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Abstract
Query-focused summarization (QFS) aims to001
produce summaries that answer particular ques-002
tions of interest, enabling greater user con-003
trol and personalization. With the advent of004
large language models (LLMs), shows their005
impressive capability of textual understanding006
through large-scale pretraining, which implies007
the great potential of extractive snippet gener-008
ation. In this paper, we systematically inves-009
tigated two indispensable characteristics that010
the LLMs-based QFS models should be har-011
nessed, Lengthy Document Summarization and012
Efficiently Fine-grained Query-LLM Alignment,013
respectively. Correspondingly, we propose two014
modules called Query-aware HyperExpert and015
Query-focused Infini-attention to access the016
aforementioned characteristics. These innova-017
tions pave the way for broader application and018
accessibility in the field of QFS technology.019
Extensive experiments conducted on existing020
QFS benchmarks indicate the effectiveness and021
generalizability of the proposed approach.022

1 Introduction023

In today’s world, where we are constantly bom-024

barded with vast amounts of text, the ability to025

efficiently summarize information has become cru-026

cial. Textual summarization (Gambhir and Gupta,027

2017), the process of condensing a lengthy docu-028

ment into a succinct and digestible version while029

preserving the most crucial information, enabling030

quicker understanding and better management of031

information. As everyone has unique needs and032

interests in real-life scenarios, necessitating sum-033

marizers that succinctly address the information034

needed for a specific query by extracting essential035

information from documents, i.e., Query-Focused036

Summarization (QFS) (Daumé III, 2009). This037

task involves analyzing the content to identify key038

themes and then highlighting these in the summary,039

which draws increasing attention in the textual sum-040

marization community.041

Traditionally, QFS has used extract-then- 042

summarize methods (Zhong et al., 2021; Wang 043

et al., 2022; Amar et al., 2023) that rely on the most 044

relevant spans of text from a candidate document- 045

based on the prevalence of query terms. Further 046

onwards, the triumph of Large Language Models 047

(LLMs) such as the GPT series (Achiam et al., 048

2023), LLaMA (Touvron et al., 2023) and other 049

open-source LLMs showcased the power of large- 050

scale pretraining in understanding, reasoning and 051

generating intricate textual patterns, the great po- 052

tential of LLMs offering new opportunities for QFS. 053

However, there has been relatively little investiga- 054

tion into LLMs-based QFS methods (Yang et al., 055

2023a). Our primary goal in this paper is to close 056

this gap correspondingly by proposing two indis- 057

pensable characteristics that should be harnessed 058

by LLMs while dealing with QFS: (i) Efficiently 059

Fine-grained Query-LLM Alignment, as com- 060

monly known, the pre-trained LLMs are powerful 061

when transferred to downstream tasks with instruc- 062

tion tuning(Ouyang et al., 2022), this also applies 063

to the QFS task when the LLMs specialized for 064

user’s interests. However, as the parameter number 065

grows exponentially to billions or even trillions, it 066

becomes very inefficient to save the fully fine-tuned 067

parameters for each downstream task. Besides, the 068

different data distribution of diverse user’s queries 069

or instructions may introduce the negative trans- 070

fer in the training stage (Wang et al., 2019). This 071

implies the QFS model should minimize the po- 072

tential interference among different user instruc- 073

tions, thereby accessing the fine-grained query- 074

LLM alignment. (ii) Lengthy Document Sum- 075

marization, general LLMs can’t handle long text 076

inputs due to the huge amount of memory required 077

during training. Besides, the simple approach of 078

concatenating the query to the input document is 079

insufficient for effectively guiding the model to fo- 080

cus on the query while generating the summary. 081

How to process the lengthy documents is also an 082
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important characteristic of LLMs-based QFS ap-083

proaches. Summing up, these characteristics ne-084

cessitate a thorough reevaluation of QFS and its085

corresponding solutions with LLMs.086

Based on the aforementioned insights, we pro-087

pose Infinite and Dynamic largE languAge modeL-088

based framework, abbreviated as IDEAL for ideal089

QFS, which consists of two modules: Query-090

aware HyperExpert and Query-focused Infini-091

attention achieve the two indispensable character-092

istics, respectively. The Query-aware HyperExpert093

(Figure 1) leverages the parameter-efficient fine-094

tuning (PEFT) (Mangrulkar et al., 2022) strategies095

that enable a model to perform a new task with096

minimal parameter updates. Innovatively, we tailor097

the previous PEFT approaches to QFS tasks with098

a HyperNetwork (Ha et al., 2016), which can dy-099

namically generate the strongly correlated LLM’s100

parameter shifts according to users’ queries. Such101

dynamic characterization allows us to achieve the102

best of both worlds by adjusting the LLM’s param-103

eters while encouraging the model to adapt to each104

individual instance. By doing so, efficient and fine-105

grained query-LLM alignment can be achieved.106

Notably, we develop three types of HyperExpert, in-107

cluding Prompt-tuning (Lester et al., 2021), Parallel108

Adapter (He et al., 2022), and Low-Rank Adapta-109

tion (LoRA) (Hu et al., 2021). To process long doc-110

uments with bounded memory and computation,111

we propose incorporating a Query-focused Infini-112

attention (Figure 2) module into IDEAL. Infini-113

attention (Munkhdalai et al., 2024) includes a long-114

term compressive memory and local causal atten-115

tion for efficiently modeling both long- and short-116

range contextual dependencies. Our Query-focused117

Infini-attention possesses an extra query-focused118

compressive memory to better retain parts of the119

input documents that are strongly correlated with120

the query.121

Our contributions can be summarized as follows:122

• We explored query-focused PEFT methods123

and proposed a method, IDEAL, that tunes124

instance-level PEFT approaches according to125

query instructions, enhancing the model’s fine-126

grained instruction-following capabilities.127

• We propose to incorporate a query-focused128

infini-attention module to process long129

text under low memory resources for130

QFS tasks. For example, IDEAL with131

the backbone model LLAMA2-7B can132

process datasets where the average length of133

input tokens is 13,000 on a single 24GB Nv- 134

idia GeForce RTX 3090. 135

• We performed extensive and rigorous experi- 136

ments across multiple QFS datasets. IDEAL 137

significantly outperforms other baselines. 138

2 Methodology 139

Overview. Given a query and a document, the 140

QFS task aims to generate a summary tailored to 141

this query. Inspired by recent Hypernetwork-based 142

methods (Ivison and Peters, 2022; Zhang et al., 143

2024), our IDEAL generate instance-level adapters 144

according to the query instruction using an addi- 145

tional HyperNetwork. For long-text QFS datasets, 146

we propose a Query-focused Infini-attention mod- 147

ule that can be integrated into IDEAL, enabling 148

the summarization of infinitely long texts under 149

low-memory constraints. In our experiments, we 150

use LLaMA as the underlying model, a popular 151

decoder-only LLM. However, our overall approach 152

can be applied to any generic decoder-only trans- 153

former model. In Section 2.1, we first describe 154

the details of IDEAL, including IDEALPrompt, 155

IDEALPAdapter, and IDEALLoRA. Then, Sec- 156

tion 2.2 presents the query-focused infini-attention. 157

2.1 Query-aware HyperExpert Module 158

Given a dataset with input text pairs containing 159

a query and a document, and outputs in the form 160

of a summary, and a pre-trained LLaMA with an 161

N -layer transformer, IDEAL based on three kinds 162

of PEFT adapters to fine-tune LLaMA to gener- 163

ate query-focused summaries respectively. For 164

example, IDEALLoRA, we place a regular (non- 165

generated) LoRA layer in the first l layers, then we 166

use the hidden representation H l
query of query in l- 167

th layer as the input of a Hypernetwork to generate 168

the LoRA parameters for the last N − l layers. 169

PEFT approaches. With the growth in model 170

sizes, fine-tuning methods have advanced signifi- 171

cantly, modifying only a small number of parame- 172

ters or adding new ones to a frozen language model 173

for specific tasks (Li and Liang, 2021; Lester et al., 174

2021; Hu et al., 2021; He et al., 2022; Zhang et al., 175

2023;). These methods often achieve performance 176

comparable to full model fine-tuning. In this paper, 177

we use three types of PEFT methods, including 178

prompt tuning, parallel adapter, and LoRA, as base- 179

lines to investigate our approach. 180
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Figure 1: Overview of IDEAL. We place a regular (non-generated) PEFT Adapter layer in the first l layers, and then
use the hidden states of query instruction to generate the Adapter’s parameters of the last N -l layers.
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Figure 2: Query-focused Infini-attention has a long-
term context memory and a query-focused memory with
linear attention for processing infinitely long contexts.
KVs−1 and KVs are attention key and values for pre-
vious and current input segments, respectively. Q rep-
resents the attention queries for current input segment,
while Qins refers to the attention queries for the input
query instruction. PE signfies position embeddings.

As shown in Figure 1(a), Prompt tuning can add181

soft prompts to the hidden states in attention layers182

to guide model learning and adapt to new tasks,183

where only the soft prompts are updated during184

training. LLaMA-Adapter-v1 (Zhang et al., 2023)185

introduces a zero-initialized attention mechanism186

into prompt tuning, which adaptively incorporates187

the knowledge from soft prompts. We use this188

LLaMA-Adapter-v1 as our prompt tuning baseline.189

Parallel adapters (He et al., 2022) aim to incor-190

porate additional learnable networks in parallel 191

with distinct sublayers within the backbone model. 192

To reduce the number of parameters, small bottle- 193

neck networks are used as parallel adapters. In 194

transformer-based LLMs, parallel adapters can be 195

applied to both the feedforward and self-attention 196

modules in each transformer block. Hu et al. 197

(2023) conducted experiments showing that ap- 198

plying parallel adapters only to the feedforward 199

module achieves the best results on math reasoning 200

datasets. As shown in Figure 1(c), we also apply 201

parallel adapters only to feedforward module in 202

LLaMA’s transformer block. 203

LoRA (Hu et al., 2021) adds trainable low- 204

rank decomposition matrices in parallel to existing 205

weight matrices (Figure 1(b)). For a pre-trained 206

weight matrix W ∈ Rd×k, LoRA constrains its 207

update by adding low-rank matrix pairs, resulting 208

in W + ∆W = W + BA, where B ∈ Rd×r, 209

A ∈ Rr×k, and the rank r ≪ min(d, k). During 210

training, W is frozen while B and A are trainable. 211

LoRA initializes A randomly and B to zero, en- 212

suring that ∆W = BA starts from zero at the 213

beginning of training, thereby preserving the pre- 214

trained knowledge as much as possible. 215

Adapter-based HyperExpert. Previous works 216

(Ivison and Peters, 2022; Zhao et al., 2024) indicate 217

that hypernetworks can learn the parameter infor- 218

mation of the main neural network under different 219

input scenarios and efficiently adjust the target net- 220

work’s parameters to adapt to this information. We 221

propose generating query-focused adapters condi- 222
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tioned on the query instruction using a hypernet-223

work.224

Our hypernetwork is a bottleneck network that225

consists of an encoder to transform the mean-226

pooling of the query representation Hquery into227

a low-dimensional representation h, and a de-228

coder to convert h into the parameters of the tar-229

get adapters. For example, the computation of230

IDEALLoRA is as follows:231

h = dropout(ReLU(W 0mean(Hquery) + b0))
(1)232233

Âq = W 1h+ b1 (2)234
235

Âk = W 2h+ b2 (3)236

where Âq and Âk correspond to W q and W k in237

self-attention, respectively. We only generate the238

A matrix in the LoRA module, initializing B to239

zero and updating it during training as in the orig-240

inal LoRA. This ensures that ∆W = BÂ starts241

from zero at the beginning of training. Unlike242

IDEALLoRA, IDEALPrompt and IDEALPAdapter243

generate all the parameters of the target adapters in244

the required layers.245

In addition, each layer that needs to generate246

the target adapters has its own encoder, as shown247

in Equation 1, and shares a single decoder. This248

allows for generating different parameters for each249

layer and reduces the number of trainable parame-250

ters.251

2.2 Query-focused Infini-attention Module252

QFS tasks usually involve long documents. How-253

ever, Transformer-based LLMs can’t handle such254

long texts due to the quadratic complexity of255

the attention mechanism in terms of both mem-256

ory usage and computation time. Infini-attention257

(Munkhdalai et al., 2024) incoporates a compres-258

sive memory and a long-term linear attention259

mechanism into vanilla Transformer block, scale260

Transformer-based LLMs to extremely long inputs261

with bounded memory. However, due to the in-262

formation loss inherent in compressive memory263

modules, in QFS tasks, the model tends to lose264

crucial query instruction details and relevant docu-265

ment information after compressing query instruc-266

tion and very long input documents. To mini-267

mize the information loss of query-related details268

in Infini-attention, we propose compressing the269

query-related document information into an addi-270

tional memory block, termed Query-focused Infini-271

attention.272

Similar to Infini-attention (Munkhdalai et al., 273

2024), the input tokens are segmented to perform 274

standard causal dot-product attention within each 275

segment. Before local attention for current segment 276

is complete, we compress the cached key-value 277

(KV) attention states into two memory blocks. One 278

block maintains the entire context history, while an- 279

other focuses on query-related information. These 280

compressed memories are then available for subse- 281

quent segments to retrieve relevant context. 282

Fixed length local attention. A key-value (KV) 283

cache is typically used in LLMs for fast and effi- 284

cient inference. To maintain fine-grained local at- 285

tention, for each segment, multi-head self-attention 286

Alocal ∈ RL×dvalue is computed with a fixed KV 287

length L in both the training and inference stages 288

using the KV cache. In detail, when the last seg- 289

ment length is less than L, we use the KV cache 290

to extend the length of the current KV states to L 291

for computing the local attention and compress the 292

remaining KV cache into the memory. 293

Memory update. For the s-th segment with 294

length L, before computing the local attention, 295

we update the full context memory Mall
s−1 ∈ 296

R
dkey×dvalue and the query-focused memory 297

M query
s−1 ∈ Rdkey×dvalue , and a normalization term 298

zs−1 ∈ Rdkey is then used for memory retrieval as 299

follows: 300

Mall
s−1 ←Mall

s−2 + σ(Kcache)
TV cache (4) 301

302
M query

s−1 ←M query
s−2 + σ(Kcache)

T V̂ cache (5) 303
304

zs−1 ← zs−2 +
L∑

t=1

σ(Kt
cache) (6) 305

where σ is a nonlinear activation function. Follow- 306

ing the work of Katharopoulos et al. (2020) and 307

Munkhdalai et al. (2024), we employ element-wise 308

ELU+1 as the activation function (Clevert et al., 309

2015). The term σ(K)TV on the right side of 310

Equation 4 and 5 is referred to as an associative 311

binding operator (Schlag et al., 2020). The query- 312

focused memory M query
s−1 differs from the full con- 313

text memory only in the value states V̂ cache used 314

within the associative binding operator. We ultilize 315

the query states Qquery of query instruction to scale 316

the value states, and keep only query-related infor- 317

mation V̂ cache as 318

αi = sigmoid

(
mean(Qquery)(K

i
cache)

T

√
dmodel

)
(7) 319
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320

V̂ cache = α⊙ V cache. (8)321

Here, we use the mean pooling of Qquery and the322

key states to compute a related score for each rep-323

resentation.324

Memory retrieval. After updating the memory,325

we retrieve new content Aall ∈ RL×dvalue and326

Aquery ∈ RL×dvalue from the full context memory327

Mall
s−1 and the query-focused memory M query

s−1 , re-328

spectively. This retrieval is performed using the329

query states Q ∈ RL×dkey as follows:330

Aall =
σ(Q)Mall

s−1

σ(Q)zs−1
(9)331

332

Aquery =
σ(Q)M query

s−1

σ(Q)zs−1
(10)333

Long-term context injection. First, we apply a334

linear layer to aggregate Aall and Aquery. Then,335

we aggregate the retrieved content and the local336

attention Alocal using a learned gating scalar β:337

γ = sigmoid(W gAquery) (11)338
339

Aret = γ ⊙Aquery + (1− γ)⊙Aall (12)340
341

A = sigmoid(β)⊙Aret+342

(1− sigmoid(β))⊙Alocal (13)343

where W g ∈ R1×dvalue is a trainable weight that344

dynamicly merges the two retieved contents. β345

contains a single scalar value per head as training346

parameter, enabling a learnable trade-off between347

the long-term and local information flows in the348

model.349

Repeat query instruction. To incorporate query350

instructions into the model, we concatenate the351

query instruction with the document as the in-352

put of model. During local attention, the query353

states Qquery of the query instruction are utilized354

to compute query-focused memory within each seg-355

ment. However, when generating summaries, the356

retrieved information from memory fails to effec-357

tively guide the model in producing summaries that358

adhere to the query instructions. To address this359

issue, we employ a straightforward approach: we360

replicate the query instruction at the end of the doc-361

ument. This ensures that the query instruction is362

within the window of the local attention compu-363

tation when generating summaries, enabling the364

model to accurately generate query-relevant sum-365

maries.366

3 Experiments 367

3.1 Datasets 368

We evaluate our approach on three query-focused 369

summarization datasets: CovidET (Zhan et al., 370

2022), QMsum (Zhong et al., 2021), SQuALITY 371

(Wang et al., 2022). Different from others, SQuAL- 372

ITY includes multiple summaries for each ques- 373

tion. The input documents in the CovidET and 374

QMSum (Golden) datasets have token counts of 375

228 and 2670, respectively, when tokenized using 376

the LLama2 tokenizer. In contrast, the QMSum 377

and SQuALITY datasets feature longer input token 378

lengths, with 8071 and 13227 tokens, respectively. 379

The detailed statistics in Appendix A.1. 380

3.2 Evaluation Metrics 381

We evaluate the summaries using ROUGE met- 382

rics (Lin, 2004), including ROUGE-1, ROUGE-2, 383

ROUGE-L, and ROUGE-Lsum. Additionally, we 384

use a BART-base version of BERTScore (Zhang 385

et al., 2020), which leverages BART to compute the 386

similarity between the references and the model’s 387

outputs. Specifically, since SQuALITY includes 388

multiple summaries for each question, we report 389

multi-reference scores for all metrics following 390

Wang et al. (2022). We calculate the metrics for 391

each pair of a generated summary and multiple 392

references, then choose the maximum score. 393

3.3 Implementation Details 394

We use the pre-trained LLaMA (2-7B, 3-8B) (Tou- 395

vron et al., 2023) with N = 32 transformer layers 396

as the backbone model. For IDEALPrompt, we 397

follow LLaMA-Adapter-v1 (Zhang et al., 2023), 398

adopting a prompt length K = 10 and ap- 399

plying prompts to the last 30 layers, with the 400

prompts of the last 15 layers are generated . For 401

IDEALPAdapter, adapters are applied to the first 402

16 layers and generated for the last 16 layers. For 403

IDEALLoRA, only the A matrix in the LoRA mod- 404

ule is generated for the last 16 layers. Additional 405

details can be found in the Appendix A.2. 406

3.4 Comparison of Methods 407

We compare our approaches with several fully 408

fine-tuned pretrained language models commonly 409

used for summarization tasks, including Bart-base 410

and Bart-large (Lewis et al., 2019), LED (Belt- 411

agy et al., 2020), LED-base-OASum (Yang et al., 412

2023b), HMNet (Zhu et al., 2020). For long docu- 413

ment datasets, we compare our approaches against 414
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an extract-then-summarize methods (Wang et al.,415

2022). Unlimiformer (Bertsch et al., 2024), a416

retrieval-based approach that augments pretrained417

language models to handle unlimited-length input.418

3.5 Main Results419

Tables 1- 2 present the results on QFS datasets. Our420

approaches achieve the best results and show signif-421

icant improvements over other baselines. IDEAL422

consistently outperform the corresponding PEFT423

Adapters with the same input size. For instance, on424

CovidET dataset, IDEALLoRA surpasses the best425

baseline LoRA by 1.64 ROUGE-L points and 2.36426

ROUGE-Lsum points with the same input size of427

1.6K.428

For the two long document datasets showed in429

Table 2, IDEALLoRA with an input length of 8K430

achieved the best results, while IDEALQF_Inf
LoRA also431

performed exceptionally well even under limited432

GPU memory. For example, on QMSum dataset,433

IDEALQF_Inf
LoRA surpasses all baselines on ROUGE-434

L and and BERTScore.435

The complete results, including ROUGE-1 and436

ROUGE-2 metrics, are presented in the Ap-437

pendix A.4.438

3.6 Ablation Study439

Different adapter for IDEAL. As shown in Ta-440

ble 1, we compare the performance of IDEAL441

on different Adapter with same input size. On442

the CovidET dataset, the performance differences443

among the three adapters on IDEAL were mini-444

mal. However, on the QMSum(Golden) dataset,445

IDEALLoRA outperformed IDEALPAdapter by446

1.48 ROUGE-L points under the same input length447

of 768. Overall, IDEALLoRA achieves the best448

results on four datasets.449

The effectiveness of each module in450

IDEALQF_Inf
LoRA . In Table 4, we evaluated451

the effectiveness of Query-focused Infini-attention452

through comparative testing. First, we im-453

plemented Infini-attention based on LoRA as454

Lora+Inf and observed significant improvements455

compared to LoRA alone under the same GPU456

memory constraints, with increases of 1.55 and457

1.33 points in ROUGE-L and ROUGE-Lsum458

on QMSum dataset, respectively. These results459

indicate that compressing the key-value states460

of historical segments enables summarization461

of long documents within limited GPU mem-462

ory. Furthermore, we enhanced IDEALLoRA463

Models LC R-L R-Lsum BScore
CovidET Dataset

Bart-base 1K 21.62 22.17 57.97
Bart-large 1K 21.66 22.24 57.85
LED-base∗ 4K - 20.82 -
LED-base-
OASum∗ 4K - 20.45 -

ChatGPT∗ - 15.35 15.36 -
Prompt 768 23.19 23.79 59.31
PAdapter 768 22.93 23.49 59.00
Lora 768 22.85 23.41 58.93
IDEALPrompt 768 23.19 23.71 59.55
IDEALPAdapter 768 23.18 23.79 59.18
IDEALLoRA 768 23.28 23.93 59.40

QMsum(Golden) Dataset

Bart-base 1K 25.21 33.56 55.31
Bart-large 1K 25.25 33.75 55.44
ChatGPT∗ - 24.23 24.19 -
Prompt 768 24.26 30.08 56.47
PAdapter 768 26.70 32.76 58.68

Lora
768 26.69 32.44 58.52
1.6K 27.36 33.71 59.62

IDEALPrompt 768 24.92 30.31 56.76
IDEALPAdapter 768 26.87 33.94 59.35

IDEALLoRA

768 28.35 34.89 59.96
1.6K 29.00 36.08 60.63
3K 29.36 36.65 60.87

Table 1: Comparision with baselines on CovidET and
QMsum(Golden). LC denotes the local context size of
model. R-L, R-Lsum, and BScore denote ROUGE-L,
ROUGE-Lsum, BERTSCore, respectively. ∗ indicates
that experimental results are obtained from related work.
We color each row as the best and second best .

with Infini-attention, achieving better results 464

than Lora+Inf in ROUGE-L. The IDEALLoRA 465

method integrated with Query-focused Infini- 466

attention as IDEALQF_Inf
LoRA outperformed both 467

IDEALLoRA+Inf and Lora+Inf in all metrics, 468

demonstrating that our proposed Query-focused 469

Infini-attention effectively compresses query- 470

related information. For the IDEALLoRA+Inf 471

method, we observed a significant decline in 472

all metrics after removing the repeated query 473

instruction at the end of the input document, 474

demonstrating the necessity of repeating the query 475

instruction. 476
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Models LC R-L R-Lsum BScore
QMSum Dataset

Bart-base 1K 20.37 27.46 51.74
Bart-large 1K 20.02 27.52 51.83
LED-base∗ 4K - 25.68 -
LED-base-
OASum∗ 4K - 26.67 -

ChatGPT∗ - 17.81 18.81 -
Bart+
Unlimiformer∗

1/-K 19.9 - -

IDEALLoRA 8K 22.59 31.30 57.35
IDEALQF_Inf

LoRA 0.8/6K 22.16 27.05 55.56
SQuALITY Dataset

Bart-base 1K 20.49 34.34 54.41
Bart-large 1K 20.97 36.11 54.85
LED-base∗ 4K - 34.47 -
LED-base-
OASum∗ 4K - 35.14 -

Bart-Large∗ 1K 20.8 - -
Bart-Large+
DPR∗ 1K 21.0 - -

ChatGPT∗ - 18.45 22.56 -
IDEALLoRA 8K 24.25 41.72 59.48
IDEALQF_Inf

LoRA 1.6/9K 21.49 34.86 56.08

Table 2: Comparision with baselines on QMSum and
SQuALITY. 0.8/6K represents the local text size and
the max input length, respectively.

3.7 Indepth Analysis477

Performance of low memory IDEAL.478

IDEALLoRA consistently demonstrates im-479

proved performance as input length increases.480

However, this comes at the cost of increased GPU481

memory consumption. Table 4 illustrates this trade-482

off, showcasing IDEALLoRA performance on input483

lengths of 1.6K, 3.8K, and 8K, requiring 24G,484

40G, and 80G of memory, respectively. In contrast485

to IDEALLoRA, our proposed IDEALQF_Inf
LoRA486

exhibits memory efficiency when handling long487

inputs. IDEALQF_Inf
LoRA maintains a consistent488

memory footprint 24G regardless of input length.489

Notably, on the QMsum dataset, IDEALQF_Inf
LoRA490

outperforms IDEALLoRA with an input length of491

1.6K on all metrics within a same 24GB memory492

constraint. Moreover, it surpasses IDEALLoRA493

with an input length of 3.8K in 40GB memory on494

the ROUGE-L metric and achieves performance495

close to IDEALLoRA with an input length of 8K in496

80GB memory.497

Models r/bs Params(M) R-L
Prompt - 1.2 24.26
PAdapter 16 4.3 26.70

LoRA
8 12.3 26.69
16 24.5 26.37

IDEALPrompt - 7.2 24.92

IDEALPAdapter

16 15.2 26.87
32 25.8 27.21
64 47.0 27.66
128 89.5 27.89

IDEALLoRA 8 24.5 28.35

Table 3: Trainable parameters comparison on QM-
sum(Golden) dataset with 768 input size. r/bs denote
the rank in LoRA or the bottle-neck size in Parallel
Adapter. Params(M) is the total size of trainable pa-
rameters in millions.

250 500 750 1000 1250 1500 1750 2000
Local context size

19.0

19.5

20.0
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21.0
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UG

E-
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SQuALITY

Figure 3: Performance with respect to the different local
context size of IDEALQF _Inf

LoRA .

Trainable parameters comparison. In Table 3, 498

we compare the performance of different IDEAL 499

HyperExperts under the same parameter count. The 500

Prompt-tuning method can adjusts parameter count 501

only by controlling prompt length, with experi- 502

ments from Hu et al. (2023) indicating optimal 503

performance at a prompt length of 10. Despite 504

having the fewest trainable parameters, its perfor- 505

mance on the QMSum(Golden) dataset is the low- 506

est. With the same parameter count, LoRA with a 507

rank of 16 still significantly underperforms com- 508

pared to IDEALLoRA, highlighting the effective- 509

ness of HyperExpert. IDEALPAdapter can improve 510

performance by increasing the bottleneck size, but 511

even with 89.5M parameters, it is still inferior 512

to IDEALLoRA with 24.5M parameters. Overall, 513

IDEALLoRA achieves the best performance and 514

parameter efficiency. 515

Local context size of IDEALQF_Inf
LoRA . Figure 3 516

presents the performance of IDEALQFInf
LoRA under 517

varying local context sizes (LC). On the QMSum 518
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Models QMSum Dataset SQuALITY Dataset

LC R-L R-Lsum BScore LC R-L R-Lsum BScore
Lora 1.6K 19.58 25.25 53.76 1.6K 20.73 35.41 55.97

IDEALLoRA

1.6K 19.71 26.27 54.30 1.6K 22.16 35.73 56.50
3.8K 21.62 28.46 56.00 3.8K 22.54 37.54 57.42
8K 22.59 31.30 57.35 8K 24.25 41.72 59.48

LoRA+Inf 0.8/6K 21.13 26.58 55.34 1.6/9K 20.59 34.76 55.21
IDEALLoRA+Inf 0.8/6K 21.76 26.16 54.97 1.6/9K 21.68 34.81 55.72
IDEALLoRA+Inf

w/o ReQ
0.8/6K 16.57 20.40 50.71 1.6/9K 17.89 30.62 50.52

IDEALQF_Inf
LoRA 0.8/6K 22.16 27.05 55.56 1.6/9K 21.49 34.86 56.08

Table 4: Comparing IDEALQF _Inf
LoRA with Infini-attention based methods and IDEALLoRA with different input

size. LoRA+Inf and IDEALLoRA+Inf denote the incorporation of Infini-attention into LoRA and IDEALLoRA,
respectively. w/o ReQ indicates that the query instruction is not repeated at the end of the input document.

2000 4000 6000 8000 10000 12000
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Figure 4: Performance with respect to the different max
input length of IDEALQF _Inf

LoRA .

dataset, the model exhibits stable performance519

when LC is beyond 400, achieving nearly the best520

overall performance at LC=800. Similarly, on the521

SQuALITY dataset, the optimal LC is observed at522

1.6K. These findings indicate that IDEALQFInf
LoRA dif-523

fers from IDEALLoRA, the limited memory for the524

former is enough to handle extremely long inputs.525

Max input length of IDEALQF_Inf
LoRA . Ta-526

ble 4 presents the optimal input length for527

IDEALQF_Inf
LoRA on the QMsum and SQuALITY528

datasets. The results suggest that information rele-529

vant to the query in the QMsum dataset is primarily530

concentrated within the first 6000 tokens, while in531

the SQuALITY dataset, the relevant information is532

more evenly distributed throughout the document.533

4 Related Works534

Query-focused Summarization. Tan et al.535

(2020) and Yang et al. (2023b) address QFS by536

prepending the query or aspect to the input doc-537

ument and fine-tuning pre-trained models in an538

end-to-end manner. Zhong et al. (2021), Wang539

et al. (2022), and Amar et al. (2023) employ extract- 540

then-summarize strategies that use a filter model 541

to extract key parts of the document based on the 542

query, then fitting the shorter text into a summarizer. 543

Yang et al. (2023a) reveal that the performance of 544

ChatGPT is comparable to traditional fine-tuning 545

methods in terms of ROUGE scores on QFS tasks. 546

Long-context Transformers. Unlimiformer 547

(Bertsch et al., 2024) enhances pre-trained models 548

like BART (Lewis et al., 2019) to handle unlimited 549

inputs without additional learned weights by 550

employing a retrieval-based long-context method. 551

Infini-transformer (Munkhdalai et al., 2024) inte- 552

grates long-term context compressive memory into 553

vanilla transformers, enabling Transformer-based 554

LLMs to scale to infinitely long contexts after full 555

continual pre-training. Unlike Infini-transformer, 556

we explore the compressive memory method 557

on adapter-based PEFT of LLMs and design a 558

query-focused infini-attention for QFS tasks. 559

5 Conclusion 560

In this paper, we propose IDEAL, an efficient 561

query-aware adaptation method on LLMs for QFS 562

tasks, which consists of two modules: Query-aware 563

HyperExpert and Query-focused Infini-attention. 564

The two modules enable LLMs to achieve fine- 565

grained query-LLM alignment efficiently and have 566

the ability to handle lengthy documents. 567

Limitations 568

Due to the absence of longer QFS datasets currently 569

available, we explored IDEAL only on datasets 570

8



with input lengths around 10k. However, it is nec-571

essary to validate IDEAL on datasets with longer572

input documents, such as performing QFS tasks573

across entire books. Further validation and opti-574

mization of the IDEAL method on book-length575

inputs would be both interesting and meaningful.576
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A.2 Implementation Dtails 756

All LLaMA-based models in our experiments use 757

Automatic Mixed Precision, with 16-bit for frozen 758

parameters and 32-bit for trainable parameters to 759

conserve memory. Additionally, we employ Flash- 760

Attention2 (Dao, 2024) to accelerate model train- 761

ing and inference for LLaMA-based models. All 762

models in our experiments can be trained on at 763

least a single 24GB Nvidia GeForce RTX 3090, 764

except for the large local context size setting for 765

long documents. The details of GPU requirements 766

for different local context sizes are shown in Ta- 767

ble 6. During the generation stage, we adopt top-p 768

sampling as the default decoding method with a 769

temperature of 0.1 and a top-p value of 0.75. 770

A.3 GPU Requirements 771

A.4 Complete Results 772
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Type Dataset Domain #Instances #Input Tk. #Output Tk. #Queries|Aspects

Query
QMSum Meeting 1808 13227(2670∗) 88 1566

SQuALITY Story 625 8071 306 437
Aspect CovidET Reddit 7122 228 32 7

Table 5: Statistics of query/aspect-based summarization datasets.#Instances represents the total number of
(document, summary) pairs in the corresponding dataset. #Instances and #Input Tk. denote the number of input
and output token lengths under the Llama2 tokenizer, respectively. #Queries|Aspects indicates the number of unique
queries or aspects appearing in the dataset. 2670∗ represents the number of input tokens for QMsum(Golden).

Models LC GPU
Bart-base ≤ 1K

3090 24G

Bart-large
Prompt ≤ 0.8K
PAdapter
LoRA ≤ 1.6K
IDEALLoRA

Inf+LoRA ≤ 1.2K
Inf+IDEALLoRA ≤ 1.1K
IDEALQF_Inf

LoRA ≤ 0.8K
Inf+LoRA

≤ 2.1K
A100 40G

Inf+IDEALLoRA

IDEALQF_Inf
LoRA

IDEALLoRA ≤ 3.8K
IDEALLoRA ≤ 8K A800 80G

Table 6: GPU requirements in our experiments. For all
LoRA-based methods, we can extend the local context
size using Flash-attention2.
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Models R-1 R-2 R-L R-Lsum BScore
Bart-base 27.28 7.50 21.62 22.17 57.97
Bart-large 27.54 7.72 21.66 22.24 57.85
LED-base∗ 26.19 6.85 - 20.82 -

LED-base-OASum∗ 25.61 6.58 - 20.45 -
ChatGPT∗ 20.81 3.99 15.35 15.36 -

Prompt 28.71 8.58 23.19 23.79 59.31
PAdapter 29.18 8.69 22.93 23.49 59.00

Lora 28.81 8.54 22.85 23.41 58.93
IDEALPrompt 28.55 8.56 23.19 23.71 59.55

IDEALPAdapter 29.40 8.92 23.18 23.79 59.18
IDEALLoRA 29.40 8.84 23.28 23.93 59.40

Table 7: CovidET

Models Input Size R-1 R-2 R-L R-Lsum BScore
Bart-base 1K 38.32 13.61 25.21 33.56 55.31
Bart-large 1K 38.49 14.26 25.25 33.75 55.44
ChatGPT∗ 36.83 12.78 24.23 24.19 -
Prompt 768 34.06 11.96 24.26 30.08 56.47
PAdapter 768 37.10 14.13 26.70 32.76 58.68
Lora 768 36.57 14.23 26.69 32.44 58.52
Lora 1.6K 38.05 14.59 27.36 33.71 59.62
IDEALPrompt 768 34.48 12.22 24.92 30.31 56.76
IDEALPAdapter 768 38.50 14.38 26.87 33.94 59.35
IDEALLoRA 768 39.26 15.44 28.35 34.89 59.96
IDEALLoRA 1.6K 40.82 16.61 29.00 36.08 60.63
IDEALLoRA 3K 41.61 17.07 29.36 36.65 60.87

Table 8: QMsum(Golden)

Models Input Size R-1 R-2 R-L R-Lsum BScore
Bart-base 1K 31.72 7.98 20.37 27.46 51.74
Bart-large 1K 31.76 7.76 20.02 27.52 51.83
LED-base∗ 4K 29.52 7.00 - 25.68 -
LED-base-OASum∗ 4K 30.30 7.56 - 26.67 -
ChatGPT∗ 28.34 8.74 17.81 18.81 -
Bart+Unlimiformer∗ 1K 30.9 8.0 19.9 - -
Lora 1.6K 28.74 7.54 19.58 25.25 53.76
Inf+LoRA 0.8K/6K 30.49 7.95 21.13 26.58 55.34
IDEALLoRA 1.6K 29.94 8.05 19.71 26.27 54.30
IDEALLoRA 3.8K 32.69 9.28 21.62 28.46 56.00
IDEALLoRA 8K 35.50 10.62 22.59 31.30 57.35
Inf+IDEALLoRA 0.8K/6K 30.44 8.05 21.76 26.16 54.97
IDEALQF_Inf

LoRA 0.8K/6K 31.49 8.67 22.16 27.05 55.56

Table 9: QMsum

12



Models Input Size R-1 R-2 R-L R-Lsum BScore
Bart-base 1K 36.93 8.57 20.49 34.34 54.41
Bart-large 1K 38.58 9.81 20.97 36.11 54.85
LED-base∗ 4K 36.78 8.31 - 34.47 -
LED-base-OASum∗ 4K 37.6 8.81 - 35.14 -
Bart-Large∗ 1K 40.2 10.4 20.8 - -
Bart-Large+DPR∗ 1K 41.5 11.4 21.0 - -
ChatGPT∗ 37.02 8.19 18.45 22.56 -
Lora 1.6K 38.11 8.65 20.73 35.41 55.97
Inf+LoRA 1.6K/9K 37.06 8.24 20.59 34.76 55.21
IDEALLoRA 1.6K 38.26 9.45 22.16 35.73 56.50
IDEALLoRA 3.8K 40.13 10.63 22.54 37.54 57.42
IDEALLoRA 8K 44.59 12.87 24.25 41.72 59.48
Inf+IDEALLoRA 1.6K/9K 37.13 8.77 21.68 34.81 55.72
IDEALQF_Inf

LoRA 1.6K/9K 37.36 8.74 21.49 34.86 56.08

Table 10: SQuALITY
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