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ABSTRACT

Tabular data is fundamental to machine learning, yet a lack of a widely ac-
cepted and comprehensive benchmark hinders the reliable evaluation of models,
which range from tree-based models and neural network to more recent in-context
learning-based approaches. Existing benchmarks are often limited in the diversity
of meta-features considered, leading to inconsistent model rankings and reduced
generalizability. To address these issues, this study constructs a novel benchmark
for tabular data classification and regression, designed with an explicit focus on
two key, often competing, characteristics: Diversity and Efficiency. We propose
a pipeline to quantitatively assess benchmark diversity and introduce a method
for selecting a representative subset of datasets. Our results demonstrate that the
proposed benchmark achieves superior diversity compared to existing alternatives
while maintaining evaluation efficiency. The main contributions include the new
benchmark TabPalooza, the evaluation pipeline, and an empirical validation of
the benchmark’s enhanced coverage. The proposed TabPalooza is available at
https://huggingface.co/datasets/data-hub-xyz987/TabPalooza.

1 INTRODUCTION

Tabular data, which is characterized by a structured organization of rows (representing instances)
and columns (representing features), constitutes a fundamental component of machine learning. The
analysis of such data remains a central task in the discipline, and the corresponding methodologies
have undergone significant evolution over time.

Conventional techniques—including Logistic Regression (LR), Support Vector Machines (SVM),
and decision trees—continue to be widely employed as baseline models across diverse applica-
tions (Bishop & Nasrabadil, 2006; [Mohri et al.,[2018). However, for an extended period, tree-based
models such as Random Forests (RF)(Breiman, |2001), XGBoost (Chen & Guestrin, [2016)), Light-
GBM (Ke et al., [2017), and CatBoost (Prokhorenkova et al., 2018) have been recognized as highly
effective methods for handling tabular data. In contrast to the established dominance of neural
network (NN)-based models in domains like computer vision and natural language processing, the
comparative efficacy of NN-based and tree-based models in tabular data analysis remains a subject
of ongoing investigation—even with the recent introduction of numerous NN-based architectures
(Arik & Pfister, 20215 Wang et al., 2021} |Gorishniy et al., | 2021; [Somepalli et al., 2022} (Chen et al.,
2022; |Jeftares et al., [2023; |Chen et al., 2023} |Yan et al., 2023)

Recently, there has been growing research momentum in in-context learning(ICL)-based models,
emerging as formidable competitors, including TabPFN (Hollmann et al.l |2022) and its successor
TabPFN-v2 (Hollmann et al.} |2025), TabICL (Qu et al.,2025), Mitra (Zhang & Danielle, 2025)), and
LimiX (Zhang et al., 2025)).

In response to the growing demand for reliable model evaluation and accelerated iterative develop-
ment, a number of high-quality benchmarks have been established (Liu et al., 2024} Bischl et al.,
2017; [Hollmann et al.l [2025; [McElfresh et al., 2023} [Erickson et al., 2025} [Fischer et al.| [2023)).
Nevertheless, there remains no widely accepted consensus regarding which benchmark should be
regarded as authoritative. Consequently, when models are evaluated across different benchmarks,
they frequently exhibit significant rank variations, leading to inefficiencies and increased time costs
in model selection and validation. This phenomenon stems from the fact that different benchmarks
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are designed to evaluate distinct aspects of model performance. Moreover, most existing bench-
marks are limited in scope—often comprising fewer than 50 datasets—which constrains the gener-
alizability of conclusions drawn from them (Ye et al., 2024)). Although recent efforts have begun
to address the issue of dataset diversity, current evaluations remain narrow, typically considering
fewer than five attributes—such as dataset size, the proportion of categorical features, the number of
classes, and the class imbalance ratio (Ye et al., 2024} |Erickson et al.,|2025; McElfresh et al., 2023).

To address these limitations, we aim to construct a fair and commonly acceptable benchmark. It is
designed with two primary characteristics: Diversity and Efficiency. These objectives are often in
tension, thereby framing the central challenge as one of maximizing diversity under a predetermined
volume of data.

Diversity is assessed along two key dimensions. The first involves evaluating datasets using a
broader set of meta-features. The second dimension centers on a proposed pipeline that leverages
specialized subsets derived from our benchmark to approximate the performance of other bench-
marks. A lower reconstruction error indicates a higher degree of diversity in our benchmark. Our
proposed benchmark exhibits a significantly lower reconstruction error, confirming its enhanced
diversity.

Efficiency limit the total number of datasets. While collecting as many datasets as possible may
enhance the diversity of a benchmark, it is necessary to constrain the number of included datasets to
maintain the efficiency of tabular model evaluation. In our study, we present a pipeline for selecting
the most representative datasets while preserving diversity.

Below, we summarize our main contributions:

* We propose a diverse and efficient tabular benchmark for classification and regression,
leveraging an extensive collection of datasets and a rich set of meta-features.

* We propose a pipeline to assess the diversity of tabular benchmarks.

* We demonstrate that our proposed benchmark exhibits superior diversity compared to ex-
isting alternatives.

2 RELATED WORKS

Substantial research dedicated to the development of benchmarks for tabular data, as exemplified
by OpenML-CC18 (Bischl et al.|, [2017), PMLB (Olson et al.l |2017; Romano et al., 2022)), and
TabRepo (Salinas & Erickson, 2023)). Recent years have witnessed dedicated efforts to establish
high-quality benchmarks in this domain. For example, TabZilla (McElfresh et al., [2023) proposes
a “most difficult” dataset benchmark, TabRed (Rubachev et al., 2024)) emphasizes the use of real-
world datasets, and TabArena (Erickson et al., 2025) incorporates timeliness of datasets. Concur-
rently, TALENT (Ye et al., 2024)) compiles a comprehensive collection of datasets spanning diverse
task types, dataset scales, and application domains. Nevertheless, research on the evaluative effec-
tiveness of such benchmarks remains relatively limited.

Research on the relationship between dataset meta-features and model performance predominantly
centers on the comparative analysis between tree-based models and neural network (NN)-based
models. McElfresh et al. (McElfresh et al., 2023) systematically compared 19 models on 176
datasets, and studied which properties (e.g. feature distributions, skewness, heavy-tailedness, dataset
irregularities, etc.) would make GBDT or neural networks more advantageous. Ye et al. (Ye et al.,
2024])) extended this analysis by comparing 32 models on more than 300 datasets and constructing
a predictive mapping from dataset meta-features and training dynamics to model performance. Al-
though primarily designed as a benchmark, TabArena (Erickson et al., [2025) also conducted large-
scale comparisons between tree-based and neural models, thereby revealing the performance dif-
ferences of the two approaches under a unified benchmark. However, these comparative analyses
are predominantly confined to the broad dichotomy between tree-based and neural network-based
models, operating at a relatively coarse level of granularity.
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3 METHODOLOGY

3.1 DIVERSITY ASSESSMENT
3.1.1 EVALUATION PROTOCOLS

We assess the diversity of a benchmark based on its reconstruction error with another benchmark,
i.e., the mean of rank difference (d,.) between two benchmarks. Specifically, we define a source
benchmark & = {s1,s9,...,s)} and a target benchmark 7 = {t1,t2,...,tn} containing M
and N datasets respectively, along with a collection of K baseline models M = {g1,g2,...,9x }-
The performance of the model g;, is evaluated on the dataset s,, and the dataset ¢,, yielding a
performance ranking rfh  and 7'7{7 x- We then estimate the mean rank of model g, on 7 by using

the information of S, denoted as P = % Zf:;l Dy, wWhere pi ?s the rank estimation of model g; on
dataset t5. The final reconstruction error is computed as the difference between the real mean rank
values obtained over all datasets in 7 and the predict mean rank values, respectively.

1.,
dT:?;’pk—rﬂ.

where 71 = % 25:1 rI',. A smaller value of d, indicates that the source benchmark S better

preserves the ranking behavior of the target benchmark 7.

3.1.2 BASELINE MODELS AND EVALUATION METRICS

Baseline models To evaluate the capabilities of the tabular benchmarks, we assess 11 baseline mod-
els comprising: (1) four ICL-based approaches (with three ICL models for regression tasks, as
TabICL is exclusively designed for classification), (2) three tree-based approaches, (3) three neural
network-based models, and (4) one ensemble automated machine learning (Auto-ML framework)
approach. Although numerous tree-based and neural network-based models exist, we select three
representatives from each category with diverse ranking performances across different benchmarks,
as evaluated in|Zhang et al.| (2025).

* Tree-based approaches. We include XGBoost (Chen & Guestrin, [2016), CatBoost (Doro-
gush et al.|, 2018)), Random Forest (RF) (Breiman, [2001). All models undergo optimiza-
tion through the Optuna framework (Akiba et al., 2019) employing 5-fold stratified cross-
validation, utilizing identical hyperparameter search spaces as those specified in [Zhang
et al.|(2025).

* NN-based approaches. We evaluate ExcelFormer (Chen et al., 2023, MLP (Goodfellow
et al., 20165 Gorishniy et al.,|2021), ResNet (He et al.,|2016} |Gorishniy et al., 2021), These
NN-based models are trained and evaluated using the TALENT (Li1u et al., |2024) Toolbox.

* ICL-based models. We include LimiX (Zhang et al.,[2025)), TabPFN-v2 (Hollmann et al.,
2025)), TabICL (Qu et al.,|2025)), and Mitra (Zhang & Daniellel 2025)).

e Auto-ML framework. Additionally, we include AutoGluon-Tabular (Erickson et al.,
2020), an automated framework that streamlines model search and ensemble construction
workflows. For each dataset, we employ the default hyperparameter search space while im-
plementing a standardized 600-second computational constraint for the optimization pro-
cess.

model performance For performance assessment, we utilize ROC AUC (area under the receiver op-
erating characteristic curve), accuracy (ACC), and F1 score as classification metrics. In multi-class
scenarios, the One-vs-One strategy is implemented for both ROC AUC and F1 score computations.
The ROC AUC reflects model performance across varying decision thresholds, whereas ACC and
F1 score exhibit responsiveness to class imbalance. To evaluate regression performance properly,
we employ normalized RMSE and R? as the two evaluation metrics. We also calculate the ranks of
models with respect to these metrics.
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Table 1: The types of extracted meta-features and their corresponding quantities.

Meta-feature type \ Number
General 13
Statistical 48
Info-theory 13
Landmarking 14
Model-based 24

3.1.3 META-FEATURE EXTRACTION AND SELECTION

Similar to TabZilla (McElfresh et al.l 2023), we extract meta-features using the Python library
PyMFE (Alcobacga et al.l |2020), comprising 111 distinct meta-features. We additionally compute
the cell missing ratio for each dataset. As PyMFE is designed for classification tasks, we adapt
its application to regression datasets by discretizing the continuous target variables into 10 equal-
frequency bins when calculating their meta-features. The types of extracted 112 meta-features and
their corresponding quantities are presented in Table |1} with our defined cell missing rate included
in the *General’ category.

To identify the most informative meta-features, we evaluate their correlations with model perfor-
mance rankings using multiple correlation estimation methods:

* Pearson correlation: quantifies linear relationships between variables, representing the
most widely adopted and interpretable correlation metric;

e Spearman correlation: detects monotonic associations through rank-based statistics,
demonstrating robustness to non-linear yet monotonic patterns;

» Kendall correlation: offers a more rigorous assessment of rank concordance while ex-
hibiting reduced sensitivity to outlier effects;

* Distance correlation (dCor): effectively captures general non-linear dependencies, serv-
ing as a valuable complement to conventional correlation measures.

3.1.4 META-FEATURE EVALUATION

In our study, we aim to demonstrate the correlation between the meta-features of each dataset and
the performance rank of different baseline models. This supervised study consists of N dataset
samples, each characterized by z meta-features, and evaluate M baseline models on these datasets.

For the n-th dataset and m-th model, we construct the instance x; = [f; s;] € R**+1 | where f
is the extracted meta-features and s is the index of model. For each instance, we can obtain the
corresponding rank r;. Given a benchmark B = {(x;,r;) : ¢ = 1,..., N x M}, our goal is to

learn a regression model f : R**1 — R on B by minimizing the empirical risk, mapping the pair of
dataset feature and model to ranks.

mfin Z L(rs, f(:))

(xi,m1)EB

3.1.5 BENCHMARK ALIGNMENT

We propose a benchmark alignment pipeline to estimate the model performance on the target bench-
mark. For each dataset within a target benchmark, we compute the Euclidean distance to every
dataset in a source benchmark, based on a selected set of meta-features. The dataset from the source
benchmark with the smallest distance is then assigned to a newly constructed subset. This procedure
is repeated until the subset contains the same number of datasets as the target benchmark. Finally,
the ranks of baseline models evaluated on this subset are used as an estimate of their ranks on the
target benchmark, enabling the calculation of the mean rank difference between the two benchmarks.
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3.2 EFFICIENCY GUARANTEE

The TabPalooza benchmark is constructed using a methodology designed to minimize internal
dataset similarity. Specifically, we perform hierarchical clustering on the available datasets, con-
trolling the number of clusters as a parameter. From each resulting cluster, one dataset is randomly
selected for inclusion in TabPalooza. Concurrently, we ensure that the mean rank difference remains
within a predefined acceptable range, thereby preserving the benchmark’s evaluative reliability.

4 EXPERIMENTS

deep tabular prediction, machine learning

4.1 DATASET CURATION

Datasets collection This study utilizes datasets from resultsestablished benchmarks for both clas-
sification and regression tasks. The classification benchmarks include TALENT-CLS, OpenML-
CC18, PEN-CLS, TabZilla, and TabArena, while the regression benchmarks comprise TALENT-
REG, PFN-REG, and CTR23. To expand the diversity of the data, additional 2273 classification
and 1381 regression publicly available datasets were sourced from Kaggle. For any dataset lacking
a predefined testing split, a standardized train-test split ratio of 7:3 is applied. In the case of clas-
sification tasks, this split is stratified to preserve the proportional distribution of classes across both
subsets.

Kaggle datasets validation The datasets obtained from Kaggle exhibit diverse formats and require
preprocessing prior to utilization. To facilitate the identification of dataset files and their correspond-
ing targets, we employ the DeepSeek-r1:32b (Guo et al.,|2025) and Qwen3:32b (Yang et al., [2025)
models. These large language models (LLMs) are accessed via the Ollama API. The prompts pro-
vided to the LLMs comprise the dataset files, the initial ten lines of each file, and an output sample.
The LLMs are tasked with determining the paths to the training and testing files, as well as spec-
ifying the classification or regression target. To enhance recognition accuracy, only the consistent
results between DeepSeek-r1 and Qwen3 are retained.

To further assess the solvability of these datasets, we train and evaluate the XGBoost model (Chen &
Guestrinl |2016)) across all datasets. For classification tasks, datasets exhibiting an ROC AUC (area
under the receiver operating characteristic curve) below 0.55 are excluded from further considera-
tion, whereas for regression tasks, those with an R? coefficient under 0.2 are similarly eliminated.

The final curated dataset collection comprises 335 classification datasets and 251 regression datasets.

Dataset selection and deduplication To manage computational demands, datasets within existing
benchmarks were subjected to specific exclusion criteria. Those containing over 50,000 training
samples or exceeding 10,000 features were omitted. For classification tasks, datasets with more
than 10 categories were also excluded to meets the requirements of the ICL-based baseline models.

Following this selection protocol, the classification task subset comprises 179 datasets from
TALENT-CLS, 62 from OpenML-CC18, 29 from PFN-CLS, 27 from TabZilla, and 33 from
TabArena. Similarly, for regression tasks, the curated collection includes 33 datasets from CTR23,
28 from PFN-REG, and 99 from TALENT-REG.

Finally, we eliminate duplicate datasets across all benchmarks by matching both dataset names and
dataset sizes. Distinct versions of the same dataset are retained to preserve their unique meta-feature
variations. In our study, we analyze a total of 501 classification datasets and 335 regression datasets,
collectively designated as the Universal Dataset Pool (UDP).

4.2 META-FEATURE EVALUATION

For meta-feature evaluation, we establish a baseline by setting the predicted mean rank on the test set
to be equal to the empirical mean rank observed in the training set. We then calculate the d,. between
these predicted values and the actual observed values. For the meta-feature based rank prediction
method, we generate individual rank predictions for each dataset within the testing set, followed



Under review as a conference paper at ICLR 2026

Table 2: The d,. of rank predictor and baseline in classification task. The smaller d,. is better.

method AUC ACC Fl1
baseline 0.582 0.637 0.524
TabZilla predictor 0.539 0.484 0.387
delta 0.043 0.153 0.137
baseline 0.664 0.613 0.382
TabArena predictor 0.566 0.653 0.546
delta 0.098 -0.040 -0.164
baseline 0.686 0.805 0.612
OpenML-CC18 predictor 0.630 0.563 0.409
delta 0.056 0.242 0.203
baseline 0.502 0.590 0.476
PFN-CLS predictor 0.334 0.440 0.369
delta 0.168 0.150 0.107
baseline 0.528 0.701 0.579
TALENT-CLS predictor 0.494 0.652 0.462
delta 0.034 0.049 0.114
baseline 0.592 0.677 0.515
Average predictor 0.513 0.558 0.435
delta 0.079 0.119 0.080

Table 3: The d,. of rank predictor and baseline in regression task. The smaller d,. is better.

method \ R? RMSE

baseline 0.404 0.387

CTR23 meta-pred 0.366 0.357
delta 0.038 0.030

baseline 0.344 0.392

PFN-REG meta-pred 0.320 0.349
delta 0.024 0.043

baseline 0.602 0.576

TALENT-REG meta-pred 0.366 0.471
delta 0.236 0.105

baseline 0.450 0.452

Average meta-pred 0.395 0.392
delta 0.055 0.060

by the calculation of corresponding d,..The evaluation results for each benchmark are presented in

Tables 2] and 3

For classification tasks, the incorporation of meta-features leads to a significant improvement in rank
estimation across most benchmarks, although exceptions are observed for the ACC and F1 score
metrics within the TabArena benchmark. Specifically, the average performance gains correspond to
0.079 in AUC, 0.119 in ACC, and 0.090 in F1 score, respectively.

In regression tasks, the inclusion of meta-features also demonstrates a substantial improvement in
rank estimation across all evaluated benchmarks. The observed average performance gains are 0.055
for R? and 0.060 for RMSE, respectively
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4.3 BENCHMARK DATASET

Firstly, we determine the appropriate size of the Benchmark TabPalooza. To this end, we system-
atically vary the number of datasets included in the TabPalooza and compute the corresponding
diff_rank values under all correlation methods and threshold settings. By plotting the average
diff_rank against the size, we select the inflection point where the curve becomes relatively flat
as the optimal size of TabPalooza. This ensures that the resulting benchmark is compact while still
maintaining strong alignment with the full benchmark. Based on this analysis, we set the size of
TabPalooza to 100 datasets for classification tasks and 140 datasets for regression tasks.
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Figure 1: Size selection of TabPalooza for (a) classification and (b) regression.

4.4 BENCHMARK ALIGNMENT EVALUATION

With the sizes determined in Section 4.1, we now construct TabPalooza under all configurations
of correlation methods and thresholds. For each configuration, important meta-features are first
identified, and hierarchical clustering is then applied on the UDP to obtain the desired number of
representative datasets (100 for classification and 140 for regression). The resulting TabPalooza is
compared against each target benchmark using the di £ f_rank metric.

This evaluation directly measures the alignment between the constructed TabPalooza and the full
benchmarks. By aggregating diff_rank values across all benchmarks and metrics, we can as-
sess how well the TabPalooza captures the ranking patterns of the complete benchmark suite. A
lower diff_rank indicates stronger alignment, demonstrating that TabPalooza effectively pre-
serves benchmark characteristics while remaining compact.

For classification tasks, we construct the TabPalooza using the setting Kendall+0.07. We then
evaluate the alignment of the resulting TabPalooza with each benchmark under three metrics (AUC,
ACC, and F1). The results are summarized in Table 4]

Table 4: Diff_rank values of TabPalooza for classification across benchmarks and metrics.

Benchmark AUC ACC F1

TabZilla 0.517 0.467 0.443
TabArena 0.389 0.507 0.324
CC18 0.404 0.452 0.421
PFN-CLS 0.477 0.533 0.425
TALENT-CLS 0.289 0.499 0.286
Average 0.415 0.492 0.380
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For regression tasks, we construct TabPalooza using the configuration dCor+0.12, which was
identified as the best-performing setting in Section 4.1. We evaluate the alignment of TabPalooza
with three regression benchmarks (CTR23, PFN-REG, and Talent—-REG) under two metrics (R2
and RMSE). The results are summarized in Table[5}

Table 5: Diff_rank values of TabPalooza for regression across benchmarks and metrics.

Benchmark ‘ R? RMSE
CTR23 0.136 0.152
PFN-REG 0.273 0.249
TALENT-REG 0.152 0.166
Average 0.187 0.189

4.5 COMPARE WITH OTHER BENCHMARKS

We further evaluate the alignment capability of additional benchmarks. Figure[2]and Figure[3|present
the d, values for benchmark pairs. Notably, when employing TabPalooza as the alignment source
for other benchmarks, the resulting d,. demonstrates consistently lower values. Conversely, when
TabPalooza serves as the target for alignment by other benchmarks, the observed d,. exhibits com-
paratively higher values.
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Figure 2: The cross-reconstruction error of the classification benchmark is visualized using a color
scale, in which lighter or lower-intensity colors correspond to superior reconstruction performance.
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Figure 3: The cross-reconstruction error of the regression benchmark is visualized using a color
scale, in which lighter or lower-intensity colors correspond to superior reconstruction performance.
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5 CONCLUTION

This study addresses the critical need for a robust and representative benchmark to evaluate mod-
els for tabular data. The proliferation of diverse modeling approaches—from traditional tree-based
methods and NN-based model to modernand in-context learning models—has highlighted the lim-
itations of existing benchmarks, which are often constrained in scale and meta-feature diversity,
resulting in inconsistent and non-generalizable evaluations.

To overcome these challenges, we propose a novel benchmark explicitly designed around the dual
principles of diversity and efficiency. We introduce a quantitative pipeline to assess diversity, demon-
strating that our benchmark achieves improved coverage and reconstruction compared to existing
alternatives. Furthermore, we develop a selection methodology that maintains this high level of
diversity within a limited set of datasets, thereby ensuring practical evaluation efficiency.

Our contributions establish a more reliable foundation for comparative model analysis, and we antic-
ipate that this work will promote fairer comparisons and accelerate iterative development in tabular
data research. Future work will focus on expanding the benchmark with additional datasets and
meta-features, as well as exploring its applications in automated model selection and combination.
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