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Abstract

Previous studies have introduced a weakly-001
supervised paradigm for solving math word002
problems requiring only the answer value an-003
notation. While these methods search for cor-004
rect value equation candidates as pseudo la-005
bels, they search among a narrow sub-space of006
the enormous equation space. To address this007
problem, we propose a novel search algorithm008
with combinatorial mathematics ComSearch,009
which can compress the search space by exclud-010
ing mathematical equivalent equations. The011
compression allows the searching algorithm to012
enumerate all possible equations and obtain013
high-quality data. We investigate the noise in014
the pseudo labels that hold wrong mathemati-015
cal logic , which we refer as the false-matching016
problem, and propose a ranking model to de-017
noise the pseudo labels. Our approach holds a018
flexible framework to utilize two existing su-019
pervised math word problem solvers to train020
pseudo labels, and both achieve state-of-the-art021
performance in the weak supervision task.022

1 Introduction023

Solving math word problems (MWPs) is the task024

of extracting a mathematical solution from prob-025

lems written in natural language. In Figure 1, we026

present an example of MWP. Based on a sequence-027

to-sequence (seq2seq) framework that takes in the028

text descriptions of the MWPs and predicts the an-029

swer equation (Wang et al., 2017), task specialized030

encoder and decoder architectures (Wang et al.,031

2018b, 2019; Xie and Sun, 2019; Liu et al., 2019;032

Guan et al., 2019; Zhang et al., 2020b,a; Shen033

and Jin, 2020), data augmentation and normaliza-034

tion (Wang et al., 2018a; Liu et al., 2020), pre-035

trained models (Tan et al., 2021; Liang et al., 2021;036

Shen et al., 2021) and various other studies have037

been conducted on full supervision setting of the038

task. This setting requires equation expression an-039

notation, which is expensive and time-consuming.040

Figure 1: Example of MWP solving system under full
supervision and weak supervision.

Recently Hong et al. (2021) and Chatterjee et al. 041

(2021) addressed this problem and proposed the 042

weak supervision setting, where only the answer 043

value annotation is given for supervision. These 044

methods first extract candidate equations that ob- 045

tain the correct value and then use them as pseudo 046

labels to train the MWP solving model. However, 047

the solution space is enormous with the bruce-force 048

searching used in these two studies, i.e., O(n2n) 049

with n variables. When the number of variables in- 050

creases, it becomes computationally impossible to 051

traverse all possible equations due to the high com- 052

putational complexity. Hong et al. (2021) searches 053

among neighbour equations of the wrong model 054

prediction in the solution space via random walk. 055

Chatterjee et al. (2021) trains a candidate equation 056

extraction model using reinforcement learning (RL) 057

to explore the solution space, where the reward is 058

given by whether the equation obtains the correct 059

value. Both these methods lack robustness and 060

highly relies on initialization or beam searching. 061

We observe that although the search space is am- 062

ple, many equations in the search space are equiv- 063

alent. For example, in Figure 1, ‘150 ∗ 2 − 50’ 064

and ‘2 ∗ 150 − 50’ are mathematically equiva- 065

lent. Eliminating such equivalent expressions in the 066

searching algorithm can compress the search space 067

and lower the computational complexity. Roy and 068

Roth (2015) proposed a model that decomposes the 069
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Figure 2: The model overview.

equation prediction problem to various classifica-070

tion problems, which eliminates some equivalence071

forms of the equation. However the compression is072

highly integrated with their model and cannot gen-073

eralize to other models including the SOTA seq2seq074

based models. Moreover, it can only cover limited075

equivalence forms, leaving out various important076

forms such as Commutative law and Associative077

law. (Wang et al., 2018a) proposed a normalization078

method for supervised MWP systems that consid-079

ers Commutative law. The method merges several080

equivalent expression to one expression, resulting081

in compression of the target equation space. How-082

ever, their method requires bruce-force enumera-083

tion before compression, which remains to have084

high computational complexity. In both two stud-085

ies, only limited equivalence forms are considered,086

that the equation space is still considerably large.087

In this paper, we investigate theories in combi-088

natorial mathematics and propose a new searching089

method that searches through only non-equivalent090

equations in the search space. Our method could091

be proven to have an approximate complexity of092

O(nn), allowing the algorithm to find all possible093

candidate equations with the given variables. We094

show that 77.5% percent of the examples have only095

one equation candidate and form high quality and096

reliable data.097

We also observe a false-matching problem in098

the weakly supervised setting, where the candi-099

date equation extraction algorithms reaches one or100

more candidates with the correct value, however101

their mathematical reasoning logic is wrong. For102

example, in Figure 1, ‘150 ∗ 2 − 50’ (Eq1) and103

‘50 ∗ 2 + 150’ (Eq3) have the same value, however104

Eq3 holds a false mathematical reasoning logic and105

only Eq1 is correct. While previous methods (Hong106

et al., 2021; Chatterjee et al., 2021) take in all candi-107

dates with the correct value as annotated data, these108

annotations leads to false mathematical inference109

brings in noise to the training process. To address110

this problem, we build a ranking module to choose 111

the best pseudo label for examples with multiple 112

candidate equations. The module first searches for 113

candidate equations via searching algorithms and 114

generalization models, and then uses a classifier to 115

choose the best candidate equation for the example. 116

We investigate how the false-matching problem 117

drags down the system’s performance and propose 118

two ranking models to alleviate this problem. 119

We conduct experiments on two strong MWP 120

solvers, the results demonstrate the effectiveness 121

and generalization ability of our method, achieving 122

state-of-the-art (SOTA) results under the weakly 123

supervised setting. 124

In summary, our contribution is three-fold: 125

• We propose ComSearch, which is a search- 126

ing algorithm that enumerates non-equivalent 127

equations without repeating to search effec- 128

tively for candidate equations. 129

• We are the first to investigate the false- 130

matching problem that brings noise to the 131

pseudo training data. We propose a ranking 132

module to reduce the noise and give detailed 133

oracle analysis on the problem. 134

• We perform experiments on two MWP solvers 135

with our ranking module, and achieve SOTA 136

performance under weak supervision. 137

2 Methodology 138

We show the pipeline of our method in Figure 2. 139

Our method consists of three modules: The Search 140

with Combinatorial Mathematics (ComSearch) 141

module that searches for candidate equations; the 142

MWP model that is trained to predict equations 143

given the natural language text and pseudo labels; 144

the Ranking module that uses an explorer model to 145

find candidate equations and select the best candi- 146

date equation with a scorer model. 147
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Algorithm 1 enum_skel(n)

Require: n ≥ 1
Intialize empty list skels
for i ≤ n; i = 1; i++ do

left_list = unit_skel(i)
right_list = enum_skels(n− i)
for left in left_list do

for right in right_list do
move the start index of right to i
new_skels += left + right

end for
end for
skels += new_skels

end for
return skels

2.1 ComSearch148

Directly searching for non-equivalent equation ex-149

pressions is difficult, because the searching method150

needs to consider Commutative law, Associative151

law and other equivalent forms. To enumerate all152

non-equivalent equations for four arithmetic opera-153

tions, we transform the problem to finding skeleton154

structures that could be enumerated without repeat155

via deep-first search.156

Definition We define the set of non-equivalent157

equations using four arithmetic operations as Sn.158

We sort the set to two categories, either S± where159

the outermost operators are ±, such as a/b− c+ d160

and a + (b ∗ c − d), or S⋇ where the outermost161

operators are ⋇, such as (a + b) ∗ (c − d/e) and162

b ∗ (a− c). We call the former a general addition163

equation and the latter a general multiplication164

equation:165

S±
n = {(x1 ⋇ (..))± (xi ⋇ (..))± ..xn} (1)166

S⋇
n = {(x1 ± (..))⋇ (xi ± (..))⋇ ..xn} (2)167

These two sets are symmetrical. Consider el-168

ements in S±
n , we can rewrite the equation to x.169

Thus we can form a mapping g : x → g(x) from170

an general addition equation x to an skeleton struc-171

ture expression g(x). :172

x =((xi ⋇ (..)) + (xj ⋇ (..)) + ..)173

− ((xk ⋇ (..)) + (xl ⋇ (..)) + ..)174

g(x) =(xi(..))(xj(..))..&(xk(..))(xl(..))..175

The order of xi within the same layer of brackets176

is ignored in g(x), that it can deal with the equiv-177

alence caused by Commutative law and Associa-178

tive law. The addition and substraction terms are179

split by &, that it can deal with equivalence cause 180

by removing brackets. g(x) is a bijection, so the 181

enumeration problem transforms to finding such 182

skeletons: 183

n = 1 :a 184

g−1 :a 185

n = 2 :ab, a&b, b&a 186

g−1 :a+ b, a− b, b− a 187

n = 3 :abc, a&(b&c), (ab)&c, ... 188

g−1 :a+ b+ c, a− (b/c), (a ∗ b)− c, ... 189

... 190

191

The enumeration problem of these structures is 192

an expansion of solving Schroeder’s fourth prob- 193

lem (Schröder, 1870), which calculates the number 194

of labeled series-reduced rooted trees with n leaves. 195

We use a deep-first search algorithm shown in Algo- 196

rithm 1 to enumerate these skeletons. It considers 197

the position of the first bracket and then recursively 198

finds all possible skeletons of sub-sequences of the 199

variable sequence X = {xk}ik=1 (Wang, 2021). 200

While considering such skeletons could enumer- 201

ate all unique expressions, equations have at least 202

one element on the left of & in our target domain 203

and do not start with − or ÷. We further extend 204

the algorithm to consider these cases. To be no- 205

ticed, because there is at least one + or ∗ operator 206

for each equation, the left side of & must not be 207

empty while the right part has no restrictions. Thus 208

we define the unit_skel(i) equation to return pos- 209

sible skeletons with only one or none & and no 210

brackets. This constraint is equivalent to finding 211

non-empty subsets and its complement of the vari- 212

able sequence X . We can use Algorithm 1 to per- 213

form the enumeration of such skeletons, except for 214

defining two different unit_skel(i) to support the 215

enumeration of subtraction and division operation. 216

The enumeration algorithm of non-empty subsets 217

is trivial and omitted here. 218

unit_skeldiv(i) = {(A&A)|A ⊆ X ;A ̸= ∅}
(3) 219

220
unit_skelsub(i) =

{((a(A− a))&A− a)|A ⊆ X ; a ∈ A}
(4) 221

We transform the skeletons back to equations 222

to obtain all non-equivalent equations Sn. Such 223

enumeration considers absolute values and omits 224

pairs of solutions that are opposite to each other. 225

To search effectively, for the equations that con- 226

tain substraction, we add their opposite equation to 227
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the searching space. Given the compressed search228

space, we substitute the values for variables in the229

equation templates and use the equations which230

value matches with the answer number as candidate231

equations. If no equations could be extracted by232

using all numbers, we continue to consider: 1.omit-233

ting one number, 2.adding constant number 1 and234

pi and 3.using one number twice. If the algorithm235

extracts candidates at any stage, the further stages236

are not considered since it would introduce repeat-237

ing equations, e.g. 1 ∗ (a + b) is a duplication of238

a+ b.239

2.2 MWP Solving Models240

2.2.1 Goal-driven Tree-structured Solver241

We follow Hong et al. (2021) and Chatterjee et al.242

(2021) and use Goal-driven tree-structured MWP243

solver (GTS) (Xie and Sun, 2019) as the MWP244

model. GTS is a seq2seq model with the atten-245

tion mechanism that uses a bidirectional long short246

term memory network (BiLSTM) as the encoder247

and LSTM as the decoder. GTS also uses a recur-248

sive neural network to encode subtrees based on its249

children nodes representations with the gate mech-250

anism. With the subtree representations, this model251

can well use the information of the generated to-252

kens to predict a new token.253

Formally, the model takes a sequence of tokens254

{xi}ni=0 as the input, the encoder is a bidirectional255

LSTM with hidden states henci and the decoder256

adopts a unidirectional LSTM to generate the out-257

put in an autoregressive manner. Given decoder258

hidden states {hdect }, GTS also considers subtree259

representations which can provide more informa-260

tion for the decoding process. A recursive neural261

network is used to encode subtrees of the equation262

in a bottom-up manner. The subtree representa-263

tion esubtreet at timestep t is calculated based on its264

children nodes representations with the gate mech-265

anism. With the subtree representations, this model266

can also well use the information of the generated267

tokens to predict a new token. The representations268

st and esubtreet are finally fed to a Multi-layer Per-269

ceptron (MLP) layer to generate the output token270

yt.271

st =
n∑

i=1

αi
t · henci

=
n∑

i=1

exp(henci · hdect )∑n
j=1 exp(h

enc
j · hdect )

· henci

(5)272

2.2.2 Graph-to-Tree Solver 273

Following Chatterjee et al. (2021), we conduct ex- 274

periments on Graph-to-Tree (G2T) Solver (Zhang 275

et al., 2020b) . G2T is a direct extension of GTS, 276

which consists of a graph-based encoder capturing 277

the relationships and order information among the 278

quantities. 279

Formally, given the encoder hidden states in 280

Equation ??, the model uses GCNs built on the 281

Quantity Cell Graph and the Quantity Compari- 282

son Graph to calculate the graph embedding hgi 283

of each token i. The Quantity Cell Graph aims to 284

associate informative descriptive words to quantity 285

so as to enrich the quantity’s representation, while 286

the Quantity Comparison Graph aims to retain the 287

numerical qualities of the quantity and leverage 288

heuristics to improve representations of the rela- 289

tionships among quantities. Given the Graph Gk: 290

{hgki }ni=0 = GCN(Gk, {henci }ni=0) (6) 291

The final token representation hgi is the concate- 292

nation of the two graphs. The decoder part is simi- 293

lar to GTS. 294

2.3 Ranking 295

While ComSearch enumerates equations that are 296

non-equivalent without repeat, some variable sets 297

can coincidentally form multiple equations with 298

the same correct value, as we show in Figure 2. 299

The equations 150 ∗ 2 − 50 and 150 + 50 ∗ 2 are 300

non-equivalent, their values are equal, while only 301

150 ∗ 2− 50 is the correct solution. We refer this 302

problem as false-matching, which is an important 303

issue that has been overlooked by previous studies. 304

Previous work do not perform any processing on 305

these false-matching examples, which brings in 306

noise to the training data. 307

To process these data that have multiple candi- 308

date equations, we propose two ranking methods 309

to choose the best candidate equation. The meth- 310

ods is consist of two component, the explorer that 311

searches for candidate equations via searching al- 312

gorithms and generalization models, and the scorer 313

that classifies which candidate equation is the best 314

annotation for the example. 315

In the first method which we call the Check 316

Ranker, we use ComSearch as the explorer. We 317

assume that the pseudo data with only one equation 318

matching the answer is reliable, and leverage this 319

data to train the MWP model J , which is used as 320

the scorer. For each candidate text and equation 321
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Model Term # Prop(%)
- All Data 23,162 -

Ours

Too Long 233 1.0
Power Operator 51 0.2
Single 17,959 77.5
Multiple 3,931 17.0
Data 21,890 94.5

WARM
Data (w/o beam) - 14.5
Data (w/ beam) - 80.1

Table 1: Statistics of ComSearch Results.

pair x and its corresponding ComSearch candidate322

equations {yeq}search, we check the score of each323

candidate equation in the set to obtain the candi-324

date equation with the best score. The scorer model325

predicts the score of the equation at each time step326

t and sum the logarithm of the scores together.327

seq =

k∑
i=0

log(J(x, yeq)) (7)328

We use the candidate equation that has the high-329

est score as the pseudo label of this example and330

add it to the training data.331

In the second method which we call the Beam332

Ranker, we use both the MWP model and Com-333

Search as the explorer. We observe a high pre-334

cision on the predictions of the MWP model J335

when the answer is correct, that these prediction336

can also form candidate equations. We perform337

beam search with J and add the predictions that338

hold a correct answer {yeq}beam to the candidate339

equation set. We build an simple beam-score based340

judge model for this approach. If {yeq}beam is not341

an empty set, the highest beam score prediction342

is considered as the best candidate equation. If343

{yeq}beam is empty, we consider the ComSearch344

results that has the highest beam score. Here we345

use the same model J and score seq to calculate346

the beam score.347

3 Experiments348

3.1 Dataset and Baselines349

We evaluate our proposed method on the Math23K350

dataset. It contains 23,161 math word problems351

annotated with solution expressions and answers.352

We only use the problems and final answers. We353

evaluate our method on the train-test split setting of354

Wang et al. (2018a). All the results are evaluated355

by the three-run average.356

We compare our weakly-supervised models’357

math word problem solving accuracy with two358

baselines methods. 359

Chatterjee et al. (2021) proposed WARM that 360

uses RL to train an equation candidate generation 361

model with the reward of whether the value of 362

the equation is correct. Since the reward signal 363

is sparse due to the enormous search space, the 364

top1 accuracy of the candidate generation model 365

is limited, it uses beam search to further search 366

candidates. 367

Hong et al. (2021) proposed LBF, a learning-by- 368

fix algorithm that searches in neighbour space of 369

the predicted wrong answer by random walk and 370

tries to find a fix equation that holds the correct 371

value as the candidate equation. memory saves the 372

candidates of each epoch as training data. 373

3.2 Analysis on ComSearch 374

3.2.1 Search Statistics 375

We give statistics of ComSearch in Table 1. Among 376

the 23,162 examples, 233 have more than 6 vari- 377

ables that we filter them out, and 51 use the power 378

operation that our method is not applicable. 94.5% 379

of the examples find at least one equation that can 380

match the answer value, significantly higher than 381

WARM, which covers only 80.1% of the examples. 382

LBF dynamically searches for candidate equations, 383

and this measurement is not applicable. 17,959 384

examples match with only one equation, and 3,931 385

examples match with two or more equations that 386

need the ranking module to choose the pseudo label 387

further. We show the distribution of these examples 388

in the appendix. 389

3.2.2 Eliminating Equivalent Equations in 390

Search Space 391

We show the empirical compression of the search 392

space with ComSearch in Table 2. As we can 393

see, the compression ratio of ComSearch increases 394

as the variable number grows, up to more than 395

100 times when the number of variables reaches 396

6. We also show the results of considering remov- 397

ing brackets, where −/÷ can not be the children 398

node of +/∗, which is the compression considered 399

in Roy and Roth (2015); and Commutative Law, 400

which is the compression considered in Wang et al. 401

(2018a). We show that although the two methods 402

can compress the search space to some extent, but 403

there is a large gap between their compression ef- 404

ficiency and ours, up to more than 20 times when 405

the number of variables reaches 6. 406

The size of the Bruce-Force search space could 407

be directly calculated, which is n!∗ (n−1)!∗4n−1. 408
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#Variable Bruce-Force Removing Brackets Commutative ComSearch Ratio
1 1 1 1 1 1
2 8 8 6 6 1.3
3 192 144 108 68 2.8
4 9,216 5,184 3,816 1,170 7.9
5 737,280 311,040 224,640 27,142 27.2
6 88,473,600 27,993,600 19,841,760 793,002 111.6

Table 2: Empirical Results of Search Space Size.

Model Valid(%) Test(%)
GTS based

WARM - 12.8
+beam - 54.3
LBF 57.2(±0.5) 55.4(±0.5)
+memory 56.6(±6.9) 55.1(±6.2)
Ours 61.0(±0.3) 60.0(±0.3)
GTS - 75.6
G2T based

WARM - 13.5
+beam - 56.0
Ours 61.7(±1.1) 60.5(±0.6)
G2T - 77.4

Table 3: Results on Math23K. ± denotes the variance
of 3 runs for valid/test

Model Valid(%) Test(%)
Single Equation 58.9 57.5
Random Sample 57.3 56.3
Check Ranker 60.1 59.2
Beam Ranker 61.0 60.0

Table 4: Results of Ablation Study for Ranking. ‘Ran-
dom Sample’ denotes removing the ranking module and
randomly sampling an equation for the examples that
match with two or more equations.

If we consider the exponential generating function409

of card(Sn), based on Smooth Implicit-function410

Schema, we can have an approximation of Sn:411

card(Sn) ∼ C ∗ nn−1, which shows our search-412

ing method compresses the search space more than413

exponential level. We give a proof in the appendix.414

3.3 Main Results and Ablation Study415

We show our experimental results in Table 3. We416

reproduced the results of LBF with their official417

code and found that LBF+memory lacks robust-418

ness. As we can see in the table, the performance419

of LBF has high variance on both validation and420

test set. For a fair comparison, we additionally ran421

5-fold cross validation setting according to (Hong422

et al., 2021) for our model and LBF+memory with 423

the GTS model. The results show that LBF + mem- 424

ory achieves cross-validation score of 56.3% with 425

variance of ±6.2, while our model achieves cross- 426

validation score of 59.7 with variance of ±1.0, 427

which performs similar to the train-test setting. We 428

observe that its performance highly relies on the ini- 429

tialization of the model. When fewer candidates are 430

extracted at early-stage training, the performance 431

drops drastically since LBF relies on random walks 432

in an enormous search space. Our method achieves 433

state-of-the-art performance and outperforms other 434

baselines up to 3.8% and 2.7% on train-test and 435

cross-validation settings. Our method is also more 436

robust with minor variance. 437

We perform an ablation study with the GTS 438

based train-test setting in Table 4. Single Equa- 439

tion denotes using the 17,959 examples that only 440

match with one equation, the model achieves 57.5% 441

performance, which is slightly lower than using all 442

data and the ranking module, out-performing other 443

baseline models. This shows that the examples 444

with only one matching could be considered highly 445

reliable and achieve comparable performance with 446

a smaller training data size. We observe a per- 447

formance drop of at least 2.9% point without the 448

ranking module, showing that our ranking module 449

improves the performance. We can see that there 450

is a performance gap of 0.9% between the two 451

rankers, demonstrating the importance of consider- 452

ing candidate equations from the model prediction. 453

3.4 Analysis 454

We conduct analysis on GTS train-test setting since 455

the model achieve similar performance compared 456

with G2T and the run time is less. 457

3.4.1 Study on Number of Variables 458

In Table 5, we show the comparison of model per- 459

formance on examples of a different number of 460

variables. For the examples with 1 or 2 variables, 461

LBF has a slight performance advantage. While 462
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#Var LBF(%) ComSearch(%) Prop(%)
1 75.0 50.0 1.6
2 75.2 73.4 33.1
3 56.2 62.9 48.5
4 4.8 25.8 12.4
5 3.2 16.1 3.1
6 0 28.6 0.7
7 0 25.0 0.4

Table 5: Results of different number of variables.

Figure 3: Results of Oracle Test with gold labels.

the variable number grows, our method achieves463

better performance on examples with more vari-464

ables and larger search space, which demonstrates465

the efficiency of ComSearch. Eliminating equiva-466

lent equations allows our method to consider the467

larger search space, while LBF limits to a small468

neighbour space of the model prediction. When469

the variable number is small, the in-place random470

walk of LBF can possibly cover the correct equa-471

tions such as not using all numbers. When the472

variable number grows larger, as we show in Table473

2, the gap between the efficiency of our searching474

method and LBF expands, our method can con-475

sider more equations candidates and achieve better476

performance.477

3.4.2 Oracle Test478

While our searching method covers 94.5% of the479

training data as shown in Table 1, there is still a480

significant performance gap between the weakly481

supervised performance and fully supervised per-482

formance. As we stated in Section 2.3, we observe483

that the false-matching problem could potentially484

draw down the performance, which is verified by485

the effectiveness of the ranking module.486

To further analyze our two modules, we per-487

form two oracle tests for the weakly supervised488

system. In Figure 3, using the same data exam-489

ples, we replace the weakly supervised annotations490

with the supervised gold labels and train the MWP491

Model Equation Acc(%)
Single 65.5
Multiple 2.7
Full 23.0
Ranker 1(Multiple) 45.6
Ranker 2(Multiple) 57.4
Ranker 2(Full) 63.4

Table 6: Equation accuracy of different methods.

solver. We can see that there is a performance gap 492

of around 10% using the same data examples as 493

training data, which indicates that the weakly super- 494

vised annotations contains noise. Since all candi- 495

date equation annotations have the correct answer, 496

the false-matching problem is the reason that this 497

noise exists. This can show that the false-matching 498

problem is the key issue in weakly supervised set- 499

ting that causes the performance gap compared to 500

supervised setting. 501

In Table 6, we show the results of equation ac- 502

curacy of the training data. We check whether the 503

pseudo annotations that our system obtains is equiv- 504

alent to the gold labels, and the accuracy is calcu- 505

lated based on candidate equation level. We can 506

see that even in the examples that can only extract 507

one candidate equation, the error rate is still rela- 508

tively high. We show examples in the case study 509

section to explain this problem. The examples that 510

extract more than one candidate has an equation 511

accuracy rate as low as 2.7%, which makes our 512

ranking system essential. Benefited from the rank- 513

ing system, the multiple candidate data can also 514

achieve a higher equation accuracy rate. The sec- 515

ond ranker performs better than the first consider- 516

ing beam search results. 517

3.4.3 Case Study 518

We conduct case study for ComSearch on three 519

examples to further discuss the strengths and limi- 520

tations of the method in Table 7. 521

The first example extracts only one candidate 522

equation, although the written expression is dif- 523

ferent from the gold label, the two equations are 524

equivalent and the candidate is true-matching. The 525

second example extracts only one candidate equa- 526

tion, the false-matching candidate coincidentally 527

equals to the correct answer with this set of number, 528

however the candidate expression and gold label ex- 529

pression are not equivalent. The algorithm reaches 530

a candidate at the stage of using all numbers and 531

does not further search for candidates that use the 532

constant number 1. The third example extracts 533
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Text Candidates Gold Ans
Some children are planting trees along a road every
2 meters. They plant trees on both ends of the road.
At last they planted 11 trees. How long is the road?

2*(11-1) (11-1)*2 20

A library has 30 books. On the first day, 1
5 of the

books were borrowed out. On the second day, 5
books were returned. How many book are there in
the library now?

30 - 1
5 * 5 30*(1-(15 )) + 5 29

Peter and a few people are standing in a line, one
person every 2 meters. Peter found that there are
4 people before him and 5 people after him. How
long is this queue?

4*5-2 , (4+5)*2 4*2 + 5*2 18

Table 7: Case study of ComSearch. The dark green color denotes that the candidate is true-matching and the light
red color denotes that the candidate is false-matching.

two candidate equations, while only (4 + 5) ∗ 2534

holds the correct mathematical knowledge. The535

two candidates appear at the same searching stage536

and such false-matching cannot be avoid by our cur-537

rent searching method, where we need the ranker538

to help filter out the false-matching noise. For this539

example, the two rankers both select the correct540

label.541

4 Related Work542

Early approaches on math word problems mainly543

depend on hand-craft rules and templates (Bobrow,544

1964; Charniak, 1969). Later studies either use545

parsing methods, which relies on semantic pars-546

ing (Roy and Roth, 2018; Shi et al., 2015; Zou547

and Lu, 2019), or try to obtain an equation tem-548

plate (Kushman et al., 2014; Roy and Roth, 2015;549

Koncel-Kedziorski et al., 2015; Roy and Roth,550

2017). Recent studies focus on using deep learn-551

ing models to predict the equation template for full552

supervision setting.553

For weakly supervised setting, Hong et al. (2021)554

and Chatterjee et al. (2021) suffers from two ma-555

jor drawbacks. First they apply equation candidate556

searching on an enormous searching space, while557

our method can effectively extract high quality can-558

didate equations. Hong et al. (2021) results in low559

robustness and low performance on examples with560

more variables. Chatterjee et al. (2021) results in561

low coverage of examples that can extract candi-562

date equation. Second they use all candidate equa-563

tions for training and neglect the false-matching564

problem, which is the key issue that drags down565

the model performance in weakly supervised set-566

ting, while our ranking module addresses this issue567

and further boosts the performance. 568

For eliminating equivalent expressions, Roy and 569

Roth (2015) cannot generalize to SOTA models; 570

Wang et al. (2018a) performs compression instead 571

of enumeration without repeat of the target equa- 572

tion space, which remains to have high computa- 573

tional complexity. Both methods only consider a 574

part of the equivalence forms which leads to limited 575

compression efficiency. 576

5 Conclusion and Future Work 577

This paper proposes ComSearch, a searching 578

method based on Combinatorial Mathematics, to 579

extract candidate equations for Solving Math Word 580

Problems under weak supervision. ComSearch 581

compresses the enormous search space of equa- 582

tions beyond the exponential level, allowing the 583

algorithm to enumerate all possible non-equivalent 584

equations to search for candidate equations. We in- 585

vestigate the false-matching problem, which is the 586

key issue that drags down performance, and pro- 587

pose a ranking model to reduce noise. Our experi- 588

ments show that our method obtains high-quality 589

pseudo data for training, achieves state-of-the-art 590

performance under weak supervision settings, out- 591

performing strong baselines, especially for the ex- 592

amples with more variables. 593

As we observe from experiments, the perfor- 594

mance gap between the most reliable weak data 595

and oracle data is still 10% and the noise rate in the 596

pseudo data is still relatively high. Meanwhile our 597

ranking module only denoises multiple candidate 598

equations examples. For future work, we would 599

consider applying more advanced learning from 600

noise algorithms and denoise more training data. 601
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A Proof for Search Space Approximation602

Because there is at least one + or ∗ operator for603

each equation (i.e. −a− b− c is illegal), the target604

Sn is not symmetric and is hard to directly approx-605

imate. We need two assisting targets to form the606

approximate. This proof majorly relies on Flajolet607

and Sedgewick (2009).608

We first consider target U that considers only609

+, ∗ and ÷ three operators. We sort it into two610

categories: U+ that the outermost operator is +611

and U⋇ that the outermost operator is ⋇. Equations612

such as 1
a ∗ 1

b−c are still considered illegal.613

Z corresponds to a single variable equation. We614

can have the construction of U :615

U+ = Z + SET≥(U
⋇) (8)616

U⋇ = Z + (22 − 1) ∗ SET=2(U
+) (9)617

+ (23 − 1) ∗ SET=3(U
+)... (10)618

We apply symbolic method to obtain the EGF of619

the constructions:620

U+(z) = z +
∑
k≥2

1

k!
[U⋇(z)]k (11)621

= z + [eU
⋇(z) − 1− U⋇(z)] (12)622

U⋇(z) = z +
∑
k≥2

2k − 1

k!
[U+(z)]k (13)623

= z + e2U
+(z) − eU

+(z) − U+(z) (14)624

Meanwhile we have:625

U(z) = U+(z) + U⋇(z)− z (15)626

Next we consider target T that −a − b − c is627

considered legal. Similarly we define T± and T⋇.628

We consider the construction:629

T± = 2Z + SET≥(T
⋇) (16)630

T⋇ = 2Z + 2[(22 − 1) ∗ SET=2(T
±/2) (17)631

+ (23 − 1) ∗ SET=3(T
±/2)...] (18)632

With symbolic method we have:633

T±(z) = 2z +
∑
k≥2

1

k!
[U⋇(z)]k (19)634

= 2z + [eT
⋇(z) − 1− T⋇(z)] (20)635

T⋇(z) = 2z + 2
∑
k≥2

2k − 1

k!
[T±(z)/2]k (21)636

= 2z + 2eT
±(z) − 2eT

±(z)/2 − T±(z)
(22)

637

The illegal equations such as −a − b − c in T 638

equals to the counts of a+ b+ c, which is actually 639

U . So we have: 640

S(z) = T (z)− U(z) (23) 641

We now have the EGF of Sn. 642

With Smooth implicit-function schema and 643

Stirling approximiation function we have, for 644

an EGF y(z) =
∑

n≥0 ynz
n, Let G(z, w) = 645∑

m,n≥0 gm,nz
mwn, thus y(z) = G(z, y(z)): 646

n! ∗ [zn]y(z) ∼ c ∗ n!√
2πn3

∗ r−n+1/2 (24) 647

∼ c
√
2πnr√
2πn3

(
1

r
)n(

n

e
)n (25) 648

=
c
√
r

n
(
n

re
)n (26) 649

while r: 650

G(r, s) = s (27) 651

∂G(r, s)

∂w
= 1 (28) 652

and c: 653

c =

√
∂G(r, s)/∂z

∂2G(r, s)/∂w2
(29) 654

We still need the two assisting targets to perform 655

the approximation. We have: 656

U+(z) = ez+e2U
+(z)−eU

+(z)−U+(z) (30) 657

− e2U
+(z) + eU

+(z) + U+(z)− 1 (31) 658

Let G(z, w) = z+e2w−ew− ln(1+e2w−ew), 659

considering 27 and 29, r, s and c would be constant 660

numbers. 661

So we have: 662

n![zn]U+(z) ∼
c1
√
r1

n
(
n

r1e
)n (32) 663

Similarly we can approximate U⋇, T± and T⋇: 664

n![zn]U⋇(z) ∼
c2
√
r1

n
(
n

r2e
)n (33) 665

n![zn]T±(z) ∼
c3
√
r2

n
(
n

r3e
)n (34) 666

n![zn]T⋇(z) ∼
c4
√
r2

n
(
n

r4e
)n (35) 667

So we have: 668
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Figure 4: Distribution of Candidate Equation Number.

un = n![zn]U(z) ∼
(c1 + c2)

√
r1

n
(
n

r1e
)n (36)669

tn = n![zn]T (z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (37)670

Since S(z) = T (z) − U(z), the subtraction of671

un and tn would be our approximation. However672

we observe that r1 ≫ r3, that un can be ignored.673

So we have:674

sn = n![zn]S(z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (38)675

Q.E.D.676

B Distribution of Candidate Equations677

The largest candidate equation number of one ex-678

ample is 3914. We show the distribution of candi-679

date equations in Figure 4 and 5. The x axis repre-680

sent the the number of candidate, while the y axis681

represents the number of examples that have x can-682

didate equations. We can see from Figure 4, which683

includes examples that have 1 to 50 candidates, it684

is a long tail distribution that most examples only685

have a few candidate equations. From Figure 5,686

where we zoom in and focus on examples that have687

2 to 20 candidates, we can see that there are a lot688

of examples that have more than 2 candidate equa-689

tions, and the ranking module is essential.690

C Experimental Details691

We run our experiments on single card GTX3090Ti,692

each run takes around 2-3 hours for all models. We693

did not perform extra hyperparameter searching694

and use the same hyperparameters as the public695

release of the two models, except for epoch number696

which is decided by the validation set. The code is697

conducted based on Pytorch.698

Figure 5: Distribution of Candidate Equation Number.
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