
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAISA: TOWARDS MULTIMODAL LARGE LANGUAGE
MODELS WITH BOTH TRAINING AND INFERENCE EF-
FICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) mainly fall into two architectures,
each involving a trade-off between training and inference efficiency: embedding
space alignment (e.g. LLaVA) is inefficient during inference, while cross-attention
space alignment (e.g. Flamingo) is inefficient in training. In this paper, we com-
pare these two architectures and identify key factors for building efficient MLLMs.
A primary difference between them lies in how attention is applied to visual to-
kens, particularly in their interactions with each other. To investigate whether
attention among visual tokens is necessary, we propose a new self-attention mech-
anism, NAAViT (No Attention Among Visual Tokens), which eliminates this type
of attention. Our pilot experiment on LLaVA-1.5 shows that attention among vi-
sual tokens is highly redundant. Based on these insights, we introduce SAISA
(Self-Attention Input Space Alignment), a novel architecture that enhances both
training and inference efficiency. SAISA directly aligns visual features with the
input spaces of NAAViT self-attention blocks, reducing computational overhead
in both self-attention blocks and feed-forward networks (FFNs). Compared with
the LLaVA-1.5 architecture, SAISA reduces the inference FLOPs by 66% and the
training budget by 26%, while achieving superior performance in terms of accu-
racy. Comprehensive ablation studies further validate the effectiveness of SAISA
across various LLMs and visual encoders. The code and models will be publicly
available.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) OpenAI (2023); Liu et al. (2024a); Bai et al.
(2023b); Chen et al. (2023a); Dai et al. (2023) have shown impressive capabilities in understand-
ing and processing visual information. They typically build on pre-trained Large Language Models
(LLMs) Achiam et al. (2023); Chiang et al. (2023); Bai et al. (2023a); Touvron et al. (2023b) and
align visual features with the LLMs. There are two primary architectures for aligning visual and
text modalities: embedding space alignment and cross-attention space alignment. Embedding space
alignment, e.g. LLaVA Liu et al. (2023; 2024a), introduces a projector to align visual features with
the LLM embedding space and feeds the visual and text tokens into the LLM. Cross-attention space
alignment, e.g. Flamingo Alayrac et al. (2022), inserts cross-attention blocks and aligns visual fea-
tures with the attention spaces of these blocks.

However, despite the promising performance of these MLLMs, they involve a trade-off between
training and inference efficiency. On the one hand, MLLMs with embedding space alignment ex-
hibit training efficiency, since they introduce only a small number of new parameters to the pre-
trained LLMs. For example, LLaVA-1.5-7B is trained in 108 GPU hours from Vicuna-7B Chiang
et al. (2023). However, this architecture significantly increases the number of input tokens, and the
computational costs of self-attention grow quadratically with the number of tokens, leading to inef-
ficiency during inference. On the other hand, MLLMs with cross-attention space alignment achieve
inference efficiency, since they do not require unrolling visual tokens, but they are inefficient during
training for introducing a large number of new parameters to the pre-trained LLM. In this paper, we
take a step towards building MLLMs with efficiency during both training and inference.
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In this paper, we first perform a thorough analysis of these two architectures, identifying key factors
for building MLLMs with both training and inference efficiency. To optimize training efficiency,
the key factor is minimizing the number of new parameters and employing modules in the pre-
trained LLMs for interaction between visual and text modalities. For improving inference efficiency,
the main focus is reducing the computational costs associated with visual tokens, particularly in
attention blocks and feed-forward networks (FFNs). Based on the analysis of these factors, we
introduce NAAViT (No Attention Among Visual Tokens), as shown in Figure 3, a self-attention
mechanism which eliminates attention among visual tokens to enhance efficiency. Since attention
among visual tokens contributes significantly to the quadratically growing computational cost in
self-attention blocks, we investigate whether this type of attention is truly essential for MLLMs. Our
pilot experiment on LLaVA-1.5 demonstrates that NAAViT outperforms the vanilla self-attention,
indicating that attention among visual tokens is highly redundant.
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Figure 1: Top: Performance vs. inference ef-
ficiency based on various LLMs and visual en-
coders where Average Performance means an av-
erage of benchmark scores and inference effi-
ciency is the inverse of inference TFLOPs. Bot-
tom: Training budget comparison where we report
the training GPU hours, using Vicuna-7B as LLM
and CLIP as visual encoder.

Based on the findings above, we intro-
duce SAISA (Self-Attention Input Space
Alignment), an architecture for MLLMs with
efficiency during both training and inference.
As illustrated in Figure 2(c), SAISA employs
NAAViT blocks for multimodal interaction and
directly aligns the visual features with the in-
put spaces of these blocks. SAISA not only
reduces the computational overhead of self-
attention blocks, but also significantly lowers
the computational costs of FFNs by eliminat-
ing the need to apply FFNs to visual tokens. We
validate its effectiveness on various LLMs and
visual encoders. As shown in Figure 1, SAISA
outperforms LLaVA-1.5 architecture in terms
of performance, training efficiency, and infer-
ence efficiency. Using Vicuna-7B-v1.5 Chi-
ang et al. (2023) as LLM and CLIP-ViT-L/14-
336 Radford et al. (2021) as visual encoder,
SAISA reduces training budget by 26% and in-
ference FLOPs by 66%, while delivering supe-
rior performance. Moreover, SAISA is compat-
ible with techniques to reduce the visual token
number, e.g. resampler Jaegle et al. (2021).

Our contributions are three-fold: (1) Based on our analysis of current MLLM architectures, we
propose NAAViT to enhance efficiency of MLLMs, revealing the redundancy of self-attention in
MLLMs. (2) We introduce SAISA, an architecture for building MLLMs with both training and
inference efficiency by eliminating the computational costs of attention among visual tokens and
FFNs on visual tokens. (3) We validate the effectiveness of SAISA across various LLM backbones
and visual encoders.

2 ANALYZING CURRENT MLLM ARCHITECTURES

In this section, we analyze the two most common architectures to align visual features with the
language model, and summarize key factors for building efficient MLLMs.

Embedding Space Alignment. As illustrated in Figure 2(a), models with this architecture introduce
a projector to align visual tokens with the text token embedding space. They concatenate visual
tokens and text tokens, and then feed them into the LLM. Notable models with this architecture
include LLaVA-1.5 Liu et al. (2024a), Qwen series Bai et al. (2023b; 2025), BLIP series Li et al.
(2023c); Dai et al. (2023), and InternVL series Zhu et al. (2025). These models introduce only a
small number of new parameters to the pre-trained LLMs, allowing training MLLMs from the LLMs
with minimal budget.

However, the concatenated token sequence leads to inference inefficiency. When the number of
visual and text tokens is v and t respectively, the computational complexity of self-attention is

2
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Figure 2: Overview of SAISA and mainstream architectures to align visual features with language
models. (a) Aligning visual features with the embedding space of language models is inefficient
during inference, e.g. LLaVA. (b) Aligning visual features with the attention spaces of new cross-
attention blocks is inefficient during training, e.g. Flamingo. (c) SAISA aligns visual features with
the self-attention input spaces of language models, achieving efficiency during both training and
inference.

O((v + t)2). It consists of three components, O(v2) for attention among visual tokens, O(vt)
for the interaction between text and visual tokens, and O(t2) for attention among text tokens. Typi-
cally, MLLMs use hundreds or even thousands of visual tokens. For example, LLaVA-1.5 uses 576
visual tokens for a single image, and Sphinx Lin et al. (2023) uses 2,890. In contrast, the number
of text tokens is much smaller in most tasks. The average numbers of text tokens in MMMU Yue
et al. (2024), POPE Li et al. (2023d) and ScienceQA IMG Lu et al. (2022) are 142, 68, and 210,
respectively. As a result, the attention among visual tokens dominates the computational overhead.
Moreover, since the FFNs have a large hidden layer dimension, applying FFNs to visual tokens also
brings substantial computational costs.

Cross-Attention Space Alignment. As illustrated in Figure 2(b), models with this architecture
insert cross-attention blocks and FFNs into the language model, and align visual features with
the attention spaces of these cross-attention blocks. Notable models with this architecture include
Flamingo Alayrac et al. (2022), OpenFlamingo Awadalla et al. (2023) and Otter Li et al. (2023a). In
these models, the attention operation consists of only two components, the interaction between text
and visual modalities with complexity O(vt) in the cross-attention blocks, and the attention among
text tokens with complexity O(t2) in the self-attention blocks. Compared with embedding space
alignment, there is no attention among visual features in the language model. By not executing at-
tention among visual tokens and not applying FFNs to visual tokens, these models are more efficient
during inference.

However, the inserted cross-attention blocks and FFNs introduce a large number of new parameters
to the pre-trained language model. As a result, training an MLLM with this architecture requires a
large amount of data. For example, OpenFlamingo-9B adds 2 billion parameters to Llama-7B Tou-
vron et al. (2023a), and requires training data with 180M samples. In terms of model capabilities,
previous work Dai et al. (2024) finds that models utilizing this architecture perform worse than those
using embedding space alignment when trained on the same data.

Based on the analyses above, we summarize the key factors for building efficient MLLMs as follows:
(1) Reducing the number of new parameters and employing pre-trained modules for multimodal
interaction lead to efficiency during training. (2) Reducing computations related to visual tokens,
including those in attention blocks and FFNs, leads to efficiency during inference.

3 NO ATTENTION AMONG VISUAL TOKENS

In this section, we propose NAAViT (No Attention Among Visual Tokens) self-attention and perform
a pilot experiment to investigate whether attention among visual tokens is necessary for MLLMs.
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3.1 PRELIMINARY

Vanilla Self-Attention. In a self-attention block, the input visual-text token sequence is formed as
X = [V, T ] ∈ R(v+t)×h, where [·, ·] denotes concatenation along the sequence dimension. To derive
the query, key, and value representations, three linear layers are applied to obtain Xq , Xk, and Xv ,
respectively:

Xq = [V, T ]WQ, Xk = [V, T ]WK , Xv = [V, T ]WV (1)
Then, the attention operation is executed as:

Attention(X) = softmax
(
XqX

T
k√

d

)
Xv ∈ R(v+t)×h (2)

Typically, a causal attention mask is applied and queries can only attend to keys preceding them in
the sequence. The outputs are multiplied by another linear layer WO to update the hidden states
through a residual connection:

SA(X) = Attention(X)WO +X. (3)

3.2 NAAVIT

As analyzed in Section 2, embedding space alignment achieves superior performance and training
efficiency, making it the most popular architecture in MLLMs recently. However, this architecture is
inefficient during inference, attributable to the self-attention among visual tokens. In contrast, cross-
attention space alignment does not perform attention among visual tokens in the language model,
leading to inference efficiency. A question arises here: Is attention among visual tokens necessary
for MLLMs?
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Figure 3: Top: NAAViT self-
attention block. Bottom: Attention
mask for interleaved image-text.

To answer this question, we propose NAAViT (No Attention
Among Visual Tokens), which eliminates attention among vi-
sual tokens. We illustrate the architecture of NAAViT in Fig-
ure 3 (Top). Specifically, for the visual-text token sequence
X = [V, T ] ∈ R(v+t)×h, queries Xq , keys Xk and values Xv

are obtained as:

Xq = TWQ, Xk = [V, T ]WK , Xv = [V, T ]WV (4)

The attention operation is executed as Equation 2, but with
NAAViT attention mask, where the queries can attend to visual
tokens and text tokens preceding them.

When the number of visual and text tokens is v and t respec-
tively, the vanilla self-attention exhibits a computational com-
plexity of O((v+t)2) for the attention operation in Equation 2.
By eliminating the attention among visual tokens, NAAViT
reduces the complexity to O(t(v + t)). Furthermore, since
NAAViT reduces the query length from v+t to t, it also signif-
icantly reduces the computational costs associated with linear
layers WQ and WO.

3.3 PILOT EXPERIMENT

We train a model under the same configurations as LLaVA-1.5-7B, but replace the vanilla self-
attention with NAAViT.

Attention MMMU MMBench POPE ScienceQA OK-
VAL EN CN IMG VQA

Vanilla 35.7 64.3 58.3 86.8 66.8 53.4
NAAViT 36.0 64.9 58.4 86.9 68.7 56.0

Table 1: Effects of attention mechanisms.

In Table 1, we compare NAAViT and vanilla
self-attention on multiple MLLM bench-
marks, including MMMU Yue et al. (2024),
MMBench Liu et al. (2024b), MMBench-
CN Liu et al. (2024b), POPE Li et al.
(2023d), ScienceQA IMG Lu et al. (2022) and
OKVQA Marino et al. (2019). Among them, MMMU contains interleaved text-image inputs. For
these inputs, the NAAViT attention mask is illustrated in Figure 3 (Bottom). Despite eliminating

4
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Figure 4: Inference computational costs comparison with different numbers of visual and text to-
kens, where t denotes the number of text tokens. SAISA achieves higher computational efficiency.

the attention among visual tokens, the model employing NAAViT outperforms the one using the
vanilla self-attention. Given that NAAViT substantially reduces computational overhead, it offers a
favorable balance between performance and efficiency.

In conclusion, attention among visual tokens is highly redundant for building MLLMs. In the fol-
lowing section, we introduce SAISA (Self-Attention Input Space Alignment) for efficient MLLMs
based on NAAViT.

4 SAISA

4.1 ARCHITECTURE

As mentioned earlier, besides the attention operation, another factor that contributes to inference
inefficiency is applying FFNs to visual tokens. Based on NAAViT, which eliminates the attention
among visual tokens, we propose SAISA (Self-Attention Input Space Alignment), an architecture
for further enhancing MLLM efficiency. In SAISA, we also eliminate FFNs’ computations on visual
tokens.

We illustrate the SAISA architecture in Figure 2(c). SAISA contains a visual encoder to extract
visual features, a projector, and an LLM. Each layer of the LLM consists of a self-attention block
and an FFN. We utilize NAAViT in the self-attention blocks. The purpose of the projector is to
directly align the visual features with the input spaces of different self-attention blocks in the LLM.

Specifically, we assume n is the number of layers in the LLM, h is the hidden size of the LLM, d is
the dimension of visual features, v is the number of visual tokens, and t is the number of text tokens.
For an input image I , we first employ the visual encoder VE to extract visual features:

Z = VE(I) ∈ Rv×d (5)

Then, we use the projector P to directly align the visual features with the input spaces of different
NAAViT self-attention blocks:

V = P(Z) ∈ Rn×v×h (6)

For the i-th NAAViT self-attention block NAAViTi, we input the aligned visual features Vi ∈ Rv×h

and hidden states of the text tokens Ti ∈ Rt×h:

Hi = NAAViTi(Vi, Ti) ∈ Rt×h, i = 1, 2, 3, . . . , n (7)

Notably, the NAAViT self-attention block only outputs the text tokens’ hidden states Hi for the
subsequent FFN, and we apply the FFN to update the text tokens:

Ti+1 = FFNi(Hi) ∈ Rt×h, i = 1, 2, 3, . . . , n. (8)

SAISA utilizes Tn+1 for the next-token prediction.

5
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Method LLM
#Vis. Training Inference MMMU

MME
MMBench SEED-

Tok. Data↓ TFLOPs↓ VAL EN CN Bench

InstructBLIP Vicuna-7B 32 130M 1.25 30.6 1137.1 36.0 23.7 58.8
MiniGPT-v2 Llama2-7B 256 326M 4.20 25.0 708.4 24.3 - 29.4
Otter Llama-7B 64 2.1B 1.15 - 1292.3 48.3 - 35.2
Shikra Vicuna-7B 256 6.1M 4.20 - - 58.8 - -
IDEFICS-9B Llama-7B 64 354M 1.15 18.4 942.0 48.2 25.2 44.5
IDEFICS-80B Llama-65B 64 354M 11.42 - 1244.9 54.5 38.1 53.2
Qwen-VL-Chat Qwen-7B 256 1.4B 4.20 36.0 1435.2 60.6 56.7 65.4

FastV Vicuna-7B 576 1.2M 4.90 35.8 - 64.3 56.8 -
VTW Vicuna-7B 576 1.2M 4.70 36.3 - 64.0 58.5 -
MQT-LLaVA Vicuna-7B 256 1.2M 4.20 34.8 1434.5 64.3 - -

LLaVA-1.5 Vicuna-7B 576 1.2M 8.53 35.7 1510.7 64.3 58.3 66.1
SAISA (Ours) Vicuna-7B 576 1.2M 2.86 36.9 1461.9 65.7 59.0 64.5

Table 2: Performance on comprehensive benchmarks for MLLMs. #Vis. Tok.: the number of visual
tokens involved in each image. Training Data: accumulated multimodal pre-training and fine-tuning
data volume. ↓: a lower value in these columns is better. Inference TFLOPs: the computational cost
of processing a single image when the number of text tokens is 64. Among the baseline models,
FastV, VTW and MQT-LLaVA are efficient MLLMs. The comparison between LLaVA-1.5 and
SAISA is fair, because they use the same settings and training data.

4.2 PROJECTOR

Since each LLM layer operates in distinct attention spaces, the projector must flexibly align the
visual features with each of the spaces. For simplicity, we employ distinct two-layer MLPs for each
layer of the LLM. When the LLM has n layers, the projector contains n MLPs. Following LLaVA-
1.5 Liu et al. (2024a), we set the intermediate size of each MLP to be the same as the LLM hidden
size.

Specifically, for the i-th layer of the LLM,

Vi = MLPi(Z) = φ(ZWi,1)Wi,2, i = 1, 2, 3, . . . , n (9)

where Z ∈ Rv×d is the visual features from the visual encoder, φ is the activation function like
GELU Hendrycks & Gimpel (2016), Wi,1 ∈ Rd×h and Wi,2 ∈ Rh×h are the weight matrices of the
two fully connected layers.

4.3 TRAINING PROCEDURE

The training procedure of SAISA consists of two stages: pre-training and fine-tuning.

Pre-training. The objective of pre-training is to transform an LLM into an MLLM with a foun-
dational comprehension of visual information, providing an initialization for the multimodal fine-
tuning stage. Following LLaVA-1.5, only the multimodal projector is trainable during this stage.
To improve training efficiency, we further reduce the number of trainable parameters in this stage.
Specifically, we train a shared MLP for all layers of the LLM.

Fine-tuning. The objective of fine-tuning is to enable the model to follow visual instructions from
users. As an initialization, we replicate the pre-trained shared MLP N times to initialize the MLPs in
the projector, where N denotes the number of layers in the LLM. Following LLaVA-1.5, we utilize
visual instruction data to train the model, and both the LLM and the projector are trainable during
this stage.

4.4 COMPARISON OF COMPUTATIONAL COST

We focus on the computations of the LLM and the projector, because those of the visual encoder are
identical in this comparison. For LLM with n layers, we assume h is the hidden state size, m is the
intermediate size of the FFNs, t is the number of text tokens, and v is the number of visual tokens.
To comprehensively consider LLMs with and without grouped query attention (GQA) Ainslie et al.
(2023), we assume that k is the output dimension of key/value matrices. For the projector, we

6
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Method LLM
Inference POPE

GQA
ScienceQA

TextVQA OK-VQATFLOPs↓ overall rand pop adv IMG

Shikra Vicuna-7B 4.20 84.7 86.9 84.0 83.1 - - - -
IDEFICS Llama-7B 1.67 81.8 88.3 81.1 76.0 35.5 51.6 25.9 38.4
IDEFICS Llama-65B 16.62 77.5 86.7 74.9 70.8 45.2 61.8 30.9 45.2
Qwen-VL-Chat Qwen-7B 4.20 87.0 89.0 87.4 84.7 57.5 68.2 61.5 56.6

LLaVA-1.5 Vicuna-7B 8.53 86.8 88.2 87.2 85.1 62.0 66.8 58.2 53.4
SAISA (Ours) Vicuna-7B 2.86 87.2 89.0 87.6 85.0 60.9 70.1 56.8 56.8

Table 3: Performance on hallucination and VQA benchmarks. The comparison between LLaVA-1.5
and SAISA is fair.

assume that d is the dimension of the input visual features. The FLOPs of LLaVA-1.5 are 2n(t +
v)h(2h+3m+2k)+4n(t+ v)2h+2vhd+2vh2 For SAISA, visual tokens are multiplied only by
the key and value matrices, and the query sequence length is t in the attention operation. Therefore,
the FLOPs are 2nth(2h + 3m + 2k) + 4nvhk + 4nt(t + v)h + 2nvhd + 2nvh2. Details of the
FLOPs calculation are in the Supplementary Material. Figure 4 compares the FLOPs of SAISA and
LLaVA-1.5 with different numbers of tokens, based on Vicuna-7B-v1.5 Chiang et al. (2023). We can
observe that SAISA achieves a higher computational efficiency than LLAVA-1.5 when processing
the same numbers of tokens.

5 EXPERIMENTS

5.1 SETUPS

Model Configuration. We mainly compare SAISA with LLaVA-1.5 Liu et al. (2024a) due to its
fully open training data, replicability, and acceptable training costs. We use the same settings as
LLaVA-1.5. To be specific, we employ Vicuna-7B-v1.5 Chiang et al. (2023) as the default LLM
backbone and CLIP-ViT-L/14-336 Radford et al. (2021) as the default visual encoder.

Training Details. We utilize the same training data as LLaVA-1.5. The pre-training dataset contains
558k samples, and the fine-tuning dataset contains 665k samples.

5.2 MAIN RESULTS

Method
64 Text Tok. 128 Text Tok. 256 Text Tok.
Latency (ms) Latency (ms) Latency (ms)

LLaVA-1.5 56.0 64.4 75.6
SAISA (Ours) 33.0 37.1 45.9

Table 4: Results of the inference latency test.

The performance on benchmarks is shown in
Table 2 and 3. The inference latency test is
shown in Table 4. We also include efficient
MLLMs in both training-based and training-
free manners, such as MQT-LLaVA Hu et al.
(2024), FastV Chen et al. (2024) and VTW Lin
et al. (2024).

We evaluate SAISA on a range of benchmarks, including: (1) comprehensive benchmarks for
instruction-following MLLMs such as MMMU Yue et al. (2024), MME Fu et al. (2023), MM-
Bench Liu et al. (2024b), MMBench-CN Liu et al. (2024b), and SEED-Bench Li et al. (2023b);
(2) hallucination benchmark such as POPE Li et al. (2023d), which evaluates MLLMs’ degree of
hallucination on three subsets: random, popular, and adversarial; (3) general visual question answer-
ing benchmarks such as GQA Hudson & Manning (2019) and ScienceQA IMG Lu et al. (2022);
(4) fine-grained visual question answering benchmarks such as OK-VQA Marino et al. (2019) and
TextVQA Singh et al. (2019), OK-VQA requires fine-grained image understanding and spatial un-
derstanding, and TextVQA is an OCR-related benchmark; (5) vision-centric MLLM benchmarks
such as MMVP Tong et al. (2024) and CV-Bench Tong et al. (2025). We report the TFLOPs of pro-
cessing a single image when the number of text tokens is 64. In the inference latency test, the latency
is reported as the time of LLM prefilling during inference with varying numbers of text tokens.

Table 2 shows the comparison on the comprehensive benchmarks. rictSAISA outperforms Instruct-
BLIP Dai et al. (2023), MiniGPT-v2Chen et al. (2023a), Otter Li et al. (2023a), Shikra Chen et al.
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Method LLM
Visual #Vis. Inference MMMU MMBench

POPE GQA
SQA OK-

AverageEncoder Tok. TFLOPs↓ VAL EN CN IMG VQA

LLaVA-1.5 Vicuna SigLIP 729 10.63 36.6 66.2 58.9 86.5 62.5 70.5 56.4 62.5
SAISA (Ours) Vicuna SigLIP 729 3.40 37.4 67.5 60.7 87.0 62.9 70.0 55.8 63.0

LLaVA-1.5 Vicuna Conv 1024 14.76 34.6 56.6 49.6 88.2 61.1 66.4 51.4 58.3
SAISA (Ours) Vicuna Conv 1024 4.44 35.1 61.1 54.9 87.0 57.7 66.5 54.4 59.5

LLaVA-1.5 Vicuna CLIP 576 8.53 35.7 64.3 58.3 86.8 62.0 66.8 53.4 61.0
SAISA (Ours) Vicuna CLIP 576 2.86 36.9 65.7 59.0 87.2 60.9 70.1 56.8 62.4

LLaVA-1.5 Mistral CLIP 576 9.17 34.8 65.9 54.9 87.2 62.0 71.6 2.5* 54.1
SAISA (Ours) Mistral CLIP 576 2.10 35.9 67.5 57.5 86.9 61.2 71.2 23.9* 57.7

LLaVA-1.5 Llama3 CLIP 576 9.17 36.8 70.4 64.2 87.2 63.5 73.3 61.2 65.2
SAISA (Ours) Llama3 CLIP 576 2.10 38.3 71.3 65.2 86.8 61.8 74.4 60.7 65.6

Table 5: Ablation on LLMs and Visual Encoders. Here, “SigLIP” = SigLIP-ViT-SO400M/14-384,
“Conv” = OpenCLIP-ConvNeXt-XXL-1024, and “CLIP” = CLIP-ViT-L/14-336. *Both LLaVA-1.5
and SAISA models on Mistral exhibit low performance on OK-VQA, because they respond to most
questions in this benchmark with “Unanswerable”.

Pre-trained MMMU MMBench
POPE

SQA OK-
Parameters VAL EN CN IMG VQA

Full Projector 34.8 59.2 51.1 85.6 67.8 53.1
Shared MLP 36.9 65.7 59.0 87.2 70.1 56.8

Table 6: Ablation on Pre-training Strategies.

Projector
MMMU MMBench

POPE
SQA OK-

VAL EN CN IMG VQA

Linear Layers 35.7 65.3 56.6 85.8 69.2 53.6
Resamplers 35.6 59.5 50.5 83.5 69.1 53.4

MLPs 36.9 65.7 59.0 87.2 70.1 56.8

Table 7: Ablation on Projector Designs.

(2023b), and IDEFICS IDEFICS (2023) utilizing LLama-7B and LLama-65B Touvron et al. (2023a)
across all these benchmarks. Compared with Qwen-VL-Chat Bai et al. (2023b) and LLaVA-1.5 Liu
et al. (2024a), SAISA performs better on most benchmarks. Among these baseline models, Otter
and IDEFICS employ cross-attention space alignment, whereas the other models utilize embedding
space alignment. Table 3 shows the comparison on the hallucination and VQA benchmarks. We
also include the comparison on vision-centric benchmarks in the appendix. SAISA achieves the
best overall performance compared to the baseline, and strikes a favorable balance between perfor-
mance and efficiency.

Notably, SAISA inherently supports flexible multi-turn conversations. We include multi-turn results
in the appendix.

5.3 ABLATION STUDY

Ablation on LLMs and Visual Encoders. As presented in Table 5, we perform multiple ablation
experiments on both LLM backbones and visual encoders to validate the effectiveness of SAISA.
We tune a set of SAISA models using a variety of LLM backbones and visual encoders. The ab-
lated LLMs include Vicuna-7B Chiang et al. (2023) and two LLMs using grouped query attention
(GQA) Ainslie et al. (2023), such as Mistral-7B Jiang et al. (2023) and Llama3-8B Meta (2024).
The ablated visual encoders include two ViT-based Dosovitskiy et al. (2020) visual backbones such
as CLIP-ViT-L/14-336 Radford et al. (2021) and SigLIP-ViT-SO400M/14-384 Zhai et al. (2023),
and a ConvNeXt-based Liu et al. (2022) visual encoder such as ConvNeXt-XXL-1024 from Open-
CLIP Ilharco et al. (2021); Schuhmann et al. (2022). The experimental results demonstrate that
SAISA consistently achieves superior performance to LLaVA-1.5 across different LLM backbones
and visual encoders, while dramatically reducing computational costs.

Ablation on Pre-training Strategies. As shown in Table 6, we conduct an ablation to investigate
the effects of SAISA’s pre-training strategies. We tune a SAISA model where the full projector (32
MLPs) is tunable during pre-training, and the other settings keep the same as the original SAISA.
With more randomly initialized parameters, we observe a performance drop when pre-training the
full projector. We attribute this drop to the small amount of pre-training data with only 558k samples.
This ablation study demonstrates the effectiveness of our pre-training strategy, which provides a
robust initialization for the subsequent fine-tuning stage.
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Ablation on Projector Designs. Previous studies find that replacing linear projection with MLP
projection improves performance in MLLM Liu et al. (2024a) and self-supervised learning Chen
et al. (2020a;b). We conduct an experiment to investigate the impact of projector designs in SAISA.
We tune a model under the same configuration as the original SAISA model but replace each MLP in
the projector with a linear layer or a resampler Jaegle et al. (2021). We set the output token number
of the resampler projector to 256. Table 7 shows that the model with the MLP projector performs
better than the model with other projectors, including the linear projector, which is consistent with
the finding of the previous study Liu et al. (2024a). Furthermore, the linear projector performs
better than the resampler projector, because the latter down-samples visual tokens and overlooks
fine-grained visual information such as spatial information.

6 RELATED WORK

6.1 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal Large Language Models (MLLMs) are typically built on Large Language Models
(LLMs) Chiang et al. (2023); Meta (2024); Jiang et al. (2023); Touvron et al. (2023a;b); Bai et al.
(2023a) by aligning visual features generated by visual encoders Radford et al. (2021); Zhai et al.
(2023); Ilharco et al. (2021); Liu et al. (2022) with the LLMs. There are two most common ar-
chitectures for this purpose, embedding space alignment and cross-attention space alignment. For
embedding space alignment Liu et al. (2023; 2024a); Li et al. (2023c); Dai et al. (2023); Bai et al.
(2023b); Chen et al. (2023a); Zhu et al. (2023); Bai et al. (2025); Zhu et al. (2025), MLLMs align vi-
sual features with the text token embedding space via a projector and concatenate the visual and text
tokens as the LLM input. These models exhibit efficiency during training, but suffer from inference
inefficiency because of the long token sequence. For cross-attention space alignment Alayrac et al.
(2022); LAION (2023); Awadalla et al. (2023), MLLMs introduce new cross-attention blocks for the
interaction between text and visual modalities, and align the visual features with the cross-attention
spaces. These models achieve efficiency during inference, but require a substantial amount of data
to train the new parameters. In this paper, we propose SAISA, an architecture for building MLLMs
with efficiency during both training and inference.

6.2 EFFICIENCY OPTIMIZATION FOR MLLMS

To reduce the computational costs of MLLMs, previous work mainly falls into two categories: model
architecture and token reduction. For model architecture, Qwen-VL Bai et al. (2023b) and BLIP
series Li et al. (2023c); Dai et al. (2023) utilize attention-based mechanisms to down-sample visual
tokens before they are fed into LLMs. Ye et al. Ye et al. (2024) incorporate cross-attention operation
in parallel with self-attention, and utilizes adaptive gates for hidden states fusing. Ma et al. Ma
et al. (2024) introduce aligners to update visual tokens in the MLLM, but the aligners still involve
substantial computational overhead. For token reduction, token pruning methods Shang et al. (2024);
Wang et al. (2024), e.g. FastV Chen et al. (2024), focus on certain “anchor” tokens and prune the
other visual tokens. VTW Lin et al. (2024) removes visual tokens after a certain layer. In this
paper, we investigate redundancy within the MLLM architecture and propose SAISA. Instead of
directly reducing visual token number, SAISA achieves efficiency while maintaining fine-grained
visual understanding by preserving the original number of visual tokens.

7 CONCLUSION

In this paper, we take a step towards developing MLLMs with efficiency during both training and
inference. To achieve this, we conduct a study of current MLLM architectures and find the key
factors for building efficient MLLMs. By integrating these factors and gradually reducing redun-
dant computations, we propose SAISA, an effective and efficient architecture for MLLMs. SAISA
demonstrates the ability to dramatically reduce the computational costs of MLLMs without compro-
mising their capabilities.
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A APPENDIX

A.1 LLM USAGE

We used OpenAI’s ChatGPT to help polish the language and improve the readability of the
manuscript. Specifically, ChatGPT was used for grammar checking and sentence rephrasing. We
list our prompt for using OpenAI’s ChatGPT to help polish writing as follows.

Prompt for Using OpenAI’s ChatGPT to Help Polish Writing

Below is a paragraph from an academic paper. Polish the
writing to meet the academic style,improve the spelling,
grammar, clarity, concision and overall readability.
Furthermore, list all modification and explain the
reasons to do so in markdown table. \\

Paragraph: {paragraph}

A.2 ANALYSIS OF COMPUTATIONAL OVERHEAD

In this section, we provide details of the calculation of the FLOPs of SAISA and LLaVA-1.5. com-
pare the computational costs of SAISA and LLaVA-1.5. We consider the computations of the LLM
and the projector, as the computations of the visual encoder are identical in comparison. We consider
the computations of the self-attention blocks and the FFNs in each layer of the LLM.

We denote the hidden state size of the LLM backbone as h, and the output dimension of the WK ,
WV matrices is k. When the token sequence has l tokens, the FLOPs of a vanilla self-attention block
contain those of the WQ, WK , WV and WO matrices, as well as the self-attention operation. The
FLOPs of each of WK , WV are 2lhk, and those of each of WQ and WO are 2lh2, and the FLOPs
of the self-attention operation are 4l2h. The overall FLOPs of the vanilla self-attention block are
4lh2 + 4lhk + 4l2h. For an feed-forward network (FFN), we assume that their intermediate size
is m, and the FLOPs are 6lhm. When the LLM backbone has n layers, the FLOPs are 2nlh(2h +
3m+ 2k) + 4nl2h.

We use v to denote the number of visual tokens, and t to denote the number of text tokens. For
LLaVA-1.5, the visual and text tokens are concatenated and then fed into the LLM backbone, result-
ing in v+ t tokens. As a result, the FLOPs of the LLM backbone are 2n(v+ t)h(2h+3m+2k) +
4(v + t)l2h. For the 2-layer MLP projector, where the hidden layer size is set to h, the FLOPs of
the first layer are 2vhd, and those of the second layer are 2vh2. The overall FLOPs of LLaVA-1.5
are 2n(v + t)h(2h+ 3m+ 2k) + 4(v + t)l2h.

For SAISA, a NAAViT self-attention block also contains WQ, WK , WV , WO and the self-attention
operation. In contrast to the vanilla self-attention block, the WQ and WO matrices are only applied
to text tokens in SAISA, and the attention operation among visual tokens are omitted. As a result, the
overall FLOPs of a NAAViT self-attention block are 2th(2h+2k) + 4vhk+4t(t+ v)h. The FFNs
in SAISA are only applied to text tokens, resulting in FLOPs 6thm. With respect to the projector,
which contains n 2-layer MLPs, the FLOPs are 2nvhd+ 2nvh2. The overall FLOPs of SAISA are
2nth(2h+ 3m+ 2k) + 4nvhk + 4nt(t+ v)h+ 2nvhd+ 2nvh2.

A.3 IMPLEMENT DETAILS

The detailed training settings and hyperparameters (HPs) of SAISA are summarized in Table 8,
including the hyperparameters utilized during the pre-training and fine-tuning. The entire two-stage
training process of SAISA is executed on a single node with 8 NVIDIA A800 80G GPUs, employing
flash-attention v2 for all experiments.
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Configurations Pre-training Fine-tuning

Projector Init. Random Pre-training Stage
Training Modules Shared MLP Projector, LLM
Deepspeed zero-2 zero-3
Learning Rate 1e-3 2e-5
Warm-up Ratio 0.03
Batch Size 256 128
Bfloat16 True
LR Schedule Cosine Decay
Training Steps 2.2k 5.2k
Weight Decay 0.0
Epoch 1
Optimizer AdamW

Table 8: Hyperparameters utilized during training. LR schedule denotes learning rate schedule. Init.
denotes initialization.

Method
Inference

MMVP
CV-Bench

TFLOPs↓ 2D 3D

LLaVA-1.5 8.53 24.7 56.6 59.5
SAISA (Ours) 2.86 26.0 56.2 59.8

Table 9: Performance on vision-centric benchmarks.

A.4 VISION-CENTRIC BENCHMARKS

In this section, we provide the comparison on vision-centric benchmarks. Since most previous
methods do not evaluate their performance on these benchmarks, we compare SAISA with LLaVA-
1.5. The results are shown in Table 9.

A.5 QUALITATIVE RESULTS

In this section, we utilize the qualitative examples in the original LLaVA-1.5 paper to comprehen-
sively demonstrate the abilities of SAISA. The examples, which cover a diverse range of scenarios
and challenges, are shown in Table 12, 11, 13 and 14. For comparison, we prompt queries in these
examples to LLaVA-1.5 and include its response in most examples. Our SAISA, trained on the
same data as LLaVA-1.5, demonstrates similar performance across various unseen response format
prompts, while exhibiting superior training and inference efficiency. It can support flexible multi-
turn conversations (Table 10) and accurately identify factual inaccuracies in questions and provide
more effective and reasonable responses to complex queries (Table 12). SAISA also generates fine-
grained prompts for Stable Diffusion models in a specified format (Table 11). Furthermore, it can
offer responses with adjustable levels of detail based on user needs, adapting its output across mul-
tiple dialogue rounds (Table 13), and it can perform detailed writing tasks based on the given image
(Table 14).
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Multi-turn Conversation:

User What is unusual about this image? Answer briefly with a single sentence.
LLaVA-1.5 A man is hanging clothes on a clothesline attached to a car.
SAISA A man is ironing clothes while standing on the back of a taxi.
User Give a more detailed explanation.
LLaVA-1.5 A man is hanging clothes on a clothesline attached to a car, which is an unusual sight as people typically hang clothes on

a clothesline at home or in a designated area.
SAISA The unusual aspect of this image is that a man is ironing clothes while standing on the back of a taxi. This is not a typical

scene, as ironing clothes is usually done indoors, and standing on the back of a moving vehicle is not a safe or practical
way to do it. The man’s actions may be a stunt or a publicity stunt, but it is certainly an unconventional and potentially
dangerous situation.

Table 10: SAISA can dynamically adjust response granularity across multiple dialogue rounds.

Visual input example, Constrained SD Prompt Generation:

User Here’s a formula for a Stable Diffusion image prompt: a cartoon-style image of [adjective] [subject] [haircut] [clothing]
[doing action], [color scheme], detailed, trending on artstation. Generate the prompt for this image.

LLaVA-1.5 A cartoon-style image of a young girl with a heart-shaped bow in her hair, wearing a white and pink jacket, and holding a
stuffed bunny. The image has a watercolor color scheme, and it is detailed and trending on ArtStation.

SAISA A cartoon-style image of a young girl with a cute haircut, wearing a white jacket and a bow, holding a stuffed animal and
a backpack. The image has a color scheme of pink, white, and orange, and is detailed and trending on ArtStation.

Table 11: SAISA can generating prompts in a specified format tailored for Stable Diffusion models.

Visual input example, Tricky Question:

User If there are factual errors in the questions, point it out; if not, proceed to answering the question.
What’s happening in the desert?

LLaVA-1.5 There is no desert in the image. The image features a beach with a city skyline in the background, and a large body of
water.

SAISA In the image, there is no desert visible. The scene takes place on a beach with a city skyline in the background. The beach
is located near a city, and there is a lively atmosphere with lights reflecting on the water.

Table 12: SAISA can evaluate whether the question contains factual inaccuracies and respond to
challenging questions.
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Visual input example, Different Format Prompts:

User What is the color of the shirt that the man is wearing? Answer the question using a single word or phrase.
LLaVA-1.5 Yellow
SAISA Yellow

User Is this unusual? Please explain briefly with a short sentence.
LLaVA-1.5 Yes, it is unusual for a man to be drying clothes on the back of a moving vehicle.
SAISA Yes, it is unusual for a man to be ironing clothes while standing on the back of a taxi.

User Is this unusual? Please explain in detail.
LLaVA-1.5 Yes, this is an unusual scene. In the image, a man is sitting on a folding chair in the back of a yellow taxi, holding a

clothesline with clothes on it. This is not a typical sight in a city setting, as people usually do not transport laundry in such
a manner. It is also uncommon to see someone sitting on a folding chair in the back of a taxi, as passengers usually sit
inside the vehicle. The combination of the man’s unusual activity and the unconventional seating arrangement makes this
scene stand out as an atypical and intriguing moment.

SAISA Yes, this is an unusual scene. In the image, a man is standing on the back of a yellow taxi, holding a clothes iron. This
is not a typical sight, as people usually do not use taxis for ironing clothes. It is also not common to see someone ironing
clothes in public, as it is generally done indoors in a private setting, such as a home or an office. The man’s actions in the
image are unconventional and seem to be a humorous or artistic representation of an everyday situation.

Table 13: SAISA is capable of providing responses at various levels of granularity according to
user requirements.
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Visual input example, Visual Writing Task:

User Compose an engaging travel blog post about a recent trip to this place, highlighting cultural experiences and must-see
attractions.

SAISA Title: Paradise Found: A Trip to the Hawaiian Islands

Introduction:

I recently had the opportunity to visit the beautiful Hawaiian Islands, and I must say, it was an unforgettable experience.
The breathtaking views, crystal blue waters, and lush green landscapes truly make it a paradise on earth. In this blog post,
I’ll share some of my favorite moments and must-see attractions from my trip.

Day 1: Arrival and Exploring Oahu

Upon arrival, I was greeted by the stunning view of Waikiki Beach, which is located on the island of Oahu. I spent the day
exploring the area, taking in the sights, and soaking up the sun. One of the highlights of my day was visiting the iconic
Diamond Head, a volcanic crater that offers panoramic views of the beach and ocean.

Day 2: Polynesian Cultural Center

The next day, I visited the Polynesian Cultural Center, where I had the chance to experience the rich culture and traditions
of various Polynesian islands. The center showcases traditional dances, music, and crafts, as well as interactive exhibits
that allowed me to learn more about the history and customs of the region.

Day 3: Hanauma Bay

On my third day, I visited Hanauma Bay, a stunning natural wonder that is home to an abundance of marine life. The
bay is a protected marine sanctuary, and visitors are required to take a guided tour to learn about the local ecosystem and
conservation efforts. The crystal blue waters and vibrant coral reefs were truly breathtaking, and I was able to witness sea
turtles, colorful fish, and other marine creatures up close.

Day 4: Pearl Harbor and USS Arizona

On my last day, I visited Pearl Harbor, the site of the infamous attack that led to the United States’ entry into World War II.
The USS Arizona Memorial is a must-see attraction, as it offers a solemn and educational experience. I was able to learn
about the history of the attack and the significance of the USS Arizona in the war.

Conclusion:

In conclusion, my trip to the Hawaiian Islands was an unforgettable experience filled with cultural experiences, breath-
taking views, and adventure. From the iconic Waikiki Beach to the protected marine sanctuary of Hanauma Bay, there is
truly something for everyone to enjoy. I would highly recommend a visit to these beautiful islands for anyone looking to
experience the wonders of nature and the rich history of the region.

Table 14: SAISA is capable of executing complex writing tasks based on a given image.
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