al. (2023) introduced Yet Another RoPE
Extension (YaRN), which allows to efficiently fine-tune models on longer contexts. NeoBERT is readily
compatible with YaRN, making it well-suited for tasks requiring extended context.

Layer Normalization Consistent with standard practices in modern Transformer architectures, we move
the normalization layer inside the residual connections of each feed-forward and attention block, a technique
known as Pre-Layer Normalization (Pre-LN). Pre-LN improves stability, allows for larger learning rates,
and accelerates model convergence (Xiong et al., 2020). While all newer encoder models adopt Pre-LN,
they typically continue to use the classical LayerNorm rather than Root Mean Square Layer Normalization
(RMSNorm). In NeoBERT, we substitute the classical LayerNorm with RMSNorm (Zhang & Sennrich,
2019), which achieves comparable training stability while being slightly less computationally intensive, as it
requires one fewer statistic.

Activations BERT and RoBERTa utilize the standard Gaussian Error Linear Unit (GELU) activation
function. However, Shazeer (2020) demonstrated the benefits of the Gated Linear Unit in Transformer
architectures. These activation functions have since been adopted in several language models, including
the LLaMA family. Following previous works, NeoBERT incorporates the SwiGLU activation function, and
because it introduces a third weight matrix, we scale the number of hidden units by a factor of 2

3 to keep
the number of parameters constant.

3.2 Data

Data has emerged as one of the most critical aspects of pre-training, and datasets with increasing quantity
and diversity are frequently released. NeoBERT takes advantage of the latest datasets that have proven to
be effective.

Dataset BERT and NomicBERT were pre-trained on two carefully curated and high-quality datasets:
Wikipedia and BookCorpus (Zhu et al., 2015). As Baevski et al. (2019) demonstrated that increasing data
size can improve downstream performance, Liu et al. (2019) pre-trained RoBERTa on 10 times more data
from BookCorpus, CC-News, OpenWebText, and Stories. However, RoBERTa’s pre-training corpus has

4

Published in Transactions on Machine Learning Research (05/2025)

become small in comparison to modern web-scraped datasets built by filtering and deduplicating Common
Crawl dumps. Following the same trend, we pre-trained NeoBERT on RefinedWeb (Penedo et al., 2023),
a massive dataset containing 600B tokens, nearly 18 times larger than RoBERTa’s. Although RefinedWeb
does not have strict high-quality constraints, we believe that exposing the model to such a large and diverse
dataset will improve its real-world utility.

Sequence Length BERT and RoBERTa were pre-trained on sequences up to 512 tokens, which limits
their downstream utility, especially without RoPE and YaRN. NomicBERT increased the maximum length
to 2, 048 and employed Dynamic NTK interpolation at inference to scale to 8192. To further broaden
NeoBERT’s utility, we seek to increase the context length. However, due to the computational cost associated
with pre-training, we adopt a two-stage pre-training procedure similar to LLMs like LLaMA 3. In the first
stage, we train the model for 1M steps (2T tokens) using sequences truncated to a maximum length of
1, 024 tokens, referring to this version as NeoBERT1024. In the second stage, we extend the training for an
additional 50k steps (100B tokens), increasing the maximum sequence length to 4, 096 tokens. We refer to
this final model as NeoBERT4096. To ensure the model encounters longer sequences during this stage, we
create two additional sub-datasets, Refinedweb1024+ and Refinedweb2048+, containing only sequence lengths
greater than 1, 024 and 2, 048 tokens, respectively, alongside the original Refinedweb dataset. Each batch
is sampled from Refinedweb, Refinedweb1024+ and Refinedweb2048+ with probabilities 20%, 40%, and 40%.
Since longer sequences tend to represent more complex or academic content, this strategy helps mitigate
the distribution shift typically observed when filtering for longer sequences. We explore the benefits of this
two-stage training strategy in subsection 5.3.

3.3 Pre-Training

Encoder pre-training has received less attention than the data and architecture. However, many improve-
ments made to decoders also apply to encoders. NeoBERT combines encoder-specific modifications with
widely accepted decoder improvements.

Objective In light of RoBERTa’s findings that dropping the next-sentence prediction task does not harm
performance, both NomicBERT and NeoBERT were only pre-trained on masked language modeling. More-
over, Wettig et al. (2023) challenged the assumption that the 15% masking rate of BERT and RoBERTa is
universally optimal. Instead, their findings suggest that the optimal masking rate is actually 20% for base
models and 40% for large models. Intuitively, a model learns best when the difficulty of its training tasks
aligns with its capabilities. Based on their insight, we increase the masking rate to 20%, while NomicBERT
exceeds it by opting for 30%.

Optimization Following standard practice, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with
the same hyperparameters as LLaMA 2: β1 = 0.9, β2 = 0.95, and ϵ = 10−8. In preliminary experiments,
we also considered SOAP (Vyas et al., 2025), a recent extension of the Shampoo optimizer, but it failed to
outperform Adam and AdamW and has been omitted from the list of ablations. We employ a linear warmup
for 2, 000 steps to reach a peak learning rate of 6 × 10−4, followed by a cosine decay to 10% of the peak
learning rate over 90% of the training steps. Once fully decayed, the learning rate remains constant for the
last 100k steps at a sequence length of 1, 024 and 50k steps at a sequence length of 4, 096. We use a weight
decay of 0.1 and apply gradient clipping with a maximum norm of 1.0.

Scale Recent generative models like the LLaMA family (Touvron et al., 2023; Dubey et al., 2024) have
demonstrated that language models benefit from being trained on significantly more tokens than was previ-
ously standard. Recently, LLaMA-3.2 1B was successfully trained on up to 9T tokens without showing signs
of saturation. Moreover, encoders are less sample-efficient than decoders since they only make predictions
for masked tokens. Therefore, it is reasonable to believe that encoders of similar sizes can be trained on an
equal or even greater number of tokens without saturating. For NeoBERT’s pre-training, we use batch sizes
of 2M tokens over 1M steps in the first stage and 50k steps in the second, resulting in a theoretical total of
2.1T tokens. Note that because sequences are padded to the maximum length, this represents a theoretical
number of tokens. In terms of tokens, this is comparable to RoBERTa and represents a 2x increase over

5

Published in Transactions on Machine Learning Research (05/2025)

Table 2: Modifications between successive ablations. The initial M0 baseline corresponds to a model similar
to BERT, while M9 corresponds to NeoBERT.

Modification Before After

M1
Embedding Positional RoPE
Activation GELU SwiGLU
Pre-LN LayerNorm RMSNorm

M2 Dataset Wiki + Book RefinedWeb
M3 Tokenizer Google WordPiece LLaMA BPE

M4 Optimizer Adam AdamW
Scheduler Linear Cosine

M5 Masking Scheme 15% (80 / 10 / 10) 20% (100)
M6 Sequence packing False True
M7 Model Size 120M 250M
M8 Depth - Width 16 - 1056 28 - 768

M9 Batch size 131k 2M
Context length 512 4, 096

NomicBERT. In terms of training steps, this amounts to a 2x increase over RoBERTa and a 10x increase
over NomicBERT.

Efficiency We improve efficiency by parallelizing the model across devices using DeepSpeed (Aminabadi
et al., 2022) with the ZeRO (Rajbhandari et al., 2020) optimizer, reducing memory usage by eliminating
data duplication across GPUs and increasing the batch size. We further optimize the GPU utilization by
employing fused operators from the xFormers library to reduce overhead, selecting all dimensions to be
multiples of 64 to align with GPU architectures, and removing biases to simplify computations without
sacrificing performance. To address the quadratic demands of attention, we integrate FlashAttention (Dao,
2023), which computes exact attention without storing the full matrices.

4 Effect of Design Choices

We conduct a series of ablations in controlled settings to evaluate our improvements to the original BERT
architecture. We fully train each model for 1M steps, controlling for the seed and dataloader states to
ensure successive models are trained with identical setups. These resource-intensive ablations were crucial to
confirm our design choices, as they are based on the literature of pre-training decoder models. The baseline
model, referred to as M0, is similar to BERTbase but includes pre-layer normalization. Following RoBERTa,
M0 also drops the next sentence prediction objective. We introduce modifications iteratively, resulting in
a total of ten different models, as detailed in Table 2. To mitigate computational costs, the ablations are
evaluated on the GLUE benchmark with a limited hyperparameter grid search of batch sizes ∈ {16, 32} and
learning rates ∈ {1e − 5, 2e − 5, 3e − 5}. For the final model M10, we extend the grid search, as detailed in
Appendix C. Results are in Figure 1.

Key Performance-Enhancing Modifications As expected, the two modifications that had the greatest
impact on the average GLUE score were related to scale. In M2, replacing Wikitext and BookCorpus with
the significantly larger and more diverse RefinedWeb dataset improved the score by +3.6%, while increasing
the model size from 120M to 250M in M7 led to a +2.9% relative improvement. Note that to assess the
impact of the depth-to-width ratio, we first scale the number of parameters in M7 to 250M while maintaining

6

Published in Transactions on Machine Learning Research (05/2025)

Figure 1: GLUE ablation scores on the development set. All modifications are cumulative, except for M3
and M6 in grey, which are not included in the subsequent models. Increasing data size and diversity leads
to the highest relative improvement (M2, +3.6%), followed by the model size (M7, +2.9%). Packing the
sequences and using the LLaMA 2 tokenizer cause the largest relative drops (M6, −2.9%, M3, −2.1%).

0 10 20 30 40 50 60 70 80 90

Baseline M0

RoPE, SwiGLU, RMSNorm M1

RefinedWeb M2

LLaMA Tokenizer M3

AdamW, Cosine Decay M4

20% Masking M5

Sequence Packing M6

250M Parameters M7

Optimal Depth-to-Width M8

Training Scale M9

Larger Grid Search M10

79.2

81.1

84.0

82.2

83.5

82.9

80.5

85.3

86.0

87.3

89.0

a similar ratio to BERTbase, resulting in 16 layers of dimension 1056. In M8, the ratio is then adjusted to
28 layers of dimension 768.

Modifications That Were Discarded In M3, replacing the Google WordPiece tokenizer with LLaMA
BPE results in a −2.1% performance decrease. The performance gap observed likely stems from inherent
differences between the algorithms, training corpus, and design strategies employed by the two tokenizers.
We further discuss this in Appendix B. In M6, we unpad the sequences by concatenating samples of the
same batch. While this removes unnecessary computation on padding tokens, packing sequences without
accounting for cross-sequence attention results in a relative performance drop of −2.8%. Although this
modification was discarded from our subsequent ablations, we incorporate methods of un-padding with
accurate cross-attention in our released codebase, following Kundu et al. (2024).

Modifications Retained Despite Performance Trade-offs Unexpectedly, using AdamW (Loshchilov
& Hutter, 2019) and cosine decay (Loshchilov & Hutter, 2017) in M4 decreases performance by −0.5%.
As AdamW introduces additional regularization with weight decay, we expect that it will become beneficial
when extending training by mitigating overfitting. Similarly, increasing the masking ratio from 15% to 20%
in M5 decreases performance by −0.7%. We hypothesize that increasing the task difficulty initially hinders
downstream task performance but is likely to become advantageous when training larger models on more
tokens. Consequently, we retain both modifications despite being unable to verify these hypotheses at scale
due to the computational costs.

5 Experiments

Selecting appropriate metrics and benchmarks is crucial for properly assessing the downstream performance
and utility of language models. Following both early and recent studies, we include the GLUE and MTEB
benchmarks in our evaluations.

7

Published in Transactions on Machine Learning Research (05/2025)

5.1 GLUE

The GLUE benchmark (Wang et al., 2019) is a cornerstone of language modeling evaluations and has played
a significant role in the field. Although GLUE is now 6 years old and the community has long recognized its
limitations, we report the GLUE score due to its widespread adoption and to facilitate the comparison of
NeoBERT with existing encoders. Following standard practices, we fine-tune NeoBERT on the development
set of GLUE with a classical hyperparameter search and introduce transfer learning between related tasks.
Complete details of the fine-tuning and best hyperparameters are presented in Appendix C. NeoBERT
achieves a score of 89.0% comparable to previous large models while being 100M to 150M parameters
smaller. We present the results in Table 3.

Table 3: GLUE scores on the development set. Baseline scores were retrieved as follows: BERT from Table
1 of Devlin et al. (2019), RoBERTa from Table 8 of Liu et al. (2019), DeBERTa from Table 3 of He et al.
(2023), NomicBERT from Table 2 of Nussbaum et al. (2024), GTE from Table 13 of Zhang et al. (2024),
and ModernBERT from Table 5 of Warner et al. (2024).

Size Model MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.

Base
(≤ 150M)

BERT 84.0 90.5 71.2 66.4 93.5 88.9 52.1 85.8 79.6
RoBERTa 87.6 92.8 91.9 78.7 94.8 90.2 63.6 91.2 86.4
GTE-en-8192 86.7 91.9 88.8 84.8 93.3 92.1 57.0 90.2 85.6
NomicBERT2048 86.0 92.0 92.0 82.0 93.0 88.0 50.0 90.0 84.0
ModernBERT 89.1 93.9 92.1 87.4 96.0 92.2 65.1 91.8 88.5

Medium
250M

NeoBERT1024 88.9 93.9 90.7 91.0 95.8 93.4 64.8 92.1 88.8
NeoBERT4096 89.0 93.7 90.7 91.3 95.6 93.4 66.2 91.8 89.0

Large
(≥ 340M)

BERT 86.3 92.7 72.1 70.1 94.9 89.3 60.5 86.5 82.1
RoBERTa 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
DeBERTaV3 91.9 96.0 93.0 92.7 96.9 91.9 75.3 93.0 91.4
GTE-en-8192 89.2 93.9 89.2 88.1 95.1 93.5 60.4 91.4 87.6
ModernBERT 90.8 95.2 92.7 92.1 97.1 91.7 71.4 92.8 90.5

5.2 MTEB

Beyond the GLUE benchmark, we consider the more recent and challenging MTEB benchmark (Muennighoff
et al., 2023), which has quickly become a standard for evaluating embedding models, with a wide coverage
of 7 tasks and 56 datasets in its English subset.

MTEB tasks rely on the cosine similarity of embeddings pooled across tokens in a sentence. The most com-
mon and straightforward pooling strategy is computing the average of each token’s final hidden representa-
tion. However, because out-of-the-box encoders are trained with the masked language modeling objective,
they provide no guarantee that mean embeddings will produce meaningful representations without further
fine-tuning. As a result, models require expensive fine-tuning strategies crafted for MTEB to achieve strong
scores. For instance, GTE (Li et al., 2023b) with multi-stage contrastive learning, Jina-embeddings (Sturua
et al., 2024) with task-specific Low-Rank Adaptation (LoRA) adapters, and CDE (Morris & Rush, 2024),
with batch clustering and contextual corpus embeddings all pushed the limits of the leaderboard in their
respective categories.

These coupled stages make it challenging to disentangle the respective impacts of pre-training and fine-tuning
on the final model’s performance. To isolate and fairly evaluate the improvements introduced during pre-
training, we implemented an affordable, model-agnostic fine-tuning strategy based on classical contrastive
learning. This fine-tuning approach was designed in accordance with established methods in the literature.
Its controlled settings ensured that all models were fine-tuned and evaluated under identical conditions.

8

Published in Transactions on Machine Learning Research (05/2025)

5.2.1 Unified Contrastive Learning

Method Given a dataset of positive pairs D = {qi, d+
i }n

i=1, a similarity metric s, a temperature parameter
τ , and a set of negative documents Nq for each query q, the contrastive loss is defined as:

L = − log es(q,d+)/τ

es(q,d+)/τ +
∑

d−∈Nq
es(q,d−)/τ

Negative documents can be either generic samples of the same format or tailored hard negatives, which
exhibit a high degree of similarity to the contrasted sample in their original representation. We constructed
a dataset of positive query-document pairs with optional hard negatives based on open-source datasets
previously employed in the literature (Li et al., 2023a) for a total of nine million documents. In addition
to the optional hard negatives, we also leverage in-batch, task-homogeneous negatives. In line with prior
research (Li et al., 2023a), we employ task-specific instructions and temperature-scaled sampling of the
datasets. Complete details about the data, training, and evaluation can be found in Appendix D.

Results We found that training for more than 2,000 steps resulted in minimal performance gains. Table 4
presents the complete MTEB-English evaluation of all fine-tuned models. Although NeoBERT is 100M
parameters smaller than all large baselines, it is the best model overall with a +4.5% relative increase over
the second best model, demonstrating the benefits of its architecture, data, and pre-training improvements.

Table 4: MTEB(eng, v1) scores after 2,000 steps of fine-tuning with our unified contrastive learning.

Size Model Class. Clust. PairClass. Rerank. Retriev. STS Summ. Avg.12 tasks 11 tasks 3 tasks 4 tasks 15 tasks 10 tasks 1 tasks

Base

BERT 60.6 37.0 71.5 48.9 28.3 69.9 31.1 48.1
RoBERTa 58.7 36.7 71.2 49.8 26.9 71.8 29.1 47.7
DeBERTaV3 45.9 15.2 44.3 39.0 3.5 42.2 25.0 26.9
NomicBERT2048 55.0 35.3 69.0 48.8 30.5 70.1 30.1 47.1
ModernBERT 58.9 38.1 63.8 48.5 21.0 66.2 30.1 45.0

Medium NeoBERT4096 61.6 40.8 76.2 51.2 31.6 74.8 30.7 51.3

Large

BERT 59.8 39.3 70.9 49.7 29.6 71.4 31.2 49.1
RoBERTa 57.1 39.3 72.5 51.3 30.0 71.7 31.1 48.9
DeBERTaV3 45.9 16.4 45.0 40.8 4.0 40.1 29.9 27.1
ModernBERT 62.4 38.7 65.5 50.1 23.1 68.3 27.8 46.9

5.2.2 Contextual Document Embeddings

While a unified fine-tuning framework enables fair model comparisons, computationally intensive fine-tuning
techniques are necessary to achieve top-ranking MTEB scores. We apply one such strategy, Contextual
Document Embeddings (CDE) (Morris & Rush, 2024), to NeoBERT. CDE previously led the MTEB leader-
board with NomicBERT (cde-v1) and ModernBERT (cde-v2) for English models under 400M parameters.
NeoBERT outperforms both, achieving an average score of 66.60, the highest in its parameter class. See
Appendix G for more details on the fine-tuning.

Table 5: MTEB(eng, v1) scores after fine-tuning with CDE. ∗Ranks on MTEB(eng, v1) for models under
400M parameters as of April 2025.

Model Class. Clust. PairClass. Rerank. Retriev. STS Summ. Avg. Rank∗
12 tasks 11 tasks 3 tasks 4 tasks 15 tasks 10 tasks 1 tasks

NomicBERT 81.72 48.32 84.69 56.75 53.27 81.64 31.23 65.00 3
ModernBERT 80.62 49.48 85.23 56.94 54.19 83.30 31.60 65.68 2
NeoBERT 82.14 50.29 86.71 57.71 56.37 82.30 30.98 66.60 1

9

Published in Transactions on Machine Learning Research (05/2025)

5.3 Sequence Length

Following previous literature, NeoBERT underwent an additional 50k pre-training steps, during which it
was exposed to extended sequences of up to 4,096 tokens. To assess the impact of this additional training,
we randomly sampled 2,467 long sequences from the English subset of Wikipedia. For each sequence, we
independently masked each token at position i and computed its cross-entropy loss, li. The pseudo-perplexity
of the entire sentence is then defined as P = exp

(1
n

∑n
i=1 li

)
. We present the results in Figure 2.

Figure 2: Pseudo-Perplexity in function of the sequence length for NeoBERT1024 (left) and NeoBERT4096
(right). This validates the effectiveness of the final pre-training stage on NeoBERT’s ability to model long
sequences.

1000 1500 2000 2500 3000 3500 4000
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ps
eu

do
-P

er
pl

ex
ity

NeoBERT1024

1000 1500 2000 2500 3000 3500 4000
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ps
eu

do
-P

er
pl

ex
ity

NeoBERT4096

Although NeoBERT1024 was trained exclusively on sequences of up to 1, 024 tokens, it generalizes effectively
to context lengths approaching 3,000 tokens. This demonstrates the robustness of RoPE embeddings to out-
of-distribution inputs. Moreover, after an additional 50k training steps with sequences up to 4, 096 tokens,
NeoBERT4096 successfully models longer sequences. This approach provides a compute-efficient strategy for
extending the model’s maximum context window beyond its original length. To further test NeoBERT’s
generalization capabilities, we extend the context beyond what was seen during training and present results
in Appendix E.

5.4 Efficiency

To assess model efficiency, we construct a synthetic dataset consisting of maximum-length sequences of sizes
{512, 1024, 2048, 4096, 8192}. For each sequence length, we scale the batch size from 1 to 512 samples or
until encountering out-of-memory errors. Inference is performed for 100 steps on a single A100 GPU, and we
report the highest throughput achieved for each model and sequence length. Figure 3 presents the results.

Due to their low parameter count and relatively simple architecture, BERT and RoBERTa are the most effi-
cient for sequences up to 512 tokens. However, their use of positional embeddings prevents them from further
scaling the context window. For extended sequences, NeoBERT significantly outperforms ModernBERTbase,
despite having 100M more parameters, achieving a 46.7% speedup on sequences of 4, 096 tokens.

6 Discussion

Encoders are compact yet powerful tools for language understanding and representation tasks. They require
fewer parameters and significantly lower training costs compared to their decoder counterparts, making them
strong alternatives for applications that do not involve text generation. Traditionally, the representational
capacity of these models has been assessed through downstream tasks such as classification, in particular
through the GLUE benchmark.

10

Published in Transactions on Machine Learning Research (05/2025)

Figure 3: Model throughput (tokens per second) as a function of sequence length (↑ is better). Above 1, 024
in sequence length, NeoBERT surpasses ModernBERTbase despite having 100M more parameters.

512 1024 2048 4096 8192

5k

10k

15k

20k

25k
Th

ro
ug

hp
ou

t (
to

ke
ns

/s
ec

on
d)

ModernBERTbase

BERTbase

BERTlarge

ModernBERTlarge

NeoBERT

RoBERTalarge

RoBERTabase

While GLUE has played a pivotal role in guiding model adoption, it includes only nine sequence classification
datasets, four of which are entailment tasks. Moreover, its small dataset sizes and occasionally ambiguous
labeling make it prone to overfitting, with models long surpassing human performance on the benchmark.
Although DeBERTa-v3 achieves state-of-the-art performance on GLUE by a significant margin, our fine-
tuning experiments reveal its comparatively poor performance on the more recent MTEB benchmark. MTEB
encompasses a broader range of datasets and tasks, but attaining high performance on its leaderboard
necessitates carefully crafted fine-tuning strategies with costly training requirements. As more complex
fine-tuning strategies emerge, it becomes unclear what the source of score improvements is. Moreover,
these strategies are not easily reproducible or accessible, limiting the possibility of fair comparison between
pre-trained backbones.

This underscores the limitations of current evaluation paradigms and highlights the need for more affordable
and standardized frameworks. We advocate for future research to focus on the development of standard-
ized fine-tuning protocols and the exploration of new zero-shot evaluation methodologies to ensure a more
comprehensive and unbiased assessment of encoder-only models.

7 Conclusion

We introduced NeoBERT, a state-of-the-art encoder pre-trained from scratch with the latest advancements
in language modeling, architecture, and data selection. To ensure rigorous validation, we systematically
evaluated every design choice by fully training and benchmarking ten distinct models in controlled settings.
On GLUE, NeoBERT outperforms BERTlarge and NomicBERT and is comparable with RoBERTalarge

despite being 100M parameters smaller and supporting sequences eight times longer. To further validate
its effectiveness, we conducted a comprehensive evaluation on MTEB, carefully isolating the effects of pre-
training and fine-tuning to provide a fair comparison against the best open-source embedding models. Under
identical fine-tuning conditions, NeoBERT consistently outperforms all baselines. In addition, when fine-
tuned with more advanced techniques, NeoBERT ranks at the top of the MTEB leaderboard for models under
400M parameters. With its unparalleled efficiency, optimal depth-to-width, and plug-and-play compatibility,
NeoBERT represents the next generation of encoder models. To foster transparency and collaboration, we
release all code, data, model checkpoints, and training scripts, making NeoBERT the only fully open-source
model of its kind.

11

Published in Transactions on Machine Learning Research (05/2025)

Broader Impact Statement

Despite its improvements, NeoBERT inherits the biases and limitations of its pre-training data. Moreover,
the greatest jump in performance stems from the pre-training dataset, and as newer, larger, and more diverse
datasets become available, retraining will likely be needed to further improve its performance. Nonetheless,
NeoBERT stands today as an affordable state-of-the-art pre-trained encoder with great potential for down-
stream applications.

Acknowledgements

Sarath Chandar is supported by the Canada CIFAR AI Chairs program, the Canada Research Chair in
Lifelong Machine Learning, and the NSERC Discovery Grant. Quentin Fournier is supported by the Lambda
research grant program. The authors acknowledge the computational resources provided by Mila and the
Royal Military College of Canada.

References
Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, et al. Deepspeed-inference: enabling

efficient inference of transformer models at unprecedented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE, 2022.

Simran Arora, Patrick Lewis, Angela Fan, et al. Reasoning over public and private data in retrieval-based
systems, 2022. URL https://arxiv.org/abs/2203.11027.

Alexei Baevski, Sergey Edunov, Yinhan Liu, et al. Cloze-driven pretraining of self-attention networks. In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 5360–5369, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1539. URL https://aclanthology.org/D19-1539.

Payal Bajaj, Daniel Campos, Nick Craswell, et al. Ms marco: A human generated machine reading compre-
hension dataset, 2018. URL https://arxiv.org/abs/1611.09268.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, et al. A large annotated corpus for learning natural
language inference, 2015. URL https://arxiv.org/abs/1508.05326.

Daniel Cer, Mona Diab, Eneko Agirre, et al. Semeval-2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Association for Computational Linguistics, 2017. doi: 10.18653/v1/s17-2001.
URL http://dx.doi.org/10.18653/v1/S17-2001.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-
lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation, 2024.
URL https://arxiv.org/abs/2402.03216.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, et al. Unsupervised cross-lingual representation learn-
ing at scale, 2020. URL https://arxiv.org/abs/1911.02116.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

DeepSeek-AI, Daya Guo, Dejian Yang, et al. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. Bert: Pre-training of deep bidirectional transformers for
language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

12

https://arxiv.org/abs/2203.11027
https://aclanthology.org/D19-1539
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1508.05326
http://dx.doi.org/10.18653/v1/S17-2001
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805

Published in Transactions on Machine Learning Research (05/2025)

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in sentence compression, October
2013. URL https://aclanthology.org/D13-1155.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings,
2022. URL https://arxiv.org/abs/2104.08821.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, et al. Olmo: Accelerating the science of language models, 2024.
URL https://arxiv.org/abs/2402.00838.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda, et al. Amazonqa: A review-based question answering
task, 2019. URL https://arxiv.org/abs/1908.04364.

Moonsu Han, Minki Kang, Hyunwoo Jung, et al. Episodic memory reader: Learning what to remember for
question answering from streaming data, 2019. URL https://arxiv.org/abs/1903.06164.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, et al. ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection. In Smaranda Muresan, Preslav Nakov, and Aline Villav-
icencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3309–3326, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.acl-long.234.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using ELECTRA-Style
Pre-Training with Gradient-Disentangled Embedding Sharing, March 2023. URL http://arxiv.org/
abs/2111.09543. arXiv:2111.09543 [cs].

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, et al. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, et al. Pubmedqa: A dataset for biomedical research question
answering, 2019. URL https://arxiv.org/abs/1909.06146.

Daniel Khashabi, Amos Ng, Tushar Khot, et al. Gooaq: Open question answering with diverse answer types,
2021. URL https://arxiv.org/abs/2104.08727.

Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization dataset, 2018. URL
https://arxiv.org/abs/1810.09305.

Achintya Kundu, Rhui Dih Lee, Laura Wynter, et al. Enhancing training efficiency using packing with flash
attention, 2024. URL https://arxiv.org/abs/2407.09105.

Yoav Levine, Noam Wies, Or Sharir, et al. Limits to Depth Efficiencies of Self-Attention. In Advances in
Neural Information Processing Systems, volume 33, pp. 22640–22651. Curran Associates, Inc., 2020. URL
https://papers.nips.cc/paper/2020/hash/ff4dfdf5904e920ce52b48c1cef97829-Abstract.html.

Xianming Li and Jing Li. Angle-optimized text embeddings. arXiv preprint arXiv:2309.12871, 2023.

Zehan Li, Xin Zhang, Yanzhao Zhang, et al. Towards general text embeddings with multi-stage contrastive
learning, 2023a. URL https://arxiv.org/abs/2308.03281.

Zehan Li, Xin Zhang, Yanzhao Zhang, et al. Towards General Text Embeddings with Multi-stage Contrastive
Learning, August 2023b. URL http://arxiv.org/abs/2308.03281. arXiv:2308.03281 [cs].

Yinhan Liu, Myle Ott, Naman Goyal, et al. Roberta: A robustly optimized bert pretraining approach, 2019.
URL https://arxiv.org/abs/1907.11692.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017. URL
https://arxiv.org/abs/1608.03983.

13

https://arxiv.org/abs/2407.21783
https://aclanthology.org/D13-1155
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/1908.04364
https://arxiv.org/abs/1903.06164
https://aclanthology.org/2022.acl-long.234
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/2104.08727
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/2407.09105
https://papers.nips.cc/paper/2020/hash/ff4dfdf5904e920ce52b48c1cef97829-Abstract.html
https://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1608.03983

Published in Transactions on Machine Learning Research (05/2025)

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/
abs/1711.05101.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, et al. Sfr-embedding-2: Advanced text embedding with multi-stage
training, 2024. URL https://huggingface.co/Salesforce/SFR-Embedding-2%5FR.

John X. Morris and Alexander M. Rush. Contextual document embeddings, 2024. URL https://arxiv.
org/abs/2410.02525.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, et al. MTEB: Massive Text Embedding Benchmark,
March 2023. URL http://arxiv.org/abs/2210.07316. arXiv:2210.07316 [cs].

Zach Nussbaum, John X. Morris, Brandon Duderstadt, et al. Nomic embed: Training a reproducible long
context text embedder, 2024. URL https://arxiv.org/abs/2402.01613.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale multi-
subject multi-choice dataset for medical domain question answering, 2022. URL https://arxiv.org/
abs/2203.14371.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, et al. The refinedweb dataset for falcon llm: Outper-
forming curated corpora with web data, and web data only, 2023. URL https://arxiv.org/abs/2306.
01116.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, et al. Yarn: Efficient context window extension of large language
models, 2023. URL https://arxiv.org/abs/2309.00071.

Alec Radford, Karthik Narasimhan, Tim Salimans, et al. Improving language understanding by generative
pre-training, 2018.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, et al. Zero: Memory optimizations toward training
trillion parameter models, 2020. URL https://arxiv.org/abs/1910.02054.

Ori Ram, Yoav Levine, Itay Dalmedigos, et al. In-context retrieval-augmented language models, 2023. URL
https://arxiv.org/abs/2302.00083.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/2002.05202.

Aivin V. Solatorio. Gistembed: Guided in-sample selection of training negatives for text embedding fine-
tuning, 2024. URL https://arxiv.org/abs/2402.16829.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, et al. jina-embeddings-v3: Multilingual embeddings
with task lora, 2024. URL https://arxiv.org/abs/2409.10173.

Jianlin Su, Yu Lu, Shengfeng Pan, et al. Roformer: Enhanced transformer with rotary position embedding,
2023. URL https://arxiv.org/abs/2104.09864.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, et al. Fever: a large-scale dataset for fact
extraction and verification, 2018. URL https://arxiv.org/abs/1803.05355.

Hugo Touvron, Louis Martin, Kevin Stone, et al. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Nikhil Vyas, Depen Morwani, Rosie Zhao, et al. Soap: Improving and stabilizing shampoo using adam, 2025.
URL https://arxiv.org/abs/2409.11321.

Alex Wang, Amanpreet Singh, Julian Michael, et al. Glue: A multi-task benchmark and analysis platform
for natural language understanding, 2019. URL https://arxiv.org/abs/1804.07461.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, et al. Smarter, better, faster, longer: A modern
bidirectional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
https://arxiv.org/abs/2412.13663.

14

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://huggingface.co/Salesforce/SFR-Embedding-2%5FR
https://arxiv.org/abs/2410.02525
https://arxiv.org/abs/2410.02525
http://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2302.00083
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2409.11321
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2412.13663

Published in Transactions on Machine Learning Research (05/2025)

Alexander Wettig, Tianyu Gao, Zexuan Zhong, et al. Should You Mask 15% in Masked Language Modeling?,
February 2023. URL http://arxiv.org/abs/2202.08005. arXiv:2202.08005 [cs].

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference, 2018. URL https://arxiv.org/abs/1704.05426.

Ruibin Xiong, Yunchang Yang, Di He, et al. On layer normalization in the transformer architecture, 2020.
URL https://arxiv.org/abs/2002.04745.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://arxiv.org/
abs/1910.07467.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification,
2016. URL https://arxiv.org/abs/1509.01626.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, et al. mGTE: Generalized long-context
text representation and reranking models for multilingual text retrieval. In Franck Dernoncourt, Daniel
Preoţiuc-Pietro, and Anastasia Shimorina (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing: Industry Track, pp. 1393–1412, Miami, Florida, US, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.103. URL https:
//aclanthology.org/2024.emnlp-industry.103/.

Yukun Zhu, Ryan Kiros, Richard Zemel, et al. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books, 2015. URL https://arxiv.org/abs/1506.06724.

15

http://arxiv.org/abs/2202.08005
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1509.01626
https://aclanthology.org/2024.emnlp-industry.103/
https://aclanthology.org/2024.emnlp-industry.103/
https://arxiv.org/abs/1506.06724

Published in Transactions on Machine Learning Research (05/2025)

A Training details

NeoBERT was trained on 8 H100 for 1,050,000 steps, for a total of 6,000 GPU hours. In the first stage of
training, we used a local batch size of 32, 8 gradient accumulation steps, and a maximum sequence length
of 1, 024, for a total batch size of 2M tokens. In the second stage of training, we keep the theoretical batch
size constant and increase the maximum sequence length to 4, 096.

B Ablations

B.1 Baseline

Our first model, M0 is modeled after BERTbase in terms of architecture. The only two differences are
the absence of the next-sentence-prediction objective, as well as Pre-Layer Normalization. Each successive
model, up until M8 is identical to the previous one on every point except for the change reported in Table 2.

B.2 Tokenizers

We refer to the Llama Wordpiece tokenizer as llama-tok and the BERT BPE tokenizer as bert-tok. Under
identical conditions between ablations M2 and M3, the use of llama-tok over bert-tok decreases the GLUE
score by a relative drop of 2.9%. Although further investigation would be required to analyze this drop, we
highlight several key differences between the two tokenizers.

While llama-tok uses Byte-Pair Encoding (BPE), bert-tok relies on the more expressive WordPiece algorithm,
which better models token likelihoods in text. Moreover, their training data largely differs. llama-tok was
trained on a dataset mostly composed of the CommonCrawl, whereas bert-tok used the higher-quality
BookCorpus and WikiText datasets. Finally, llama-tok is cased and handles unknown UTF-8 characters
at the byte level, while bert-tok is uncased and character-level. This leads llama-tok to include redundant
tokens (e.g., “The” and “the”) and rare byte sequences, limiting space for more frequent tokens under a
finite capacity.

C GLUE

We perform a classical parameter search with learning rates in {5e − 6, 6e − 6, 1e − 5, 2e − 5, 3e − 5}, batch
sizes in {4, 8, 16, 32} and weight decay in {1e − 2, 1e − 5}. In addition, we start training from the best MNLI
checkpoint for RTE, STS, MRPC, and QNLI.

We fine-tune on the training splits of every glue dataset for 10 epochs, with evaluation on the validation
splits every n steps, n being defined as min(500, len(dataloader) // 10) with early stopping after 15 evaluation
cycles if scores have not improved. Following BERT, we exclude WNLI from our evaluation3. For tasks with
two scores and for MNLI matched and mismatched, we report the average between the two metrics.

D MTEB

D.1 Evaluation of pre-trained models

As demonstrated in Figure 4, evaluating out-of-the-box pre-trained models on MTEB is inconclusive. In
that setting, BERTbase outperforms both BERTlarge and RoBERTalarge, highlighting the importance of
fine-tuning to ensure representative evaluation on the MTEB benchmark.

D.2 Contrastive learning

Following the existing literature, we designed a simple fine-tuning strategy entirely agnostic to the models
evaluated. We used cosine similarity and τ = 0.07 as a temperature parameter in the contrastive learning

3See 12 in https://gluebenchmark.com/faq

16

Published in Transactions on Machine Learning Research (05/2025)

Model Task Batch Size Learning Rate Weight Decay

NeoBERT1024

CoLA 4 6e-6 1e-5
MNLI 16 6e-6 1e-2
MRPC 8 2e-5 1e-5
QNLI 8 5e-6 1e-5
QQP 32 1e-5 1e-2
RTE 8 6e-6 1e-5

SST-2 16 1e-5 1e-5
STS-B 8 1e-5 1e-2

NeoBERT4096

CoLA 8 8e-6 1e-5
MNLI 16 5e-6 1e-5
MRPC 2 1e-5 1e-5
QNLI 8 5e-6 1e-5
QQP 32 8e-6 1e-5
RTE 32 5e-6 1e-5

SST-2 32 8e-6 1e-2
STS-B 32 2e-5 1e-5

Table 6: Optimal hyperparameters for GLUE tasks. The grid search was conducted over batch sizes
{2, 4, 8, 16, 32}, learning rates {5e−6, 6e−6, 8e−6, 1e−5, 2e−5, 3e−5}, and weight decay values {1e−2, 1e−5}.

Figure 4: Zero-shot evaluation of BERT and RoBERTa on the English subset of MTEB.

loss. Additionally, we sampled datasets with a multinomial distribution based on their sizes (nj)m
j=1 with

α = 0.5:

π = nα
i∑m

j=1 nα
j

We trained on the following fully-open datasets: AG-News (Zhang et al., 2016), All-NLI (Bowman et al.,
2015; Williams et al., 2018), AmazonQA (Gupta et al., 2019), ConcurrentQA (Arora et al., 2022), GitHub

17

Published in Transactions on Machine Learning Research (05/2025)

Issues (Li & Li, 2023), GooAQ (Khashabi et al., 2021), MedMCQA (Pal et al., 2022), NPR4, PudMedQA (Jin
et al., 2019), SentenceCompression (Filippova & Altun, 2013) StackExchange5, TriviaQA (Han et al., 2019),
Wikihow (Koupaee & Wang, 2018), Yahoo! Answers (Zhang et al., 2016) as well as the available training
splits of MTEB datasets (StackOverFlowDupQuestion, Fever (Thorne et al., 2018), MS MARCO (Bajaj
et al., 2018), STS12, and STSBenchmark (Cer et al., 2017)).

We fine-tune every model for 2,000 steps and evaluate on MTEB in float16. The complete results are
presented in Table 4.

Figure 5: Average MTEB scores of fine-tuned encoders grouped by task type. The average score is computed
across the 56 tasks of MTEB-English. NeoBERT is the best model on five out of seven task types and the
best model overall. See Table 4 for complete scores.

Avg. Classification Clustering PairClassification Reranking Retrieval STS Summarization
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

27
.1

45
.9

16
.4

45
.0

40
.7

40
.1

29
.9

46
.9

62
.4

38
.7

65
.5

50
.1

23
.1

68
.3

27
.8

47
.1

55
.0

35
.3

69
.1

48
.8

30
.5

70
.1

30
.1

48
.9

57
.1

39
.1

72
.5

51
.3

30
.0

71
.7

31
.1

49
.1

59
.8

39
.3

70
.9

49
.7

29
.6

71
.4

31
.2

51
.3

61
.6

40
.8

76
.2

51
.2

31
.6

74
.8

30
.7

DeBERTa-v3large ModernBERTlarge NomicBERT2048 RoBERTalarge BERTlarge NeoBERT4096DeBERTa-v3large ModernBERTlarge NomicBERT2048 RoBERTalarge BERTlarge NeoBERT4096

D.3 Task instructions

We provide the set of instructions used for fine-tuning in Table 7 and evaluation in Table 8 and Table 9.

4https://huggingface.co/datasets/sentence-transformers/npr
5https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates

18

https://huggingface.co/datasets/sentence-transformers/npr
https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates

Published in Transactions on Machine Learning Research (05/2025)

Table 7: Instructions for fine-tuning on the different contrastive learning datasets.
Dataset Instruction
AGNEWS Given a news title, retrieve relevant articles.
ALLNLI Given a premise, retrieve a hypothesis that is entailed by the premise.
AMAZONQA Given a question, retrieve Amazon posts that answer the question.
CONCURRENTQA Given a multi-hop question, retrieve documents that can help answer the

question.
FEVER Given a claim, retrieve documents that support or refute the claim.
GITHUBISSUE Given a question, retrieve questions from Github that are duplicates to the given

question.
GOOAQ Given a question, retrieve relevant documents that best answer the question.
MEDMCQA Given a medical question, retrieve relevant passages that answer the question.
MEDMCQACLUST Identify the main category of medical exams based on their questions

and answers.
MSMARCO Given a web search query, retrieve relevant passages that answer the query.
NPR Given a news title, retrieve relevant articles.
PAQ Given a question, retrieve Wikipedia passages that answer the question.
PUBMEDQA Given a medical question, retrieve documents that best answer the question.
QQP Given a question, retrieve questions from Quora forum that are semantically

equivalent to the given question.
SENTENCECOMP Given a sentence, retrieve semantically equivalent summaries.
STACKEXCHANGE Given a Stack Exchange post, retrieve posts that are duplicates to the given post.
STACKOVERFLOW Retrieve duplicate questions from StackOverflow forum.
STS12 Retrieve semantically similar text.
STSBENCHMARK Retrieve semantically similar text.
TRIVIAQA Given a question, retrieve documents that answer the question.
WIKIHOW Given a Wikihow post, retrieve titles that best summarize the post.
YAHOOCLUST Identify the main topic of Yahoo posts based on their titles and answers.

Table 8: Instructions for evaluation on the different MTEB tasks.
Task name Instruction
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia.
FEVER Given a claim, retrieve documents that support or refute the claim.
FiQA2018 Given a financial question, retrieve user replies that best answer the question.
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question.
MSMARCO Given a web search query, retrieve relevant passages that answer the query.
NFCorpus Given a question, retrieve relevant documents that best answer the question.
NQ Given a question, retrieve Wikipedia passages that answer the question.
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the

given question.
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the

given paper.
SciFact Given a scientific claim, retrieve documents that support or refute the claim .
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer

the question.
TRECCOVID Given a query on COVID-19, retrieve documents that answer the query.
SICK-R Retrieve semantically similar text.
STS Retrieve semantically similar text.
BIOSSES Retrieve semantically similar text from the biomedical field.
SummEval Given a news summary, retrieve other semantically similar summaries.

19

Published in Transactions on Machine Learning Research (05/2025)

Table 9: Instructions for evaluation on the different MTEB tasks.
Task name Instruction
AmazonCounterfactualClass. Given an Amazon customer review, classify it as either counterfactual

or not-counterfactual.
AmazonPolarityClass. Given an Amazon review, classify its main sentiment into positive

or negative.
AmazonReviewsClass. Given an Amazon review, classify it into its appropriate rating

category.
Banking77Class. Given a online banking query, find the corresponding intents.
EmotionClass. Given a Twitter message, classify the emotion expressed into one of

the six emotions: anger, fear, joy, love, sadness, and surprise.
ImdbClass. Given an IMDB movie review, classify its sentiment into positive or

negative.
MassiveIntentClass. Given a user utterance, find the user intents.
MassiveScenarioClass. Given a user utterance, find the user scenarios.
MTOPDomainClass. Given a user utterance, classify the domain in task-oriented

conversation.
MTOPIntentClass. Given a user utterance, classify the intent in task-oriented

conversation.
ToxicConversationsClass. Given comments, classify them as either toxic or not toxic.
TweetSentimentExtractionClass. Given a tweet, classify its sentiment as either positive, negative, or

neutral.
<dataset>ClusteringP2P Identify the main and secondary category of <dataset> papers based on

their titles and abstracts.
<dataset>ClusteringS2S Identify the main and secondary category of <dataset> papers based on

their titles.
<dataset>Clustering Identify the topic or theme of <dataset> posts based on their titles.
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles.
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum.
TwitterSemEval2015 Given a tweet, retrieve tweets that are semantically similar.
TwitterURLCorpus Given a tweet, retrieve tweets that are semantically similar.
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum.
MindSmallReranking Given a user browsing history, retrieve relevant news articles.
SciDocsRR Given a title of a scientific paper, retrieve the

relevant papers.
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum.
ArguAna Given a claim, find documents that refute the claim. Document
ClimateFEVER Given a claim about climate change, retrieve documents that support

or refute the claim.
CQADupstackRetrieval Given a question, retrieve detailed question descriptions from

Stackexchange that are duplicates to the given question.

20

Published in Transactions on Machine Learning Research (05/2025)

E Context Length

We compute the Pseudo-Perplexity on sequences sampled from English Wikipedia. Although NeoBERT
has only been exposed to sequences up to 4,096 tokens during training, it correctly models sequences up to
6,000 tokens. Additional training or RoPE extension techniques, such as YaRN (Peng et al., 2023), would
be needed to further extend the context window.

Figure 6: Pseudo-Perplexity in function of the sequence length for NeoBERT4096 for extension beyond
sequence lengths seen in training. NeoBERT generalizes natively for sequences under 6,000 tokens.

1000 2000 3000 4000 5000 6000 7000
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ps
eu

do
-P

er
pl

ex
ity

NeoBERT4096

F Efficiency

Table 10 presents the complete results of model efficiency evaluations.

Table 10: Throughput (103 tokens / second) in function of the sequence length, with optimal batch size.
Size Model 512 1024 2048 4096 8192

Base
BERTbase 27.6 ± 3.6 - - - -
RoBERTabase 24.9 ± 3.0 - - - -
ModernBERTbase 25.4 ± 2.3 22.6 ± 2.7 17.2 ± 1.7 11.7 ± 0.8 6.8 ± 0.2

Medium NeoBERT 24.5 ± 1.4 22.2 ± 1.7 20.5 ± 1.6 17.2 ± 1.2 13.0 ± 0.2

Large
BERTlarge 19.5 ± 0.6 - - - -
RoBERTalarge 15.9 ± 0.3 - - - -
ModernBERTlarge 13.4 ± 0.2 11.4 ± 1.1 9.2 ± 0.7 6.5 ± 0.3 3.8 ± 0.1

G Contextual Document Embeddings

One popular application for BERT-style models is to generate embedding vectors for use in tasks such
as classification, clustering, and retrieval. State-of-the-art embedding models below 400M parameters are

21

Published in Transactions on Machine Learning Research (05/2025)

trained using contextual embedding techniques (Morris & Rush, 2024). The highest-performing similar-sized
embedding models were trained with backbones initialized with NomicBERT (Nussbaum et al., 2024) and
more recently ModernBERT (Warner et al., 2024). In this section, we question whether contextual document
embeddings (CDE) might perform better when initialized from NeoBERT.

G.1 Method

We train our embedding models using both the contextual batching strategy and contextual architecture
described in Morris & Rush (2024).

Contextual batching. To train a contextual embedding model, we have to first group documents from
a larger corpus into miniature ‘pseudo-contexts’ which comprise the batches for training. We do so by
minimizing the following batch-clustering objective:

min
(B1,...BB)
(c1,...,cB)

∑
b

∑
(d,q)∈Bb

M((d, q), cb)

Here, B1...BB represent the orderings of batches of training data and c∗ are the corresponding centroids;
M(d, q) indicates the distance (typically Euclidean) between embeddings of document d and query q from
batch Bb.

We can approximate this efficiently using a modified K-Means solver. We follow the same procedure as
Morris & Rush (2024) to cluster documents for each training set.

Contextual architecture. Contextual embedding models in effect use two model backbones: one to
embed similar documents in context and another to embed documents conditioned on contextual information.
We can express contextual embedding vector ϕ using both models M1 and M2:

ϕ(x; D) = M2(M1(d1), . . . , M1(dJ), E(x1), . . . , E(xT))

where x is a document or query comprised of tokens x1...xT and D is a set of documents from the surrounding
context. We train ϕ end-to-end by backpropagating through both M1 and M2 using the custom two-stage
gradient-caching procedure described in Morris & Rush (2024).

G.2 Data and hyperparameters

Training stages and data. We train our models in two stages. The first stage is a large, noisy “contrastive
pre-training” stage with 235M query-to-document pairs per epoch. The second is a short fine-tuning step
on 1.5M high-quality datapoints. We train each stage for three epochs with the Adam optimizer with 1000
steps of warmup to a learning rate of 5e − 5 and linear decay to 0 throughout training.

Instead of mining hard negatives, we cluster the datasets for contextual batching. We embed for clustering
and filter hard negatives within a batch using GTE-large (Li et al., 2023a). We set both the batch size and
cluster size to 512. Unlike many contrastive training setups, we neglect to share negatives between GPUs.

We evaluate our contextual embedding models on the 56 tasks of the English version of MTEB (Muennighoff
et al., 2023). To maintain consistency with prior iterations of CDE, we train these models with 512 in-context
documents and a per-document sequence length of 512; this produces a second-stage input size of 1024 tokens.

G.3 Results

Our contextual embedding results are detailed in Table 5, averaged across tasks in MTEB. With a score
of 66.60, NeoBERT significantly outperforms ModernBERT in embedding-related tasks; in our case, the
gap between NeoBERT and ModernBERT (about 1 MTEB point) is notably larger than the gap between
ModernBERT and NomicBERT (approximately 0.6).

22

Published in Transactions on Machine Learning Research (05/2025)

NeoBERT’s largest improvements are shown in retrieval, reranking, clustering, and classification tasks. We
see a small drop in performance in STS compared to ModernBERT, which we hypothesize may relate to the
mix of pretraining data.

When compared to other models in MTEB, NeoBERT fine-tuned with CDE is state-of-the-art in its param-
eter class, outperforming all other similar-sized embedding models as of April 2025, such as GTE with 64.36
(Li et al., 2023a), BGE with 63.99 (Chen et al., 2024), and GIST with 64.13 (Solatorio, 2024).

23

	Introduction
	Related work
	NeoBERT
	Architecture
	Data
	Pre-Training

	Effect of Design Choices
	Experiments
	GLUE
	MTEB
	Unified Contrastive Learning
	Contextual Document Embeddings

	Sequence Length
	Efficiency

	Discussion
	Conclusion
	Training details
	Ablations
	Baseline
	Tokenizers

	GLUE
	MTEB
	Evaluation of pre-trained models
	Contrastive learning
	Task instructions

	Context Length
	Efficiency
	Contextual Document Embeddings
	Method
	Data and hyperparameters
	Results

