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ABSTRACT

The information bottleneck (IB) method is a feasible defense solution against
adversarial attacks in deep learning. However, this method suffers from the spurious
correlation, which leads to the limitation of its further improvement of adversarial
robustness. In this paper, we incorporate the causal inference into the IB framework
to alleviate such a problem. Specifically, we divide the features obtained by the IB
method into robust features (content information) and non-robust features (style
information) via the instrumental variables to estimate the causal effects. With
the utilization of such a framework, the influence of non-robust features could
be mitigated to strengthen the adversarial robustness. We make an analysis of
the effectiveness of our proposed method. The extensive experiments in MNIST,
FashionMNIST, and CIFAR-10 show that our method exhibits the considerable
robustness against multiple adversarial attacks. Our code would be released.

1 INTRODUCTION

With the continuous improvement of computing power and data availability, the deep neural networks
(DNNs) have made breakthroughs in many fields, such as image classification Haralick et al. (1973),
object detection Redmon et al. (2016), machine translation Brown et al. (1990), natural language
understanding Devlin et al. (2018), and so on. In DNNs, feature maps in the middle layers are
treated as compression code Z. However, many studies in recent years have shown that DNNs are
susceptible to adversarial examples Szegedy et al. (2014b;a); Madry et al. (2018). In the field of
computer vision, adversarial examples which manipulate a small number of image pixels without
the change of semantic representation can deceive DNNs to make false predictions Xu et al. (2020).
It would be a huge threat to autonomous driving Eykholt et al. (2018), face recognition Sharif et al.
(2016), and daily shopping Liu et al. (2020). Therefore, the security of deep neural networks has
become a significant concern.

The phenomenon of the adversarial vulnerability can be regarded as the overfitting problem of
DNNs Goodfellow et al. (2015). Moreover, the defect of the decision boundaries in DNNs leads
to the possibility of adversarial attacks Goodfellow et al. (2014). As an effective regularization
method, the information bottleneck (IB) theory can help reduce the adversarial empirical risk and
approximate a better decision boundary. The IB theory is an extension of Shannon’s rate-distortion
theory Tishby et al. (2000). Its goal is to find an optimal compression code for the target random
variable, which maximizes the mutual information between the target random variable and the
compression code, and minimizes the mutual information between the source random variable and
the compression code. The IB method is believed to be useful to explain the operation and principle
of DNNs, and the mechanism of the information compression in the method of IB helps the DNNs
extract the representative features Tishby et al. (2000); Shwartz-Ziv & Tishby (2017); Tishby &
Zaslavsky (2015). Many pieces of follow-up work have been inspired, including the exploration of
the relationship between adversarial robustness and IB theory Achille & Soatto (2018); Alemi et al.
(2017); Fischer (2020). In recent years, many theoretical analyses have been proposed, and many
models and algorithms have also been shown to be effective, including Information Dropout Achille
& Soatto (2018) and Variation IB (VIB) Alemi et al. (2017), Diesentangled IB Pan et al. (2021), and
so on Kim et al. (2022); Fischer (2020); Voloshynovskiy et al. (2019).

Although some IB-based methods improve the adversarial robustness of the model to a certain extent,
there is a key problem with these methods: the existing IB methods Shwartz-Ziv & Tishby (2017);
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Figure 1: The proposed CausalIB framework is divided into two modules, IB and causal inference.
The IB module is used for overall regularization, and the causal inference module is used to
distinguish robust features from non-robust features. With the utilization of causal inference, the
proposed CausalIB can learn more structured information than models using only IB module.

Tishby & Zaslavsky (2015); Alemi et al. (2017); Fischer & Alemi (2020) do not pay attention to
the problem of the spurious correlation that the robust features and the non-robust features would
be entangled with each other. The learning bias on the fragile and incomprehensible features (non-
robust features) would lead to the adversarial vulnerability. In contrast, mankind with the ability
of causal inference Freeman (1994); Parascandolo et al. (2017) can normally recognize the visual
adversarial examples correctly by identifying and peeling those unrelated factors Pearl (2009). With
the utilization of causal inference, DNN models would focus more on robust features Tang et al.
(2021). To alleviate the problem of the entanglement between the robust features and the non-robust
features in the IB framework, we propose a causal intervention method. In this study, we assume that
the style information of an image is a non-robust feature, while the content information is a robust
feature. Since the style information cannot be observed, we introduce instrumental variables to help
remove the influence of style information. In the experiment, we validate the effectiveness of the
proposed causal inference IB method under various adversarial attacks such as Fast Gradient Sign
Method (FGSM) Goodfellow et al. (2015), PGD Madry et al. (2018) on the MNIST LeCun et al.
(1998), FashionMNIST Xiao et al. (2017) and CIFAR-10 Krizhevsky et al. (2009) datasets. The
empirical results validate the effectiveness of our method to boost the adversarial robustness.

Our contributions are as follows:

1. We utilize the causal theory to analyze the cause of the adversarial vulnerability of deep learning
models and the feasibility of improving robustness through instrumental variables;

2. We introduce a model called CausalIB, which uses the IB method with the assistance of causality
to extract features and causal inference to disentangle the robust features and non-robust features.

3. The extensive experiments on various settings of MNIST, FashionMNIST, and CIFAR-10 show
that CausalIB is robust against adversarial attacks.

The remainder of this paper is organized as follows. First, we make a literature review in Section
2. In Section 3, we introduce the IB theory and analyze the reasons for the existence of adversarial
examples from the perspective of causal theory. Moreover, the approach is illustrated in Section
3. The experiment’s detail and result will be described in Section 4. Finally, the conclusion of the
research is given in Section 5.

2 RELATED WORK

In this section, we briefly review the current state of research on adversarial robustness, prior works
on IB methods, and related causal inference methods.

2.1 ADVERSARIAL ROBUSTNESS

The existing methods for dealing with adversarial examples mainly include three directions Akhtar &
Mian (2018): preprocessing methods for the defense Miyato et al. (2017); Zheng et al. (2016); Shin
& Song (2017), improvement on the neural network structures Rifai et al. (2011); Bai et al. (2017);
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Hinton et al. (2015), and the utilization of external models when classifying unseen examples Akhtar
et al. (2018); Lee et al. (2017). Currently, the most effective strategy is adversarial training Goodfellow
et al. (2015); Tramèr et al. (2018). Adversarial training can be regarded as a method of data
augmentation, its adversarial robustness largely depends on the coverage of adversarial examples
during the training process. However, the study of Moosavi Dezhouni et al. Moosavi-Dezfooli et al.
(2017) found that even a well-trained defense network can still obtain other effective adversarial
examples through computation which brings new difficulties for the adversarial defense. The methods
without the utilization of adversarial training such as preprocessing methods Xie et al. (2019); Warde-
Farley & Bengio (2017); Das et al. (2017), data randomization methods Pinot et al. (2019); Cohen
et al. (2019); Xie et al. (2017), or IB methods Tishby et al. (2000); Shwartz-Ziv & Tishby (2017)
also provide insight for adversarial robustness. Among them, Das et al. Das et al. (2017) utilized the
method of compression to remove the high-frequency components from images to improve robustness.
Some pieces of seminal work Xie et al. (2017); Wang et al. (2016) show that data randomization
has a role in reducing the fooling rates of the networks. Initially, the IB theory was seen as an
interpretive work for DNNs Tishby et al. (2000). However, it has also been found that the IB method
is an effective regularization method due to its trade-off between prediction performance and model
compression, which can be used to improve the adversarial robustness Alemi et al. (2017); Fischer
(2020); Achille & Soatto (2018); Pan et al. (2021).

2.2 IB METHOD

In recent years, IB methods have been widely used to improve model robustness. Achille et al. Achille
& Soatto (2018) improved the Dropout method with the utilization of the IB framework to reduce
the sensitivity of the model to perturbations. A similar method is delivered by Kim et al. Kim et al.
(2022) that the robust and the non-robust neurons could be separated according to the different
encoding values reacting to the noises. Different from the above methods, Alemi et al. Alemi et al.
(2017) proposed a variational approximation method to optimize the IB, using reparameterization
trick Kingma & Welling (2014) for efficient training and demonstrating the effectiveness against
adversarial examples. Fischer et al. Fischer (2020) postulated that the vulnerability of neural networks
stems from the fact that the model retains too much information about the training data, resulting in
weakness under the adversarial attacks. Considering that the essence of the IB is the restriction of
the complexity of representation learning, the proposal of the conditional entropy-based IB (CEB)
strengthened the adversarial robustness and generalization ability of the IB framework Fischer &
Alemi (2020). A recent study Korshunova et al. (2021) postulates that the information bottleneck
methods based on the variational inference would suffer from gradient obfuscation due to the non-
smooth loss surfaces durint the optimization process. Such a challenge inspires us to explore the
feasible method to promote adversarial robustness of IB methods. Besides, DiesenIB Pan et al. (2021)
implements the IB method from the perspective of supervised disentanglement. In the proposed
DiesenIB, the information is not compressed, no compression means no loss of prediction perfor-
mance, and disentanglement helps the model to achieve a better performance in out-of-distribution
(OOD) and adversarial defense. Through improving VIB, Sinha Sinha et al. (2021) obtained the
diversity of output prediction, which is required for multimodal data modeling, and achieved certain
results in sparse training data and uncertainty estimation for OOD detection, etc.

2.3 CAUSAL INFERENCE

Human perception is robust to adversarial perturbations due to the ability of causal inference Zhang
et al. (2020); Pearl (2009; 2010). Many recent works have shown in various aspects that causal
models are suitable methods for parametric reasoning in complex systems Kusner et al. (2017), and
can even be utilized to interpret the deep learning models Schölkopf et al. (2021). Recently, Zhang
et al. Zhang et al. (2021) proposed a method called the adversarial distribution alignment, which
attempts to explain the existence of adversarial examples from the perspective of causality. Such a
method removes spurious correlations by eliminating the difference between natural and adversarial
distributions. A similar approach called causal manipulation augmented model Zhang et al. (2020)
aims to improve the robustness of DNNs to unseen adversarial perturbations by explicitly modeling
the perturbations from a causal view. The stable learning methods are delivered Peters et al. (2016);
Kuang et al. (2020) to reduce the accuracy variance of the model under various sample distributions
via the causal methods. Most relevant to our work is the causal intervention by instrumental variable
(CiiV) model Tang et al. (2021). However, the CiiV model uses retinotopic sampling to intervene
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in the image layer (original image layer). The difference between our proposed method and the
previous work Tang et al. (2021) is that we use additive noise as the instrumental variable in the
concept layer (intermediate feature layer) rather than in the input layer.

3 APPROACH

3.1 INFORMATION BOTTLENECK

The core idea of the IB theory is information compression, that is, to maximize the mutual information
between the target random variable and the compression code, and minimize the mutual information
between the source random variable and the compression code. The loss function of IB is defined as
Eq.1:

LIB = −I (Z;Y ) + αI (Z;X) , (1)

where I(Z;Y ) is the mutual information between the target random variable Y and the compression
code Z, and I(Z;X) is the mutual information between the source random variable X and Z. The
IB restricts the correlation between X and Z, which is an effective regularization method to reduce
the empirical risk. In DNNs, feature maps in the middle layers are treated as compression codes.
However, it is not easy to calculate mutual information in DNNs. In this regard, the variational
inference is added into the IB framework to construct the variational IB (VIB) model Alemi et al.
(2017). The lower bound of I(Z, Y ) and the upper bound of I(Z,X) are formalized as Eq.2 and
Eq.3:

I (Z, Y ) ≥
∫

dxdydz p (x) p (y|x) p (z|x) log q (y|z) = Eq(y,t) log p (y|t) , (2)

I (Z,X) ≤
∫

dxdz p (x) p (z|x) log p (z|x)
r (z)

, (3)

where r(z) is the prior probability of the latent variable Z, which is set to a multi-dimensional
Gaussian distribution with mean 0 and variance 1. Reparameterization trick Kingma & Welling (2014)
is used to estimate the mutual information. Unlike deterministic models, with the reparameterization
trick, VIB learns not only deterministic features in feature layers but also a whole multi-dimensional
Gaussiann distribution.

The mean of samples of the distribution would be taken by VIB, and the loss function can be written
as Eq.4:

LIB ≈
1

N

N∑
n=1

[∫
dzp (z | xn) log q (yn | z)− αp (z | xn) log

p (z | xn)

r(z)

]

=
1

N

N∑
n=1

Eϵ∼p(ϵ) [− log q (yn | f (xn, ϵ))] + αKL [p (Z | xn) , r(Z)] ,

(4)

where the former term is the cross entropy, and the latter term is the Kullback–Leibler (KL) divergence.

3.2 A CAUSAL VIEW OF EXISTENCE OF ADVERSARIAL EXAMPLES

The existing neural networks would learn a spurious correlation between data and predictions which
induces their vulnerabilities Zhang et al. (2021); Tang et al. (2021); Kuang et al. (2020). We postulate
that these promiscuous, spuriously correlated features, such as background features, color features, or
even the bias of camera angles may lead to the adversarial vulnerability. Humans are not affected
by such disturbances due to the ability of causal inference including observation, intervention, and
counterfactual Pearl (2009); Peters et al. (2017). Therefore, we turn to causal theory to mitigate the
spurious correlations that existed in the learning process of DNNs.

Taking a figure consisting of a dog and a grass background as an example, humans do not interfere
with the information of grass when recognizing the dog, but DNNs will learn both the dog information
and the grass information. In the process of feature learning, DNN models simply observe all the data
without removing the spurious correlations between the features Zhang et al. (2021), and the model
is quite sensitive to these features with spurious correlations. Therefore, the adversaries can easily
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Figure 2: Causal graph without
the instrumental variable.
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Figure 3: Causal graph with
the instrumental variable.

fool the model with the manipulation of the pixels with promiscuous information, which includes the
various backgrounds, the different viewing perspectives, changing colors, and so on.

The model focuses more on the robust features rather than the confounding factors if the causal
inference methods are incorporated. Based on the causal theory, the generation process of the data
can be visualized in Figure 2. A causal graph illustrates the causal relationship between data and
features, which would help understand the generation of adversarial examples. In this study, since we
have no way to use causal structure learning in complex high-dimensional data, we leverage external
knowledge to build the causal graph. As shown in Figure 2, the graphical model is implemented
where X , Y , and S represent the original data, prediction, and style information respectively. DNNs
should learn robust features which are closely related to the label information. However, the current
learning mechanism of DNNs would not distinguish the robust features from non-robust features.
X ← S → Y shows that style information is the common cause of X and Y , and it affects the
distribution of X and Y at the same time. To distinguish the robust features from the non-robust
features, the path from S to Y should be truncated.

To obtain the pure causal effect, we turn to instrumental variable estimation. By definition Pearl (2009;
2010), a valid instrumental variable should satisfy: 1) it is independent of confounding variables; 2)
it affects Y only through X . We argue that the artificially introduced additive noise fully meets these
two requirements. Figure 3 illustrates the linear confounded model with the instrumental variable.

When no instrument variable is introduced, X is only affected by S, that is, x = wsxs+ux, where x is
the source information, s is the style information, wsx is the path coefficient between S and X , ux is
the independent component of X. And Y is affected by both X and S, that is, y = wxyx+wsys+uy ,
where wxy is the path coefficient between X and Y , wsy is the path coefficient between S and Y , uy

is the independent component of Y . In this case, we have no way of knowing the causal effect of X
on Y because the distribution of S is unobservable.

When the instrument variable R is introduced, X is affected by both R and S, that is, xr =
wsxs+ wrxr + ux, yr = wxyxr + wsys+ uy , where r is the instrument variable, and wrx the path
coefficient between R and X . To remove the influence of style information S, we utilize the direct
controlled influence (CDE):

CDE = P (Y = y|do (X = xi) , do (S = s))− P (Y = y|do (X = xj) , do (S = s)) , (5)

where i and j are different interventions. Substituting the above formula into Eq.5, Eq.6 can be
acquired:

yri − yrj = wxy

(
xri − xrj

)
, (6)

then the robust feature wxy can be learned by Eq.7:

wxy =
yri − yrj
xri − xrj

. (7)

3.3 THE PROPOSED CAUSALIB

In practice, we refer to the idea of CiiV Tang et al. (2021), which uses the retinal mask as the
instrumental variable in the original image layer to obtain images under different gaze angles, and
achieves good results. However, due to the property of representation learning in DNNs, we postulate
that it would be more rational to use instrumental variables in the intermediate feature level instead of
the original image layer. Therefore, we introduce additive Gaussian noise as the instrumental variable
in the feature layer. Next, we will specifically describe the proposed method.
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Table 1: The performances of white-box attack on MNIST and FashionMNIST.

MNIST FashionMNIST
Method clean FGSM PGD-20 clean FGSM PGD-20
Baseline 95.11 ± 0.72 6.76± 0.93 0.0± 0.0 89.81± 0.49 0.63± 0.34 0.0± 0.0

mixu 98.22± 0.81 20.66± 1.51 0.43± 0.08 90.44± 0.29 9.13± 3.05 0.11± 0.04
RS 98.45± 0.53 34.15± 0.91 13.38± 0.93 89.71± 0.22 13.57± 1.13 1.30± 0.21

CiiV 97.94± 0.06 71.80± 0.32 48.48± 0.77 94.84± 0.1594.84± 0.1594.84± 0.15 44.82± 0.87 15.01± 0.3415.01± 0.3415.01± 0.34
VIB 98.70± 0.26 66.06± 0.21 41.84± 0.33 94.42± 0.44 25.88± 0.41 3.98± 0.58

CausalIB 98.85± 0.2098.85± 0.2098.85± 0.20 81.07± 0.8281.07± 0.8281.07± 0.82 53.71± 0.5153.71± 0.5153.71± 0.51 94.06± 0.25 50.81± 0.8050.81± 0.8050.81± 0.80 14.06± 0.11
AT (FGSM) 94.02± 0.12 75.82± 1.13 67.86± 2.35 89.95± 0.15 55.52± 0.80 17.46± 1.76

AT (PGD-20) 93.92± 0.05 78.31± 2.58 69.84± 0.94 87.22± 0.49 56.43± 0.61 41.87± 1.60

Our method is based on VIB Alemi et al. (2017), which learns multi-dimensional Gaussian distribu-
tions instead of deterministic features in feature layers. VIB takes the mean of samples of the feature
distribution, but the difference between these feature layer samples is neglected. Such a difference
can be modeled via the additive noises as the instrumental variable. In our framework, the data
distribution rather than the final value of the mean output was subjected to causal inference.

The relationship between Y and R can be written as Eq.8:
Y [X = xr] = wxyxr + wsys = wsys+ wxywsxs+ wrxwxyr = Y [X = x] + wrxwxyr. (8)

Therefore, the Eq.7 can be written as Eq.9:

wxyi = wrxwxy =
Y [X = xri ]− Y [X = x]

ri
, (9)

where xri is the ith sample of X with the instrumental variable. We assume that the magnitude of r
is equal to the intensity of the introduced noise. In practice, since R is independent of S, the causal
loss function can be formalized as Eq.10:

Lcausal =
∑
i ̸=j

||wxyi − wxyj ||. (10)

Combined with the IB loss function, the proposed CausalIB loss function can be expressed as Eq.11:

LCausalIB = LIB + Lcausal = −I (Z;Y ) + αI (Z;X) + β
∑
i ̸=j

||wxyi − wxyj ||. (11)

Given X , Eq.11 encourages the model to learn wxy undisturbed by wsy , and the learned features can
be generally compressed. α and β are hyperparameters.

4 EXPERIMENTS

In this section, we verify the efficacy of the proposed CausalIB method by numerical experiments.

4.1 DATASETS AND SETTINGS

4.1.1 DATASETS

We apply the proposed CausalIB model on three benchmark datasets (MNIST LeCun et al. (1998),
FashionMNIST Xiao et al. (2017), and CIFAR-10 Krizhevsky et al. (2009)) and evaluate its adversarial
robustness. MNIST and FashionMNIST contain 65K handwritten digit image samples and commodity
image samples respectively, and the size is 28x28. CIFAR-10 contains 60K classified image samples
with a size of 32x32.

4.1.2 TRAINING DETAILS

The experiments in this study are carried out on Tesla P100 and tested statistically. Since our purpose
is to study the IB method and the improvement of model robustness by causal inference, complex
models are not chosen. In the experiments of MNIST and FashionMNIST, our basic model is a
simple three-layer MLP, and the CausalIB method is applied in the last layer. In the experiments
on the CIFAR-10 dataset, our basic model is AlexNet Krizhevsky et al. (2017), which also uses the
CausalIB method in the last layer. All models are trained using the Adam optimizer, 100 samples per
batch, and 50 epochs per training.
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(a) FGSM (b) PGD

Figure 4: Unbounded attacks on MNIST that increase the budget radius ϵ from 8/255 to 152/255.

4.1.3 DETAILS OF THREAT MODELS

The attack models in this study are FGSM, and PGD-20. In the MNIST and FashionMNIST
experiments, we choose the budget radius ϵ to be 50/255. In the CIFAR-10 experiment, we choose
the budget radius ϵ to be 8/255.

4.1.4 DETAILS OF OTHER DEFENSE MODELS

For adversarial training methods, we adopted two popular defenders: AT (FGSM) and AT (PGD-
20) Madry et al. (2018), and these two methods are implemented with the same FGSM and PGD-20
parameters as the experiments. For the methods without the utilization of adversarial training, we
investigated mixup Zhang et al. (2018), randomized smoothing (RS) Cohen et al. (2019), VIB Alemi
et al. (2017) and CiiV Tang et al. (2021). Mixup is a data augmentation method that uses mixed
sample data augmentation to mix images between different classes to augment the training dataset.
RS uses smoothing any function into a gradient-bounded function to improve the robustness of the
model, and mathematically it is well proven. VIB utilizes variational inference methods to optimize
information bottlenecks and utilizes the reparameterization trick for efficient training. It has achieved
the considerable results in improving model generalization and adversarial attack robustness. CiiV
is a causal inference-based model, which augments the image with multiple retinal subject centers,
encouraging the model to learn causal features, rather than local confusion patterns. Also, it can be
combined with other methods to achieve the considerable results in improving the robustness of the
model.

4.2 ROBUSTNESS EVALUATION

We report the comparison of our CausalIB method and other methods without the utilization of
adversarial training in Table 1 and Table 2, where the "clean" item in the tables represents the
classification accuracy of the model on clean examples. We also provide adversarial training results
at the bottom of each table for comparison. It can be seen that the proposed CausalIB shows the
best overall performance in all methods without the utilization of adversarial training, demonstrating
that taking into account the spurious correlation can significantly improve the adversarial robustness.
In Table 1, the CausalIB shows complete superiority on MNIST, and even outperforms adversarial
training methods in adversarial defense against FGSM. However, the performance of methods without
the utilization of adversarial training is inferior to the performance of adversarial training on complex
datasets such as CIFAR-10, which can be seen in Table 2. The advantage of the methods without the
utilization of adversarial training is that they guarantee the classification accuracy of clean examples.
In the experiment on FashionMNIST, the classification accuracy of clean examples of CausalIB is
about 7% higher than that of adversarial training methods.

4.3 ADVERSARIAL ROBUSTNESS UNDER UNBOUNDED ATTACK

To evaluate the validity of defenders, we compare the performances of CausalIB with other methods
without the utilization of adversarial training under unbounded attacking in Figure 4. Under the
same budget radius ϵ, our method is better than VIB. Under the single-step attack, the classification
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Table 2: The performances of white-box attack and black-box attack on CIFAR-10.

White-box Black-box
Method clean FGSM PGD-20 FGSM PGD-20

Baseline Krizhevsky et al. (2017) 88.06± 0.87 30.48± 0.36 0.12± 0.13 31.60± 1.12 0.52± 1.26
mixup Zhang et al. (2018) 88.46± 1.23 42.54± 1.57 12.33± 1.98 42.54± 1.06 12.13± 0.96

RS Cohen et al. (2019) 90.40± 0.53 44.22± 0.94 22.23± 1.02 49.23± 1.42 28.23± 1.46
CiiV Tang et al. (2021) 89.50± 0.87 52.95± 0.43 33.62± 0.78 53.95± 0.73 34.85± 0.82
VIB Alemi et al. (2017) 91.93± 0.1791.93± 0.1791.93± 0.17 41.89± 0.98 22.81± 1.36 39.40± 0.46 23.31± 0.77

CausalIB 91.76± 0.25 54.11± 0.6154.11± 0.6154.11± 0.61 35.89± 0.3435.89± 0.3435.89± 0.34 56.36± 1.28 36.02± 1.51
AT (FGSM) Madry et al. (2018) 85.49± 0.62 86.32± 0.75 23.40± 0.93 - -

AT (PGD-20) Madry et al. (2018) 85.39± 0.86 65.91± 1.02 61.20± 0.67 - -

Table 3: Ablation experiments on MNIST.

Method clean FGSM PGD-20

L1 98.85± 0.20 81.07± 0.82 53.71± 0.51
L2 97.37± 0.53 78.55± 0.93 45.62± 1.21

α=0/ β=0 95.11± 0.72 6.76± 0.93 0.0± 0.0
α=0.05/ β=0 98.41± 0.64 63.61± 1.49 38.98± 1.23

α=0.05/ β=0.05 98.85± 0.20 81.07± 0.82 53.71± 0.51
α=0.05/ β=1.0 92.69± 1.11 68.32± 1.54 20.49± 1.84
α=0.01/ β=0.05 95.62± 0.34 74.86± 0.64 29.65± 1.41

accuracy of VIB drops below 50% at 72/255, while the classification accuracy of CausalIB drops
below 50% at 96/255. Similarly, in the case of iterative attack, the performance of CausalIB is about
20% better than VIB and maintains a stable rate of descent at the high budget radius. When the budget
radius ϵ of the attacker was increased from 8/255 to 152/255, all performances were converged to the
random guesses or even worse. Any valid defender shouldn’t survive such an unbounded attack, as it
allows the attacker to modify the entire image and erase all causal features.

4.4 ABLATION STUDIES

In this section, we evaluate the performance of the proposed CausalIB under different settings
and parameters on the MNIST dataset. 1) As shown in Table 3, the loss metrics with different
norms are studied, where L1 loss is better than L2 loss; 2) Other choices of hyperparameters of the
CausalIB method are reported. It can be found that β is used as a trade-off between the classification
accuracy of clean examples and the performance on adversarial examples. A larger β will lead to a
larger drop in the model’s performance on clean examples, and when β is too large, the adversarial
defense performance will also drop. In practice, the setting of hyperparameters depends on empirical
experiments. 3) Our model has two parameters that need to be weighed. The IB parameter α used in
our method is different from VIB. In experiments of VIB, the model performs best when α is 0.01,
while the α in the CausalIB method is set as 0.05, we also provide relevant experimental results. It
can be seen that causal inference further improves the robustness of the model to adversarial examples
based on the IB method.

4.5 EXPERIMENTS WITH AUTO-ATTACK THREAT MODEL

In this section, more detailed experiment results of the performances of Auto-Attack Croce & Hein
(2020b) threat model with the budget radius ϵ = 8/255 are provided. AutoAttack is a threat model
that integrates various parameterless attacks, including APGD-CE Croce & Hein (2020b), APGD-
DLR Croce & Hein (2020b), the black-box Square Attack Andriushchenko et al. (2020), and the FAB
attack Croce & Hein (2020a). VIB Alemi et al. (2017), CiiV Tang et al. (2021), and our proposed
method are evaluated on MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. MLPs are evaluated
structures on MNIST and FashionMNIST, and AlexNet Krizhevsky et al. (2017) is evaluated on
CIFAR-10. On CIFAR-100, ResNet34 with or without regularization methods are evaluated under
the Auto-Attack threat. As shown in Table 4 and Table 5, the proposed CausalIB shows the overall
considerable defense performance under the Auto-Attack threat.

8
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Table 4: The performances of Auto-Attack on MNIST and FashionMNIST.

MNIST FashionMNIST
clean AA-Linf AA-L2 clean AA-Linf AA-L2

MLP w/o defense 95.11 56.01 67.19 89.81 34.16 48.92
VIB Alemi et al. (2017) 98.70 89.01 92.68 94.42 65.21 76.54
CiiV Tang et al. (2021) 97.94 94.88 96.03 94.84 78.42 83.03

causalIB 98.85 95.10 96.89 94.06 80.77 83.72

Table 5: The performances of Auto-Attack on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100
clean AA-Linf AA-L2 clean AA-Linf AA-L2

CNNs w/o defense Krizhevsky et al. (2017); He et al. (2016) 88.06 0.0 0.0 70.1 0.0 0.0
VIB Alemi et al. (2017) 91.93 18.60 63.58 56.48 8.49 36.80
CiiV Tang et al. (2021) 89.50 26.33 70.24 52.15 18.34 43.36

causalIB 91.76 28.7 69.93 52.58 20.12 43.89

4.6 GRADIENT OBFUSCATION DISCUSSION

To verify that the proposed CausalIB does not suffer from flawed or incomplete evaluations, our
experiments were designed to follow a series of sanity checks:

1. The experimental results on FGSM are better than PGD-20.
2. The experimental results on black-box attacks are better than on white-box attacks.
3. The result of a weak attack (FGSM) is better than that of a strong attack (PGD-20).
4. Unbounded adversarial examples become random guessing or 0% accuracy.

These four phenomena tesify that the proposed CausalIB does not suffer from the problem of gradient
obfuscation Carlini et al. (2019). The experiment of the defense against adaptive attack method Carlini
& Wagner (2017b) would be illustrated in the appendix.

4.7 SHORTCOMINGS OF THE CAUSALIB METHOD

Although our proposed CausalIB has improved adversarial defense performance, it still has the
following shortcomings:

1. The causal inference method leads to a further decrease in cleaning performance relative to
VIB in complex datasets due to the addition of another trade-off, which is reported in the
empirical results on the CIFAR-10 dataset.

2. The settings of hyperparameters are empirical.
3. The linear causal model cannot reflect all the scenarios accurately, because DNNs are highly

nonlinear. In our future work, a more complex causal graph should be modeled.
4. Currently, the adversarial training methods based on min-max optimization are state-of-

the-art (SOTA) defense methods. The adversarial examples are the training samples in
the optimization process of adversarial training. In contrast, the generation of adversarial
examples is not essential in the training process of CausalIB. Our empirical study on CIFAR-
10 also validates the performance gap between CausalIB and AT (PGD-20). In the future, it
would be promising to combine the CausalIB with the framework of adversarial training.

5 CONCLUSION

In this paper, we address the inadequacies of the spurious correlation in the IB framework that hinder
adversarial robustness. We analyze the causes of adversarial examples with the utilization of a causal
graph to demonstrate that the spurious correlations between robust features and non-robust features
are one of the problems to be alleviated in current IB methods. In the proposed CausalIB method,
additive noises are used as an instrumental variable to estimate the causal effect. Such a method
can separate robust features and non-robust features. The utilization of this method improves the
performance of the IB method in adversarial defense to a certain extent. In future work, we will study
whether the CausalIB method can be applied in other scenarios such as OOD image classification.
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A APPENDIX

A.1 INFORMATION BOTTLENECK

In this section, we specifically describe how VIB uses variational inference and reparameterization
trick to optimize information bottleneck (IB) in DNNs.

Gievn a Markov Chain shown in Figure 5, where X represents the source random variable, Y
represents the target random variable and Z represents the compression code. The purpose of IB is to
maximize the objective loss function as Eq.12:

LIB = −I (Z;Y ) + αI (Z;X) . (12)

I (Z;Y ) can be written as the form of integral defined in Eq.13:

I(Z, Y ) =

∫
dydzp(y, z) log

p(y, z)

p(y)p(z)
=

∫
dydzp(y, z) log

p(y | z)
p(y)

, (13)

where p(y | z) is defined by Markov Chain Y ↔ X ↔ Z as Eq.14:

p(y | z) =
∫

dxp(x, y | z) =
∫

dxp(y | x)p(x | z) =
∫

dx
p(y | x)p(z | x)p(x)

p(z)
. (14)

In fact, p(y | z) is intractable, so q(y | z) is needed to approximate p(y | z). Using the fact that the
Kullback Leibler divergence is always positive, Eq.15 can be induced:

KL[p(Y | Z), q(Y | Z)] ≥ 0 =⇒
∫

dyp(y | z) log p(y | z) ≥
∫

dyp(y | z) log q(y | z), (15)
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Figure 5: Markov Chain.

and hence, I(Z, Y ) can be induced as Eq.16:

I(Z, Y ) ≥
∫

dydzp(y, z) log
q(y | z)
p(y)

=

∫
dydzp(y, z) log q(y | z)−

∫
dyp(y) log p(y)

=

∫
dydzp(y, z) log q(y | z) +H(Y ).

(16)

Leveraging the Markov assumption, p(y, z) can be written as Eq.17:

p(y, z) =

∫
dxp (x, y, z) =

∫
dxp (x) p (y|x) p (z|x), (17)

which gives us a new lower bound on the first term of our objective:

I(Z, Y ) ≥
∫

dxdydzp(x)p(y | x)p(z | x) log q(y | z). (18)

Then, the expression I (Z;X) can be written as Eq.19:

I(Z,X) =

∫
dzdxp(x, z) log

p(z | x)
p(z)

=

∫
dzdxp(x, z) log p(z | x)−

∫
dzp(z) log p(z). (19)

In general, while it is fully defined, computing the marginal distribution of p (z) =
∫
dxp (z|x) p (x)

might be difficult. Let r(z) be a variational approximation to this marginal, the upper bound defined
in Eq.20:

I(Z,X) ≤
∫

dxdzp(x)p(z | x) log p(z | x)
r(z)

. (20)

Combining both of these bounds, Eq.21 can be induced:

I(Z, Y )− αI(Z,X) ≥
∫

dxdydzp(x)p(y | x)p(z | x) log q(y | z)

− α

∫
dxdzp(x)p(z | x) log p(z | x)

r(z)
= L.

(21)

p (x, y) can be approximated using the empirical data distribution p(x, y) = 1
N

∑N
n=1 δxn

(x)δyn
(y),

so that Eq.22 can be induced:

L ≈ 1

N

N∑
n=1

[∫
dzp (z | xn) log q (yn | z)− αp (z | xn) log

p (z | xn)

r(z)

]
. (22)

Suppose there exists an encoder of the form p(z | x) = N (z | fµ
e (x) , where fe is the VIB model,

then, the reparameterization trick can be utilized to do the transformation p(z | x)dz = p(ϵ)dϵ, where
z = f(x, ϵ) is a deterministic function of x, and the Gaussian random variable ϵ and hence the total
loss function LIB can be induced as Eq.23:

LIB =
1

N

N∑
n=1

Eϵ∼p(ϵ) [− log q (yn | f (xn, ϵ))] + αKL [p (Z | xn) , r(Z)] , (23)

and the former conditional entropy can be approximated using cross entropy.
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Figure 6: Visualization Examples 1 on the dataset of FashionMNIST Xiao et al. (2017).

Figure 7: Visualization Examples 2 on the dataset of FashionMNIST Xiao et al. (2017).

Table 6: More detailed ablation experiments.

Method clean FGSM PGD-20
α=0.01/ β=0.01 95.32± 0.98 73.50± 0.55 34.41± 0.85
α=0.01/ β=0.2 96.24± 1.27 71.27± 0.74 33.90± 1.36
α=0.01/ β=1.0 90.35± 0.91 60.23± 1.52 28.73± 0.89
α=0.05/ β=0.01 97.46± 0.47 78.40± 0.30 50.42± 0.28
α=0.05/ β=0.2 96.39± 0.76 76.52± 0.77 49.69± 0.61
α=0.05/ β=0.5 93.56± 0.58 69.09± 1.39 29.30± 1.25
α=0/ β=0.05 94.62± 0.56 42.99± 0.72 16.88± 0.88
α=0/ β=0.2 95.28± 0.64 38.49± 0.59 15.33± 0.96
α=0/ β=1.0 92.52± 0.45 26.20± 0.87 12.16± 1.68

A.2 VISUALIZATION

To verify that the proposed CausalIB has a better performance than VIB in feature extraction, we
make the visualization of adversarial examples as shown in Figure 6 and Figure 7.

In Figure 6 and Figure 7, the visualization of clean examples are shown in the first row. The
visualization of adversarial examples attacking the CausalIB model and the visualization of adversarial
examples attacking the VIB model are shown in the second and third rows. The adversarial examples
attacking the VIB model are relatively blurry, while the adversarial examples attacking the CausalIB
model have much clearer structural details. This means that the causal inference method could
lead the model to learn more structural information. As a result, the adversary must add larger
perturbations with the erasion of the structural patterns to fool the CausalIB model.

A.3 MORE DETAILED ABLATION EXPERIMENTS

In this section, more detailed ablation experiment results are provided to show the impact of different
choices of the two hyperparameters in our method. Many adversarial defense methods have a trade-off
between clean accuracy and adversarial robustness. When the weight of the regularization term is too
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Table 7: Experiment results on CIFAR-100.

clean FGSM PGD-20 CW-20
ResNet w/o defense He et al. (2016) 70.10 3.18 0.0 0.0

VIB Alemi et al. (2017) 56.48 21.48 12.77 10.04
CiiV Tang et al. (2021) 52.15 32.51 23.19 22.05

causalIB 52.58 32.06 24.85 22.52

Table 8: The adversarial robustness under the C&W attacks on different datasets.

MNIST FashionMNIST CIFAR-10 CIFAR-100
no defense 88.92 52.65 1.28 0

VIB Alemi et al. (2017) 94.45 86.05 18.04 10.45
CiiV Tang et al. (2021) 96.08 90.15 32.59 24.86

causalIB 96.55 90.77 35.44 23.93

Table 9: Comparison Experiments of AlexNet, ResNet and WideResNet on clean data and FGSM.

clean FGSM
AlexNet ResNet WideResNet AlexNet ResNet WideResNet

No defense 88.06 91.16 92.28 30.48 39.12 39.85
VIB Alemi et al. (2017) 91.93 92.65 92.45 41.89 44.2 46.79
CiiV Tang et al. (2021) 89.50 91.53 92.05 52.95 56.18 58.25

causalIB 91.76 92.91 92.66 54.11 57.52 58.75

Table 10: Comparison Experiments of AlexNet, ResNet, and WideResNet on PGD-20 and
AutoAttack-Linf .

PGD-20 AA-Linf

AlexNet ResNet WideResNet AlexNet ResNet WideResNet
No defense 0.12 0.75 2.59 0 0 0

VIB 22.81 27.47 27.38 18.60 25.60 26.58
CiiV 33.62 42.30 43.66 26.33 33.14 34.20

causalIB 35.89 43.11 43.05 28.7 34.32 34.66

large, the learning of the classifier could be hurt. As shown in Table 6, it can be seen that a too-large
β or a too-small β will lead to a decrease in the defense performance of the model against adversarial
examples.

Currently, the settings of the hyperparameters are empirical, which is a shortcoming of the proposed
CausalIB. In the future, a more reasonable hyperparameter optimization method would be studied.

A.4 EXPERIMENTS ON CIFAR-100

In this section, results on the CIFAR-100 dataset are provided. The utilized model is ResNet34 He
et al. (2016). VIB Alemi et al. (2017), CiiV Tang et al. (2021), and CausalIB are implemented on the
ResNet model. The default ResNet model has no defense (no additional regularization method). As
can be seen in Table 7, causalIB achieves the considerable adversarial robustness, but the classification
accuracy on the clean data has a large drop, which is in line with the general trend of adversarial
defense methods.

A.5 EXPERIMENT OF ADAPTIVE C&W ATTACK

In this section, experiment results of the performances under the adaptive C&W attacks Carlini &
Wagner (2017a) are provided. The feature extraction model used on MNIST and FashionMNIST is
a MLP, AlexNet Krizhevsky et al. (2017) is used on the CIFAR-10 dataset, and ResNet34 He et al.
(2016) is used on the CIFAR-100 dataset. The iteration step of C&W attack is 20. As can be seen in
Table 8, the causalIB method still achieves the considerable adversarial robustness under the C&W
attack, which is consistent with the test results under the other attacks.

A.6 COMPARISON EXPERIMENTS OF ALEXNET, RESNET, AND WIDERESNET

In this section, the experiment result of adversarial robustness influenced by different CNN structures
on the CIFAR-10 dataset would be illustrated. Table 9 and Table 10 shows the comparative test
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results of the CNN models including AlexNet Krizhevsky et al. (2017), ResNet34 He et al. (2016),
and WideResNet-34-10 Zagoruyko & Komodakis (2016). It can be seen that our proposed method
could achieve even better adversarial robustness in the residual structures He et al. (2016); Zagoruyko
& Komodakis (2016), although the CausalIB has promoted adversarial robustness on the AlexNet
model Krizhevsky et al. (2017).
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