IDEAL: Leveraging Infinite and Dynamic Characterizations of Large
Language Models for Query-focused Summarization

Anonymous ACL submission

Abstract

Query-focused summarization (QFS) aims to
produce summaries that answer particular ques-
tions of interest, enabling greater user con-
trol and personalization. With the advent of
large language models (LLMs), shows their
impressive capability of textual understanding
through large-scale pretraining, which implies
the great potential of extractive snippet gener-
ation. In this paper, we systematically inves-
tigated two indispensable characteristics that
the LLMs-based QFS models should be har-
nessed, Lengthy Document Summarization and
Efficiently Fine-grained Query-LLM Alignment,
respectively. Correspondingly, we propose two
modules called Query-aware HyperExpert and
Query-focused Infini-attention to access the
aforementioned characteristics. These innova-
tions pave the way for broader application and
accessibility in the field of QFS technology.
Extensive experiments conducted on existing
QFS benchmarks indicate the effectiveness and
generalizability of the proposed approach.

1 Introduction

In today’s world, where we are constantly bom-
barded with vast amounts of text, the ability to
efficiently summarize information has become cru-
cial. Textual summarization (Gambhir and Gupta,
2017), the process of condensing a lengthy docu-
ment into a succinct and digestible version while
preserving the most crucial information, enabling
quicker understanding and better management of
information. As everyone has unique needs and
interests in real-life scenarios, necessitating sum-
marizers that succinctly address the information
needed for a specific query by extracting essential
information from documents, i.e., Query-Focused
Summarization (QFS) (Daumé III, 2009). This
task involves analyzing the content to identify key
themes and then highlighting these in the summary,
which draws increasing attention in the textual sum-
marization community.

Traditionally, QFS has used extract-then-
summarize methods (Zhong et al., 2021; Wang
et al., 2022; Amar et al., 2023) that rely on the most
relevant spans of text from a candidate document-
based on the prevalence of query terms. Further
onwards, the triumph of Large Language Models
(LLMs) such as the GPT series (Achiam et al.,
2023), LLaMA (Touvron et al., 2023) and other
open-source LLMs showcased the power of large-
scale pretraining in understanding, reasoning and
generating intricate textual patterns, the great po-
tential of LLMs offering new opportunities for QFS.
However, there has been relatively little investiga-
tion into LL.Ms-based QFS methods (Yang et al.,
2023a). Our primary goal in this paper is to close
this gap correspondingly by proposing two indis-
pensable characteristics that should be harnessed
by LLMs while dealing with QFS: (i) Efficiently
Fine-grained Query-LLM Alignment, as com-
monly known, the pre-trained LLMs are powerful
when transferred to downstream tasks with instruc-
tion tuning(Ouyang et al., 2022), this also applies
to the QFS task when the LLMs specialized for
user’s interests. However, as the parameter number
grows exponentially to billions or even trillions, it
becomes very inefficient to save the fully fine-tuned
parameters for each downstream task. Besides, the
different data distribution of diverse user’s queries
or instructions may introduce the negative trans-
fer in the training stage (Wang et al., 2019). This
implies the QFS model should minimize the po-
tential interference among different user instruc-
tions, thereby accessing the fine-grained query-
LLM alignment. (ii) Lengthy Document Sum-
marization, general LLMs can’t handle long text
inputs due to the huge amount of memory required
during training. Besides, the simple approach of
concatenating the query to the input document is
insufficient for effectively guiding the model to fo-
cus on the query while generating the summary.
How to process the lengthy documents is also an

important characteristic of LLMs-based QFS ap-
proaches. Summing up, these characteristics ne-
cessitate a thorough reevaluation of QFS and its
corresponding solutions with LLMs.

Based on the aforementioned insights, we pro-
pose Infinite and Dynamic largE languAge modeL-
based framework, abbreviated as IDEAL for ideal
QFS, which consists of two modules: Query-
aware HyperExpert and Query-focused Infini-
attention achieve the two indispensable character-
istics, respectively. The Query-aware HyperExpert
(Figure 1) leverages the parameter-efficient fine-
tuning (PEFT) (Mangrulkar et al., 2022) strategies
that enable a model to perform a new task with
minimal parameter updates. Innovatively, we tailor
the previous PEFT approaches to QFS tasks with
a HyperNetwork (Ha et al., 2016), which can dy-
namically generate the strongly correlated LLM’s
parameter shifts according to users’ queries. Such
dynamic characterization allows us to achieve the
best of both worlds by adjusting the LLM’s param-
eters while encouraging the model to adapt to each
individual instance. By doing so, efficient and fine-
grained query-LLM alignment can be achieved.
Notably, we develop three types of HyperExpert, in-
cluding Prompt-tuning (Lester et al., 2021), Parallel
Adapter (He et al., 2022), and Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021). To process long doc-
uments with bounded memory and computation,
we propose incorporating a Query-focused Infini-
attention (Figure 2) module into IDEAL. Infini-
attention (Munkhdalai et al., 2024) includes a long-
term compressive memory and local causal atten-
tion for efficiently modeling both long- and short-
range contextual dependencies. Our Query-focused
Infini-attention possesses an extra query-focused
compressive memory to better retain parts of the
input documents that are strongly correlated with
the query.

Our contributions can be summarized as follows:

* We explored query-focused PEFT methods
and proposed a method, IDEAL, that tunes
instance-level PEFT approaches according to
query instructions, enhancing the model’s fine-
grained instruction-following capabilities.

* We propose to incorporate a query-focused
infini-attention module to process long
text under low memory resources for
QFS tasks. For example, IDEAL with
the backbone model LLAMA2-7B can
process datasets where the average length of

input tokens is 13,000 on a single 24GB Nyv-
idia GeForce RTX 3090.

* We performed extensive and rigorous experi-
ments across multiple QFS datasets. IDEAL
significantly outperforms other baselines.

2 Methodology

Overview. Given a query and a document, the
QFS task aims to generate a summary tailored to
this query. Inspired by recent Hypernetwork-based
methods (Ivison and Peters, 2022; Zhang et al.,
2024), our IDEAL generate instance-level adapters
according to the query instruction using an addi-
tional HyperNetwork. For long-text QFS datasets,
we propose a Query-focused Infini-attention mod-
ule that can be integrated into IDEAL, enabling
the summarization of infinitely long texts under
low-memory constraints. In our experiments, we
use LLaMA as the underlying model, a popular
decoder-only LLM. However, our overall approach
can be applied to any generic decoder-only trans-
former model. In Section 2.1, we first describe
the details of IDEAL, including IDEAL pyompt,
IDEALp pgapter» and IDEAL,r4. Then, Sec-
tion 2.2 presents the query-focused infini-attention.

2.1 Query-aware HyperExpert Module

Given a dataset with input text pairs containing
a query and a document, and outputs in the form
of a summary, and a pre-trained LLaMA with an
N-layer transformer, IDEAL based on three kinds
of PEFT adapters to fine-tune LLaMA to gener-
ate query-focused summaries respectively. For
example, IDEAL,r4, we place a regular (non-
generated) LoRA layer in the first [layers, then we
use the hidden representation H fluery of query in -
th layer as the input of a Hypernetwork to generate
the LoRA parameters for the last N — [layers.

PEFT approaches. With the growth in model
sizes, fine-tuning methods have advanced signifi-
cantly, modifying only a small number of parame-
ters or adding new ones to a frozen language model
for specific tasks (Li and Liang, 2021; Lester et al.,
2021; Hu et al., 2021; He et al., 2022; Zhang et al.,
2023;). These methods often achieve performance
comparable to full model fine-tuning. In this paper,
we use three types of PEFT methods, including
prompt tuning, parallel adapter, and LoRA, as base-
lines to investigate our approach.

Input Tokens Hidden States (Query)
D — D |r -i H1 H2 H3 .. Hn
* [
HyperNetwork
[Transformer Layer ST

xL *

[] *D
* [

)

Add & Norm

=N

Prefix Transformer (Frozen)

[Feed Forawrd] [Adapter]
A T

Add & Norm <€——

(a)Prefix-Tuning

7 <X
B / Multi-head
Pretrained — Attention

A
Weights
Prefix LoRA e A 1
Transformer Layer - X f
<N-L Parallel Adapter (b)LoRA (c)Parallel Adapter
D Trained Generated D Frozen
Parameters Parameters Parameters

Figure 1: Overview of IDEAL. We place a regular (non-generated) PEFT Adapter layer in the first layers, and then
use the hidden states of query instruction to generate the Adapter’s parameters of the last /NV-I layers.

Linear
Projection

Concat Concat

Casual Scaled dot-
product Attention & PE

Concat

4
{ Retrieve

Context memory &
Linear Attention

‘\\ TE Update 1
B e

Figure 2: Query-focused Infini-attention has a long-
term context memory and a query-focused memory with
linear attention for processing infinitely long contexts.
KV,_1 and KV are attention key and values for pre-
vious and current input segments, respectively. @ rep-
resents the attention queries for current input segment,
while Q;,,s refers to the attention queries for the input
query instruction. PE signfies position embeddings.

Query-focused memory

& Linear Attention

As shown in Figure 1(a), Prompt tuning can add
soft prompts to the hidden states in attention layers
to guide model learning and adapt to new tasks,
where only the soft prompts are updated during
training. LLaMA-Adapter-v1 (Zhang et al., 2023)
introduces a zero-initialized attention mechanism
into prompt tuning, which adaptively incorporates
the knowledge from soft prompts. We use this
LLaMA-Adapter-v1 as our prompt tuning baseline.

Parallel adapters (He et al., 2022) aim to incor-

porate additional learnable networks in parallel
with distinct sublayers within the backbone model.
To reduce the number of parameters, small bottle-
neck networks are used as parallel adapters. In
transformer-based LLMs, parallel adapters can be
applied to both the feedforward and self-attention
modules in each transformer block. Hu et al.
(2023) conducted experiments showing that ap-
plying parallel adapters only to the feedforward
module achieves the best results on math reasoning
datasets. As shown in Figure 1(c), we also apply
parallel adapters only to feedforward module in
LLaMA’s transformer block.

LoRA (Hu et al., 2021) adds trainable low-
rank decomposition matrices in parallel to existing
weight matrices (Figure 1(b)). For a pre-trained
weight matrix W € R?**, LoRA constrains its
update by adding low-rank matrix pairs, resulting
in W+ AW = W + BA, where B € R,
A € R™ ¥, and the rank r < min(d, k). During
training, W is frozen while B and A are trainable.
LoRA initializes A randomly and B to zero, en-
suring that AW = BA starts from zero at the
beginning of training, thereby preserving the pre-
trained knowledge as much as possible.

Adapter-based HyperExpert. Previous works
(Ivison and Peters, 2022; Zhao et al., 2024) indicate
that hypernetworks can learn the parameter infor-
mation of the main neural network under different
input scenarios and efficiently adjust the target net-
work’s parameters to adapt to this information. We
propose generating query-focused adapters condi-

tioned on the query instruction using a hypernet-
work.

Our hypernetwork is a bottleneck network that
consists of an encoder to transform the mean-
pooling of the query representation H y¢y into
a low-dimensional representation h, and a de-
coder to convert h into the parameters of the tar-
get adapters. For example, the computation of
IDEAL R4 is as follows:

h = dropout(ReLU (W omean(H gyery) + bo))

))
A, =Wih+b)
Ap = Wsh + by (3)

where Aq and Ak correspond to W, and W, in
self-attention, respectively. We only generate the
A matrix in the LoORA module, initializing B to
zero and updating it during training as in the orig-
inal LoRA. This ensures that AW = BA starts
from zero at the beginning of training. Unlike
IDEAL,rA, IDEAL pyomp: and IDEAL p 4qapter
generate all the parameters of the target adapters in
the required layers.

In addition, each layer that needs to generate
the target adapters has its own encoder, as shown
in Equation 1, and shares a single decoder. This
allows for generating different parameters for each
layer and reduces the number of trainable parame-
ters.

2.2 Query-focused Infini-attention Module

QFS tasks usually involve long documents. How-
ever, Transformer-based LLMs can’t handle such
long texts due to the quadratic complexity of
the attention mechanism in terms of both mem-
ory usage and computation time. Infini-attention
(Munkhdalai et al., 2024) incoporates a compres-
sive memory and a long-term linear attention
mechanism into vanilla Transformer block, scale
Transformer-based LLMs to extremely long inputs
with bounded memory. However, due to the in-
formation loss inherent in compressive memory
modules, in QFS tasks, the model tends to lose
crucial query instruction details and relevant docu-
ment information after compressing query instruc-
tion and very long input documents. To mini-
mize the information loss of query-related details
in Infini-attention, we propose compressing the
query-related document information into an addi-
tional memory block, termed Query-focused Infini-
attention.

Similar to Infini-attention (Munkhdalai et al.,
2024), the input tokens are segmented to perform
standard causal dot-product attention within each
segment. Before local attention for current segment
is complete, we compress the cached key-value
(KV) attention states into two memory blocks. One
block maintains the entire context history, while an-
other focuses on query-related information. These
compressed memories are then available for subse-
quent segments to retrieve relevant context.

Fixed length local attention. A key-value (KV)
cache is typically used in LLMs for fast and effi-
cient inference. To maintain fine-grained local at-
tention, for each segment, multi-head self-attention
Ajocar € REXwatue jg computed with a fixed KV
length L in both the training and inference stages
using the KV cache. In detail, when the last seg-
ment length is less than L, we use the KV cache
to extend the length of the current KV states to L
for computing the local attention and compress the
remaining KV cache into the memory.

Memory update. For the s-th segment with
length L, before computing the local attention,
we update the full context memory M fﬂl €
Rey*dvaive and the query-focused memory

37“_‘61”/ € Rkey*dvatue and a normalization term
zs_1 € R%ev is then used for memory retrieval as

follows:
M?ﬁl — Mgﬁg + U(Kcache)TVcache 4)
ngielry — quieQ’ry + U(Kcache>TVcache (5)

S
L
Zs—1 ¢ Zs—2 + Z O-(Kiache) (6)
t=1

where o is a nonlinear activation function. Follow-
ing the work of Katharopoulos et al. (2020) and
Munkhdalai et al. (2024), we employ element-wise
ELU+1 as the activation function (Clevert et al.,
2015). The term o(K)TV on the right side of
Equation 4 and 5 is referred to as an associative
binding operator (Schlag et al., 2020). The query-
focused memory M 2" differs from the full con-
text memory only in the value states Vcache used
within the associative binding operator. We ultilize
the query states Q ..., of query instruction to scale
the value states, and keep only query-related infor-

mation V .qche as
%)T
cache

(N

a; = sigmoid

(mean(Qquew)(

dmodel

Vcache =a® Vcache- (8)

Here, we use the mean pooling of Q,,,, and the
key states to compute a related score for each rep-

resentation.

Memory retrieval. After updating the memory,
we retrieve new content A, € RE*dvaiue gnd
.AqueTy € RE*dvatue from the full context memory
M and the query-focused memory M7V, re-
spectively. This retrieval is performed using the
query states Q € RE*%ey as follows:

_ J(Q)Mgﬁl
Aall - m (9)
_ol@mz
A= S@rn W

Long-term context injection. First, we apply a
linear layer to aggregate A, and Agyery. Then,
we aggregate the retrieved content and the local
attention A;,.; using a learned gating scalar 3:

v = sigmoid(W g Aguery) (11)
Aret =70 Aquery + (1 - '7) © Aall (12)

A = sigmoid(B) ©® Apet+
(1 — sigmoid(B)) © Ajpcar (13)

where W, € R !X dvalue is a trainable weight that
dynamicly merges the two retieved contents. 3
contains a single scalar value per head as training
parameter, enabling a learnable trade-off between
the long-term and local information flows in the
model.

Repeat query instruction. To incorporate query
instructions into the model, we concatenate the
query instruction with the document as the in-
put of model. During local attention, the query
states Q ¢, Of the query instruction are utilized
to compute query-focused memory within each seg-
ment. However, when generating summaries, the
retrieved information from memory fails to effec-
tively guide the model in producing summaries that
adhere to the query instructions. To address this
issue, we employ a straightforward approach: we
replicate the query instruction at the end of the doc-
ument. This ensures that the query instruction is
within the window of the local attention compu-
tation when generating summaries, enabling the
model to accurately generate query-relevant sum-
maries.

3 Experiments

3.1 Datasets

We evaluate our approach on three query-focused
summarization datasets: CovidET (Zhan et al.,
2022), QMsum (Zhong et al., 2021), SQUALITY
(Wang et al., 2022). Different from others, SQuAL-
ITY includes multiple summaries for each ques-
tion. The input documents in the CovidET and
QMSum (Golden) datasets have token counts of
228 and 2670, respectively, when tokenized using
the LLama?2 tokenizer. In contrast, the QMSum
and SQUALITY datasets feature longer input token
lengths, with 8071 and 13227 tokens, respectively.
The detailed statistics in Appendix A.1.

3.2 Evaluation Metrics

We evaluate the summaries using ROUGE met-
rics (Lin, 2004), including ROUGE-1, ROUGE-2,
ROUGE-L, and ROUGE-Lsum. Additionally, we
use a BART-base version of BERTScore (Zhang
et al., 2020), which leverages BART to compute the
similarity between the references and the model’s
outputs. Specifically, since SQUALITY includes
multiple summaries for each question, we report
multi-reference scores for all metrics following
Wang et al. (2022). We calculate the metrics for
each pair of a generated summary and multiple
references, then choose the maximum score.

3.3 Implementation Details

We use the pre-trained LLaMA (2-7B, 3-8B) (Tou-
vron et al., 2023) with N = 32 transformer layers
as the backbone model. For IDEAL p;.oypt, wWe
follow LLaMA-Adapter-vl (Zhang et al., 2023),
adopting a prompt length K = 10 and ap-
plying prompts to the last 30 layers, with the
prompts of the last 15 layers are generated . For
IDEAL p Adapter» adapters are applied to the first
16 layers and generated for the last 16 layers. For
IDEAL},rA, only the A matrix in the LoORA mod-
ule is generated for the last 16 layers. Additional
details can be found in the Appendix A.2.

3.4 Comparison of Methods

We compare our approaches with several fully
fine-tuned pretrained language models commonly
used for summarization tasks, including Bart-base
and Bart-large (Lewis et al., 2019), LED (Belt-
agy et al., 2020), LED-base-OASum (Yang et al.,
2023b), HMNet (Zhu et al., 2020). For long docu-
ment datasets, we compare our approaches against

an extract-then-summarize methods (Wang et al.,
2022). Unlimiformer (Bertsch et al., 2024), a
retrieval-based approach that augments pretrained
language models to handle unlimited-length input.

3.5 Main Results

Tables 1- 2 present the results on QFS datasets. Our
approaches achieve the best results and show signif-
icant improvements over other baselines. IDEAL
consistently outperform the corresponding PEFT
Adapters with the same input size. For instance, on
CovidET dataset, IDEAL,r4 surpasses the best
baseline LoRA by 1.64 ROUGE-L points and 2.36
ROUGE-Lsum points with the same input size of
1.6K.

For the two long document datasets showed in
Table 2, IDEALr,r4 with an input length of 8K
achieved the best results, while IDEALgf]gi"f also
performed exceptionally well even under limited
GPU memory. For example, on QMSum dataset,
IDEAL%ijnf surpasses all baselines on ROUGE-
L and and BERTScore.

The complete results, including ROUGE-1 and
ROUGE-2 metrics, are presented in the Ap-
pendix A.4.

3.6 Ablation Study

Different adapter for IDEAL. As shown in Ta-
ble 1, we compare the performance of IDEAL
on different Adapter with same input size. On
the CovidET dataset, the performance differences
among the three adapters on IDEAL were mini-
mal. However, on the QMSum(Golden) dataset,
IDEAL,ra outperformed IDEALpagapter by
1.48 ROUGE-L points under the same input length
of 768. Overall, IDEAL;,r4 achieves the best
results on four datasets.

The effectiveness of each module in
IDEALgf}gi”f . In Table 4, we evaluated

the effectiveness of Query-focused Infini-attention
through comparative testing. First, we im-
plemented Infini-attention based on LoRA as
Lora+Inf and observed significant improvements
compared to LoRA alone under the same GPU
memory constraints, with increases of 1.55 and
1.33 points in ROUGE-L and ROUGE-Lsum
on QMSum dataset, respectively. These results
indicate that compressing the key-value states
of historical segments enables summarization
of long documents within limited GPU mem-
ory. Furthermore, we enhanced IDEAL},rA

Models LC R-L R-Lsum BScore
CovidET Dataset
Bart-base 1K 21.62 2217 5797
Bart-large 1K 21.66 2224 57.85
LED-base* 4K - 20.82 -
LED-base-
OASum™* 4K - 20.45 -
ChatGPT* - 1535 15.36 -
Prompt 768 23.19 23.79 59.31
PAdapter 768 2293 2349 59.00
Lora 768 22.85 2341 58.93
IDEALpromp: 768 2319 2371 59.55
IDEAL p adapter 768 23.18 23.79 59.18
IDEAL},,rA 768 23.28 2393 59.40
QMsum(Golden) Dataset
Bart-base 1K 2521 3356 55.31
Bart-large IK 2525 33.75 5544
ChatGPT* - 2423 24.19 -
Prompt 768 24.26 30.08 56.47
PAdapter 768 26.70 32.76 58.68
Lora 768 26.69 3244 58.52
1.6K 27.36 33.71 59.62
IDEALpomp: 768 2492 30.31 56.76
IDEALpAdapter 768 26.87 33.94 59.35
768 28.35 34.89 59.96
IDEAL LorA 1.6K 29.00 36.08 60.63
3K 2936 36.65 60.87

Table 1: Comparision with baselines on CovidET and
QMsum(Golden). LC denotes the local context size of
model. R-L, R-Lsum, and BScore denote ROUGE-L,
ROUGE-Lsum, BERTSCore, respectively. * indicates
that experimental results are obtained from related work.
We color each row as the best and second best .

with Infini-attention, achieving better results
than Lora+Inf in ROUGE-L. The IDEAL;,rA
method integrated with Query-focused Infini-
attention as IDEALY =" outperformed both
IDEAL;,ra+Inf and Lora+Inf in all metrics,
demonstrating that our proposed Query-focused
Infini-attention effectively compresses query-
related information. For the IDEAL;,gs+Inf
method, we observed a significant decline in
all metrics after removing the repeated query
instruction at the end of the input document,
demonstrating the necessity of repeating the query
instruction.

Models LC R-L R-Lsum BScore
QMSum Dataset

Bart-base IK 20.37 2746 51.74

Bart-large IK 20.02 27.52 51.83

LED-base* 4K - 25.68 -

LED-base-

OASum* 4K - 26.67 -

ChatGPT* - 17.81 18.81 -

Bart+

Unlimiformer* K- 19.9 i i

IDEAL R4 8K 22,59 31.30 57.35

IDEALY 1" 0.8/6K 22.16 2705 55.56
SQUALITY Dataset

Bart-base 1K 2049 3434 5441

Bart-large IK 2097 36.11 54.85

LED-base* 4K - 34.47 -

LED-base-

OASum* 4K - 35.14 -

Bart-Large* IK 208 - -

Bart-Large+

DPR: g IK 210 - -

ChatGPT* - 18.45 22.56 -

IDEAL ;A 8K 2425 41.72 59.48

IDEALY/ M 1.6/9K 21.49 34.86 56.08

Table 2: Comparision with baselines on QMSum and
SQuALITY. 0.8/6K represents the local text size and
the max input length, respectively.

3.7 Indepth Analysis

Performance of low memory IDEAL.
IDEALr,ra consistently demonstrates im-
proved performance as input length increases.
Howeyver, this comes at the cost of increased GPU
memory consumption. Table 4 illustrates this trade-
off, showcasing IDEAL},r 4 performance on input
lengths of 1.6K, 3.8K, and 8K, requiring 24G,
40G, and 80G of memory, respectively. In contrast
to IDEALy,g4, our proposed IDEALCLQf]D:i"f
exhibits memory efficiency when handling long
inputs. IDEAL%’J R—i”f maintains a consistent
memory footprint 24G regardless of input length.
Notably, on the QMsum dataset, IDEAL%f éj{lnf
outperforms IDEAL},r 4 with an input length of
1.6K on all metrics within a same 24GB memory
constraint. Moreover, it surpasses IDEAL,r4
with an input length of 3.8K in 40GB memory on
the ROUGE-L metric and achieves performance
close to IDEALf,r4 with an input length of 8K in
80GB memory.

Models r/bs Params(M) R-L
Prompt - 1.2 24.26
PAdapter 16 4.3 26.70
8 12.3 26.69

LoRA 16 245 2637
IDEAL prompr - 72 2492
16 15.2 26.87

32 25.8 27.21

IDEALpAdapter g4 470 27.66
128 89.5 27.89

IDEAL,rA 8 24.5 28.35

Table 3: Trainable parameters comparison on QM-
sum(Golden) dataset with 768 input size. r/bs denote
the rank in LoRA or the bottle-neck size in Parallel
Adapter. Params(M) is the total size of trainable pa-
rameters in millions.

""""""""""

ROUGE-L

250 500 750 1000 1250 1500 1750 2000
Local context size

Figure 3: Performance with respect to the different local
context size of IDEALZ =17

Trainable parameters comparison. In Table 3,
we compare the performance of different IDEAL
HyperExperts under the same parameter count. The
Prompt-tuning method can adjusts parameter count
only by controlling prompt length, with experi-
ments from Hu et al. (2023) indicating optimal
performance at a prompt length of 10. Despite
having the fewest trainable parameters, its perfor-
mance on the QMSum(Golden) dataset is the low-
est. With the same parameter count, LoORA with a
rank of 16 still significantly underperforms com-
pared to IDEAL,r4, highlighting the effective-
ness of HyperExpert. IDEAL p gqqpter can improve
performance by increasing the bottleneck size, but
even with 89.5M parameters, it is still inferior
to IDEALy,z4 with 24.5M parameters. Overall,
IDEAL,r4 achieves the best performance and
parameter efficiency.

Local context size of IDEALgf éi"f . Figure 3

presents the performance of IDEAL?féZf under

varying local context sizes (LC). On the QMSum

Models H

QMSum Dataset

SQUALITY Dataset

LC R-L R-Lsum BScore LC R-L R-Lsum BScore
Lora 1.6K 19.58 2525 5376 | 1.6K 20.73 3541 55.97

1.6K 1971 2627 5430 | 1.6K 22.16 3573 56.50
IDEAL orA 3.8K 21.62 2846 5600 | 3.8K 2254 3754 5742

8K 2259 3130 57.35 8K 2425 4172 5948
LoRA+Inf 0.8/6K 21.13 2658 5534 | 1.6/9K 2059 3476 55.21
IDEAL,pa+Inf || 0.8/6K 21.76 26.16 5497 | 1.6/9K 21.68 34.81 55.72
IDEALLopa+Inf | ¢/ck 1657 2040 5071 | 169K 1789 3062 5052

w/o ReQ

IDEALY A | 0.8/6K 2216 27.05 5556 | 1.6/9K 2149 3486 56.08

Table 4: Comparing IDEAL%féX"f with Infini-attention based methods and IDEAL,r4 with different input
size. LORA+Inf and IDEAL},r 4+Inf denote the incorporation of Infini-attention into LoORA and IDEAL,r 4,
respectively. w/o ReQ indicates that the query instruction is not repeated at the end of the input document.

ROUGE-L

6000 8000 10000
Max Length

Figure 4: Performance with respect to the different max
input length of IDE AL%fé,{; nf

dataset, the model exhibits stable performance
when LC is beyond 400, achieving nearly the best
overall performance at LC=800. Similarly, on the
SQUuALITY dataset, the optimal LC is observed at
1.6K. These findings indicate that IDEALY 1/ dif-
fers from IDEAL k4, the limited memory for the
former is enough to handle extremely long inputs.

Max input length of IDEALY :/"/. Ta-
ble 4 presents the optimal input length for
IDEALY/ -1 on the QMsum and SQUALITY
datasets. The results suggest that information rele-
vant to the query in the QMsum dataset is primarily
concentrated within the first 6000 tokens, while in
the SQUALITY dataset, the relevant information is
more evenly distributed throughout the document.

4 Related Works

Query-focused Summarization. Tan et al.
(2020) and Yang et al. (2023b) address QFS by
prepending the query or aspect to the input doc-
ument and fine-tuning pre-trained models in an
end-to-end manner. Zhong et al. (2021), Wang

et al. (2022), and Amar et al. (2023) employ extract-
then-summarize strategies that use a filter model
to extract key parts of the document based on the
query, then fitting the shorter text into a summarizer.
Yang et al. (2023a) reveal that the performance of
ChatGPT is comparable to traditional fine-tuning
methods in terms of ROUGE scores on QFS tasks.

Long-context Transformers. Unlimiformer
(Bertsch et al., 2024) enhances pre-trained models
like BART (Lewis et al., 2019) to handle unlimited
inputs without additional learned weights by
employing a retrieval-based long-context method.
Infini-transformer (Munkhdalai et al., 2024) inte-
grates long-term context compressive memory into
vanilla transformers, enabling Transformer-based
LLMs to scale to infinitely long contexts after full
continual pre-training. Unlike Infini-transformer,
we explore the compressive memory method
on adapter-based PEFT of LLMs and design a
query-focused infini-attention for QFS tasks.

5 Conclusion

In this paper, we propose IDEAL, an efficient
query-aware adaptation method on LLMs for QFS
tasks, which consists of two modules: Query-aware
HyperExpert and Query-focused Infini-attention.
The two modules enable LLMs to achieve fine-
grained query-LLM alignment efficiently and have
the ability to handle lengthy documents.

Limitations

Due to the absence of longer QFS datasets currently
available, we explored IDEAL only on datasets

with input lengths around 10k. However, it is nec-
essary to validate IDEAL on datasets with longer
input documents, such as performing QFS tasks
across entire books. Further validation and opti-
mization of the IDEAL method on book-length
inputs would be both interesting and meaningful.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Shmuel Amar, Liat Schiff, Ori Ernst, Asi Shefer, Ori
Shapira, and Ido Dagan. 2023. OpenAsp: A Bench-
mark for Multi-document Open Aspect-based Sum-
marization. arXiv preprint. ArXiv:2312.04440 [cs].

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew Gormley. 2024. Unlimiformer: Long-range
transformers with unlimited length input. Advances
in Neural Information Processing Systems, 36.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Inter-
national Conference on Learning Representations
(ICLR).

Hal Daumé II1. 2009. Bayesian query-focused summa-
rization. arXiv preprint arXiv:0907.1814.

Mahak Gambhir and Vishal Gupta. 2017. Recent auto-
matic text summarization techniques: a survey. Arfi-
ficial Intelligence Review, 47(1):1-66.

David Ha, Andrew M Dai, and Quoc V Le. 2016. Hyper-
networks. In International Conference on Learning
Representations.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. LLM-Adapters:
An Adapter Family for Parameter-Efficient Fine-
Tuning of Large Language Models. arXiv preprint.
ArXiv:2304.01933 [cs].

Hamish Ivison and Matthew E. Peters. 2022. Hyper-
decoders: Instance-specific decoders for multi-task
NLP. arXiv preprint. ArXiv:2203.08304 [cs].

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International conference on machine
learning, pages 5156-5165. PMLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. BART:
Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Com-
prehension. arXiv preprint. ArXiv:1910.13461 [cs,
stat].

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Imanol Schlag, Tsendsuren Munkhdalai, and Jiirgen
Schmidhuber. 2020. Learning associative inference
using fast weight memory. In International Confer-
ence on Learning Representations.

http://arxiv.org/abs/2312.04440
http://arxiv.org/abs/2312.04440
http://arxiv.org/abs/2312.04440
http://arxiv.org/abs/2312.04440
http://arxiv.org/abs/2312.04440
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2203.08304
http://arxiv.org/abs/2203.08304
http://arxiv.org/abs/2203.08304
http://arxiv.org/abs/2203.08304
http://arxiv.org/abs/2203.08304
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Bowen Tan, Lianhui Qin, Eric P. Xing, and Zhiting
Hu. 2020. Summarizing Text on Any Aspects: A
Knowledge-Informed Weakly-Supervised Approach.
arXiv preprint. ArXiv:2010.06792 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Ja-
son Phang, and Samuel R. Bowman. 2022. SQuAL-
ITY: Building a Long-Document Summarization
Dataset the Hard Way. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1139-1156, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Zirui Wang, Zihang Dai, Barnabds P6czos, and Jaime
Carbonell. 2019. Characterizing and avoiding nega-
tive transfer. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,

pages 11293-11302.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023a. Exploring the Limits of Chat-
GPT for Query or Aspect-based Text Summarization.
arXiv preprint. ArXiv:2302.08081 [cs].

Xianjun Yang, Kaiqiang Song, Sangwoo Cho, Xi-
aoyang Wang, Xiaoman Pan, Linda Petzold, and
Dong Yu. 2023b. OASum: Large-Scale Open Do-
main Aspect-based Summarization. arXiv preprint.
ArXiv:2212.09233 [cs].

Hongli Zhan, Tiberiu Sosea, Cornelia Caragea, and
Junyi Jessy Li. 2022. Why do you feel this way?
summarizing triggers of emotions in social media
posts. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9436-9453.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Ao-
jun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, and Yu Qiao. 2023. LLaMA-Adapter: Effi-
cient Fine-tuning of Language Models with Zero-init
Attention. arXiv preprint. ArXiv:2303.16199 [cs].

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Wengiao Zhang, Tianwei Lin, Jiang Liu, Fangxun
Shu, Haoyuan Li, Lei Zhang, He Wanggui, Hao
Zhou, Zheqi Lv, Hao Jiang, Juncheng Li, Siliang
Tang, and Yueting Zhuang. 2024. HyperLLaVA:
Dynamic Visual and Language Expert Tuning for
Multimodal Large Language Models. arXiv preprint.
ArXiv:2403.13447 [cs].

10

Hao Zhao, Zihan Qiu, Huijia Wu, Zili Wang, Zhaofeng
He, and Jie Fu. 2024. HyperMoE: Paying Attention
to Unselected Experts in Mixture of Experts via Dy-
namic Transfer. arXiv preprint. ArXiv:2402.12656
[cs].

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A New Benchmark for
Query-based Multi-domain Meeting Summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5905-5921, Online. Association for Computa-
tional Linguistics.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 194—
203.

A Appendix
A.1 Dataset statistics

A.2 Implementation Dtails

All LLaMA-based models in our experiments use
Automatic Mixed Precision, with 16-bit for frozen
parameters and 32-bit for trainable parameters to
conserve memory. Additionally, we employ Flash-
Attention2 (Dao, 2024) to accelerate model train-
ing and inference for LLaMA-based models. All
models in our experiments can be trained on at
least a single 24GB Nvidia GeForce RTX 3090,
except for the large local context size setting for
long documents. The details of GPU requirements
for different local context sizes are shown in Ta-
ble 6. During the generation stage, we adopt top-p
sampling as the default decoding method with a
temperature of 0.1 and a top-p value of 0.75.

A.3 GPU Requirements
A4 Complete Results

http://arxiv.org/abs/2010.06792
http://arxiv.org/abs/2010.06792
http://arxiv.org/abs/2010.06792
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2022.emnlp-main.75
https://doi.org/10.18653/v1/2022.emnlp-main.75
https://doi.org/10.18653/v1/2022.emnlp-main.75
https://doi.org/10.18653/v1/2022.emnlp-main.75
https://doi.org/10.18653/v1/2022.emnlp-main.75
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/2212.09233
http://arxiv.org/abs/2212.09233
http://arxiv.org/abs/2212.09233
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://arxiv.org/abs/2403.13447
http://arxiv.org/abs/2403.13447
http://arxiv.org/abs/2403.13447
http://arxiv.org/abs/2403.13447
http://arxiv.org/abs/2403.13447
http://arxiv.org/abs/2402.12656
http://arxiv.org/abs/2402.12656
http://arxiv.org/abs/2402.12656
http://arxiv.org/abs/2402.12656
http://arxiv.org/abs/2402.12656
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472

Type Dataset Domain #Instances #Input Tk. #Output Tk. #QuerieslAspects

Query QMSum Meeting 1808 13227(2670°) 88 1566
Y SQUALITY Story 625 8071 306 437
Aspect CovidET Reddit 7122 228 32 7

Table 5: Statistics of query/aspect-based summarization datasets.#Instances represents the total number of
(document, summary) pairs in the corresponding dataset. #Instances and #Input Tk. denote the number of input
and output token lengths under the Llama2 tokenizer, respectively. #QuerieslAspects indicates the number of unique
queries or aspects appearing in the dataset. 2670* represents the number of input tokens for QMsum(Golden).

Models LC GPU
Bart-base < 1K
Bart-large -
Prompt
<0.
PAdapter < 08K
LoRA
<.
IDEAL ;54 < 1.6K | 3090 24G
Inf+LoRA <1.2K

Inf+IDEAL g4 | < 1.1K
IDEALY/ M | <0.8K

Inf+LoRA

<2.
IanD%}LILnOfRA <2.1K A100 40G
IDEAL; 74
IDEAL,rA <3.8K
IDEAL,rA <8K | A800 80G

Table 6: GPU requirements in our experiments. For all
LoRA-based methods, we can extend the local context
size using Flash-attention2.

11

Models R-1 R-2 R-L R-Lsum BScore

Bart-base 2728 7.50 21.62 22.17 57.97
Bart-large 2754 7.72 21.66 22.24 57.85
LED-base* 26.19 6.85 - 20.82 -
LED-base-OASum* 25.61 6.58 - 20.45 -
ChatGPT* 20.81 3.99 15.35 15.36 -
Prompt 28.71 8.58 23.19 23.79 59.31
PAdapter 29.18 8.69 22.93 23.49 59.00
Lora 28.81 8.54 22.85 23.41 58.93

IDEAL prompt 28.55 856 23.19 2371 59.55
IDEAL p Adapter 29.40 892 23.18 23.79 59.18
IDEAL,RrA 29.40 8.84 2328 2393 59.40

Table 7: CovidET

Models Input Size R-1 R-2 R-LL R-Lsum BScore
Bart-base IK 38.32 13.61 25.21 33.56 55.31
Bart-large IK 3849 1426 2525 33.75 55.44
ChatGPT* 36.83 12.78 2423 24.19 -
Prompt 768 3406 1196 2426 30.08 56.47
PAdapter 768 37.10 14.13 26.70 32.76 58.68
Lora 768 36.57 1423 26.69 3244 58.52
Lora 1.6K 38.05 1459 2736 33.71 59.62
IDEAL pyompt 768 3448 1222 2492 30.31 56.76
IDEAL p Adapter 768 38.50 1438 26.87 33.94 59.35
IDEAL,rA 768 39.26 1544 2835 34.89 59.96
IDEAL,rA 1.6K 40.82 16.61 29.00 36.08 60.63
IDEAL,rA 3K 41.61 17.07 29.36 36.65 60.87

Table 8: QMsum(Golden)

Models Input Size R-1 R-2 R-LL R-Lsum BScore
Bart-base 1K 3172 798 2037 2746 5174
Bart-large 1K 3176 776 20.02 2752 51.83
LED-base* 4K 2952 7.00 - 25.68 -
LED-base-OASum* 4K 3030 7.56 - 26.67 -
ChatGPT* 2834 874 17.81 1881 -
Bart+Unlimiformer* 1K 30.9 8.0 19.9 - -
Lora 16K 2874 754 1958 2525 53.76
Inf+LoRA 0.8K/6K 3049 795 21.13 2658 5534
IDEAL 7,54 16K 2994 805 1971 2627 5430
IDEALL,RA 38K 3269 928 21.62 2846 56.00
IDEAL 1,54 8K 3550 10.62 22.59 3130 5735
Inf+IDEAL£oz4 0.8K/6K 3044 805 2176 2616 54.97
IDEALY! Y 0.8K/6K 3149 867 2216 2705 5556

Table 9: QMsum

12

Models Input Size R-1 R-2 R-LL R-Lsum BScore

Bart-base 1K 36.93 857 2049 3434 5441
Bart-large 1K 3858 9.81 2097 3611 54.85
LED-base* 4K 36.78 831 - 34.47 -
LED-base-OASum* 4K 376 881 - 35.14 -
Bart-Large* 1K 40.2 104 20.8 - -
Bart-Large+DPR* 1K 415 114 210 - -
ChatGPT* 3702 819 1845 22.56 -
Lora 16K 3811 865 2073 3541 5597
Inf+LoRA 1.6K/9K ~ 37.06 824 2059 3476 5521
IDEAL 7,4 I.6K 3826 945 22116 3573 56.50
IDEALoRA 38K 40.13 10.63 2254 37.54 5742
IDEAL 7,54 8K 4459 12.87 2425 4172 59.48
Inf+IDEALzopA 1.6K/9K 37.13 877 21.68 3481 5572
IDEALY/ -/ 1.6K/9K 37.36 874 2149 3486 56.08

Table 10: SQuALITY

13

	Introduction
	Methodology
	Query-aware HyperExpert Module
	Query-focused Infini-attention Module

	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Comparison of Methods
	Main Results
	Ablation Study
	Indepth Analysis

	Related Works
	Conclusion
	Appendix
	Dataset statistics
	Implementation Dtails
	GPU Requirements
	Complete Results

