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Abstract

Previous studies have introduced a weakly-
supervised paradigm for solving math word
problems requiring only the answer value an-
notation. While these methods search for cor-
rect value equation candidates as pseudo la-
bels, they search among a narrow sub-space of
the enormous equation space. To address this
problem, we propose a novel search algorithm
with combinatorial mathematics ComSearch,
which can compress the search space by exclud-
ing mathematical equivalent equations. The
compression allows the searching algorithm to
enumerate all possible equations and obtain
high-quality data. We investigate the noise in
the pseudo labels that hold wrong mathemati-
cal logic , which we refer as the false-matching
problem, and propose a ranking model to de-
noise the pseudo labels. Our approach holds a
flexible framework to utilize two existing su-
pervised math word problem solvers to train
pseudo labels, and both achieve state-of-the-art
performance in the weak supervision task.

1 Introduction

Solving math word problems (MWPs) is the task
of extracting a mathematical solution from prob-
lems written in natural language. In Figure 1, we
present an example of MWP. Based on a sequence-
to-sequence (seq2seq) framework that takes in the
text descriptions of the MWPs and predicts the an-
swer equation (Wang et al., 2017), task specialized
encoder and decoder architectures (Wang et al.,
2018b, 2019; Xie and Sun, 2019; Liu et al., 2019;
Guan et al., 2019; Zhang et al., 2020b,a; Shen
and Jin, 2020), data augmentation and normaliza-
tion (Wang et al., 2018a; Liu et al., 2020), pre-
trained models (Tan et al., 2021; Liang et al., 2021;
Shen et al., 2021) and various other studies have
been conducted on full supervision setting of the
task. This setting requires equation expression an-
notation, which is expensive and time-consuming.

Question: There are 150 non-fiction books on
the shelf. The number of fiction books is 50
less than 2 times of non-fiction books. How
many fiction book are there?

—
Answer: X = 150250 = 250 | X = 19072-50 @
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Figure 1: Example of MWP solving system under full
supervision and weak supervision.

Recently Hong et al. (2021) and Chatterjee et al.
(2021) addressed this problem and proposed the
weak supervision setting, where only the answer
value annotation is given for supervision. These
methods first extract candidate equations that ob-
tain the correct value and then use them as pseudo
labels to train the MWP solving model. However,
the solution space is enormous with the bruce-force
searching used in these two studies, i.e., O(n?")
with n variables. When the number of variables in-
creases, it becomes computationally impossible to
traverse all possible equations due to the high com-
putational complexity. Hong et al. (2021) searches
among neighbour equations of the wrong model
prediction in the solution space via random walk.
Chatterjee et al. (2021) trains a candidate equation
extraction model using reinforcement learning (RL)
to explore the solution space, where the reward is
given by whether the equation obtains the correct
value. Both these methods lack robustness and
highly relies on initialization or beam searching.

We observe that although the search space is am-
ple, many equations in the search space are equiv-
alent. For example, in Figure 1, ‘150 x 2 — 50’
and ‘2 * 150 — 50’ are mathematically equiva-
lent. Eliminating such equivalent expressions in the
searching algorithm can compress the search space
and lower the computational complexity. Roy and
Roth (2015) proposed a model that decomposes the
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Figure 2: The model overview.

equation prediction problem to various classifica-
tion problems, which eliminates some equivalence
forms of the equation. However the compression is
highly integrated with their model and cannot gen-
eralize to other models including the SOTA seq2seq
based models. Moreover, it can only cover limited
equivalence forms, leaving out various important
forms such as Commutative law and Associative
law. (Wang et al., 2018a) proposed a normalization
method for supervised MWP systems that consid-
ers Commutative law. The method merges several
equivalent expression to one expression, resulting
in compression of the target equation space. How-
ever, their method requires bruce-force enumera-
tion before compression, which remains to have
high computational complexity. In both two stud-
ies, only limited equivalence forms are considered,
that the equation space is still considerably large.

In this paper, we investigate theories in combi-
natorial mathematics and propose a new searching
method that searches through only non-equivalent
equations in the search space. Our method could
be proven to have an approximate complexity of
O(n™), allowing the algorithm to find all possible
candidate equations with the given variables. We
show that 77.5% percent of the examples have only
one equation candidate and form high quality and
reliable data.

We also observe a false-matching problem in
the weakly supervised setting, where the candi-
date equation extraction algorithms reaches one or
more candidates with the correct value, however
their mathematical reasoning logic is wrong. For
example, in Figure 1, ‘150 * 2 — 50” (Eql) and
‘50 % 2 + 150’ (Eq3) have the same value, however
Eq3 holds a false mathematical reasoning logic and
only Eql is correct. While previous methods (Hong
etal., 2021; Chatterjee et al., 2021) take in all candi-
dates with the correct value as annotated data, these
annotations leads to false mathematical inference
brings in noise to the training process. To address

this problem, we build a ranking module to choose
the best pseudo label for examples with multiple
candidate equations. The module first searches for
candidate equations via searching algorithms and
generalization models, and then uses a classifier to
choose the best candidate equation for the example.
We investigate how the false-matching problem
drags down the system’s performance and propose
two ranking models to alleviate this problem.

We conduct experiments on two strong MWP
solvers, the results demonstrate the effectiveness
and generalization ability of our method, achieving
state-of-the-art (SOTA) results under the weakly
supervised setting.

In summary, our contribution is three-fold:

* We propose ComSearch, which is a search-
ing algorithm that enumerates non-equivalent
equations without repeating to search effec-
tively for candidate equations.

* We are the first to investigate the false-
matching problem that brings noise to the
pseudo training data. We propose a ranking
module to reduce the noise and give detailed
oracle analysis on the problem.

* We perform experiments on two MWP solvers
with our ranking module, and achieve SOTA
performance under weak supervision.

2 Methodology

We show the pipeline of our method in Figure 2.
Our method consists of three modules: The Search
with Combinatorial Mathematics (ComSearch)
module that searches for candidate equations; the
MWP model that is trained to predict equations
given the natural language text and pseudo labels;
the Ranking module that uses an explorer model to
find candidate equations and select the best candi-
date equation with a scorer model.



Algorithm 1 enum_skel(n)

Require: n > 1
Intialize empty list skels
fori<n; 1=1; 71+ +do
left_list = unit_skel(1)
right_list = enum_skels(n — 1)
for left in left_list do
for right in right_list do
move the start index of right to ¢
new_skels += left + right
end for
end for
skels += new_skels
end for
return skels

2.1 ComSearch

Directly searching for non-equivalent equation ex-
pressions is difficult, because the searching method
needs to consider Commutative law, Associative
law and other equivalent forms. To enumerate all
non-equivalent equations for four arithmetic opera-
tions, we transform the problem to finding skeleton
structures that could be enumerated without repeat
via deep-first search.

Definition We define the set of non-equivalent
equations using four arithmetic operations as Sy,.
We sort the set to two categories, either ST where
the outermost operators are +, such as a/b— c+d
and a + (b * ¢ — d), or S* where the outermost
operators are %, such as (a + b) * (¢ — d/e) and
b* (a — c¢). We call the former a general addition
equation and the latter a general multiplication
equation:

S ={(z1 % () £ (% () £.2,} (1)

SEF={(r1 £ () *(x; £ () * .2} ()

These two sets are symmetrical. Consider el-
ements in S;5, we can rewrite the equation to x.
Thus we can form a mapping g :  — g(x) from
an general addition equation z to an skeleton struc-
ture expression g(x). :

o =((a; % () + (2 % () + ..
— (a5 () + (% () + -

9(@) =(xi(..)(;(..)-&(ar () (@ ().
The order of x; within the same layer of brackets
is ignored in g(z), that it can deal with the equiv-
alence caused by Commutative law and Associa-
tive law. The addition and substraction terms are

split by &, that it can deal with equivalence cause
by removing brackets. g(x) is a bijection, so the
enumeration problem transforms to finding such
skeletons:

n=1:a

gf1 a

n = 2 :ab, akeb, b&a

g l:a+ba—bb—a

n = 3 :abe, a&(b&c), (ab)&e, ...
gt iat+b+ea—(b/c),(axb) —c,..

The enumeration problem of these structures is
an expansion of solving Schroeder’s fourth prob-
lem (Schroder, 1870), which calculates the number
of labeled series-reduced rooted trees with n leaves.
We use a deep-first search algorithm shown in Algo-
rithm 1 to enumerate these skeletons. It considers
the position of the first bracket and then recursively
finds all possible skeletons of sub-sequences of the
variable sequence X = {:zk}i:l (Wang, 2021).
While considering such skeletons could enumer-
ate all unique expressions, equations have at least
one element on the left of & in our target domain
and do not start with — or <. We further extend
the algorithm to consider these cases. To be no-
ticed, because there is at least one + or * operator
for each equation, the left side of & must not be
empty while the right part has no restrictions. Thus
we define the unit_skel(i) equation to return pos-
sible skeletons with only one or none & and no
brackets. This constraint is equivalent to finding
non-empty subsets and its complement of the vari-
able sequence /X'. We can use Algorithm 1 to per-
form the enumeration of such skeletons, except for
defining two different unit_skel(i) to support the
enumeration of subtraction and division operation.
The enumeration algorithm of non-empty subsets
is trivial and omitted here.
unit_skel g, (i) = {(A&A)|A C X; A # 0}
3)

unit_skelgy(i) = A
{((a(A—a)&A —a)|[AC X;a € A} @

We transform the skeletons back to equations
to obtain all non-equivalent equations .S,,. Such
enumeration considers absolute values and omits
pairs of solutions that are opposite to each other.
To search effectively, for the equations that con-
tain substraction, we add their opposite equation to



the searching space. Given the compressed search
space, we substitute the values for variables in the
equation templates and use the equations which
value matches with the answer number as candidate
equations. If no equations could be extracted by
using all numbers, we continue to consider: 1.omit-
ting one number, 2.adding constant number 1 and
pi and 3.using one number twice. If the algorithm
extracts candidates at any stage, the further stages
are not considered since it would introduce repeat-
ing equations, e.g. 1 % (a + b) is a duplication of
a+b.

2.2 MWP Solving Models
2.2.1 Goal-driven Tree-structured Solver

We follow Hong et al. (2021) and Chatterjee et al.
(2021) and use Goal-driven tree-structured MWP
solver (GTS) (Xie and Sun, 2019) as the MWP
model. GTS is a seq2seq model with the atten-
tion mechanism that uses a bidirectional long short
term memory network (BiLSTM) as the encoder
and LSTM as the decoder. GTS also uses a recur-
sive neural network to encode subtrees based on its
children nodes representations with the gate mech-
anism. With the subtree representations, this model
can well use the information of the generated to-
kens to predict a new token.

Formally, the model takes a sequence of tokens
{x;}1 as the input, the encoder is a bidirectional
LSTM with hidden states h{" and the decoder
adopts a unidirectional LSTM to generate the out-
put in an autoregressive manner. Given decoder
hidden states {h¢°°}, GTS also considers subtree
representations which can provide more informa-
tion for the decoding process. A recursive neural
network is used to encode subtrees of the equation
in a bottom-up manner. The subtree representa-
tion ef“bree at timestep  is calculated based on its
children nodes representations with the gate mech-
anism. With the subtree representations, this model
can also well use the information of the generated
tokens to predict a new token. The representations
s; and eUP*¢¢ are finally fed to a Multi-layer Per-
ceptron (MLP) layer to generate the output token
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2.2.2 Graph-to-Tree Solver

Following Chatterjee et al. (2021), we conduct ex-
periments on Graph-to-Tree (G2T) Solver (Zhang
et al., 2020b) . G2T is a direct extension of GTS,
which consists of a graph-based encoder capturing
the relationships and order information among the
quantities.

Formally, given the encoder hidden states in
Equation ??, the model uses GCNs built on the
Quantity Cell Graph and the Quantity Compari-
son Graph to calculate the graph embedding hY
of each token ¢. The Quantity Cell Graph aims to
associate informative descriptive words to quantity
S0 as to enrich the quantity’s representation, while
the Quantity Comparison Graph aims to retain the
numerical qualities of the quantity and leverage
heuristics to improve representations of the rela-
tionships among quantities. Given the Graph Gy:

{n{*}ico = GON(Gr AR{" Vo) (6)

The final token representation h is the concate-

nation of the two graphs. The decoder part is simi-
lar to GTS.

2.3 Ranking

While ComSearch enumerates equations that are
non-equivalent without repeat, some variable sets
can coincidentally form multiple equations with
the same correct value, as we show in Figure 2.
The equations 150 * 2 — 50 and 150 + 50 * 2 are
non-equivalent, their values are equal, while only
150 % 2 — 50 is the correct solution. We refer this
problem as false-matching, which is an important
issue that has been overlooked by previous studies.
Previous work do not perform any processing on
these false-matching examples, which brings in
noise to the training data.

To process these data that have multiple candi-
date equations, we propose two ranking methods
to choose the best candidate equation. The meth-
ods is consist of two component, the explorer that
searches for candidate equations via searching al-
gorithms and generalization models, and the scorer
that classifies which candidate equation is the best
annotation for the example.

In the first method which we call the Check
Ranker, we use ComSearch as the explorer. We
assume that the pseudo data with only one equation
matching the answer is reliable, and leverage this
data to train the MWP model .J, which is used as
the scorer. For each candidate text and equation



Model Term # Prop(%)
- All Data 23,162 -
Too Long 233 1.0
Power Operator 51 0.2
Ours Single 17,959 77.5
Multiple 3,931 17.0
Data 21,890 94.5
Data (w/o beam) - 14.5
WARM Data (w/ beam) - 80.1

Table 1: Statistics of ComSearch Results.

pair z and its corresponding ComSearch candidate
equations {ye, } 54", we check the score of each
candidate equation in the set to obtain the candi-
date equation with the best score. The scorer model
predicts the score of the equation at each time step
t and sum the logarithm of the scores together.

k
Seq = Z lOg(J(.’L', yeq)> (7
1=0

We use the candidate equation that has the high-
est score as the pseudo label of this example and
add it to the training data.

In the second method which we call the Beam
Ranker, we use both the MWP model and Com-
Search as the explorer. We observe a high pre-
cision on the predictions of the MWP model J
when the answer is correct, that these prediction
can also form candidate equations. We perform
beam search with J and add the predictions that
hold a correct answer {y,, }°**™ to the candidate
equation set. We build an simple beam-score based
judge model for this approach. If {y., }*¢*™ is not
an empty set, the highest beam score prediction
is considered as the best candidate equation. If
{Yeq }P¥™ is empty, we consider the ComSearch
results that has the highest beam score. Here we
use the same model J and score s, to calculate
the beam score.

3 Experiments

3.1 Dataset and Baselines

We evaluate our proposed method on the Math23K
dataset. It contains 23,161 math word problems
annotated with solution expressions and answers.
We only use the problems and final answers. We
evaluate our method on the train-test split setting of
Wang et al. (2018a). All the results are evaluated
by the three-run average.

We compare our weakly-supervised models’
math word problem solving accuracy with two

baselines methods.

Chatterjee et al. (2021) proposed WARM that
uses RL to train an equation candidate generation
model with the reward of whether the value of
the equation is correct. Since the reward signal
is sparse due to the enormous search space, the
topl accuracy of the candidate generation model
is limited, it uses beam search to further search
candidates.

Hong et al. (2021) proposed LBF, a learning-by-
fix algorithm that searches in neighbour space of
the predicted wrong answer by random walk and
tries to find a fix equation that holds the correct
value as the candidate equation. memory saves the
candidates of each epoch as training data.

3.2 Analysis on ComSearch
3.2.1 Search Statistics

We give statistics of ComSearch in Table 1. Among
the 23,162 examples, 233 have more than 6 vari-
ables that we filter them out, and 51 use the power
operation that our method is not applicable. 94.5%
of the examples find at least one equation that can
match the answer value, significantly higher than
WARM, which covers only 80.1% of the examples.
LBF dynamically searches for candidate equations,
and this measurement is not applicable. 17,959
examples match with only one equation, and 3,931
examples match with two or more equations that
need the ranking module to choose the pseudo label
further. We show the distribution of these examples
in the appendix.

3.2.2 Eliminating Equivalent Equations in
Search Space

We show the empirical compression of the search
space with ComSearch in Table 2. As we can
see, the compression ratio of ComSearch increases
as the variable number grows, up to more than
100 times when the number of variables reaches
6. We also show the results of considering remov-
ing brackets, where —/+ can not be the children
node of +/*, which is the compression considered
in Roy and Roth (2015); and Commutative Law,
which is the compression considered in Wang et al.
(2018a). We show that although the two methods
can compress the search space to some extent, but
there is a large gap between their compression ef-
ficiency and ours, up to more than 20 times when
the number of variables reaches 6.

The size of the Bruce-Force search space could
be directly calculated, which is n!* (n —1)! %471,



#Variable Bruce-Force Removing Brackets Commutative ComSearch | Ratio

1 1 1 1 1 1

2 8 8 6 6 1.3

3 192 144 108 68 2.8

4 9,216 5,184 3,816 1,170 7.9

5 737,280 311,040 224,640 27,142 | 27.2

6 88,473,600 27,993,600 19,841,760 793,002 | 111.6

Table 2: Empirical Results of Search Space Size.

Model | Valid(%) Test(%) et al., 2021) for our model and LBF+memory with
GTS based the GTS model. The results show that LBF + mem-
WARM - 12.8 ory achieves cross-validation score of 56.3% with
+beam - 54.3 variance of +6.2, while our model achieves cross-
LBF 57.2(4+0.5) 55.4(£0.5) validation score of 59.7 with variance of +1.0,
+memory 56.6(+6.9) 55.1(£6.2) which performs similar to the train-test setting. We
Ours 61.0(+0.3) 60.0(+0.3) observe that its performance highly relies on the ini-
GTS - 75.6 tialization of the model. When fewer candidates are
G2T based extracted at early-stage training, the performance
WARM - 13.5 drops drastically since LBF relies on random walks
+heam - 56.0 in an enormous search space. Our method achieves
Ours 61.7(%+1.1) 60.5(£0.6) state-of-the-art performance and outperforms other
G2T - 77.4 baselines up to 3.8% and 2.7% on train-test and

Table 3: Results on Math23K. + denotes the variance
of 3 runs for valid/test

Model Valid(%) Test(%)
Single Equation 58.9 57.5
Random Sample 57.3 56.3
Check Ranker 60.1 59.2
Beam Ranker 61.0 60.0

Table 4: Results of Ablation Study for Ranking. ‘Ran-
dom Sample’ denotes removing the ranking module and
randomly sampling an equation for the examples that
match with two or more equations.

If we consider the exponential generating function
of card(S,,), based on Smooth Implicit-function
Schema, we can have an approximation of S,:
card(Sy) ~ C * n"!, which shows our search-
ing method compresses the search space more than
exponential level. We give a proof in the appendix.

3.3 Main Results and Ablation Study

We show our experimental results in Table 3. We
reproduced the results of LBF with their official
code and found that LBF+memory lacks robust-
ness. As we can see in the table, the performance
of LBF has high variance on both validation and
test set. For a fair comparison, we additionally ran
5-fold cross validation setting according to (Hong

cross-validation settings. Our method is also more
robust with minor variance.

We perform an ablation study with the GTS
based train-test setting in Table 4. Single Equa-
tion denotes using the 17,959 examples that only
match with one equation, the model achieves 57.5%
performance, which is slightly lower than using all
data and the ranking module, out-performing other
baseline models. This shows that the examples
with only one matching could be considered highly
reliable and achieve comparable performance with
a smaller training data size. We observe a per-
formance drop of at least 2.9% point without the
ranking module, showing that our ranking module
improves the performance. We can see that there
is a performance gap of 0.9% between the two
rankers, demonstrating the importance of consider-
ing candidate equations from the model prediction.

3.4 Analysis

We conduct analysis on GTS train-test setting since
the model achieve similar performance compared
with G2T and the run time is less.

3.4.1 Study on Number of Variables

In Table 5, we show the comparison of model per-
formance on examples of a different number of
variables. For the examples with 1 or 2 variables,
LBF has a slight performance advantage. While



#Var | LBF(%) ComSearch(%) | Prop(%) Model Equation Acc(%)

1 75.0 50.0 1.6 Single 65.5

2 75.2 73.4 33.1 Multiple 2.7

3 56.2 62.9 48.5 Full 23.0

4 4.8 25.8 12.4 Ranker 1(Multiple) 45.6

5 32 16.1 3.1 Ranker 2(Multiple) 57.4

6 0 28.6 0.7 Ranker 2(Full) 63.4

7 0 25.0 0.4

Table 5: Results of different number of variables.

Oracle Test
B Weak ® Oracle B Supervised
80

732 75.6
711 .
70
60 57.5]
) I i
40 - -

Single Full Supervised

Figure 3: Results of Oracle Test with gold labels.

the variable number grows, our method achieves
better performance on examples with more vari-
ables and larger search space, which demonstrates
the efficiency of ComSearch. Eliminating equiva-
lent equations allows our method to consider the
larger search space, while LBF limits to a small
neighbour space of the model prediction. When
the variable number is small, the in-place random
walk of LBF can possibly cover the correct equa-
tions such as not using all numbers. When the
variable number grows larger, as we show in Table
2, the gap between the efficiency of our searching
method and LBF expands, our method can con-
sider more equations candidates and achieve better
performance.

3.4.2 Oracle Test

While our searching method covers 94.5% of the
training data as shown in Table 1, there is still a
significant performance gap between the weakly
supervised performance and fully supervised per-
formance. As we stated in Section 2.3, we observe
that the false-matching problem could potentially
draw down the performance, which is verified by
the effectiveness of the ranking module.

To further analyze our two modules, we per-
form two oracle tests for the weakly supervised
system. In Figure 3, using the same data exam-
ples, we replace the weakly supervised annotations
with the supervised gold labels and train the MWP

Table 6: Equation accuracy of different methods.

solver. We can see that there is a performance gap
of around 10% using the same data examples as
training data, which indicates that the weakly super-
vised annotations contains noise. Since all candi-
date equation annotations have the correct answer,
the false-matching problem is the reason that this
noise exists. This can show that the false-matching
problem is the key issue in weakly supervised set-
ting that causes the performance gap compared to
supervised setting.

In Table 6, we show the results of equation ac-
curacy of the training data. We check whether the
pseudo annotations that our system obtains is equiv-
alent to the gold labels, and the accuracy is calcu-
lated based on candidate equation level. We can
see that even in the examples that can only extract
one candidate equation, the error rate is still rela-
tively high. We show examples in the case study
section to explain this problem. The examples that
extract more than one candidate has an equation
accuracy rate as low as 2.7%, which makes our
ranking system essential. Benefited from the rank-
ing system, the multiple candidate data can also
achieve a higher equation accuracy rate. The sec-
ond ranker performs better than the first consider-
ing beam search results.

3.4.3 Case Study

We conduct case study for ComSearch on three
examples to further discuss the strengths and limi-
tations of the method in Table 7.

The first example extracts only one candidate
equation, although the written expression is dif-
ferent from the gold label, the two equations are
equivalent and the candidate is true-matching. The
second example extracts only one candidate equa-
tion, the false-matching candidate coincidentally
equals to the correct answer with this set of number,
however the candidate expression and gold label ex-
pression are not equivalent. The algorithm reaches
a candidate at the stage of using all numbers and
does not further search for candidates that use the
constant number 1. The third example extracts



Text

Some children are planting trees along a road every

2 meters. They plant trees on both ends of the road.

At last they planted 11 trees. How long is the road?

A library has 30 books. On the first day, % of the
books were borrowed out. On the second day, 5
books were returned. How many book are there in
the library now?

Candidates Gold Ans
2%(11-1) (11-1)*2 20
30-1%5 30%(1-(3)) +5 29

Peter and a few people are standing in a line, one
person every 2 meters. Peter found that there are
4 people before him and 5 people after him. How

long is this queue?

4%5-2  (445)*2 4%2 4+ 5%2 18

Table 7: Case study of ComSearch. The dark green color denotes that the candidate is true-matching and the light

red color denotes that the candidate is false-matching.

two candidate equations, while only (4 + 5) * 2
holds the correct mathematical knowledge. The
two candidates appear at the same searching stage
and such false-matching cannot be avoid by our cur-
rent searching method, where we need the ranker
to help filter out the false-matching noise. For this
example, the two rankers both select the correct
label.

4 Related Work

Early approaches on math word problems mainly
depend on hand-craft rules and templates (Bobrow,
1964; Charniak, 1969). Later studies either use
parsing methods, which relies on semantic pars-
ing (Roy and Roth, 2018; Shi et al., 2015; Zou
and Lu, 2019), or try to obtain an equation tem-
plate (Kushman et al., 2014; Roy and Roth, 2015;
Koncel-Kedziorski et al., 2015; Roy and Roth,
2017). Recent studies focus on using deep learn-
ing models to predict the equation template for full
supervision setting.

For weakly supervised setting, Hong et al. (2021)
and Chatterjee et al. (2021) suffers from two ma-
jor drawbacks. First they apply equation candidate
searching on an enormous searching space, while
our method can effectively extract high quality can-
didate equations. Hong et al. (2021) results in low
robustness and low performance on examples with
more variables. Chatterjee et al. (2021) results in
low coverage of examples that can extract candi-
date equation. Second they use all candidate equa-
tions for training and neglect the false-matching
problem, which is the key issue that drags down
the model performance in weakly supervised set-
ting, while our ranking module addresses this issue

and further boosts the performance.

For eliminating equivalent expressions, Roy and
Roth (2015) cannot generalize to SOTA models;
Wang et al. (2018a) performs compression instead
of enumeration without repeat of the target equa-
tion space, which remains to have high computa-
tional complexity. Both methods only consider a
part of the equivalence forms which leads to limited
compression efficiency.

5 Conclusion and Future Work

This paper proposes ComSearch, a searching
method based on Combinatorial Mathematics, to
extract candidate equations for Solving Math Word
Problems under weak supervision. ComSearch
compresses the enormous search space of equa-
tions beyond the exponential level, allowing the
algorithm to enumerate all possible non-equivalent
equations to search for candidate equations. We in-
vestigate the false-matching problem, which is the
key issue that drags down performance, and pro-
pose a ranking model to reduce noise. Our experi-
ments show that our method obtains high-quality
pseudo data for training, achieves state-of-the-art
performance under weak supervision settings, out-
performing strong baselines, especially for the ex-
amples with more variables.

As we observe from experiments, the perfor-
mance gap between the most reliable weak data
and oracle data is still 10% and the noise rate in the
pseudo data is still relatively high. Meanwhile our
ranking module only denoises multiple candidate
equations examples. For future work, we would
consider applying more advanced learning from
noise algorithms and denoise more training data.



A Proof for Search Space Approximation

Because there is at least one + or * operator for
each equation (i.e. —a — b — c is illegal), the target
Sy, 1s not symmetric and is hard to directly approx-
imate. We need two assisting targets to form the
approximate. This proof majorly relies on Flajolet
and Sedgewick (2009).

We first consider target U that considers only
+, * and + three operators. We sort it into two
categories: U™ that the outermost operator is +
and U* that the outermost operator is 5. Equations
such as % * ﬁ are still considered illegal.

Z corresponds to a single variable equation. We
can have the construction of U

Ut =7+ SET-(U*) ®)
U¥=Z+(22—1)« SET_,(U") (9

+ (22 = 1)« SET_3(U™)... (10)
We apply symbolic method to obtain the EGF of
the constructions:

1
U™ (z) :z—l—ZE[U*(z)]k (11)
E>2
=24 [V7E) 1 - U*(2)] (12)
2k —1
Uk(z) =2+ ), — WU () (13)
k>2
=2+ 2T _UTE) _gt(z) (14
Meanwhile we have:
U(z) =U"(2)+U*(2) — 2 (15)

Next we consider target 1" that —a — b — c is
considered legal. Similarly we define 7+ and T*.
We consider the construction:

t =27 + SET-(T*) (16)
T* =27 +2[(22 — 1) * SET_o(T*/2) (17)

+ (22— 1) % SET_3(T*/2)..] (18)
With symbolic method we have:
1
TH(2) =24 ) H[U*(z)]k (19)
E>2
=224 [T ) — 1 —T*(2)] (20)
ko_
T*(z) =242 21 [T*(z)/2]F @1
k>2
— 925 4 2eT5(R) _ 9eT*(2)/2 _ T%(2)
(22)

The illegal equations such as —a — b — cin T
equals to the counts of a + b + ¢, which is actually
U. So we have:

S(z)=T(z) —U(z)
We now have the EGF of S,,.

With Smooth implicit-function schema and
Stirling approximiation function we have, for

(23)

an EGF y(z) = > ,5oun2", Let G(z,w) =
Zm,nzo gm,nzmwn, thus y(Z) = G(Z7 y(Z)).
n!x [2"y(z) ~ \jﬂ s pHL/2 (24)
cV2mnr 1
~ Sy 25
IO e
orom.,
= T(E) (26)
while r:
G(r,s) =s 27
0G(r,s) _1 (28)
ow
and c:
. 0G(r,s)/0z 29)

9?G(r,s)/ow?
We still need the two assisting targets to perform
the approximation. We have:

(30)
VB LUt(z) =1 31

Let G(z,w) = z+e* —e¥ —In(1+e* —ev),
considering 27 and 29, 1, s and ¢ would be constant
numbers.

Ut (z) = e O=e DUt (3)

So we have:
Ut (z) ~ DYy

1€

(32)

Similarly we can approximate U*, TF and T*:

W[z ()~ YLy

(33)
n o re

W) ~ S )

W) ~ L2 )

So we have:
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Figure 4: Distribution of Candidate Equation Number.

up, = nl[2"U(z) ~ w:f)\/ﬁ(r?:e)” (36)
o=l T ~ BV )

Since S(z) = T'(z) — U(z), the subtraction of
uy and t,, would be our approximation. However
we observe that r; > rs, that u,, can be ignored.
So we have:

(c3 +ca)y/12

n

()" (38)

o€

sp = nl[2"]S(2) ~

Q.E.D.

B Distribution of Candidate Equations

The largest candidate equation number of one ex-
ample is 3914. We show the distribution of candi-
date equations in Figure 4 and 5. The x axis repre-
sent the the number of candidate, while the y axis
represents the number of examples that have x can-
didate equations. We can see from Figure 4, which
includes examples that have 1 to 50 candidates, it
is a long tail distribution that most examples only
have a few candidate equations. From Figure 5,
where we zoom in and focus on examples that have
2 to 20 candidates, we can see that there are a lot
of examples that have more than 2 candidate equa-
tions, and the ranking module is essential.

C Experimental Details

We run our experiments on single card GTX3090Ti,
each run takes around 2-3 hours for all models. We
did not perform extra hyperparameter searching
and use the same hyperparameters as the public
release of the two models, except for epoch number
which is decided by the validation set. The code is
conducted based on Pytorch.

10
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Figure 5: Distribution of Candidate Equation Number.
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