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Abstract: Spatial understanding is a critical aspect of most robotic tasks, partic-
ularly when generalization is important. Despite the impressive results of deep
generative models in complex manipulation tasks, the absence of a representation
that encodes intricate spatial relationships between observations and actions of-
ten limits spatial generalization, necessitating large amounts of demonstrations.
To tackle this problem, we introduce a novel policy class, ActionFlow. Action-
Flow integrates spatial symmetry inductive biases while generating expressive ac-
tion sequences. On the representation level, ActionFlow introduces an SE(3) In-
variant Transformer architecture, which enables informed spatial reasoning based
on the relative SE(3) poses between observations and actions. For action gen-
eration, ActionFlow leverages Flow Matching, a state-of-the-art deep generative
model known for generating high-quality samples with fast inference – an essen-
tial property for feedback control. In combination, ActionFlow policies exhibit
strong spatial and locality biases and SE(3)-equivariant action generation. Our
experiments demonstrate the effectiveness of ActionFlow and its two main com-
ponents on simulated and real-world robotic manipulation tasks and confirm that
ActionFlow yields equivariant, accurate, and efficient policies. Project website:
https://flowbasedpolicies.github.io/
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1 Introduction

Figure 1: Overview of ActionFlow. ActionFlow represents both
observations & actions in one common space and describes ev-
ery token by its pose T and features f . (a) The scene consists of
two observations and a randomly initialized action sequence. (b)
Given the scene, a geometric transformer computes the spatial at-
tention between the tokens considering their relative SE(3) poses.
Its output defines a flow in the action space, resulting in local robot
trajectories. (c) When using the procedure of scene encoding &
action generation as a policy, we get accurate, efficient & SE(3)
equivariant action sequences at low inference times.

Recently, we observed impressive re-
sults in using deep generative mod-
els for solving complex manipula-
tion tasks [1, 2, 3, 4, 5]. Yet, it is
well known that models that naively
integrate observations and actions
usually require copious amounts of
demonstrations for good task perfor-
mance. In this direction, there has
been a collection of research that ex-
plored how to exploit the spatial re-
lations between observations and ac-
tions [6, 7, 8, 9, 10, 11] to learn more
sample efficient policies. Equivariant policies generalize the policy’s behavior under global trans-
lations or rotations [12, 7, 6, 13, 14, 15, 16, 17], thereby adding an effective inductive bias.
Herein, we are not only interested in equivariant policies, but also in capturing local spatial rela-
tions [18, 19, 7]. Consider, for example, picking a mug and hanging it (cf. Fig. 1). When the robot
is approaching to pick up the mug, the robot should be capable of reasoning based on the relative
poses between its own pose, the mug, and its next actions. But when hanging the mug, the robot
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should also focus on the relative poses between the mug and the hanger. Thus, equipping the policy
with the ability to reason based on the spatial relation between the different observations and actions
might be essential to learning policies efficiently. How can we integrate all these desiderata and still
learn dexterous, fast, and expressive policies from demonstrations?
Inspired by the recent successes from the protein folding community [20, 21, 22, 23, 24], in which
SE(3) symmetric models are integrated with highly-expressive deep generative models, we intro-
duce ActionFlow, a novel policy class for robotics, suitable for learning dexterous manipulation
skills while integrating geometric notions for sample efficient learning. In essence, ActionFlow is
composed of two main elements: (1) a state-of-the-art [25] highly-expressive deep generative model
(Flow Matching) [26, 27] that has been shown capable of generating high-quality samples within
very small inference times, and, (2) an SE(3) Invariant Transformer network [20, 22] that frames a
relative positional encoding [20, 28] based on the tokens’ relative SE(3) poses (Fig. 1). Combining
those components results in several interesting properties that make ActionFlow an appealing can-
didate for learning robot policies and, in particular, robotic manipulation from demonstrations:
Fast and accurate action sequence generation. Given the underlying Flow Matching generative
model, we can generate precise action trajectories with very low inference times [29, 25].
SE(3) equivariant action generation. ActionFlow inherently preserves the tasks’ spatial structure
and naturally adapts the predicted actions to the observations. Given a translation or a rotation in the
observations, the actions are equally transformed, thereby providing SE(3) equivariant generation.
While ActionFlow’s underlying transformer network is invariant, we achieve global SE(3) equivari-
ance by applying the flow matching updates w.r.t. the actions’ local frame [20, 22].
Relative Pose Aware Attention. The SE(3) Invariant Transformer allows the actions to attend to
the different observation tokens based on their relative poses. This allows the system to find corre-
lations based on the spatial relative information between the tokens and enhances the generalization
to scenes where objects are arranged differently.
In summary, our main contributions are: (a) we investigate Flow Matching for fast and pre-
cise robotic action generation, (b) we introduce an SE(3) Invariant Transformer architecture for
geometry-aware robot learning. Our experiments in simulated and real robot environments under-
line the effectiveness of both components and showcase that their combination, i.e., our proposed
ActionFlow, yields accurate and fast manipulation policies while showcasing sample efficiency.

2 ActionFlow

Figure 2: Spatial Symmetries in ActionFlow. (a), Visual rep-
resentation of the SE(3) Invariant Transformer mapping from ob-
servations F o with their poses To & candidate actions Ta, to ac-
tion update vectors v. (b) Visualization of Invariant Point Atten-
tion (IPA) which is based on generating points pQ and pK in the
queries’ and keys’ local frames resulting in equivariance. (c) Illus-
trating ActionFlow’s SE(3) equivariant action generation.

ActionFlow policies should be fast,
accurate, expressive, and sample-
efficient. Therefore, they are built on
two core elements: a Flow Matching-
based generative model that gener-
ates action sequences quickly and a
geometrically grounded transformer
model capable of capturing the in-
tricate spatial relations between ob-
servations and actions in the SE(3)
space. Before introducing both com-
ponents in detail, we introduce Ac-
tionFlow’s observation and action
space. ActionFlow relies on a geometrically grounded and highly flexible scene representation.
Both observations O : pTo,Foq and actions A : pTa,Faq are represented through a sequence of
SE(3) poses T “ pT 1, . . . , TN q and associated features F “ pf1, . . . ,fN q representing semantic
information related to the specific action/observation (cf. Fig. 2). Action poses correspond to the
desired target poses to be reached, while the features represent at what instant of time the target pose
should be reached. Given this representation, our goal is to learn ActionFlow policies πθpTa|Oq

that generate action pose sequences Ta given an observation O.
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2.1 Flow Matching for SE(3) Action Generation

Similarly to diffusion models [30, 31], Flow Matching models generate samples by iteratively calling
a learned model. Yet, as shown in [29, 25], Flow Matching models require fewer model calls,
reducing the inference time for sample generation. Herein, we apply (conditioned) Flow Matching to
generate N SE(3) action poses Ta“pT 1

a , . . . , T
N
a qPSEp3qN . Similarly to [21], we adapt a common

Flow Matching method (Rectified Linear Flow [29, 25, 26]) to the Lie Group SE(3). We define a
decoupled flow between the rotation (r) and the translation (p), allowing to represent the distribution
path and the vector fields independently. Rectified Linear Flow proposes representing the data point
conditioned flow ϕtpa|a1q with a straight line from a noisy sample a0„N p0, Iq at t“0 to the
datapoint a1PD at t“1. For our case, we define a flow Tt“ϕtpT0|T1q that moves a noisy initial
pose pp0, r0q to a pose sampled from the dataset, i.e., pp1, r1q „ D, through

Translation: pt “ ϕtpp0|p1q “ tp1 ` p1 ´ tqp0 Rotation: rt “ ϕtpr0|r1q “ r0Exp
`

tLogpr´1
0 r1q

˘

(1)

with Log and Exp, the logarithmic map and the exponential map respectively for the SO(3) mani-
fold [32]. Notice that Equation (1) represents a path through the geodesic on SO(3) from r0 to r1.
Given the decoupled flows, the vector fields, and in particular, the translation velocity 9pt P R3 and
the rotation velocity 9rt P R3 equate to 9pt“r⊺t ppt´p1q{p1´tq & 9rt“pLogpr´1

t r1qq{p1´tq. Notice
that even if rotations are represented in r P SOp3q, the velocity vector for the rotations 9rt P R3 is a
3D vector (axis-angle representation) represented in the tangent space centered around rt.
Training. Our parameterized model pvp,vrq“vθpT,O, tq outputs both a translation vector vp P R3

and a rotation vector vr P R3. Given a dataset D : tT i,OiuIi“0, the training objective is to minimize
the mean-squared error between the model outputs pvp,vrq and the velocity vectors ut“p 9pt, 9rtq.
Sampling in SE(3). To generate an action pose T “ pp, rq, we sample a rotation r0 „ UpSOp3qq

and translation p0 „ N p0, Iq and iteratively run Euler-discretization for K inference steps, i.e.,
pk`1“pk`rkvθpTk,O, tq∆t & rk`1“rkExpp∆tvθpTk,O, tqq, with ∆t “ 1{K and t “ k∆t.

2.2 SE(3) Invariant Transformer

As model architecture we propose an SE(3) Invariant Transformer (cf. Fig. 2). At the core of this
architecture is a geometry-aware attention layer, known as Invariant Point Attention (IPA) [20, 22].
The IPA layer augments the queries, keys, and values of classical attention [33] with a set of 3D
points that are generated in the local frames of the query TQ and key TK poses. The layer is
designed such that the output is invariant to global rotations and translations (cf. Fig. 2 (b)). If
we apply a transformation ∆T P SEp3q over both observation poses T 1

o“∆TTo and action poses
T 1
a“∆TTa, the network generates the same output. Moreover, with the IPA layer, the network can

reason about all the relative poses between the entities in the scene. We hypothesize that the invariant
and object-centric nature of the network will lead to more data-efficient policies.

3 Experimental Results

We focus on two experiments. First, we evaluate the impact of the SE(3) Invariant Transformer w.r.t.
data-efficient policy learning. Second, we evaluate ActionFlow for real robot manipulation.

3.1 SE(3) Invariant Transformer Evaluation

This section evaluates the proposed SE(3) Invariant Transformer (cf. Section 2.2) w.r.t. two design
choices: (1) Does a multi-token representation, in which each object is treated as a single token,
enhance policy performance? (2) Does the IPA layer, which allows computing the relative poses
between tokens, help find informative features to improve policy performance?
Evaluation Environment. We consider a subset of Mimicgen environments [34]. We slightly adapt
the data to be compatible with our model and represent it as object Tw

o & action poses Tw
a in the

world frame.
Models. We consider three ActionFlow variations: (A.1) The original ActionFlow (cf. Sec-
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tion 2.2). (A.2) We eliminate the IPA layer but keep each object as an independent to-
ken. (A.3) We eliminate the IPA layer and represent all observations as a single token.

ActionFlow NO IPA ONE TOKEN 
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Figure 3: Success rate of models
trained on different number of
demonstrations p20, 50, 200, 1000q

on a subset of Mimicgen tasks [34].

Additionally, we consider (B) a Diffusion Policy (DP) model
[2], and (C) a RNN-GMM model [35, 34].
Results. We train the models with different amounts of
demonstrations p20, 50, 200, 1000q for 3500 epochs and eval-
uate their performance in 50 randomly sampled test environ-
ments. The results in Fig. 3 reveal that the original ActionFlow
consistently outperforms the variations and baselines across
the tasks, specifically in low demonstration regimes. This in-
dicates that IPA is beneficial for learning policies in a sample-
efficient way, while with large datasets, all models appear to
converge to similar performances. We also observe that rep-
resenting the observations with multiple tokens shows perfor-
mance benefits compared to representing the whole observa-
tion as a single token. Moreover, the Diffusion Policy (DP)
baseline performs very similar to our model ablation A.3 with
the single token. One potential explanation for this finding is
that the DP’s underlying transformer model also flattens the
observations of each timestep into a single token, thereby resembling a similar network architecture
as the single token ablation.

3.2 Evaluating Equivariance - Real Robot Mug Hanging Experiment

Train Test

Figure 4: Initial con-
figurations for train
and test evaluations.

Initialization Success Rate

Train 9/10

Test 7/10

Figure 5: Mug hang-
ing results.

We evaluate ActionFlow on the task of placing a mug onto a hanger.
Setup. The experimental platform consists of a 7DoF Franka Panda with
a RealSense at its end-effector (cf. Fig. 1). The end-effector is described
by its pose T , and the features f contain the encoded RGB images (using a
ResNet18 [36]) and the gripper’s opening width. Another observation is the
point cloud of the hanger, which is obtained by the camera’s depth readings.
The point cloud features are obtained using a PointNetEncoder [37]. Both
encoders are trained from scratch. For policy training, we collect 50 demon-
strations using variations as shown in Fig. 4. Notably, the demonstrations
only include slight variations of the mug poses, while the hanger always stays
in the same pose.

Figure 6: Successful ActionFlow policy
rollout.

Results. The results in Fig. 5 reveal that the ActionFlow
policy achieves high success rates of 90% upon evaluat-
ing in similar scenarios as those encountered during train-
ing. The evaluation in previously unseen test scenarios
(cf. Fig. 4) shows that our policy can still handle these
novel test scenarios well, achieving 70% success. This good generalization to the previously unseen
testing scenarios highlights ActionFlow’s equivariance properties. Moreover, the policies run online
in real-time as action generation takes 0.04 s on an NVIDIA RTX 3090.

4 Conclusion

We presented ActionFlow, a new policy class for robot learning from demonstrations. On the rep-
resentation level, ActionFlow consists of an SE(3) Invariant Transformer equipped with geometry-
aware Invariant Point Attention. Actions are generated using Flow Matching, a new generative
model capable of obtaining high-quality samples with low inference times. The resulting policies
are fast, represent both actions and observations in one common space, and yield SE(3) equivariant
action generation. Our experiments underline the effectiveness of ActionFlow’s individual compo-
nents and demonstrate its capabilities for efficiently solving real robotic manipulation tasks.
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R. Bates, A. Žı́dek, A. Potapenko, et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

[21] J. Yim, A. Campbell, A. Y. Foong, M. Gastegger, J. Jiménez-Luna, S. Lewis, V. G. Satorras,
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