
ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut
Problems

Yeqing Qiu 1 2 Ye Xue 1 2 Akang Wang 1 2 Yiheng Wang 1 2 Qingjiang Shi 1 3 Zhi-Quan Luo 1 2

Abstract

The Max-k-Cut problem is a fundamental com-
binatorial optimization challenge that general-
izes the classic NP-complete Max-Cut problem.
While relaxation techniques are commonly em-
ployed to tackle Max-k-Cut, they often lack guar-
antees of equivalence between the solutions of the
original problem and its relaxation. To address
this issue, we introduce the Relax-Optimize-and-
Sample (ROS) framework. In particular, we begin
by relaxing the discrete constraints to the continu-
ous probability simplex form. Next, we pre-train
and fine-tune a graph neural network model to
efficiently optimize the relaxed problem. Subse-
quently, we propose a sampling-based construc-
tion algorithm to map the continuous solution
back to a high-quality Max-k-Cut solution. By in-
tegrating geometric landscape analysis with statis-
tical theory, we establish the consistency of func-
tion values between the continuous solution and
its mapped counterpart. Extensive experimental
results on random regular graphs, the Gset bench-
mark, and the real-world datasets demonstrate that
the proposed ROS framework effectively scales
to large instances with up to 20, 000 nodes in just
a few seconds, outperforming state-of-the-art al-
gorithms. Furthermore, ROS exhibits strong gen-
eralization capabilities across both in-distribution
and out-of-distribution instances, underscoring its
effectiveness for large-scale optimization tasks.

1. Introduction
The Max-k-Cut problem involves partitioning the vertices
of a graph into k disjoint subsets in such a way that the

1Shenzhen Research Institute of Big Data, Shenzhen, China.
2The Chinese University of Hong Kong, Shenzhen, China. 3Tongji
University, Shanghai, China. Correspondence to: Ye Xue <xu-
eye@cuhk.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

total weight of edges between vertices in different sub-
sets is maximized. This problem represents a significant
challenge in combinatorial optimization and finds applica-
tions across various fields, including telecommunication
networks (Eisenblätter, 2002; Gui et al., 2019), data cluster-
ing (Poland & Zeugmann, 2006; Ly et al., 2023), and theo-
retical physics (Cook et al., 2019; Coja-Oghlan et al., 2022).
The Max-k-Cut problem is known to be NP-complete, as it
generalizes the well-known Max-Cut problem, which is one
of the 21 classic NP-complete problems identified by Karp
(1972).

Significant efforts have been made to develop methods for
solving Max-k-Cut problems (Nath & Kuhnle, 2024). Ghad-
dar et al. (2011) introduced an exact branch-and-cut algo-
rithm based on semi-definite programming, capable of han-
dling graphs with up to 100 vertices. For larger instances,
various polynomial-time approximation algorithms have
been proposed. Goemans & Williamson (1995) addressed
the Max-Cut problem by first solving a semi-definite re-
laxation to obtain a fractional solution, then applying a
randomization technique to convert it into a feasible solu-
tion, resulting in a 0.878-approximation algorithm. Building
on this, Frieze & Jerrum (1997) extended the approach to
Max-k-Cut, offering feasible solutions with approximation
guarantees. de Klerk et al. (2004) further improved these
guarantees, while Shinde et al. (2021) optimized memory
usage. Despite their strong theoretical performance, these
approximation algorithms involve solving computationally
intensive semi-definite programs, rendering them impracti-
cal for large-scale Max-k-Cut problems. A variety of heuris-
tic methods have been developed to tackle the scalability
challenge. For the Max-Cut problem, Burer et al. (2002)
proposed rank-two relaxation-based heuristics, and Goudet
et al. (2024) introduced a meta-heuristic approach using
evolutionary algorithms. For Max-k-Cut, heuristics such as
genetic algorithms (Li & Wang, 2016), greedy search (Gui
et al., 2019), multiple operator heuristics (Ma & Hao, 2017),
and local search (Garvardt et al., 2023) have been proposed.
While these heuristics can handle much larger Max-k-Cut
instances, they often struggle to balance efficiency and solu-
tion quality.

Recently, machine learning techniques have gained atten-
tion for enhancing optimization algorithms (Bengio et al.,

1



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

2021; Gasse et al., 2022; Chen et al., 2024). Several studies,
including Khalil et al. (2017); Barrett et al. (2020); Chen
et al. (2020); Barrett et al. (2022), framed the Max-Cut
problem as a sequential decision-making process, using
reinforcement learning to train policy networks for gen-
erating feasible solutions. However, RL-based methods
often suffer from extensive sampling efforts and increased
complexity in action space when extended to Max-k-Cut,
and hence entails significantly longer training and testing
time. Karalias & Loukas (2020) focuses on subset selection,
including Max-Cut as a special case. It trains a graph neu-
ral network (GNN) to produce a distribution over subsets
of nodes of an input graph by minimizing a probabilistic
penalty loss function. After the network has been trained, a
randomized algorithm is employed to sequentially decode
a valid Max-Cut solution from the learned distribution. A
notable advancement by Schuetz et al. (2022) reformulated
Max-Cut as a quadratic unconstrained binary optimization
(QUBO), removing binarity constraints to create a differ-
entiable loss function. This loss function was used to train
a GNN, followed by a simple projection onto integer vari-
ables after unsupervised training. The key feature of this
approach is solving the Max-Cut problem during the train-
ing phase, eliminating the need for a separate testing stage.
Although this method can produce high-quality solutions
for Max-Cut instances with millions of nodes, the computa-
tional time remains significant due to the need to optimize
a parameterized GNN from scratch. The work of Tönshoff
et al. (2023) first formulated the Max-Cut problem as a
Constraint Satisfaction Problem (CSP) and then proposed
a novel GNN-based reinforcement learning approach. This
method outperforms prior neural combinatorial optimization
techniques and conventional search heuristics. However, to
the best of our knowledge, it is limited to unweighted Max-
k-Cut problems. NeuroCUT (Shah et al., 2024) is a parti-
tioning method based on reinforcement learning, whereas
DGCLUSTER (Bhowmick et al., 2024) and DMoN (Tsit-
sulin et al., 2023) utilize GNNs to optimize clustering objec-
tives. However, these methods are specifically designed for
graph clustering, which focuses on minimizing inter-cluster
connections—contrary to Max-k-Cut, where the goal is to
maximize inter-partition connections. Consequently, they
are not directly applicable to our problem. Although Neu-
roCUT claims support for arbitrary objective functions, its
node selection heuristics are tailored exclusively for graph
clustering, rendering it unsuitable for Max-k-Cut.

In this work, we propose a GNN-based Relax-Optimize-and-
Sample (ROS) framework for efficiently solving the Max-k-
Cut problem with arbitrary edge weights. The framework
is depicted in Figure 1. Initially, the Max-k-Cut problem is
formulated as a discrete optimization task. To handle this,
we introduce probability simplex relaxations, transforming
the discrete problem into a continuous one. We then op-

timize the relaxed formulation by training parameterized
GNNs in an unsupervised manner. To further improve ef-
ficiency, we apply transfer learning, utilizing pre-trained
GNNs to warm-start the training process. Finally, we refine
the continuous solution using a random sampling algorithm,
resulting in high-quality Max-k-Cut solutions.

The key contributions of our work are summarized as fol-
lows:

• Novel Framework. We propose a scalable ROS frame-
work tailored to the weighted Max-k-Cut problem with
arbitrary signs, built on solving continuous relaxations
using efficient learning-based techniques.

• Theoretical Foundations. We conduct a rigorous the-
oretical analysis of both the relaxation and sampling
steps. By integrating geometric landscape analysis
with statistical theory, we demonstrate the consistency
of function values between the continuous solution and
its sampled discrete counterpart.

• Superior Performance. Comprehensive experiments
on public benchmark datasets show that our frame-
work produces high-quality solutions for Max-k-Cut
instances with up to 20, 000 nodes in just a few seconds.
Our approach significantly outperforms state-of-the-art
algorithms, while also demonstrating strong general-
ization across various instance types.

2. Preliminaries
2.1. Max-k-Cut Problems

Let G = (V, E) represent an undirected graph with vertex
set V and edge set E . Each edge (i, j) ∈ E is assigned an
arbitrary weight Wij ∈ R, which can have any sign. A cut
in G refers to a partition of its vertex set. The Max-k-Cut
problem involves finding a k-partition (V1, . . . ,Vk) of the
vertex set V such that the sum of the weights of the edges
between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional
one-hot encoding scheme. Specifically, we define a k ×N
matrix X ∈ Rk×N where each column represents a one-hot
vector. The Max-k-Cut problem can be formulated as:

max
X∈Rk×N

1

2

N∑
i=1

N∑
j=1

Wij

(
1−X⊤

·i X·j
)

s. t. X·j ∈ {e1, e2, . . . , ek} ∀j ∈ V,

(1)

where X·j denotes the jth column of X , W is a symmetric
matrix with zero diagonal entries, and eℓ ∈ Rk is a one-hot
vector with the ℓth entry set to 1. This formulation aims
to maximize the total weight of edges between different
partitions, ensuring that each node is assigned to exactly one

2



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Random Sampling

𝒙𝑖 = 𝒆1

𝒙𝑖 = 𝒆2

𝒙𝑖 = 𝒆3

…

1

2

3 4

56

1

2

3 4

56

1

2

3 4

56 𝑯𝚽
𝐿

=
1 0 0.4 0 0 0
0 0 0.6 0 1 1
0 1 0 1 0 0

GNN Parametrization-based Optimization

Pre-train

Fine-tune
min

𝚽
 𝑓 𝑯𝚽

𝐿
; 𝑾

𝒉2
0

𝒉1
0

𝒉6
0

𝒉3
0 𝒉4

0

𝒉5
0

GNNs

𝒉2
𝐿

𝒉1
𝐿

𝒉6
𝐿

𝒉3
𝐿 𝒉4

𝐿

𝒉5
𝐿

Prediction

1

2

3 4

56

1

2

3 4

56

Initialization Loss Function

Continuous Relaxation

min
𝑋∈Δ𝑘

𝑁
𝑓(𝑿; 𝑾)

Probability Simplex 
Relaxation

Discrete Problem

min
𝑋∈𝒳

𝑓(𝑿; 𝑾)

Continuous SolutionDiscrete Solutions

Figure 1: The Relax-Optimize-and-Sample framework.

partition, represented by the one-hot encoded vectors. We
remark that weighted Max-k-Cut problems with arbitrary
signs is a generalization of classic Max-Cut problems and
arise in many interesting applications (De Simone et al.,
1995; Poland & Zeugmann, 2006; Hojny et al., 2021).

2.2. Graph Neural Networks

GNNs are powerful tools for learning representations from
graph-structured data. GNNs operate by iteratively aggre-
gating information from a node’s neighbors, enabling each
node to capture increasingly larger sub-graph structures as
more layers are stacked. This process allows GNNs to learn
complex patterns and relationships between nodes, based
on their local connectivity.

At the initial layer (l = 0), each node i ∈ V is assigned a
feature vector h(0)

i , which typically originates from node
features or labels. The representation of node i is then recur-
sively updated at each subsequent layer through a parametric
aggregation function fΦ(l) , defined as:

h
(l)
i = fΦ(l)

(
h
(l−1)
i , {h(l−1)

j : j ∈ N (i)}
)
, (2)

where Φ(l) represents the trainable parameters at layer l,
N (i) denotes the set of neighbors of node i, and h

(l)
i is the

node’s embedding at layer l for l ∈ {1, 2, · · · , L}. This
iterative process enables the GNN to propagate informa-
tion throughout the graph, capturing both local and global
structural properties.

3. A Relax-Optimize-and-Sample Framework
In this work, we leverage continuous optimization tech-
niques to tackle Max-k-Cut problems, introducing a novel
ROS framework. Acknowledging the inherent challenges
of discrete optimization, we begin by relaxing the problem
to probability simplices and concentrate on optimizing this
relaxed version. To achieve this, we propose a machine
learning-based approach. Specifically, we model the relaxed
problem using GNNs, pre-training the GNN on a curated
graph dataset before fine-tuning it on the specific target in-
stance. After obtaining high-quality solutions to the relaxed
continuous problem, we employ a random sampling proce-
dure to derive a discrete solution that preserves the same
objective value.

3.1. Probability Simplex Relaxations

To simplify the formulation of the problem (1), we remove
constant terms and negate the objective function, yielding
an equivalent formulation expressed as follows:

min
X∈X

f(X;W ) := Tr(XWX⊤), (P)

where X :=
{
X ∈ Rk×N : X·j ∈ {e1, e2, . . . , ek},∀j ∈ V

}
.

It is important to note that the matrix W is indefinite due to
its diagonal entries being set to zero.

Given the challenges associated with solving the discrete
problem P, we adopt a naive relaxation approach, obtain-
ing the convex hull of X as the Cartesian product of N
k-dimensional probability simplices, denoted by ∆N

k . Con-
sequently, the discrete problem P is relaxed into the follow-

3



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

ing continuous optimization form:

min
X∈∆N

k

f(X;W ). (P)

Before optimizing problem P, we will characterize its ge-
ometric landscape. To facilitate this, we introduce the fol-
lowing definition.

Definition 3.1. Let X denote a point in ∆N
k . We define the

neighborhood induced by X as follows:

N (X) :=

{
X ∈ ∆N

k

∣∣∣∣∣
∑

i∈K(X·j)

Xij = 1, ∀j ∈ V
}
,

where K(X ·j) := {i ∈ {1, . . . , k} | Xij > 0}.

The set N (X) represents a neighborhood around X , where
each point in N (X) can be derived by allowing each non-
zero entry of the matrix X to vary freely, while the other
entries are set to zero. Utilizing this definition, we can
establish the following theorem.

Theorem 3.2. Let X⋆ denote a globally optimal solution
to P, and let N (X⋆) be its induced neighborhood. Then

f(X;W ) = f(X⋆;W ), ∀X ∈ N (X⋆).

Theorem 3.2 states that for a globally optimal solution X⋆,
every point within its neighborhood N (X⋆) shares the same
objective value as X⋆, thus forming a basin in the geomet-
ric landscape of f(X;W ). If X⋆ ∈ X (i.e., an integer
solution), then N (X⋆) reduces to the singleton set {X⋆}.
Conversely, if X⋆ /∈ X , there exist

∏
j∈V |K(X⋆

·j)| unique
integer solutions within N (X⋆) that maintain the same ob-
jective value as X⋆. This indicates that once a globally
optimal solution to the relaxed problem P is identified, it
becomes straightforward to construct an optimal solution
for the original problem P that preserves the same objective
value.

According to Carlson & Nemhauser (1966), among all glob-
ally optimal solutions to the relaxed problem P, the integer
solution always exists. Theorem 3.2 extends this result, indi-
cating that if the globally optimal solution is fractional, we
can provide a straightforward method to derive its integer
counterpart. We remark that it is highly non-trivial to guar-
antee that the feasible Max-k-Cut solution obtained from
the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated
with the weight matrix W . We optimize its relaxation and
obtain the optimal solution X⋆.

W :=

0 1 1
1 0 1
1 1 0

 ,X⋆ :=

(
p 1 0

1− p 0 1

)
,

where p ∈ [0, 1]. From the neighborhood N (X⋆), we can
identify the following integer solutions that maintain the
same objective value.

X⋆
1 =

(
0 1 0
1 0 1

)
,X⋆

2 =

(
1 1 0
0 0 1

)
.

Given that P is a non-convex program, identifying its global
minimum is challenging. Consequently, the following two
critical questions arise.

Q1. Since solving P to global optimality is NP-hard, how
to efficiently optimize P for high-quality solutions?

Q2. Given X ∈ ∆N
k \ X as a high-quality solution to P,

can we construct a feasible solution X̂ ∈ X to P such
that f(X̂;W ) = f(X;W )?

We provide a positive answer to Q2 in Section 3.2, while
our approach to addressing Q1 is deferred to Section 3.3.

3.2. Random Sampling

Let X ∈ ∆N
k \ X be a feasible solution to the relaxation

P. Our goal is to construct a feasible solution X ∈ X
for the original problem P, ensuring that the corresponding
objective values are equal. Inspired by Theorem 3.2, we
propose a random sampling procedure, outlined in Algo-
rithm 1. In this approach, we sample each column X·i of
the matrix X from a categorical distribution characterized
by the event probabilities X ·i (denoted as Cat(x;p = X ·i)
in Step 3 of Algorithm 1). This randomized approach yields
a feasible solution X̂ for P. However, since Algorithm 1 in-
corporates randomness in generating X̂ from X , the value
of f(X̂;W ) becomes random as well. This raises the criti-
cal question: is this value greater or lesser than f(X;W )?
We address this question in Theorem 3.3.

Algorithm 1 Random Sampling

1: Input: X ∈ ∆N
k

2: for i = 1 to N do
3: X̂·i ∼ Cat(x;p = X ·i)
4: end for
5: Output: X̂ ∈ X

Theorem 3.3. Let X and X̂ denote the input and output of
Algorithm 1, respectively. Then, we have EX̂ [f(X̂;W )] =

f(X;W ).

Theorem 3.3 states that f(X̂;W ) is equal to f(X;W ) in
expectation. This implies that the random sampling pro-
cedure operates on a fractional solution, yielding Max-k-
Cut feasible solutions with the same objective values in
a probabilistic sense. While the Lovász-extension-based

4



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

method (Bach, 2013) also offers a framework for contin-
uous relaxation, achieving similar theoretical results for
arbitrary k and edge weights Wi,j ∈ R is not always guar-
anteed. In practice, we execute Algorithm 1 T times and
select the solution with the lowest objective value of f as
our best result. We remark that the theoretical interpretation
in Theorem 3.3 distinguishes our sampling algorithm from
the existing ones in the literature (Karalias & Loukas, 2020;
Tönshoff et al., 2021; Michael et al., 2024).

3.3. GNN Parametrization-Based Optimization

To solve the problem P, we propose an efficient learning-to-
optimize (L2O) method based on GNN parametrization.
This approach reduces the laborious iterations typically
required by classical optimization methods (e.g., mirror
descent). Additionally, we introduce a “pre-train + fine-
tune” strategy, where the model is endowed with prior graph
knowledge during the pre-training phase, significantly de-
creasing the computational time required to optimize P.

GNN Parametrization. The Max-k-Cut problem can be
framed as a node classification task, allowing us to leverage
GNNs to aggregate node features, and obtain high-quality
solutions. Initially, we assign a random embedding h

(0)
i to

each node i in the graph G. We adopt the GNN architecture
proposed by Morris et al. (2019), utilizing an L-layer GNN
with updates at layer l given by:

h
(l)
i := σ

Φ
(l)
1 h

(l−1)
i +Φ

(l)
2

∑
j∈N (i)

Wjih
(l−1)
j

 ,

where σ(·) is an activation function, and Φ
(l)
1 and Φ

(l)
2 are

the trainable parameters at layer l. This formulation facili-
tates efficient learning of node representations by leveraging
both node features and the underlying graph structure. Af-
ter processing through L layers of GNN, we obtain the
final output H(L)

Φ := [h
(L)
1 , . . . ,h

(L)
N ] ∈ Rk×N . A soft-

max activation function is applied in the last layer to ensure
H

(L)
Φ ∈ ∆N

k , making the final output feasible for P .

“Pre-train + Fine-tune” Optimization. We propose a
“pre-train + fine-tune” framework for learning the train-
able weights of GNNs. Initially, the model is trained on a
collection of pre-collected datasets to produce a pre-trained
model. Subsequently, we fine-tune this pre-trained model
for each specific testing instance. This approach equips
the model with prior knowledge of graph structures during
the pre-training phase, significantly reducing the overall
solving time. Furthermore, it allows for out-of-distribution
generalization due to the fine-tuning step.

In the pre-training phase, the trainable parameters Φ :=

(Φ
(1)
1 ,Φ

(1)
2 , . . . ,Φ

(L)
1 ,Φ

(L)
2 ) are optimized using the Adam

optimizer with random initialization, targeting the objective

min
Φ

Lpre-training(Φ) :=
1

M

M∑
m=1

f(H
(L)
Φ ;W

(m)
train ),

where D := {W (1)
train, . . . ,W

(M)
train } represents the pre-

training dataset. In the fine-tuning phase, for a problem
instance Wtest, the Adam optimizer seeks to solve

min
Φ

Lfine-tuning(Φ) := f(H
(L)
Φ ;Wtest),

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to spe-
cific problem instances, the pre-training phase can be omit-
ted, enabling the model to be directly trained and tested on
the same instance. While this direct approach may necessi-
tate more computational time, it often results in improved
performance regarding the objective function. Consequently,
users can choose to include a pre-training phase based on
the specific requirements of their application scenarios.

4. Experiments
4.1. Experimental Settings

We compare the performance of ROS against traditional
methods as well as L2O algorithms for solving the Max-k-
Cut problem. Additionally, we assess the impact of the “Pre-
train” stage in the GNN parametrization-based optimization.
The source code is available at https://github.com/
NetSysOpt/ROS.

Baseline Algorithms. We denote our proposed algorithms
by ROS and compare them against both traditional algo-
rithms and L2O methods. When the pre-training step is
skipped, we refer to our algorithm as ROS-vanilla. The
following traditional Max-k-Cut algorithms are considered
as baselines: (i) GW (Goemans & Williamson, 1995): an
method with a 0.878-approximation guarantee based on
semi-definite relaxation; (ii) BQP (Gui et al., 2019): a
local search method designed for binary quadratic pro-
grams; (iii) Genetic (Li & Wang, 2016): a genetic al-
gorithm specifically for Max-k-Cut problems; (iv) MD: a
mirror descent algorithm that addresses the relaxed prob-
lem P with a convergence tolerance at 10−8 and adopts the
same random sampling procedure; (v) LPI (Goudet et al.,
2024): an evolutionary algorithm featuring a large pop-
ulation organized across different islands; (vi) MOH (Ma
& Hao, 2017): a heuristic algorithm based on multiple
operator heuristics, employing various distinct search op-
erators within the search phase. For the L2O method,
we primarily examine the state-of-the-art baseline algo-
rithms: (vii) PI-GNN (Schuetz et al., 2022): an unsuper-
vised method for QUBO problems, which can model the

5

https://github.com/NetSysOpt/ROS
https://github.com/NetSysOpt/ROS


ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

weighted Max-Cut problem, delivering commendable per-
formance. (viii) ECO-DQN (Barrett et al., 2020): a rein-
forcement L2O method introducing test-time exploratory
refinement for Max-Cut problems. (ix) ANYCSP (Tönshoff
et al., 2023): an unsupervised GNN-based search heuristic
for CSPs, which can model the unweighted Max-k-Cut prob-
lem, leveraging a compact graph representation and global
search action with the default time limit of 180 seconds.

Datasets. We conduct experiments on the following
datasets.

• r-Random regular graphs (Schuetz et al., 2022):
Each node has the same degree r. Edge weights are
either 0 or 1.

• Gset (Ye, 2003): A well-known Max-k-Cut benchmark
comprising toroidal, planar, and random graphs with
800 ∼ 20, 000 nodes and edge densities between 2%
and 6%. Edge weights are either 0 or ±1.

• COLOR (Micheal, 2002): A collection of dense
graphs derived from literary texts, where nodes rep-
resent characters and edges indicate co-occurrence.
These graphs have large chromatic numbers (χ ≈ 10),
making them suitable for Max-k-Cut. Edge weights
are either 0 or 1.

• Bitcoin-OTC (Kumar et al., 2016): A real-world
signed network with 5, 881 nodes and 35, 592 edges,
weighted from −10 to 10, capturing trust relationships
among Bitcoin users.

The construction of the training and testing datasets is sum-
marized in Table 1. The training set consists of 500 3-
regular, 500 5-regular graphs, and 500 7-regular graphs
with 100 nodes each, corresponding to the cases k = 2,
k = 3, and k = 10 respectively. The test set of ran-
dom regular graphs includes 20 3-regular and 20 5-regular
graphs for each k ∈ {2, 3}, with node counts of 100, 1,000,
and 10,000. For the Gset benchmark, we evaluate both un-
weighted and weighted variants. The unweighted test set
includes all Gset instances, with results reported in Tables 6
and 7 in Appendix D. For the weighted variant, we generate
perturbations of the four largest Gset graphs (G70, G72,
G77, G81) by multiplying each edge weight by σ ∼ U [l, u],
creating 10 perturbed instances per graph. We examine
three distinct perturbation regimes: (i) mild perturbations
([0.9, 1.1]), (ii) moderate variations ([0, 10]), and (iii) ex-
treme modifications ([0, 100]). The moderate perturbation
results ([0, 10]) are presented in Table 3, with the remaining
cases available in Appendix E. Additionally, we evaluate
performance on three COLOR benchmark instances: anna,
david, and huck.

Model Settings. ROS is designed as a two-layer GNN, with
both the input and hidden dimensions set to 100. To address

N=100
k=2

N=100
k=3

N=1,000
k=2

N=1,000
k=3

N=10,000
k=2

N=10,000
k=3

10−1

100

101

102

103

104

105

106

Ti
m
e 
(s
)

N/A

GW
BQP
Gene(i 
MD
PI-GNN

ECO-DQN
ANYCSP
ROS-vanilla
ROS

(a) Random regular graph

G70
k=2

G70
k=3

G72
k=2

G72
k=3

G77
k=2

G77
k=3

G81
k=2

G81
k=3

101

102

103

Ti
m
e 
(s
)

MD
PI-GNN
ANYCSP

ROS-vanilla
ROS

(b) Weighted Gset with perturbation ratio [0, 10]

COLOR
 anna
 k=2

COLOR
 anna
 k=3 

COLOR
 david
 k=2

COLOR
 david
 k=3

COLOR
 huck
 k=2

COLOR
 huck
 k=3

Bitcoin-OTC
 k=2

Bitcoin-OTC
 k=3

Bitcoin-OTC
 k=10

100

101

102

103

Ti
m
e 
(s
)

MD
PI-GNN
ANYCSP

ROS-vanilla
ROS

(c) COLOR datasets and Bitcoin-OTC datasets

Figure 2: The computational time comparison of Max-k-
Cut problems.

the issue of gradient vanishing, we apply graph normaliza-
tion as proposed by Cai et al. (2021). The ROS model is
pre-training using Adam with a learning rate of 10−2 for one
epoch. During fine-tuning, the model is further optimized
using the same Adam optimizer and learning rate, apply-
ing early stopping with a tolerance of 10−2 and patience
of 100 iterations. Training terminates if no improvement is
observed. Finally, in the random sampling stage, we execute
Algorithm 1 for T = 100 trials and return the best solution.

Evaluation Configuration. All our experiments were con-
ducted on an NVIDIA RTX 3090 GPU, using PyTorch 2.2.0.

6



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Table 1: Statistics of the training and testing datasets.

Dataset Graph Type N # Graphs Weight Type

Train Random Regular Graph regular 100 500 unweighted

Test

Random Regular Graph regular 100, 1,000, 10,000 60 unweighted
Gset random, planar, toroidal 800 ∼ 20,000 71 unweighted, weighted

COLOR real-world 74, 87, 138 3 unweighted
Bitcoin-OTC real-world 5,881 1 weighted

Table 2: Cut value comparison of Max-k-Cut problems on random regular graphs.

Methods N=100 N=1,000 N=10,000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

GW 130.20±2.79 – N/A – N/A –
BQP 131.55±2.42 239.70±1.82 1324.45±6.34 2419.15±6.78 N/A N/A

Genetic 127.55±2.82 235.50±3.15 1136.65±10.37 2130.30±8.49 N/A N/A
MD 127.20±2.16 235.50±3.29 1250.35±11.21 2344.85±9.86 12428.85±26.13 23341.20±32.87

PI-GNN 122.95±3.83 – 1210.45±44.56 – 12655.05±94.25 –
ECO-DQN 135.60±1.53 – 1366.20±5.20 – N/A –
ANYCSP 131.65±3.35 247.90±0.89 1366.05±5.25 2494.50±2.99 13692.35±11.27 24929.80±7.53

ROS-vanilla 132.80±1.99 243.20±1.80 1322.95±6.57 2443.9±4.10 13239.80±14.71 24413.30±16.02

ROS 128.20±2.82 240.30±2.59 1283.75±6.89 2405.75±5.72 12856.85±26.50 24085.95±21.88

4.2. Performance Comparison against Baselines

4.2.1. COMPUTATIONAL TIME

We evaluated ROS against seven baseline algorithms: GW,
BQP, Genetic, MD, PI-GNN, ECO-DQN, and ANYCSP
on random regular graphs, comparing computational time
for both Max-Cut and Max-3-Cut tasks. Experiments
covered three problem scales: N = 100, N = 1,000,
and N = 10,000, with results shown in Figure 2a. For
larger instances, Figure 2b compares the scalable meth-
ods (MD, ANYCSP, and PI-GNN) on weighted Gset graphs
(N ≥ 10,000) with edge weight perturbations in [0, 10].
Figure 2c extends this comparison to real-world networks
(COLOR and Bitcoin-OTC graphs). Instances marked
“N/A” indicate timeout failures (30-minute limit). Com-
plete results for unweighted Gset benchmarks, including
comparisons with state-of-the-art methods LPI and MOH,
are provided in Tables 6 and 7 (Appendix D).

The results depicted in Figure 2a indicate that ROS effi-
ciently solves all problem instances within seconds, even
for large problem sizes of N = 10, 000. In terms of base-
line performance, the approximation algorithm GW performs
efficiently on instances with N = 100, but it struggles with
larger sizes due to the substantial computational burden
associated with solving the underlying semi-definite pro-
gramming problem. Heuristic methods such as BQP and
Genetic can manage cases up to N = 1, 000 in a few
hundred seconds, yet they fail to solve larger instances with
N = 10, 000 because of the high computational cost of

each iteration. Notably, MD is the only traditional method
capable of solving large instances within a reasonable time
frame; however, when N reaches 10, 000, the computational
time for MD approaches 15 times that of ROS. Regarding
L2O methods, PI-GNN necessitates retraining and predic-
tion for each instance, with test times exceeding dozens
of seconds even for N = 100. ECO-DQN relies on expen-
sive GNNs at each decision step and can not scale to large
problem sizes of N = 10, 000. ANYCSP needs hundreds of
seconds even for N = 100 due to the global search opera-
tion and long sampling trajectory. In contrast, ROS solves
these large instances in merely a few seconds throughout
the experiments, requiring only 10% of the computational
time utilized by other L2O baselines. Figure 2b and Fig-
ure 2c illustrate the results for the weighted Gset benchmark
and real-world datasets, respectively, where ROS efficiently
solves the largest instances in just a few seconds, while
other methods take tens to hundreds of seconds for equiva-
lent tasks. Remarkably, ROS utilizes only about 1% of the
computational time required by PI-GNN.

4.2.2. CUT VALUE

We evaluate ROS’s performance on random regular graphs,
the Gset benchmark, and real-world datasets, measuring
solution quality for Problem (1). Results appear in Tables 2
(random graphs), 3 (weighted Gset), and 4 (real-world data),
where “–” denotes methods incompatible with Max-k-Cut
problems.

7



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Table 3: Cut value comparison of Max-k-Cut problems on weighted Gset instances, where the noise factor σ ∼ [0, 10].

Methods G70 (N=10,000) G72 (N=10,000) G77 (N=14,000) G81 (N=20,000)

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

GW N/A – N/A – N/A – N/A –
BQP N/A N/A N/A N/A N/A N/A N/A N/A

Genetic N/A N/A N/A N/A N/A N/A N/A N/A
MD 45490.21 49615.85 33449.49 38798.78 47671.94 55147.26 67403.00 78065.07

PI-GNN 44275.72 – 31469.65 – 44359.72 – 62439.97 –
ECO-DQN N/A – N/A – N/A – N/A –
ANYCSP 46420.48 48831.32 −280.74 −208.01 845.72 988.96 −13.52 271.01

ROS-vanilla 47140.07 49826.90 36697.11 42067.80 52226.53 59636.36 74051.42 84498.44
ROS 46707.60 49813.45 35733.11 40987.92 50790.44 58253.31 72057.24 82450.68

Table 4: Cut value comparison of Max-k-Cut problems on COLOR datasets and Bitcoin-OTC Datasets.

Methods COLOR anna COLOR david COLOR huck Bitcoin-OTC

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 10

MD 339 421 259 329 184 242 39076 47595 53563
PI-GNN 279 – 228 – 166 – 37216 – –
ANYCSP 330 423 263 328 166 139 10431 14265 19372

ROS-vanilla 351 429 266 336 191 246 40576 48214 53758
ROS 351 423 266 324 191 242 39850 48980 53778

The results demonstrate that ROS consistently produces
high-quality solutions for both k = 2 and k = 3 across all
scales. While GW performs well for Max-Cut (k = 2) at
N = 100, it fails to generalize to arbitrary k. Traditional
methods like BQP and Genetic support k = 3 but often
converge to suboptimal solutions. Although MD handles gen-
eral k, it consistently underperforms ROS. Among learning-
based methods, PI-GNN proves unsuitable for k = 3 due
to QUBO incompatibility and unreliable heuristic round-
ing, while ECO-DQN lacks k = 3 support entirely. While
ANYCSP achieves strong results on unweighted graphs, it
cannot process weighted instances. These experiments col-
lectively show that ROS offers superior generalizability and
robustness for weighted Max-k-Cut tasks, outperforming
both traditional and learning-based approaches in solution
quality and flexibility.

To further assess ROS’s scalability, we conduct comprehen-
sive benchmarking against scalable baselines using challeng-
ing real-world datasets, including the COLOR and Bitcoin-
OTC networks. The results in Table 4 demonstrate that both
ROS and its simplified variant ROS-vanilla consistently
outperform competing methods across most experimental
settings. This performance advantage is particularly pro-
nounced for the weighted Bitcoin-OTC instances, where our
approach achieves superior solution quality while maintain-
ing computational efficiency.

4.3. Effect of the “Pre-train” Stage in ROS

To evaluate the impact of the pre-training stage in ROS, we
compared it with ROS-vanilla, which omits pre-training
(see Section 3.3). We assessed both methods based on cut
values and computational time. Figure 3 illustrates the ratios
of these metrics between ROS-vanilla and ROS. In this
figure, the horizontal axis represents the problem instances,
while the left vertical axis (green bars) displays the ratio
of objective function values, and the right vertical axis (red
curve) indicates the ratio of computational times.

As shown in Figure 3a, ROS-vanilla achieves higher ob-
jective function values in most settings on the random regu-
lar graphs; however, its computational time is approximately
1.5 times greater than that of ROS. Thus, ROS demonstrates
a faster solving speed compared to ROS-vanilla. Sim-
ilarly, in experiments conducted on the Gset benchmark
(Figure 3b), ROS reduces computational time by around
40% while maintaining performance comparable to that of
ROS-vanilla. Notably, in the Max-3-Cut problem for
the largest instance, G81, ROS effectively halves the solv-
ing time, showcasing the significant acceleration effect of
pre-training. It is worth mentioning that the ROS model
was pre-trained on random regular graphs with N = 100
and generalized well to regular graphs with N = 1,000
and N = 10,000, as well as to Gset problem instances of
varying sizes and types. This illustrates ROS’s capability to

8



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

N=100 
 k=2

N=100 
 k=3

N=1,000 
 k=2

N=1,000 
 k=3

N=10,000 
 k=2

N=10,000 
 k=3

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Ra

tio
 o
f O

bj
ec
tiv
e 
Va
lu
e

ratio=1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ra
tio

 o
f C

om
pu

tin
g 
Ti
m
e

(a) Random regular graph

G70 
 k=2

G70 
 k=3

G72 
 k=2

G72 
 k=3

G77 
 k=2

G77 
 k=3

G81 
 k=2

G81 
 k=3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ra
tio

 o
f O

bj
ec
tiv
e 
Va
lu
e

ratio=1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ra
tio

 o
f C

om
pu

tin
g 
Ti
m
e

(b) Gset

Figure 3: The ratio of computational time and cut value
comparison between ROS-vanilla and ROS.

generalize and accelerate the solving of large-scale problems
across diverse graph types and sizes, emphasizing the strong
out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher
objective function values on individual instances, it requires
longer solving times and struggles to generalize to other
problem instances. This observation highlights the trade-off
between a model’s ability to generalize and its capacity to fit
specific instances. Specifically, a model that fits individual
instances exceptionally well may fail to generalize to new
data, resulting in longer solving times. Conversely, a model
that generalizes effectively may exhibit slightly weaker per-
formance on specific instances, leading to a marginal de-
crease in objective function values. Therefore, the choice
between these two training modes should be guided by the
specific requirements of the application.

5. Conclusions
In this paper, we propose ROS, an efficient method for
addressing the Max-k-Cut problem with arbitrary edge
weights. Our approach begins by relaxing the constraints of
the original discrete problem to probabilistic simplices. To
effectively solve this relaxed problem, we propose an opti-
mization algorithm based on GNN parametrization and in-
corporate transfer learning by leveraging pre-trained GNNs
to warm-start the training process. After resolving the re-

laxed problem, we present a novel random sampling algo-
rithm that maps the continuous solution back to a discrete
form. By integrating geometric landscape analysis with
statistical theory, we establish the consistency of function
values between the continuous and discrete solutions. Ex-
periments conducted on random regular graphs, the Gset
benchmark, and real-world datasets demonstrate that our
method is highly efficient for solving large-scale Max-k-Cut
problems, requiring only a few seconds, even for instances
with tens of thousands of variables. Furthermore, it exhibits
robust generalization capabilities across both in-distribution
and out-of-distribution instances, highlighting its effective-
ness for large-scale optimization tasks. Exploring other
sampling algorithms to further boost ROS performance is
a future research direction. Moreover, the ROS framework
with theoretical insights could be potentially extended to
other graph-related combinatorial problems, and this direc-
tion is also worth investigating as future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgement
This work was supported by the National Key R&D Pro-
gram of China under grant 2022YFA1003900. Ye Xue
acknowledges support from the National Natural Science
Foundation of China (Grant No. 62301334), the Guangdong
Major Project of Basic and Applied Basic Research (No.
2023B0303000001), Akang Wang also acknowledges sup-
port from the National Natural Science Foundation of China
(Grant No. 12301416), the Guangdong Basic and Applied
Basic Research Foundation (Grant No. 2024A1515010306).

References
Andrade, C. E., Pessoa, L. S., and Stawiarski, S. The phys-

ical cell identity assignment problem: A practical opti-
mization approach. IEEE Transactions on Evolutionary
Computation, 28(2):282–292, 2024.

Bach, F. Learning with Submodular Functions: A Convex
Optimization Perspective. Now Publishers Inc., Hanover,
MA, USA, 2013. ISBN 1601987560.

Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. Ex-
ploratory combinatorial optimization with reinforcement
learning. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 34(04):3243–3250, 2020.

Barrett, T. D., Parsonson, C. W., and Laterre, A. Learning

9



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

to solve combinatorial graph partitioning problems via
efficient exploration. arXiv preprint arXiv:2205.14105,
2022.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021. ISSN 0377-2217.

Bhowmick, A., Kosan, M., Huang, Z., Singh, A., and Me-
dya, S. Dgcluster: A neural framework for attributed
graph clustering via modularity maximization. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 38
(10):11069–11077, 2024.

Burer, S., Monteiro, R. D. C., and Zhang, Y. Rank-two re-
laxation heuristics for max-cut and other binary quadratic
programs. SIAM Journal on Optimization, 12(2):503–
521, 2002.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., and Wang,
L. Graphnorm: A principled approach to accelerating
graph neural network training. In Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
1204–1215. PMLR, 18–24 Jul 2021.

Carlson, R. and Nemhauser, G. L. Scheduling to mini-
mize interaction cost. Operations Research, 14(1):52–58,
1966.

Chen, M., Chen, Y., Du, Y., Wei, L., and Chen, Y. Heuris-
tic algorithms based on deep reinforcement learning for
quadratic unconstrained binary optimization. Knowledge-
Based Systems, 207:106366, 2020. ISSN 0950-7051.

Chen, X., Liu, J., and Yin, W. Learning to optimize: A
tutorial for continuous and mixed-integer optimization.
Science China Mathematics, pp. 1–72, 2024.

Coja-Oghlan, A., Loick, P., Mezei, B. F., and Sorkin, G. B.
The ising antiferromagnet and max cut on random regular
graphs. SIAM Journal on Discrete Mathematics, 36(2):
1306–1342, 2022.

Cook, C., Zhao, H., Sato, T., Hiromoto, M., and Tan, S.
X.-D. Gpu-based ising computing for solving max-cut
combinatorial optimization problems. Integration, 69:
335–344, 2019. ISSN 0167-9260.

de Klerk, E., Pasechnik, D. V., and Warners, J. P. On approx-
imate graph colouring and max-k-cut algorithms based on
the θ-function. Journal of Combinatorial Optimization,
8:267–294, 2004.

De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt,
G., and Rinaldi, G. Exact ground states of ising spin
glasses: New experimental results with a branch-and-cut

algorithm. Journal of Statistical Physics, 80:487–496,
1995.

Eisenblätter, A. The semidefinite relaxation of the k-
partition polytope is strong. In Integer Programming
and Combinatorial Optimization, pp. 273–290, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

Frieze, A. and Jerrum, M. Improved approximation algo-
rithms for max k-cut and max bisection. Algorithmica,
18(1):67–81, 1997.

Garvardt, J., Grüttemeier, N., Komusiewicz, C., and Moraw-
ietz, N. Parameterized local search for max c-cut. In
Elkind, E. (ed.), Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-23, pp. 5586–5594. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2023.
Main Track.

Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin,
L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner,
A., Kazachkov, A. M., et al. The machine learning for
combinatorial optimization competition (ml4co): Results
and insights. In NeurIPS 2021 competitions and demon-
strations track, pp. 220–231. PMLR, 2022.

Ghaddar, B., Anjos, M. F., and Liers, F. A branch-and-
cut algorithm based on semidefinite programming for
the minimum k-partition problem. Annals of Operations
Research, 188(1):155–174, 2011.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Goudet, O., Goëffon, A., and Hao, J.-K. A large pop-
ulation island framework for the unconstrained binary
quadratic problem. Computers & Operations Research,
168:106684, 2024. ISSN 0305-0548.

Gui, J., Jiang, Z., and Gao, S. Pci planning based on bi-
nary quadratic programming in lte/lte-a networks. IEEE
Access, 7:203–214, 2019.

Hojny, C., Joormann, I., Lüthen, H., and Schmidt, M. Mixed-
integer programming techniques for the connected max-k-
cut problem. Mathematical Programming Computation,
13(1):75–132, 2021.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. In Advances in Neural Information Processing
Systems, volume 33, pp. 6659–6672. Curran Associates,
Inc., 2020.

10



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Karp, R. M. Reducibility among Combinatorial Problems,
pp. 85–103. Springer US, Boston, MA, 1972. ISBN
978-1-4684-2001-2.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Kumar, S., Spezzano, F., Subrahmanian, V. S., and Falout-
sos, C. Edge weight prediction in weighted signed net-
works. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 221–230, 2016.

Li, P. and Wang, J. Pci planning method based on genetic
algorithm in lte network. Telecommunications Science,
32(3):2016082, 2016.

Ly, A., Sawhney, R., and Chugunova, M. Data cluster-
ing and visualization with recursive goemans-williamson
maxcut algorithm. In 2023 International Conference on
Computational Science and Computational Intelligence
(CSCI), pp. 496–500. IEEE, 2023.

Ma, F. and Hao, J.-K. A multiple search operator heuris-
tic for the max-k-cut problem. Annals of Operations
Research, 248:365–403, 2017.

Michael, R., Bartels, S., González-Duque, M.,
Zainchkovskyy, Y., Frellsen, J., Hauberg, S., and
Boomsma, W. A continuous relaxation for discrete
bayesian optimization. arXiv preprint arXiv:2404.17452,
2024.

Micheal, T. The color datasets. https://mat.tepper.
cmu.edu/COLOR02/, 2002.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):
4602–4609, Jul. 2019.

Nath, A. and Kuhnle, A. A benchmark for maximum
cut: Towards standardization of the evaluation of learned
heuristics for combinatorial optimization. arXiv preprint
arXiv:2406.11897, 2024.

Poland, J. and Zeugmann, T. Clustering pairwise distances
with missing data: Maximum cuts versus normalized cuts.
In International Conference on Discovery Science, pp.
197–208. Springer, 2006.

Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. Com-
binatorial optimization with physics-inspired graph neu-
ral networks. Nature Machine Intelligence, 4(4):367–377,
2022.

Shah, R., Jain, K., Manchanda, S., Medya, S., and Ranu, S.
Neurocut: A neural approach for robust graph partition-
ing. In Proceedings of the 30th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, KDD
’24, pp. 2584–2595, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400704901.

Shinde, N., Narayanan, V., and Saunderson, J. Memory-
efficient approximation algorithms for max-k-cut and cor-
relation clustering. In Advances in Neural Information
Processing Systems, volume 34, pp. 8269–8281. Curran
Associates, Inc., 2021.

Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
neural networks for maximum constraint satisfaction.
Frontiers in artificial intelligence, 3:580607, 2021.

Tönshoff, J., Kisin, B., Lindner, J., and Grohe, M. One
model, any csp: Graph neural networks as fast global
search heuristics for constraint satisfaction. In Proceed-
ings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI-23, pp. 4280–4288. In-
ternational Joint Conferences on Artificial Intelligence
Organization, 8 2023. Main Track.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E.
Graph clustering with graph neural networks. Journal of
Machine Learning Research, 24(127):1–21, 2023.

Ye, Y. The gset dataset. https://web.stanford.
edu/~yyye/yyye/Gset/, 2003.

11

https://mat.tepper.cmu.edu/COLOR02/
https://mat.tepper.cmu.edu/COLOR02/
https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/


ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

A. Related Works
Relaxation-based methods have been central to the algorithmic design for Max-Cut and its generalizations. In Table 5, we
compare our proposed probability simplex relaxation with several representative approaches along key dimensions: variable
complexity (# Var.), applicability to general Max-k-Cut, polynomial-time solvability, objective value consistency with the
original problem, and scalability to large instances.

Table 5: Comparison between Different Relaxations

Relaxation # Var. Max-k-Cut Polynomial Solvable? Obj. Value Consistency? Scalable?

Lovasz Extension (Bach, 2013) O(N) % % ! !

SDP Relaxation (Goemans & Williamson, 1995) O(N2) % ! % %

SDP Relaxation (Frieze & Jerrum, 1997) O(N × k) ! ! % %

Rank-2 Relaxation (Burer et al., 2002) O(N) % % % !

QUBO Relaxation (Andrade et al., 2024) O(N) % % % !

Probability Simplex Relaxation (ours) O(N × k) ! % ! !

The Lovász extension (Bach, 2013), originally designed for submodular optimization, admits scalable convex formula-
tions but does not extend naturally to general Max-k-Cut problems. Seminal SDP-based methods, such as Goemans-
Williamson (Goemans & Williamson, 1995) for Max-Cut and its k-way extension (Frieze & Jerrum, 1997), offer polynomial-
time approximation guarantees. However, their reliance on large-scale semidefinite programming limits practical scalability
and makes them less effective on modern large-scale instances. Non-convex formulations, including the rank-2 relax-
ation (Burer et al., 2002) and QUBO-based relaxation (Andrade et al., 2024), provide scalable alternatives for Max-Cut
but lack theoretical guarantees for Max-k-Cut and are typically solved locally. These methods often exhibit poor objective
consistency and limited generalization.

In contrast, our probability simplex relaxation introduces a non-convex yet tractable formulation for Max-k-Cut with
O(N × k) variables. While it is not globally solvable in polynomial time, its optimal value aligns exactly with that of
the original Max-k-Cut problem. Empirically, our GNN-based solver produces high-quality fractional solutions, which
serve as effective initializations for randomized sampling. Overall, the proposed relaxation strikes a favorable balance
between expressiveness, consistency, and scalability, offering a practical and theoretically grounded solution framework for
large-scale Max-k-Cut problems.

B. Proof of Theorem 3.2
Proof. Before proceeding with the proof of Theorem 3.2, we first define the neighborhood of a vector x̄ ∈ ∆k, and establish
results of Lemma B.2 and Lemma B.3.

Definition B.1. Let x̄ = (x̄1, · · · , x̄k) denote a point in ∆k. We define the neighborhood induced by x̄ as follows:

Ñ (x̄) :=

(x1, · · · ,xk) ∈ ∆k

∣∣∣∣∣∣
∑

j∈K(x̄)

xj = 1

 ,

where K(x̄) = {j ∈ {1, · · · , k} | x̄j > 0}.

Lemma B.2. Given X·i ∈ Ñ (X⋆
·i), it follows that

K(X·i) ⊆ K(X⋆
·i).

Proof. Suppose there exists j ∈ K(X·i) such that j /∈ K(X⋆
·i), implying Xji > 0 and X⋆

ji = 0.

We then have ∑
l∈K(X⋆

·i)

Xli +Xji ≤
k∑

l=1

Xli = 1,

12



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

which leads to ∑
l∈K(X⋆

·i)

Xli ≤ 1−Xji < 1,

contradicting with the fact that X·i ∈ Ñ (X⋆
·i).

Lemma B.3. Let X⋆ be a globally optimal solution to P, then

f(X;W ) = f(X⋆;W ),

where X has only the ith column X·i ∈ Ñ (X⋆
·i), and other columns are identical to those of X⋆. Moreover, X is also a

globally optimal solution to P̄ .

Proof. The fact that X is a globally optimal solution to P̄ follows directly from the equality f(X;W ) = f(X⋆;W ).
Thus, it suffices to prove this equality. Consider that X⋆ and X differ only in the ith column, and X·i ∈ Ñ (X⋆

·i). We can
rewrite the objective value function as

f(X;W ) = g(X·i;X·−i) + h(X·−i),

where X·−i represents all column vectors of X except the ith column. The functions g and h are defined as follows:

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i −WiiX

⊤
·i X·i,

h(X·−i) =

N∑
l=1,l ̸=i

N∑
j=1,j ̸=i

WljX
⊤
·l X·j

To establish that f(X;W ) = f(X⋆;W ), it suffices to show that

g(X·i;X·−i) = g(X⋆
·i;X·−i)

as X·−i = X⋆
·−i.

Rewriting g(X·i;X·−i), we obtain

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i

= 2

N∑
j=1

WijX
⊤
·i X·j

= 2X⊤
·i

N∑
j=1,j ̸=i

WijX·j

= 2X⊤
·i Y·i,

where Y·i :=
∑N

j=1,j ̸=i WijX·j .

If |K(X⋆
·i)| = 1, then there is only one non-zero element in X⋆

·i equal to one. Therefore, g(X⋆
·i;X·−i) = g(X·i;X·−i)

since X·i = X⋆
·i.

For the case where |K(X⋆
·i)| > 1, we consider any indices j, l ∈ K(X⋆

·i) such that X⋆
ji,X

⋆
li ∈ (0, 1). Then, there exists

ϵ > 0 such that we can construct a point x̃ ∈ ∆k where the jth element is set to X⋆
ji − ϵ, the lth element is set to X⋆

li + ϵ,
and all other elements remain the same as in X⋆

·i. Since X⋆ is a globally optimum of the function f(X;W ), it follows that
X⋆

·i is also a global optimum for the function g(X⋆
·i;X·−i). Thus, we have

g(X⋆
·i;X·−i) ≤ g(x̃;X·−i)

X⋆⊤
·i Y·i ≤ x̃⊤Y·i

= X⋆⊤
·i Y·i − ϵYji + ϵYli,

13



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

which leads to the inequality
Yji ≤ Yli. (3)

Next, we can similarly construct another point x̂ ∈ ∆k with its jth element equal to X⋆
ji + ϵ, the kth element equal to

X⋆
ki − ϵ, and all other elements remain the same as in X⋆

·i. Subsequently, we can also derive that

g(X⋆
·i;X·−i) ≤ g(x̂;X·−i)

= X⋆⊤
·i Y·i + ϵYji − ϵYli,

which leads to another inequality
Yli ≤ Yji. (4)

Consequently, combined inequalities (3) and (4), we have

Yji = Yli,

for j, l ∈ K(X⋆
·i).

From this, we can deduce that
Yj1i = Yj2i = · · · = Yj|K(X⋆

·i)|
i = t,

where j1, · · · , j|K(X⋆
·i)| ∈ K(X⋆

·i).

Next, we find that
g(X⋆

·i;X·−i) = 2X⋆⊤
·i Y·i

= 2

k∑
j=1

X⋆
jiYji

= 2

N∑
j=1,j∈K(X⋆

·i)

X⋆
jiYji

= 2t

N∑
j=1,j∈K(X⋆

·i)

X⋆
ji

= 2t.

Similarly, we have
g(X·i;X·−i) = 2X⊤

·i Y·i

= 2

k∑
j=1

XjiYji

= 2
∑

j=1,j∈K(X·i)

XjiYji

Lemma B.2
= 2t

∑
j=1,j∈K(X·i)

Xji

= 2t

Accordingly, we conclude that
g(X·i;X·−i) = g(X⋆

·i;X·−i),

which leads us to the result
f(X;W ) = f(X⋆;W ),

where X·i ∈ Ñ (X⋆
·i), X·−i = X⋆

·−i.

14



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Accordingly, for any X ∈ N (X⋆), we iteratively apply Lemma B.3 to each column of X⋆ while holding the other columns
fixed, thereby proving Theorem 3.2.

C. Proof of Theorem 3.3
Proof. Based on X , we can construct the random variable X̃ , where X̃·i ∼ Cat(x;p = X ·i). The probability mass
function is given by

P(X̃·i = eℓ) = Xℓi, (5)

where ℓ = 1, · · · , k.

Next, we have

EX̃ [f(X̃;W )] = EX̃ [X̃WX̃⊤] = EX̃ [

N∑
i=1

N∑
j=1

WijX̃
⊤
·i X̃·j ]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[X̃⊤

·i X̃·j ]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[1(X̃·i = X̃·j)]

=

N∑
i=1

N∑
j=1

WijP(X̃·i = X̃·j)

=

N∑
i=1

N∑
j=1,j ̸=i

WijP(X̃·i = X̃·j). (6)

Since X̃·i and X̃·j are independent for i ̸= j, we have

P(X̃·i = X̃·j) =

k∑
ℓ=1

P(X̃·i = X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ, X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ)P(X̃·j = eℓ)

=

k∑
ℓ=1

XℓiXℓj

= X
⊤
·iX ·j . (7)

Substitute (7) into (6), we obtain

EX̃ [f(X̃;W )] =

N∑
i=1

N∑
j=1

WijX
⊤
·iX ·j = f(X;W ). (8)

D. The Results on Unweighted Gset Instances

15



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Ta
bl

e
6:

C
om

pl
et

e
re

su
lts

on
G

se
ti

ns
ta

nc
es

fo
rM

ax
-C

ut
.

In
st

an
ce

|V
|

|E
|

G
W

M
D

P
I
-
G
N
N

G
e
n
e
t
i
c

B
Q
P

E
C
O
-
D
Q
N

A
N
Y
C
S
P

M
O
H

L
P
I

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
1

80
0

19
17

6
11

29
9

12
28

.0
11

32
0

5.
1

10
68

0
21

4.
3

10
92

9
58

7.
4

11
40

6
11

.3
11

48
2

23
.4

11
57

4
18

0.
1

11
62

4
1.

5
11

62
4

7
11

42
3

2.
6

11
39

5
1.

7
G

2
80

0
19

17
6

11
29

9
12

25
.4

11
25

5
5.

3
10

53
3

21
2.

7
10

92
6

58
8.

3
11

42
6

11
.7

11
51

6
25

.2
11

59
1

18
0.

1
11

62
0

4.
6

11
62

0
8

11
46

2
2.

6
11

46
7

1.
8

G
3

80
0

19
17

6
11

28
9

12
43

.2
11

22
2

5.
3

10
53

2
21

5.
1

10
93

3
59

6.
8

11
39

7
11

.0
11

54
3

26
.1

11
59

1
18

0.
1

11
62

2
1.

3
11

62
2

10
11

51
0

2.
7

11
37

0
1.

9
G

4
80

0
19

17
6

11
20

7
12

17
.8

11
28

0
4.

8
10

80
5

21
6.

0
10

94
5

58
0.

5
11

43
0

11
.2

11
52

2
26

.8
11

59
6

18
0.

1
11

64
6

5.
2

11
64

6
7

11
41

6
2.

6
11

45
9

2.
1

G
5

80
0

19
17

6
11

25
6

12
61

.8
11

15
6

3.
7

10
41

7
21

4.
1

10
86

9
59

8.
2

11
40

6
11

.0
11

48
5

24
.2

11
57

5
18

0.
1

11
63

1
1.

0
11

63
1

7
11

50
5

2.
6

11
40

8
1.

7
G

6
80

0
19

17
6

17
76

12
61

.6
17

55
6.

9
17

48
21

4.
4

14
35

58
1.

2
19

91
11

.4
20

95
23

.3
21

30
18

0.
1

21
78

3.
0

21
78

14
19

94
2.

5
19

07
1.

7
G

7
80

0
19

17
6

16
94

13
36

.4
16

35
5.

9
15

24
21

5.
4

12
73

58
7.

5
17

80
11

.1
19

57
25

.5
19

72
18

0.
1

20
06

3.
0

20
06

7
18

02
2.

6
18

04
1.

8
G

8
80

0
19

17
6

16
93

12
35

.2
16

51
6.

1
15

66
21

5.
4

12
41

59
1.

8
17

58
11

.1
19

55
25

.5
19

74
18

0.
1

20
05

5.
7

20
05

10
18

76
2.

8
17

75
1.

8
G

9
80

0
19

17
6

16
76

12
15

.0
17

20
8.

0
15

45
21

1.
7

13
45

58
2.

3
18

45
14

.6
20

44
26

.8
20

06
18

0.
1

20
54

3.
2

20
54

13
18

39
2.

6
18

76
1.

9
G

10
80

0
19

17
6

16
75

12
27

.3
17

00
7.

3
14

45
21

2.
7

13
13

58
9.

5
18

16
10

.9
19

30
27

.1
19

53
18

0.
1

20
00

68
.1

20
00

10
18

11
2.

6
17

55
1.

8
G

11
80

0
16

00
N

/A
N

/A
46

6
3.

0
46

4
21

6.
2

40
6

50
9.

4
54

0
11

.0
54

5
25

.6
54

8
18

0.
1

56
4

0.
2

56
4

11
49

6
1.

8
49

4
1.

5
G

12
80

0
16

00
N

/A
N

/A
46

6
2.

4
47

0
21

5.
0

38
8

51
4.

8
53

4
11

.0
54

1
27

.2
54

2
18

0.
1

55
6

3.
5

55
6

16
49

8
1.

9
49

4
1.

4
G

13
80

0
16

00
N

/A
N

/A
48

6
3.

0
48

0
21

4.
2

42
6

52
0.

0
56

0
10

.8
56

5
26

.9
56

8
18

0.
1

58
2

0.
9

58
2

23
51

8
1.

9
52

4
1.

5
G

14
80

0
46

94
29

42
17

16
.6

29
30

3.
1

24
84

21
1.

5
28

55
56

4.
2

29
85

11
.1

28
07

23
.4

30
36

18
0.

1
30

64
25

1.
3

30
64

11
9

29
32

1.
5

29
53

1.
8

G
15

80
0

46
61

N
/A

N
/A

29
32

3.
1

24
16

21
3.

0
28

36
54

7.
7

29
66

11
.1

27
41

26
.2

30
14

18
0.

1
30

50
52

.2
30

50
80

29
20

1.
8

28
71

1.
4

G
16

80
0

46
72

N
/A

N
/A

29
37

3.
8

26
04

21
2.

9
28

48
54

1.
3

29
87

14
.3

27
57

26
.8

30
18

18
0.

1
30

52
93

.7
30

52
69

29
17

1.
7

29
16

1.
3

G
17

80
0

46
67

29
16

17
38

.2
29

22
3.

3
24

56
18

6.
7

28
29

55
8.

9
29

67
12

.1
27

54
25

.8
30

27
18

0.
1

30
47

12
9.

5
30

47
10

4
29

32
1.

9
29

14
1.

5
G

18
80

0
46

94
83

8
87

1.
7

82
5

3.
7

76
3

21
2.

9
64

3
56

7.
0

92
2

11
.2

92
5

25
.6

96
6

18
0.

1
99

2
11

2.
7

99
2

40
90

3
2.

1
90

5
1.

7
G

19
80

0
46

61
76

3
12

45
.4

74
0

3.
6

72
5

20
6.

5
57

1
57

1.
2

81
6

11
.4

82
8

27
.2

88
1

18
0.

1
90

6
26

6.
9

90
6

49
80

8
2

77
2

1.
5

G
20

80
0

46
72

78
1

10
15

.6
76

7
3.

5
74

0
21

3.
4

63
3

56
5.

8
86

0
11

.9
89

7
28

.6
92

5
18

0.
1

94
1

43
.7

94
1

31
84

3
2.

1
78

8
1.

8
G

21
80

0
46

67
82

1
13

50
.3

78
4

3.
0

74
0

20
9.

3
62

0
57

2.
2

83
7

14
.1

86
4

25
.2

92
5

18
0.

1
93

1
15

5.
3

93
1

32
85

8
2.

1
84

8
1.

6
G

22
20

00
19

99
0

N
/A

N
/A

12
77

7
12

.2
12

28
3

21
2.

9
N

/A
N

/A
13

00
4

95
.6

13
16

9
19

8.
4

13
28

0
18

0.
1

13
35

9
35

2.
4

13
35

9
41

3
13

02
8

2.
6

13
00

7
2.

7
G

23
20

00
19

99
0

N
/A

N
/A

12
68

8
10

.2
12

31
4

21
1.

7
N

/A
N

/A
12

95
8

95
.6

13
09

6
19

6.
7

13
29

7
18

0.
1

13
34

4
43

3.
8

13
34

2
15

0
13

04
8

2.
9

12
93

6
1.

9
G

24
20

00
19

99
0

N
/A

N
/A

12
72

1
10

.0
11

60
6

21
4.

5
N

/A
N

/A
13

00
2

95
.0

13
09

6
34

9.
2

13
28

4
18

0.
1

13
33

7
77

7.
9

13
33

7
23

4
13

03
5

1.
9

12
93

3
2.

4
G

25
20

00
19

99
0

N
/A

N
/A

12
72

5
11

.7
12

23
3

21
4.

3
N

/A
N

/A
12

96
8

10
2.

6
13

14
6

20
2.

6
13

27
9

18
0.

1
13

34
0

44
2.

5
13

34
0

25
8

13
04

0
2

12
94

7
1.

9
G

26
20

00
19

99
0

N
/A

N
/A

12
72

5
10

.8
12

14
1

21
7.

2
N

/A
N

/A
12

96
6

96
.9

13
12

6
20

1.
4

13
25

3
18

0.
1

13
32

8
53

5.
1

13
32

8
29

1
13

05
4

2.
5

12
95

4
3.

5
G

27
20

00
19

99
0

N
/A

N
/A

26
32

11
.2

25
09

21
6.

3
N

/A
N

/A
30

62
98

.9
32

12
20

0.
2

33
00

18
0.

1
33

41
42

.3
33

41
15

2
29

93
2.

8
29

71
2.

1
G

28
20

00
19

99
0

N
/A

N
/A

27
62

11
.2

25
63

21
4.

9
N

/A
N

/A
29

63
96

.8
31

60
20

1.
1

32
65

18
0.

1
32

98
70

7.
2

32
98

19
7

29
85

2.
6

29
23

1.
9

G
29

20
00

19
99

0
N

/A
N

/A
27

36
12

.3
25

78
21

6.
5

N
/A

N
/A

30
44

96
.4

33
12

20
4.

3
33

48
18

0.
1

34
05

55
5.

2
34

05
29

3
30

56
2.

9
30

89
1.

9
G

30
20

00
19

99
0

N
/A

N
/A

27
74

11
.7

25
59

21
4.

3
N

/A
N

/A
30

74
99

.3
32

87
20

0.
0

33
63

18
0.

1
34

13
33

0.
5

34
13

41
0

30
04

2.
8

30
25

2.
9

G
31

20
00

19
99

0
N

/A
N

/A
27

36
11

.5
25

39
21

6.
3

N
/A

N
/A

29
98

96
.3

32
15

20
1.

4
32

41
18

0.
1

33
10

59
2.

6
33

10
41

2
30

15
2.

1
29

43
1.

9
G

32
20

00
40

00
N

/A
N

/A
11

36
6.

8
11

06
21

4.
9

N
/A

N
/A

13
38

92
.7

13
49

19
8.

7
13

60
18

0.
1

14
10

65
.8

14
10

33
0

12
40

2.
2

12
26

1.
7

G
33

20
00

40
00

N
/A

N
/A

11
06

6.
6

10
68

21
3.

4
N

/A
N

/A
13

02
89

.3
13

30
19

4.
3

13
42

18
0.

1
13

82
50

4.
1

13
82

34
9

12
24

2.
3

12
08

1.
7

G
34

20
00

40
00

N
/A

N
/A

11
18

5.
8

11
06

21
2.

4
N

/A
N

/A
13

14
95

.6
13

20
19

8.
7

13
50

18
0.

1
13

84
84

.2
13

84
30

2
12

38
2.

3
12

20
1.

6
G

35
20

00
11

77
8

N
/A

N
/A

73
58

9.
4

61
96

18
5.

7
N

/A
N

/A
74

95
95

.2
65

99
20

0.
6

76
24

18
0.

1
76

86
79

6.
7

76
86

10
70

72
45

1.
9

72
60

1.
9

16



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Ta
bl

e
6:

C
on

tin
ue

d.

In
st

an
ce

|V
|

|E
|

G
W

M
D

P
I
-
G
N
N

G
e
n
e
t
i
c

B
Q
P

E
C
O
-
D
Q
N

A
N
Y
C
S
P

M
O
H

L
P
I

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
36

20
00

11
76

6
N

/A
N

/A
73

36
10

.1
64

24
21

4.
8

N
/A

N
/A

74
90

95
.3

66
02

19
5.

1
76

28
18

0.
1

76
80

66
4.

5
76

80
57

90
72

35
2.

4
71

07
1.

5
G

37
20

00
11

78
5

N
/A

N
/A

74
00

9.
3

62
24

18
5.

3
N

/A
N

/A
74

98
95

.4
65

55
20

4.
1

76
17

18
0.

1
76

91
65

2.
8

76
91

40
82

71
64

1.
7

71
41

1.
5

G
38

20
00

11
77

9
N

/A
N

/A
73

43
8.

6
68

41
21

2.
8

N
/A

N
/A

75
07

10
0.

6
66

55
20

0.
3

76
29

18
0.

1
76

88
77

9.
7

76
88

61
4

71
14

1.
6

71
73

1.
8

G
39

20
00

11
77

8
N

/A
N

/A
19

98
9.

2
18

53
21

5.
5

N
/A

N
/A

21
96

94
.4

19
04

19
8.

8
23

54
18

0.
1

24
08

78
7.

7
24

08
34

7
21

07
2.

5
21

65
1.

7
G

40
20

00
11

76
6

N
/A

N
/A

19
71

9.
0

18
55

21
6.

0
N

/A
N

/A
21

69
97

.3
21

71
19

9.
8

23
20

18
0.

1
24

00
47

2.
5

24
00

31
4

22
07

2.
7

21
28

2.
5

G
41

20
00

11
78

5
N

/A
N

/A
19

69
9.

1
18

98
21

8.
6

N
/A

N
/A

21
83

10
5.

8
19

25
20

3.
7

23
46

18
0.

1
24

05
37

7.
4

24
05

28
6

21
20

1.
6

21
39

2.
2

G
42

20
00

11
77

9
N

/A
N

/A
20

75
9.

5
19

33
20

6.
3

N
/A

N
/A

22
55

95
.5

21
52

20
0.

1
24

16
18

0.
1

24
81

77
7.

4
24

81
32

8
22

00
2.

2
22

35
2.

4
G

43
10

00
99

90
63

40
17

84
.5

63
80

5.
0

60
49

18
6.

9
59

76
91

4.
4

65
09

18
.0

65
85

44
.3

66
31

18
0.

1
66

60
1.

2
66

60
19

65
39

2.
7

64
71

1.
7

G
44

10
00

99
90

63
51

14
86

.7
63

27
5.

0
60

99
19

0.
8

60
09

91
4.

3
64

63
18

.5
65

77
42

.2
66

32
18

0.
1

66
50

5.
3

66
50

20
64

98
2.

5
64

72
1.

7
G

45
10

00
99

90
63

55
15

82
.0

63
29

4.
9

60
91

18
9.

6
60

06
92

1.
5

64
89

22
.4

65
81

41
.3

66
32

18
0.

1
66

54
6.

9
66

54
19

65
28

2.
4

64
89

1.
7

G
46

10
00

99
90

63
57

16
12

.8
63

00
4.

8
55

94
18

8.
6

59
78

91
6.

2
64

85
18

.4
65

70
43

.8
66

31
18

0.
1

66
49

67
.3

66
49

21
64

98
2.

5
64

99
2.

5
G

47
10

00
99

90
N

/A
N

/A
63

69
4.

7
60

49
18

4.
8

59
48

91
2.

4
64

91
18

.4
65

75
46

.8
66

55
18

0.
1

66
57

43
.3

66
57

25
64

97
2.

5
64

89
1.

8
G

48
30

00
60

00
N

/A
N

/A
50

06
10

.6
49

58
19

1.
4

N
/A

N
/A

60
00

30
0.

4
58

79
88

1.
2

59
62

18
0.

2
60

00
0.

0
60

00
94

56
40

3.
2

54
98

2.
1

G
49

30
00

60
00

N
/A

N
/A

50
86

10
.1

49
38

19
2.

0
N

/A
N

/A
60

00
30

3.
0

58
79

87
1.

5
59

36
18

0.
2

60
00

0.
0

60
00

93
55

80
3.

1
54

52
2.

2
G

50
30

00
60

00
N

/A
N

/A
51

56
11

.3
49

48
19

2.
3

N
/A

N
/A

58
80

29
9.

8
58

07
87

6.
7

58
30

18
0.

2
58

80
53

2.
1

58
80

90
56

56
3.

2
55

82
1.

9
G

51
10

00
59

09
N

/A
N

/A
36

93
4.

1
32

93
18

8.
5

35
68

88
7.

9
37

59
17

.7
34

13
45

.0
38

21
18

0.
2

38
48

18
9.

2
38

48
14

5
36

29
1.

5
36

77
1.

7
G

52
10

00
59

16
N

/A
N

/A
36

95
4.

7
31

85
18

3.
8

35
75

89
7.

7
37

71
18

.5
34

41
41

.9
38

36
18

0.
2

38
51

20
9.

7
38

51
11

9
35

26
1.

3
36

41
1.

6
G

53
10

00
59

14
N

/A
N

/A
36

70
4.

5
30

29
17

0.
6

35
45

87
2.

8
37

52
18

.0
34

69
38

.3
38

07
18

0.
2

38
50

29
9.

3
38

50
18

2
36

33
1.

5
36

58
1.

6
G

54
10

00
59

16
N

/A
N

/A
36

82
4.

4
32

01
18

9.
3

35
48

88
0.

1
37

53
18

.0
34

85
44

.6
38

20
18

0.
2

38
52

19
0.

4
38

52
14

0
36

53
1.

6
36

42
1.

3
G

55
50

00
12

49
8

N
/A

N
/A

94
62

24
.4

91
10

20
1.

5
N

/A
N

/A
98

62
11

42
.1

N
/A

N
/A

10
21

3
18

0.
2

10
29

9
12

30
.4

10
29

9
65

94
98

19
2.

1
97

79
2.

9
G

56
50

00
12

49
8

N
/A

N
/A

32
03

23
.8

29
39

20
1.

8
N

/A
N

/A
37

10
11

47
.6

N
/A

N
/A

39
18

18
0.

2
40

16
99

0.
4

40
17

49
44

5
34

44
2

34
75

2.
5

G
57

50
00

10
00

0
N

/A
N

/A
27

70
17

.3
26

50
20

3.
0

N
/A

N
/A

33
10

11
20

.8
N

/A
N

/A
34

04
18

0.
2

34
94

15
28

.3
34

94
34

94
30

40
1.

7
30

78
2.

5
G

58
50

00
29

57
0

N
/A

N
/A

18
45

2
29

.2
17

11
5

20
2.

8
N

/A
N

/A
18

81
3

11
76

.6
N

/A
N

/A
19

15
2

18
0.

2
19

28
8

15
22

.3
19

29
4

65
73

7
17

63
2

2.
3

17
57

4
1.

8
G

59
50

00
29

57
0

N
/A

N
/A

50
99

31
.6

46
74

20
2.

6
N

/A
N

/A
54

90
11

83
.4

N
/A

N
/A

59
52

18
0.

2
60

87
24

98
.8

60
88

65
11

2
53

43
1.

9
54

07
4.

7
G

60
70

00
17

14
8

N
/A

N
/A

13
00

4
34

.8
11

43
0

21
4.

0
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
14

09
6

18
0.

2
14

19
0

29
45

.4
14

19
0

44
80

2
13

43
3

2
13

40
2

2
G

61
70

00
17

14
8

N
/A

N
/A

45
92

36
.0

42
25

21
3.

9
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
57

10
18

0.
2

57
98

66
03

.3
57

98
74

37
3

50
37

3.
8

50
11

2
G

62
70

00
14

00
0

N
/A

N
/A

39
22

26
.1

37
20

21
4.

0
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
47

32
18

0.
2

48
68

55
68

.6
48

72
26

53
7

42
52

3.
8

42
94

2.
8

G
63

70
00

41
45

9
N

/A
N

/A
25

93
8

45
.1

22
22

4
21

3.
9

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

26
88

4
18

0.
2

27
03

3
64

92
.1

27
03

3
52

72
6

24
18

5
1.

7
24

27
0

1.
5

G
64

70
00

41
45

9
N

/A
N

/A
72

83
43

.7
66

16
21

2.
9

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

85
14

18
0.

4
87

47
40

11
.1

87
52

49
15

8
75

08
2.

3
76

57
3

G
65

80
00

16
00

0
N

/A
N

/A
45

20
32

.5
42

08
22

0.
4

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

53
92

18
0.

1
55

60
47

09
.5

55
62

21
73

7
48

78
4.

4
48

26
2.

5
G

66
90

00
18

00
0

N
/A

N
/A

51
00

37
.3

48
16

22
3.

1
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
61

72
15

9.
6

63
60

60
61

.9
63

64
34

06
2

55
70

5.
5

55
80

3.
3

G
67

10
00

0
20

00
0

N
/A

N
/A

55
92

43
.4

53
12

25
8.

9
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
67

72
14

6.
5

69
42

42
14

.3
69

48
61

55
6

60
90

6.
2

60
10

1.
9

G
70

10
00

0
99

99
N

/A
N

/A
85

51
54

.3
84

04
21

7.
5

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

93
00

18
0.

2
95

44
87

32
.4

95
94

28
82

0
90

04
4.

9
89

16
3.

4
G

72
10

00
0

20
00

0
N

/A
N

/A
56

38
44

.2
53

86
21

7.
6

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

68
26

18
0.

2
69

98
65

86
.6

70
04

42
54

2
60

66
6.

2
61

02
3.

9
G

77
14

00
0

28
00

0
N

/A
N

/A
79

34
66

.0
73

52
29

1.
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

96
94

18
0.

2
99

28
98

63
.6

99
26

66
66

2
86

78
9

87
40

8.
1

G
81

20
00

0
40

00
0

N
/A

N
/A

11
22

6
13

0.
8

10
58

2
49

4.
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

13
68

4
18

0.
2

14
03

6
20

42
2.

0
14

03
0

66
69

1
12

26
0

13
.7

12
33

2
9.

3

17



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Ta
bl

e
7:

C
om

pl
et

e
re

su
lts

on
G

se
ti

ns
ta

nc
es

fo
rM

ax
-3

-C
ut

.

In
st

an
ce

|V
|

|E
|

M
D

G
e
n
e
t
i
c

B
Q
P

A
N
Y
C
S
P

M
O
H

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
1

80
0

19
17

6
14

73
5

9.
6

14
07

5
59

5.
3

14
88

0
16

.5
15

11
5

18
0.

1
15

16
5

55
7.

3
14

94
9

2.
8

14
96

1
1.

9
G

2
80

0
19

17
6

14
78

7
8.

4
14

03
5

59
5.

3
14

84
5

17
.0

15
08

8
18

0.
1

15
17

2
33

3.
3

15
03

3
2.

8
14

93
2

2.
3

G
3

80
0

19
17

6
14

66
3

6.
5

14
10

5
58

8.
6

14
87

2
17

.0
15

11
1

18
0.

1
15

17
3

26
9.

6
15

01
6

2.
9

14
91

4
1.

9
G

4
80

0
19

17
6

14
71

6
6.

9
14

05
5

58
8.

7
14

88
6

17
.1

15
11

5
18

0.
1

15
18

4
30

0.
6

14
98

4
3.

3
14

96
1

1.
9

G
5

80
0

19
17

6
14

68
1

8.
1

14
10

4
59

1.
9

14
84

7
17

.3
15

09
2

18
0.

1
15

19
3

98
.2

15
00

6
3.

2
14

96
2

2.
9

G
6

80
0

19
17

6
21

61
7.

8
15

04
60

4.
4

23
02

25
.0

11
64

18
0.

1
26

32
30

7.
3

24
36

2.
8

23
61

1.
8

G
7

80
0

19
17

6
20

17
8.

9
12

60
58

9.
9

20
81

16
.6

93
2

18
0.

1
24

09
38

1.
0

21
88

2.
1

21
88

2.
4

G
8

80
0

19
17

6
19

38
7.

7
12

52
58

9.
7

20
96

19
.3

10
07

18
0.

1
24

28
45

6.
5

22
37

2.
8

21
71

2.
1

G
9

80
0

19
17

6
20

31
8.

2
13

26
60

4.
4

20
99

16
.5

11
64

18
0.

1
24

78
28

2.
0

22
46

2.
8

21
85

2.
2

G
10

80
0

19
17

6
19

61
7.

5
12

66
59

3.
3

20
55

18
.2

91
9

18
0.

1
24

07
56

9.
3

22
01

2.
9

21
81

2.
3

G
11

80
0

16
00

55
3

4.
0

41
4

55
4.

5
62

4
16

.4
65

0
18

0.
1

66
9

14
3.

8
61

6
2

59
1

1.
4

G
12

80
0

16
00

53
0

4.
4

38
8

54
3.

6
60

8
17

.4
63

3
18

0.
1

66
0

10
0.

7
60

4
2

58
2

1.
5

G
13

80
0

16
00

55
8

4.
0

42
5

55
0.

8
63

8
18

.9
66

3
18

0.
1

68
6

45
9.

4
61

7
2

62
9

1.
4

G
14

80
0

46
94

38
44

5.
0

36
79

57
1.

1
39

00
16

.9
39

73
18

0.
1

40
12

88
.2

39
14

2.
8

38
92

2.
1

G
15

80
0

46
61

38
15

4.
8

36
25

56
7.

6
38

85
17

.3
39

75
18

0.
1

39
84

80
.3

38
17

1.
9

38
38

2
G

16
80

0
46

72
38

25
5.

3
36

42
56

1.
5

38
96

18
.2

39
45

18
0.

1
39

91
1.

3
38

43
2.

3
38

45
1.

6
G

17
80

0
46

67
38

15
5.

3
36

40
55

8.
7

38
86

20
.2

39
55

18
0.

1
39

83
7.

8
38

41
2.

4
38

52
1.

6
G

18
80

0
46

94
99

2
4.

5
70

4
58

4.
0

10
83

18
.7

99
9

18
0.

1
12

07
0.

3
10

94
2.

2
10

67
1.

7
G

19
80

0
46

61
86

9
4.

4
59

5
58

4.
2

96
2

17
.0

91
5

18
0.

1
10

81
0.

2
97

2
2.

1
96

7
1.

7
G

20
80

0
46

72
92

8
4.

5
58

9
57

6.
8

97
7

17
.0

86
1

18
0.

1
11

22
13

.3
10

06
2.

2
99

3
1.

8
G

21
80

0
46

67
93

6
4.

9
61

2
57

6.
3

98
4

17
.5

89
5

18
0.

1
11

09
55

.8
10

11
2.

2
97

5
1.

5
G

22
20

00
19

99
0

16
40

2
15

.2
N

/A
N

/A
16

59
9

13
5.

5
17

09
8

18
0.

1
17

16
7

28
.5

16
79

0
3.

3
16

60
1

2.
2

G
23

20
00

19
99

0
16

42
2

15
.0

N
/A

N
/A

16
62

6
13

5.
6

17
04

9
18

0.
1

17
16

8
45

.1
16

81
9

3.
9

16
70

2
2.

1
G

24
20

00
19

99
0

16
45

2
16

.1
N

/A
N

/A
16

59
1

13
7.

7
17

04
2

18
0.

1
17

16
2

16
.3

16
80

1
3.

6
16

75
4

3
G

25
20

00
19

99
0

16
40

7
16

.2
N

/A
N

/A
16

66
1

14
1.

8
17

08
5

18
0.

1
17

16
3

64
.8

16
79

5
2.

1
16

67
3

1.
8

G
26

20
00

19
99

0
16

42
2

15
.3

N
/A

N
/A

16
60

8
13

6.
3

17
01

4
18

0.
1

17
15

4
44

.8
16

75
8

3.
1

16
66

5
2

G
27

20
00

19
99

0
32

50
16

.4
N

/A
N

/A
34

75
13

4.
3

28
46

18
0.

1
40

20
53

.2
35

17
1.

7
35

32
2

G
28

20
00

19
99

0
31

98
16

.1
N

/A
N

/A
34

33
13

6.
4

27
78

18
0.

1
39

73
38

.9
35

07
3

34
14

2.
1

G
29

20
00

19
99

0
33

24
16

.0
N

/A
N

/A
35

82
13

6.
2

30
35

18
0.

1
41

06
68

.2
36

34
3.

4
35

96
2

G
30

20
00

19
99

0
33

20
16

.2
N

/A
N

/A
35

78
13

3.
6

30
32

18
0.

1
41

19
15

0.
4

36
56

3.
1

36
54

3.
4

G
31

20
00

19
99

0
32

43
17

.0
N

/A
N

/A
34

39
13

1.
0

28
81

18
0.

1
40

03
12

4.
7

35
96

3
35

25
2.

5
G

32
20

00
40

00
13

42
11

.1
N

/A
N

/A
15

45
12

9.
3

15
90

18
0.

1
16

53
16

0.
1

14
88

2.
5

14
82

1.
7

G
33

20
00

40
00

12
84

10
.7

N
/A

N
/A

15
17

12
6.

2
15

50
18

0.
1

16
25

62
.6

14
49

2.
5

14
54

2
G

34
20

00
40

00
12

92
10

.9
N

/A
N

/A
14

99
12

6.
0

15
25

18
0.

1
16

07
88

.9
14

18
2.

4
14

35
1.

7
G

35
20

00
11

77
8

96
44

14
.2

N
/A

N
/A

98
16

13
8.

1
99

68
18

0.
1

10
04

6
66

.2
92

25
2

95
36

1.
7

18



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Ta
bl

e
7:

C
on

tin
ue

d.

In
st

an
ce

|V
|

|E
|

M
D

G
e
n
e
t
i
c

B
Q
P

A
N
Y
C
S
P

M
O
H

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
36

20
00

11
76

6
96

00
13

.6
N

/A
N

/A
97

86
13

8.
6

99
72

18
0.

1
10

03
9

74
.3

93
72

2.
1

95
81

2.
3

G
37

20
00

11
78

5
96

32
14

.9
N

/A
N

/A
98

21
13

9.
2

99
83

18
0.

1
10

05
2

3.
4

88
93

1.
4

94
22

1.
5

G
38

20
00

11
77

9
96

29
14

.0
N

/A
N

/A
97

75
14

2.
3

99
80

18
0.

1
10

04
0

11
6.

6
94

89
2.

5
93

70
1.

5
G

39
20

00
11

77
8

23
68

13
.4

N
/A

N
/A

26
00

13
2.

8
24

97
18

0.
1

29
03

9.
0

26
21

2.
5

25
57

2.
2

G
40

20
00

11
76

6
23

15
13

.3
N

/A
N

/A
25

68
13

1.
2

24
28

8.
6

28
70

82
.8

24
74

2
25

24
2.

4
G

41
20

00
11

78
5

23
86

12
.7

N
/A

N
/A

26
06

12
9.

9
24

16
8.

4
28

87
87

.7
25

21
3.

2
25

84
2.

5
G

42
20

00
11

77
9

24
90

13
.1

N
/A

N
/A

26
82

12
9.

2
26

85
32

.8
29

80
2.

5
26

38
2.

7
26

13
2.

2
G

43
10

00
99

90
82

14
8.

1
76

24
92

6.
7

83
29

29
.9

85
31

18
0.

1
85

73
38

0.
3

84
14

2.
6

83
49

2.
3

G
44

10
00

99
90

81
87

7.
0

76
17

91
9.

0
83

26
27

.7
85

15
18

0.
1

85
71

61
6.

8
83

69
2.

6
83

11
1.

7
G

45
10

00
99

90
82

26
7.

7
76

02
92

6.
7

82
96

34
.2

85
30

18
0.

1
85

66
18

6.
2

83
97

2.
9

83
42

1.
8

G
46

10
00

99
90

82
29

7.
5

76
35

91
8.

7
83

12
27

.8
85

01
18

0.
1

85
68

21
5.

3
84

09
2.

6
83

39
1.

7
G

47
10

00
99

90
82

11
7.

2
76

19
92

8.
0

83
22

27
.3

85
13

18
0.

2
85

72
23

9.
4

83
86

2.
6

83
57

2.
2

G
48

30
00

60
00

58
06

14
.7

N
/A

N
/A

59
98

39
4.

8
59

85
18

0.
2

60
00

0.
4

59
54

2.
8

59
12

2
G

49
30

00
60

00
57

94
14

.4
N

/A
N

/A
59

98
40

4.
0

59
74

18
0.

2
60

00
0.

9
59

38
2.

8
59

14
1.

8
G

50
30

00
60

00
58

23
14

.5
N

/A
N

/A
60

00
42

7.
1

59
89

18
0.

2
60

00
11

9.
2

59
38

2.
9

59
18

1.
8

G
51

10
00

59
09

48
05

6.
6

45
82

88
9.

5
49

22
28

.6
49

90
18

0.
2

50
37

47
.9

48
14

2.
4

48
20

1.
7

G
52

10
00

59
16

48
49

6.
4

45
71

90
8.

1
49

10
27

.8
50

02
18

0.
2

50
40

0.
7

47
96

1.
9

48
66

1.
9

G
53

10
00

59
14

48
45

6.
8

45
68

89
8.

6
49

20
27

.6
50

05
18

0.
2

50
39

22
3.

9
48

46
2.

6
48

08
1.

6
G

54
10

00
59

16
48

36
6.

4
45

62
91

1.
7

49
21

30
.1

49
98

18
0.

2
50

36
13

4.
0

48
33

2.
2

47
85

1.
4

G
55

50
00

12
49

8
11

61
2

37
.9

N
/A

N
/A

12
04

2
15

06
.0

12
35

5
18

0.
2

12
42

9
38

3.
1

12
01

0
2.

1
11

96
5

2.
6

G
56

50
00

12
49

8
37

16
38

.5
N

/A
N

/A
42

05
13

41
.5

44
08

18
0.

2
47

52
56

9.
2

40
85

3.
3

40
37

2.
1

G
57

50
00

10
00

0
32

46
33

.0
N

/A
N

/A
38

17
13

17
.2

39
13

18
0.

2
40

83
53

5.
6

35
97

3.
3

35
95

2.
8

G
58

50
00

29
57

0
24

09
9

47
.1

N
/A

N
/A

24
60

3
14

68
.3

25
02

5
18

0.
2

25
19

5
57

6.
0

22
74

8
2.

1
23

27
4

1.
9

G
59

50
00

29
57

0
60

57
46

.3
N

/A
N

/A
66

31
13

77
.1

61
78

18
0.

2
72

62
27

.5
61

33
1.

7
64

48
3.

5
G

60
70

00
17

14
8

15
99

3
58

.5
N

/A
N

/A
N

/A
N

/A
16

97
4

18
0.

2
17

07
6

68
3.

0
16

46
7

2.
6

16
39

8
2.

3
G

61
70

00
17

14
8

53
74

57
.7

N
/A

N
/A

N
/A

N
/A

64
26

18
0.

2
68

53
50

3.
1

58
81

2.
5

58
61

3.
6

G
62

70
00

14
00

0
44

97
49

.7
N

/A
N

/A
N

/A
N

/A
54

44
18

0.
2

56
85

24
2.

4
49

83
3.

4
50

86
2.

7
G

63
70

00
41

45
9

33
86

1
73

.4
N

/A
N

/A
N

/A
N

/A
35

07
0

18
0.

2
35

32
2

65
8.

5
32

86
8

4
31

92
6

1.
9

G
64

70
00

41
45

9
87

73
73

.4
N

/A
N

/A
N

/A
N

/A
85

57
18

0.
4

10
44

3
18

6.
9

89
11

2.
8

91
71

2.
5

G
65

80
00

16
00

0
52

12
59

.6
N

/A
N

/A
N

/A
N

/A
62

32
18

0.
1

64
90

32
4.

7
57

35
3.

5
57

75
2.

6
G

66
90

00
18

00
0

59
48

69
.0

N
/A

N
/A

N
/A

N
/A

71
29

15
9.

6
74

16
54

2.
5

65
01

5.
4

66
10

3.
9

G
67

10
00

0
20

00
0

65
45

79
.0

N
/A

N
/A

N
/A

N
/A

78
27

14
6.

5
80

86
75

6.
7

70
01

3.
5

72
59

4.
1

G
70

10
00

0
99

99
97

18
74

.8
N

/A
N

/A
N

/A
N

/A
98

48
18

0.
2

99
99

7.
8

99
82

4.
2

99
71

2.
5

G
72

10
00

0
20

00
0

66
12

79
.2

N
/A

N
/A

N
/A

N
/A

78
93

18
0.

2
81

92
27

1.
2

72
10

5.
1

72
97

3.
5

G
77

14
00

0
28

00
0

92
94

14
2.

3
N

/A
N

/A
N

/A
N

/A
11

12
8

18
0.

2
11

57
8

15
4.

9
10

19
1

8.
6

10
32

9
8.

5
G

81
20

00
0

40
00

0
13

09
8

24
1.

1
N

/A
N

/A
N

/A
N

/A
15

65
8

18
0.

2
16

32
1

33
1.

2
14

41
8

20
.2

14
46

4
9.

7

19



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

G70
k=2

G70
k=3

G72
k=2

G72
k=3

G77
k=2

G77
k=3

G81
k=2

G81
k=3

101

102

103

Ti
m
e 
(s
)

MD
PI-GNN
ANYCSP

ROS-vanilla
ROS

(a) Weighted Gset with perturbation ratio [0.9, 1.1]

G70
 k=2

G70
 k=3

G72
 k=2

G72
 k=3

G77
 k=2

G77
 k=3

G81
 k=2

G81
 k=3

101

102

103

Ti
m
e 
(s
)

MD
PI-GNN
ANYCSP

ROS-vanilla
ROS

(b) Weighted Gset with perturbation ratio [0, 100]

Figure 4: The computational time comparison of Max-k-Cut problems.

Table 8: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0.9, 1.1].

Methods G70 (N=10,000) G72 (N=10,000) G77 (N=14,000) G81 (N=20,000)

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 8594.38 9709.56 5647.28 6585.04 8051.81 9337.31 11326.30 13179.33
PI-GNN 8422.79 – 5309.65 – 7470.89 – 10416.44 –
ANYCSP 5198.87 5375.92 −15.57 −25.33 81.76 114.36 33.49 −4.25

ROS-vanilla 9177.21 9991.95 6542.78 7733.87 9265.65 10944.35 13132.52 15456.28
ROS 8941.80 9970.72 6165.62 7366.54 8737.59 10359.25 12325.85 14570.04

E. The Results on Weighted Gset Instances
The computational time on weighted Gset with perturbation ratio of [0.9, 1.1] and [0, 100] are shown in Fig. 4a and Fig. 4b
respectively. The cut values are shown in Table 8 and Table 9 respectively.

F. Ablation Study
F.1. Model Ablation

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons (denoted by ROS-MLP)
in our ROS framework and (ii) solve the relaxation via mirror descent (denoted by MD). Experiments on the Gset dataset
show that ROS consistently outperforms ROS-MLP and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic rounding instead of our random
sampling algorithm. Results indicate that ROS generally outperforms PI-GNN, demonstrating the importance of the
sampling procedure.

These comparisons, detailed in Tables 10 and 11, confirm that both the GNN-based optimization and the random sampling
algorithm contribute significantly to the overall performance.

F.2. Sample Effect Ablation

We investigated the effect of the number of sampling iterations and report the results in Tables 12, 13, 14, and 15.

Cut Value (Table 12, Table 14): The cut values stabilize after approximately 5 sampling iterations, demonstrating strong
performance without requiring extensive sampling.

Sampling Time (Table 13, Table 15): The time spent on sampling remains negligible compared to the total computational

20



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Table 9: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0, 100].

Methods G70 (N=10,000) G72 (N=10,000) G77 (N=14,000) G81 (N=20,000)

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 456581.30 497167.48 338533.07 392908.80 482413.19 558264.21 682809.47 790089.41
PI-GNN 442650.59 – 312802.48 – 442354.44 – 623256.74 –
ANYCSP 467696.98 491654.75 −1903.50 −2498.86 9712.13 10130.89 2842.64 2845.46

ROS-vanilla 472067.14 498273.60 367795.62 421189.97 524010.92 597597.50 742432.41 846395.85
ROS 470268.97 498269.90 362910.89 415905.88 515991.31 590312.40 731468.67 835424.19

Table 10: Cut values returned by each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 8867 9943 6052 6854 8287 9302 12238 12298
PI-GNN 8956 – 4544 – 6406 – 8970 –

MD 8551 9728 5638 6612 7934 9294 11226 13098
ROS 8916 9971 6102 7297 8740 10329 12332 14464

time, even with an increased number of samples.

These results highlight the efficiency of our sampling method, achieving stable and robust performance with little computa-
tional cost.

21



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Table 11: Computational time for each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 3.49 3.71 3.93 4.06 8.39 9.29 11.98 16.97
PI-GNN 34.50 – 253.00 – 349.40 – 557.70 –
MD 54.30 74.80 44.20 79.20 66.00 142.30 130.80 241.10
ROS 3.40 2.50 3.90 3.50 8.10 8.50 9.30 9.70

Table 12: Cut value results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

0 8912.62 9968.11 6099.88 7304.45 8736.58 10323.61 12328.83 14458.09
1 8911 9968 6100 7305 8736 10321 12328 14460
5 8915 9969 6102 7304 8740 10326 12332 14462
10 8915 9971 6102 7305 8740 10324 12332 14459
25 8915 9971 6102 7307 8740 10326 12332 14460
50 8915 9971 6102 7307 8740 10327 12332 14461

100 8916 9971 6102 7308 8740 10327 12332 14462

Table 13: Sampling time results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0011 0.0006 0.0011 0.0006 0.0020 0.0010 0.0039 0.0020
5 0.0030 0.0029 0.0029 0.0030 0.0053 0.0053 0.0099 0.0098

10 0.0058 0.0059 0.0058 0.0058 0.0104 0.0104 0.0196 0.0196
25 0.0144 0.0145 0.0145 0.0145 0.0259 0.0260 0.0489 0.0489
50 0.0289 0.0289 0.0288 0.0289 0.0517 0.0518 0.0975 0.0977

100 0.0577 0.0577 0.0576 0.0578 0.1033 0.1037 0.1949 0.1953

Table 14: Cut value results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1, 000 n = 10, 000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

0 126.71 244.77 1291.86 2408.71 12856.53 24102.22
1 127 245 1293 2408 12856 24103
5 127 245 1293 2410 12863 24103

10 127 245 1293 2410 12862 24103
25 127 245 1293 2410 12864 24103
50 127 245 1293 2410 12864 24103
100 127 245 1293 2410 12864 24103

22



ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Table 15: Sampling time results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1, 000 n = 10, 000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0001 0.0001 0.0001 0.0001 0.0006 0.0006
5 0.0006 0.0006 0.0007 0.0007 0.0030 0.0030

10 0.0011 0.0011 0.0014 0.0013 0.0059 0.0059
25 0.0026 0.0026 0.0033 0.0031 0.0145 0.0145
50 0.0052 0.0052 0.0065 0.0060 0.0289 0.0289
100 0.0103 0.0103 0.0128 0.0122 0.0577 0.0578

23


	Introduction
	Preliminaries
	Max-k-Cut Problems
	Graph Neural Networks

	A Relax-Optimize-and-Sample Framework
	Probability Simplex Relaxations
	Random Sampling
	GNN Parametrization-Based Optimization

	Experiments
	Experimental Settings
	Performance Comparison against Baselines 
	 Computational Time
	Cut Value 

	Effect of the "Pre-train" Stage in ROS

	Conclusions
	Related Works
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	The Results on Unweighted Gset Instances 
	The Results on Weighted Gset Instances 
	Ablation Study
	Model Ablation
	Sample Effect Ablation


