ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-*k***-Cut Problems**

Yeqing Qiu¹² Ye Xue¹² Akang Wang¹² Yiheng Wang¹² Qingjiang Shi¹³ Zhi-Quan Luo¹²

Abstract

The Max-k-Cut problem is a fundamental combinatorial optimization challenge that generalizes the classic \mathcal{NP} -complete Max-Cut problem. While relaxation techniques are commonly employed to tackle Max-k-Cut, they often lack guarantees of equivalence between the solutions of the original problem and its relaxation. To address this issue, we introduce the Relax-Optimize-and-Sample (ROS) framework. In particular, we begin by relaxing the discrete constraints to the continuous probability simplex form. Next, we pre-train and fine-tune a graph neural network model to efficiently optimize the relaxed problem. Subsequently, we propose a sampling-based construction algorithm to map the continuous solution back to a high-quality Max-k-Cut solution. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous solution and its mapped counterpart. Extensive experimental results on random regular graphs, the Gset benchmark, and the real-world datasets demonstrate that the proposed ROS framework effectively scales to large instances with up to 20,000 nodes in just a few seconds, outperforming state-of-the-art algorithms. Furthermore, ROS exhibits strong generalization capabilities across both in-distribution and out-of-distribution instances, underscoring its effectiveness for large-scale optimization tasks.

1. Introduction

The *Max-k-Cut problem* involves partitioning the vertices of a graph into k disjoint subsets in such a way that the

total weight of edges between vertices in different subsets is maximized. This problem represents a significant challenge in combinatorial optimization and finds applications across various fields, including telecommunication networks (Eisenblätter, 2002; Gui et al., 2019), data clustering (Poland & Zeugmann, 2006; Ly et al., 2023), and theoretical physics (Cook et al., 2019; Coja-Oghlan et al., 2022). The Max-k-Cut problem is known to be \mathcal{NP} -complete, as it generalizes the well-known *Max-Cut problem*, which is one of the 21 classic \mathcal{NP} -complete problems identified by Karp (1972).

Significant efforts have been made to develop methods for solving Max-k-Cut problems (Nath & Kuhnle, 2024). Ghaddar et al. (2011) introduced an exact branch-and-cut algorithm based on semi-definite programming, capable of handling graphs with up to 100 vertices. For larger instances, various polynomial-time approximation algorithms have been proposed. Goemans & Williamson (1995) addressed the Max-Cut problem by first solving a semi-definite relaxation to obtain a fractional solution, then applying a randomization technique to convert it into a feasible solution, resulting in a 0.878-approximation algorithm. Building on this, Frieze & Jerrum (1997) extended the approach to Max-k-Cut, offering feasible solutions with approximation guarantees. de Klerk et al. (2004) further improved these guarantees, while Shinde et al. (2021) optimized memory usage. Despite their strong theoretical performance, these approximation algorithms involve solving computationally intensive semi-definite programs, rendering them impractical for large-scale Max-k-Cut problems. A variety of heuristic methods have been developed to tackle the scalability challenge. For the Max-Cut problem, Burer et al. (2002) proposed rank-two relaxation-based heuristics, and Goudet et al. (2024) introduced a meta-heuristic approach using evolutionary algorithms. For Max-k-Cut, heuristics such as genetic algorithms (Li & Wang, 2016), greedy search (Gui et al., 2019), multiple operator heuristics (Ma & Hao, 2017), and local search (Garvardt et al., 2023) have been proposed. While these heuristics can handle much larger Max-k-Cut instances, they often struggle to balance efficiency and solution quality.

Recently, *machine learning* techniques have gained attention for enhancing optimization algorithms (Bengio et al.,

¹Shenzhen Research Institute of Big Data, Shenzhen, China. ²The Chinese University of Hong Kong, Shenzhen, China. ³Tongji University, Shanghai, China. Correspondence to: Ye Xue <xueye@cuhk.edu.cn>.

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

2021; Gasse et al., 2022; Chen et al., 2024). Several studies, including Khalil et al. (2017); Barrett et al. (2020); Chen et al. (2020); Barrett et al. (2022), framed the Max-Cut problem as a sequential decision-making process, using reinforcement learning to train policy networks for generating feasible solutions. However, RL-based methods often suffer from extensive sampling efforts and increased complexity in action space when extended to Max-k-Cut, and hence entails significantly longer training and testing time. Karalias & Loukas (2020) focuses on subset selection, including Max-Cut as a special case. It trains a graph neural network (GNN) to produce a distribution over subsets of nodes of an input graph by minimizing a probabilistic penalty loss function. After the network has been trained, a randomized algorithm is employed to sequentially decode a valid Max-Cut solution from the learned distribution. A notable advancement by Schuetz et al. (2022) reformulated Max-Cut as a quadratic unconstrained binary optimization (QUBO), removing binarity constraints to create a differentiable loss function. This loss function was used to train a GNN, followed by a simple projection onto integer variables after unsupervised training. The key feature of this approach is solving the Max-Cut problem during the training phase, eliminating the need for a separate testing stage. Although this method can produce high-quality solutions for Max-Cut instances with millions of nodes, the computational time remains significant due to the need to optimize a parameterized GNN from scratch. The work of Tönshoff et al. (2023) first formulated the Max-Cut problem as a Constraint Satisfaction Problem (CSP) and then proposed a novel GNN-based reinforcement learning approach. This method outperforms prior neural combinatorial optimization techniques and conventional search heuristics. However, to the best of our knowledge, it is limited to unweighted Maxk-Cut problems. NeuroCUT (Shah et al., 2024) is a partitioning method based on reinforcement learning, whereas DGCLUSTER (Bhowmick et al., 2024) and DMoN (Tsitsulin et al., 2023) utilize GNNs to optimize clustering objectives. However, these methods are specifically designed for graph clustering, which focuses on minimizing inter-cluster connections—contrary to Max-k-Cut, where the goal is to maximize inter-partition connections. Consequently, they are not directly applicable to our problem. Although NeuroCUT claims support for arbitrary objective functions, its node selection heuristics are tailored exclusively for graph clustering, rendering it unsuitable for Max-k-Cut.

In this work, we propose a GNN-based *Relax-Optimize-and-Sample* (ROS) framework for efficiently solving the Max-*k*-Cut problem with arbitrary edge weights. The framework is depicted in Figure 1. Initially, the Max-*k*-Cut problem is formulated as a discrete optimization task. To handle this, we introduce *probability simplex relaxations*, transforming the discrete problem into a continuous one. We then op-

timize the relaxed formulation by training parameterized GNNs in an unsupervised manner. To further improve efficiency, we apply *transfer learning*, utilizing pre-trained GNNs to warm-start the training process. Finally, we refine the continuous solution using a *random sampling algorithm*, resulting in high-quality Max-*k*-Cut solutions.

The key contributions of our work are summarized as follows:

- Novel Framework. We propose a scalable ROS framework tailored to the weighted Max-k-Cut problem with arbitrary signs, built on solving continuous relaxations using efficient learning-based techniques.
- **Theoretical Foundations.** We conduct a rigorous theoretical analysis of both the relaxation and sampling steps. By integrating geometric landscape analysis with statistical theory, we demonstrate the consistency of function values between the continuous solution and its sampled discrete counterpart.
- Superior Performance. Comprehensive experiments on public benchmark datasets show that our framework produces high-quality solutions for Max-k-Cut instances with up to 20, 000 nodes in just a few seconds. Our approach significantly outperforms state-of-the-art algorithms, while also demonstrating strong generalization across various instance types.

2. Preliminaries

2.1. Max-k-Cut Problems

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ represent an undirected graph with vertex set \mathcal{V} and edge set \mathcal{E} . Each edge $(i, j) \in \mathcal{E}$ is assigned an arbitrary weight $W_{ij} \in \mathbb{R}$, which can have any sign. A *cut* in \mathcal{G} refers to a partition of its vertex set. The Max-k-Cut problem involves finding a k-partition $(\mathcal{V}_1, \ldots, \mathcal{V}_k)$ of the vertex set \mathcal{V} such that the sum of the weights of the edges between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional one-hot encoding scheme. Specifically, we define a $k \times N$ matrix $X \in \mathbb{R}^{k \times N}$ where each column represents a one-hot vector. The Max-k-Cut problem can be formulated as:

$$\max_{\boldsymbol{X} \in \mathbb{R}^{k \times N}} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \left(1 - \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} \right)$$
s. t. $\boldsymbol{X}_{\cdot j} \in \{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k\} \quad \forall j \in \mathcal{V},$

$$(1)$$

where $X_{.j}$ denotes the j^{th} column of X, W is a symmetric matrix with zero diagonal entries, and $e_{\ell} \in \mathbb{R}^k$ is a one-hot vector with the ℓ^{th} entry set to 1. This formulation aims to maximize the total weight of edges between different partitions, ensuring that each node is assigned to exactly one

Figure 1: The Relax-Optimize-and-Sample framework.

partition, represented by the one-hot encoded vectors. We remark that weighted Max-*k*-Cut problems with arbitrary signs is a generalization of classic Max-Cut problems and arise in many interesting applications (De Simone et al., 1995; Poland & Zeugmann, 2006; Hojny et al., 2021).

2.2. Graph Neural Networks

GNNs are powerful tools for learning representations from graph-structured data. GNNs operate by iteratively aggregating information from a node's neighbors, enabling each node to capture increasingly larger sub-graph structures as more layers are stacked. This process allows GNNs to learn complex patterns and relationships between nodes, based on their local connectivity.

At the initial layer (l = 0), each node $i \in \mathcal{V}$ is assigned a feature vector $\boldsymbol{h}_i^{(0)}$, which typically originates from node features or labels. The representation of node i is then recursively updated at each subsequent layer through a parametric aggregation function $f_{\boldsymbol{\Phi}^{(l)}}$, defined as:

$$\boldsymbol{h}_{i}^{(l)} = f_{\boldsymbol{\Phi}^{(l)}}\left(\boldsymbol{h}_{i}^{(l-1)}, \{\boldsymbol{h}_{j}^{(l-1)}: j \in \mathcal{N}(i)\}\right), \quad (2)$$

where $\Phi^{(l)}$ represents the trainable parameters at layer l, $\mathcal{N}(i)$ denotes the set of neighbors of node i, and $h_i^{(l)}$ is the node's embedding at layer l for $l \in \{1, 2, \dots, L\}$. This iterative process enables the GNN to propagate information throughout the graph, capturing both local and global structural properties.

3. A Relax-Optimize-and-Sample Framework

In this work, we leverage continuous optimization techniques to tackle Max-*k*-Cut problems, introducing a novel ROS framework. Acknowledging the inherent challenges of discrete optimization, we begin by relaxing the problem to probability simplices and concentrate on optimizing this relaxed version. To achieve this, we propose a machine learning-based approach. Specifically, we model the relaxed problem using GNNs, pre-training the GNN on a curated graph dataset before fine-tuning it on the specific target instance. After obtaining high-quality solutions to the relaxed continuous problem, we employ a random sampling procedure to derive a discrete solution that preserves the same objective value.

3.1. Probability Simplex Relaxations

To simplify the formulation of the problem (1), we remove constant terms and negate the objective function, yielding an equivalent formulation expressed as follows:

$$\min_{\boldsymbol{X}\in\mathcal{X}} \quad f(\boldsymbol{X};\boldsymbol{W}) \coloneqq \operatorname{Tr}(\boldsymbol{X}\boldsymbol{W}\boldsymbol{X}^{\top}), \tag{P}$$

where $\mathcal{X} := \{ \mathbf{X} \in \mathbb{R}^{k \times N} : \mathbf{X}_{.j} \in \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k \}, \forall j \in \mathcal{V} \}$. It is important to note that the matrix \mathbf{W} is indefinite due to its diagonal entries being set to zero.

Given the challenges associated with solving the discrete problem **P**, we adopt a naive relaxation approach, obtaining the convex hull of \mathcal{X} as the Cartesian product of Nk-dimensional probability simplices, denoted by Δ_k^N . Consequently, the discrete problem **P** is relaxed into the following continuous optimization form:

$$\min_{\boldsymbol{X} \in \Delta_k^N} \quad f(\boldsymbol{X}; \boldsymbol{W}). \tag{\overline{P}}$$

Before optimizing problem $\overline{\mathbf{P}}$, we will characterize its *geometric landscape*. To facilitate this, we introduce the following definition.

Definition 3.1. Let \overline{X} denote a point in Δ_k^N . We define the neighborhood induced by \overline{X} as follows:

$$\mathcal{N}(\overline{\boldsymbol{X}}) \coloneqq \left\{ \boldsymbol{X} \in \Delta_k^N \left| \sum_{i \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot j})} \boldsymbol{X}_{ij} = 1, \quad \forall j \in \mathcal{V} \right. \right\},\$$

where $\mathcal{K}(\overline{X}_{\cdot j}) \coloneqq \{i \in \{1, \dots, k\} \mid \overline{X}_{ij} > 0\}.$

The set $\mathcal{N}(\overline{X})$ represents a neighborhood around \overline{X} , where each point in $\mathcal{N}(\overline{X})$ can be derived by allowing each nonzero entry of the matrix \overline{X} to vary freely, while the other entries are set to zero. Utilizing this definition, we can establish the following theorem.

Theorem 3.2. Let X^* denote a globally optimal solution to \overline{P} , and let $\mathcal{N}(X^*)$ be its induced neighborhood. Then

$$f(\boldsymbol{X}; \boldsymbol{W}) = f(\boldsymbol{X}^{\star}; \boldsymbol{W}), \quad \forall \boldsymbol{X} \in \mathcal{N}(\boldsymbol{X}^{\star}).$$

Theorem 3.2 states that for a globally optimal solution X^* , every point within its neighborhood $\mathcal{N}(X^*)$ shares the same objective value as X^* , thus forming a *basin* in the geometric landscape of f(X; W). If $X^* \in \mathcal{X}$ (i.e., an integer solution), then $\mathcal{N}(X^*)$ reduces to the singleton set $\{X^*\}$. Conversely, if $X^* \notin \mathcal{X}$, there exist $\prod_{j \in \mathcal{V}} |\mathcal{K}(X^*_{\cdot j})|$ unique integer solutions within $\mathcal{N}(X^*)$ that maintain the same objective value as X^* . This indicates that once a globally optimal solution to the relaxed problem $\overline{\mathbf{P}}$ is identified, it becomes straightforward to construct an optimal solution for the original problem \mathbf{P} that preserves the same objective value.

According to Carlson & Nemhauser (1966), among all globally optimal solutions to the relaxed problem $\overline{\mathbf{P}}$, the integer solution always exists. Theorem 3.2 extends this result, indicating that if the globally optimal solution is fractional, we can provide a straightforward method to derive its integer counterpart. We remark that it is highly non-trivial to guarantee that the feasible Max-k-Cut solution obtained from the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated with the weight matrix W. We optimize its relaxation and obtain the optimal solution X^* .

$$\boldsymbol{W} \coloneqq \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \boldsymbol{X}^{\star} \coloneqq \begin{pmatrix} p & 1 & 0 \\ 1 - p & 0 & 1 \end{pmatrix}$$

where $p \in [0, 1]$. From the neighborhood $\mathcal{N}(\mathbf{X}^{\star})$, we can identify the following integer solutions that maintain the same objective value.

$$X_1^{\star} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, X_2^{\star} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Given that $\overline{\mathbf{P}}$ is a non-convex program, identifying its global minimum is challenging. Consequently, the following two critical questions arise.

- Q1. Since solving $\overline{\mathbf{P}}$ to global optimality is \mathcal{NP} -hard, how to efficiently optimize $\overline{\mathbf{P}}$ for high-quality solutions?
- **Q2.** Given $\overline{X} \in \Delta_k^N \setminus \mathcal{X}$ as a high-quality solution to $\overline{\mathbf{P}}$, can we construct a feasible solution $\hat{X} \in \mathcal{X}$ to \mathbf{P} such that $f(\hat{X}; \mathbf{W}) = f(\overline{X}; \mathbf{W})$?

We provide a positive answer to **Q2** in Section 3.2, while our approach to addressing **Q1** is deferred to Section 3.3.

3.2. Random Sampling

Let $\overline{\mathbf{X}} \in \Delta_k^N \setminus \mathcal{X}$ be a feasible solution to the relaxation $\overline{\mathbf{P}}$. Our goal is to construct a feasible solution $\mathbf{X} \in \mathcal{X}$ for the original problem \mathbf{P} , ensuring that the corresponding objective values are equal. Inspired by Theorem 3.2, we propose a *random sampling* procedure, outlined in Algorithm 1. In this approach, we sample each column $\mathbf{X}_{\cdot i}$ of the matrix \mathbf{X} from a categorical distribution characterized by the event probabilities $\overline{\mathbf{X}}_{\cdot i}$ (denoted as $\operatorname{Cat}(\mathbf{x}; \mathbf{p} = \overline{\mathbf{X}}_{\cdot i})$ in Step 3 of Algorithm 1). This randomized approach yields a feasible solution $\hat{\mathbf{X}}$ for \mathbf{P} . However, since Algorithm 1 incorporates randomness in generating $\hat{\mathbf{X}}$ from $\overline{\mathbf{X}}$, the value of $f(\hat{\mathbf{X}}; \mathbf{W})$ becomes random as well. This raises the critical question: is this value greater or lesser than $f(\overline{\mathbf{X}}; \mathbf{W})$? We address this question in Theorem 3.3.

Algorithm 1 Random Sampling	
1: Input: $\overline{X} \in \Delta_k^N$	
2: for $i = 1$ to N do	
3: $\hat{X}_{\cdot i} \sim \operatorname{Cat}(\boldsymbol{x}; \boldsymbol{p} = \overline{\boldsymbol{X}}_{\cdot i})$	
4: end for	
5: Output: $\hat{m{X}} \in \mathcal{X}$	

Theorem 3.3. Let $\overline{\mathbf{X}}$ and $\hat{\mathbf{X}}$ denote the input and output of Algorithm 1, respectively. Then, we have $\mathbb{E}_{\hat{\mathbf{X}}}[f(\hat{\mathbf{X}}; \mathbf{W})] = f(\overline{\mathbf{X}}; \mathbf{W})$.

Theorem 3.3 states that $f(\hat{X}; W)$ is equal to $f(\overline{X}; W)$ in expectation. This implies that the random sampling procedure operates on a fractional solution, yielding Max-k-Cut feasible solutions with the same objective values in a probabilistic sense. While the Lovász-extension-based

method (Bach, 2013) also offers a framework for continuous relaxation, achieving similar theoretical results for arbitrary k and edge weights $W_{i,j} \in \mathbb{R}$ is not always guaranteed. In practice, we execute Algorithm 1 T times and select the solution with the lowest objective value of f as our best result. We remark that the theoretical interpretation in Theorem 3.3 distinguishes our sampling algorithm from the existing ones in the literature (Karalias & Loukas, 2020; Tönshoff et al., 2021; Michael et al., 2024).

3.3. GNN Parametrization-Based Optimization

To solve the problem $\overline{\mathbf{P}}$, we propose an efficient learning-tooptimize (L2O) method based on GNN parametrization. This approach reduces the laborious iterations typically required by classical optimization methods (e.g., mirror descent). Additionally, we introduce a "pre-train + finetune" strategy, where the model is endowed with prior graph knowledge during the pre-training phase, significantly decreasing the computational time required to optimize $\overline{\mathbf{P}}$.

GNN Parametrization. The Max-k-Cut problem can be framed as a node classification task, allowing us to leverage GNNs to aggregate node features, and obtain high-quality solutions. Initially, we assign a random embedding $h_i^{(0)}$ to each node *i* in the graph \mathcal{G} . We adopt the GNN architecture proposed by Morris et al. (2019), utilizing an *L*-layer GNN with updates at layer *l* given by:

$$\boldsymbol{h}_{i}^{(l)} \coloneqq \sigma \left(\boldsymbol{\Phi}_{1}^{(l)} \boldsymbol{h}_{i}^{(l-1)} + \boldsymbol{\Phi}_{2}^{(l)} \sum_{j \in \mathcal{N}(i)} \boldsymbol{W}_{ji} \boldsymbol{h}_{j}^{(l-1)}
ight),$$

where $\sigma(\cdot)$ is an activation function, and $\Phi_1^{(l)}$ and $\Phi_2^{(l)}$ are the trainable parameters at layer l. This formulation facilitates efficient learning of node representations by leveraging both node features and the underlying graph structure. After processing through L layers of GNN, we obtain the final output $H_{\Phi}^{(L)} := [h_1^{(L)}, \ldots, h_N^{(L)}] \in \mathbb{R}^{k \times N}$. A softmax activation function is applied in the last layer to ensure $H_{\Phi}^{(L)} \in \Delta_k^N$, making the final output feasible for \overline{P} .

"Pre-train + Fine-tune" Optimization. We propose a "pre-train + fine-tune" framework for learning the trainable weights of GNNs. Initially, the model is trained on a collection of pre-collected datasets to produce a pre-trained model. Subsequently, we fine-tune this pre-trained model for each specific testing instance. This approach equips the model with prior knowledge of graph structures during the pre-training phase, significantly reducing the overall solving time. Furthermore, it allows for out-of-distribution generalization due to the fine-tuning step.

In the pre-training phase, the trainable parameters $\Phi := (\Phi_1^{(1)}, \Phi_2^{(1)}, \dots, \Phi_1^{(L)}, \Phi_2^{(L)})$ are optimized using the Adam

optimizer with random initialization, targeting the objective

$$\min_{\boldsymbol{\Phi}} \quad \mathcal{L}_{\text{pre-training}}(\boldsymbol{\Phi}) \coloneqq \frac{1}{M} \sum_{m=1}^{M} f(\boldsymbol{H}_{\Phi}^{(L)}; \boldsymbol{W}_{\text{train}}^{(m)}),$$

where $\mathcal{D} := \{ W_{\text{train}}^{(1)}, \dots, W_{\text{train}}^{(M)} \}$ represents the pretraining dataset. In the fine-tuning phase, for a problem instance W_{test} , the Adam optimizer seeks to solve

$$\min_{\boldsymbol{\Phi}} \quad \mathcal{L}_{\text{fine-tuning}}(\boldsymbol{\Phi}) \coloneqq f(\boldsymbol{H}_{\Phi}^{(L)}; \boldsymbol{W}_{\text{test}}),$$

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to specific problem instances, the pre-training phase can be omitted, enabling the model to be directly trained and tested on the same instance. While this direct approach may necessitate more computational time, it often results in improved performance regarding the objective function. Consequently, users can choose to include a pre-training phase based on the specific requirements of their application scenarios.

4. Experiments

4.1. Experimental Settings

We compare the performance of ROS against traditional methods as well as L2O algorithms for solving the Max-*k*-Cut problem. Additionally, we assess the impact of the "Pre-train" stage in the GNN parametrization-based optimization. The source code is available at https://github.com/NetSysOpt/ROS.

Baseline Algorithms. We denote our proposed algorithms by ROS and compare them against both traditional algorithms and L2O methods. When the pre-training step is skipped, we refer to our algorithm as ROS-vanilla. The following traditional Max-k-Cut algorithms are considered as baselines: (i) GW (Goemans & Williamson, 1995): an method with a 0.878-approximation guarantee based on semi-definite relaxation; (ii) BQP (Gui et al., 2019): a local search method designed for binary quadratic programs; (iii) Genetic (Li & Wang, 2016): a genetic algorithm specifically for Max-k-Cut problems; (iv) MD: a mirror descent algorithm that addresses the relaxed problem $\overline{\mathbf{P}}$ with a convergence tolerance at 10^{-8} and adopts the same random sampling procedure; (v) LPI (Goudet et al., 2024): an evolutionary algorithm featuring a large population organized across different islands; (vi) MOH (Ma & Hao, 2017): a heuristic algorithm based on multiple operator heuristics, employing various distinct search operators within the search phase. For the L2O method, we primarily examine the state-of-the-art baseline algorithms: (vii) PI-GNN (Schuetz et al., 2022): an unsupervised method for QUBO problems, which can model the weighted Max-Cut problem, delivering commendable performance. (viii) ECO-DQN (Barrett et al., 2020): a reinforcement L2O method introducing test-time exploratory refinement for Max-Cut problems. (ix) ANYCSP (Tönshoff et al., 2023): an unsupervised GNN-based search heuristic for CSPs, which can model the unweighted Max-k-Cut problem, leveraging a compact graph representation and global search action with the default time limit of 180 seconds.

Datasets. We conduct experiments on the following datasets.

- *r*-Random regular graphs (Schuetz et al., 2022): Each node has the same degree *r*. Edge weights are either 0 or 1.
- Gset (Ye, 2003): A well-known Max-k-Cut benchmark comprising toroidal, planar, and random graphs with 800 ~ 20,000 nodes and edge densities between 2% and 6%. Edge weights are either 0 or ±1.
- **COLOR** (Micheal, 2002): A collection of dense graphs derived from literary texts, where nodes represent characters and edges indicate co-occurrence. These graphs have large chromatic numbers ($\chi \approx 10$), making them suitable for Max-k-Cut. Edge weights are either 0 or 1.
- **Bitcoin-OTC** (Kumar et al., 2016): A real-world signed network with 5,881 nodes and 35,592 edges, weighted from -10 to 10, capturing trust relationships among Bitcoin users.

The construction of the training and testing datasets is summarized in Table 1. The training set consists of 500 3regular, 500 5-regular graphs, and 500 7-regular graphs with 100 nodes each, corresponding to the cases k = 2, k = 3, and k = 10 respectively. The test set of random regular graphs includes 20 3-regular and 20 5-regular graphs for each $k \in \{2, 3\}$, with node counts of 100, 1,000, and 10,000. For the Gset benchmark, we evaluate both unweighted and weighted variants. The unweighted test set includes all Gset instances, with results reported in Tables 6 and 7 in Appendix D. For the weighted variant, we generate perturbations of the four largest Gset graphs (G70, G72, G77, G81) by multiplying each edge weight by $\sigma \sim \mathcal{U}[l, u]$, creating 10 perturbed instances per graph. We examine three distinct perturbation regimes: (i) mild perturbations ([0.9, 1.1]), (ii) moderate variations ([0, 10]), and (iii) extreme modifications ([0, 100]). The moderate perturbation results ([0, 10]) are presented in Table 3, with the remaining cases available in Appendix E. Additionally, we evaluate performance on three COLOR benchmark instances: anna, david, and huck.

Model Settings. ROS is designed as a two-layer GNN, with both the input and hidden dimensions set to 100. To address

(c) COLOR datasets and Bitcoin-OTC datasets

Figure 2: The computational time comparison of Max-*k*-Cut problems.

the issue of gradient vanishing, we apply graph normalization as proposed by Cai et al. (2021). The ROS model is pre-training using Adam with a learning rate of 10^{-2} for one epoch. During fine-tuning, the model is further optimized using the same Adam optimizer and learning rate, applying early stopping with a tolerance of 10^{-2} and patience of 100 iterations. Training terminates if no improvement is observed. Finally, in the random sampling stage, we execute Algorithm 1 for T = 100 trials and return the best solution.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX 3090 GPU, using PyTorch 2.2.0.

	Dataset	Graph Type	N	# Graphs	Weight Type
Train	Random Regular Graph	regular	100	500	unweighted
	Random Regular Graph	regular	100, 1,000, 10,000	60	unweighted
Test	Gset	random, planar, toroidal	$800\sim 20{,}000$	71	unweighted, weighted
Test	COLOR	real-world	74, 87, 138	3	unweighted
	Bitcoin-OTC	real-world	5,881	1	weighted

Table 1: Statistics of the training and testing datasets.

Methods	N=1	L00	N=1,	000	N=10	,000
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
GW	$130.20_{\pm 2.79}$	_	N/A	_	N/A	_
BQP	131.55 ± 2.42	239.70 ± 1.82	1324.45 ± 6.34	2419.15 ± 6.78	N/A	N/A
Genetic	127.55 ± 2.82	$235.50_{\pm 3.15}$	1136.65 ± 10.37	$2130.30_{\pm 8.49}$	N/A	N/A
MD	127.20 ± 2.16	235.50 ± 3.29	1250.35 ± 11.21	2344.85 ± 9.86	12428.85 ± 26.13	$23341.20_{\pm 32.87}$
PI-GNN	122.95 ± 3.83	-	$1210.45_{\pm 44.56}$	-	$12655.05_{\pm 94.25}$	-
ECO-DQN	$135.60_{\pm 1.53}$	-	$1366.20_{\pm 5.20}$	-	N/A	-
ANYCSP	131.65 ± 3.35	247.90 ± 0.89	$1366.05_{\pm 5.25}$	$2494.50_{\pm 2.99}$	$13692.35_{\pm 11.27}$	$24929.80_{\pm 7.53}$
ROS-vanilla	$132.80_{\pm 1.99}$	$243.20_{\pm 1.80}$	$1322.95_{\pm 6.57}$	$2443.9_{\pm 4.10}$	$13239.80_{\pm 14.71}$	$24413.30_{\pm 16.02}$
ROS	128.20 ± 2.82	240.30 ± 2.59	1283.75 ± 6.89	2405.75 ± 5.72	12856.85 ± 26.50	24085.95 ± 21.88

Table 2: Cut value comparison of Max-k-Cut problems on random regular graphs.

4.2. Performance Comparison against Baselines

4.2.1. COMPUTATIONAL TIME

We evaluated ROS against seven baseline algorithms: GW, BQP, Genetic, MD, PI-GNN, ECO-DQN, and ANYCSP on random regular graphs, comparing computational time for both Max-Cut and Max-3-Cut tasks. Experiments covered three problem scales: N = 100, N = 1,000, and N = 10,000, with results shown in Figure 2a. For larger instances, Figure 2b compares the scalable methods (MD, ANYCSP, and PI-GNN) on weighted Gset graphs ($N \ge 10,000$) with edge weight perturbations in [0, 10]. Figure 2c extends this comparison to real-world networks (COLOR and Bitcoin-OTC graphs). Instances marked "N/A" indicate timeout failures (30-minute limit). Complete results for unweighted Gset benchmarks, including comparisons with state-of-the-art methods LPI and MOH, are provided in Tables 6 and 7 (Appendix D).

The results depicted in Figure 2a indicate that ROS efficiently solves all problem instances within seconds, even for large problem sizes of N = 10,000. In terms of baseline performance, the approximation algorithm GW performs efficiently on instances with N = 100, but it struggles with larger sizes due to the substantial computational burden associated with solving the underlying semi-definite programming problem. Heuristic methods such as BQP and Genetic can manage cases up to N = 1,000 in a few hundred seconds, yet they fail to solve larger instances with N = 10,000 because of the high computational cost of each iteration. Notably, MD is the only traditional method capable of solving large instances within a reasonable time frame; however, when N reaches 10,000, the computational time for MD approaches 15 times that of ROS. Regarding L2O methods, PI-GNN necessitates retraining and prediction for each instance, with test times exceeding dozens of seconds even for N = 100. ECO-DQN relies on expensive GNNs at each decision step and can not scale to large problem sizes of N = 10,000. ANYCSP needs hundreds of seconds even for N = 100 due to the global search operation and long sampling trajectory. In contrast, ROS solves these large instances in merely a few seconds throughout the experiments, requiring only 10% of the computational time utilized by other L2O baselines. Figure 2b and Figure 2c illustrate the results for the weighted Gset benchmark and real-world datasets, respectively, where ROS efficiently solves the largest instances in just a few seconds, while other methods take tens to hundreds of seconds for equivalent tasks. Remarkably, ROS utilizes only about 1% of the computational time required by PI-GNN.

4.2.2. CUT VALUE

We evaluate ROS's performance on random regular graphs, the Gset benchmark, and real-world datasets, measuring solution quality for Problem (1). Results appear in Tables 2 (random graphs), 3 (weighted Gset), and 4 (real-world data), where "–" denotes methods incompatible with Max-*k*-Cut problems.

Methods	G70 (N=	10,000)	G72 (N=	10,000)	G77 (N=	14,000)	G81 (N=	20,000)
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
GW	N/A	-	N/A	-	N/A	-	N/A	-
BQP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Genetic	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MD	45490.21	49615.85	33449.49	38798.78	47671.94	55147.26	67403.00	78065.07
PI-GNN	44275.72	-	31469.65	-	44359.72	-	62439.97	-
ECO-DQN	N/A	-	N/A	-	N/A	-	N/A	-
ANYCSP	46420.48	48831.32	-280.74	-208.01	845.72	988.96	-13.52	271.01
ROS-vanilla	a 47140.07	49826.90	36697.11	42067.80	52226.53	59636.36	74051.42	84498.44
ROS	46707.60	49813.45	35733.11	40987.92	50790.44	58253.31	72057.24	82450.68

Table 3: Cut value comparison of Max-k-Cut problems on weighted Gset instances, where the noise factor $\sigma \sim [0, 10]$.

Table 4: Cut value comparison of Max-k-Cut problems on COLOR datasets and Bitcoin-OTC Datasets.

Methods	COLO	R anna	COLO	R david	COLO	R huck	В	itcoin-O	ГС
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 10
MD PI-GNN	$\frac{339}{279}$	421	$259 \\ 228$	329	184 166	242	$39076 \\ 37216$	47595	53563
ANYCSP	330	423	$220 \\ 263$	328	166	139	10431	14265	19372
ROS-vanilla ROS	$351 \\ 351$	$429 \\ 423$	$266 \\ 266$	$336 \\ 324$	191 191	$\begin{array}{c} 246 \\ 242 \end{array}$	$40576 \\ 39850$	$48214 \\ 48980$	$53758 \\ 53778$

The results demonstrate that ROS consistently produces high-quality solutions for both k = 2 and k = 3 across all scales. While GW performs well for Max-Cut (k = 2) at N = 100, it fails to generalize to arbitrary k. Traditional methods like BQP and Genetic support k = 3 but often converge to suboptimal solutions. Although MD handles general k, it consistently underperforms ROS. Among learningbased methods, PI-GNN proves unsuitable for k = 3 due to QUBO incompatibility and unreliable heuristic rounding, while ECO-DQN lacks k = 3 support entirely. While ANYCSP achieves strong results on unweighted graphs, it cannot process weighted instances. These experiments collectively show that ROS offers superior generalizability and robustness for weighted Max-k-Cut tasks, outperforming both traditional and learning-based approaches in solution quality and flexibility.

To further assess ROS's scalability, we conduct comprehensive benchmarking against scalable baselines using challenging real-world datasets, including the COLOR and Bitcoin-OTC networks. The results in Table 4 demonstrate that both ROS and its simplified variant ROS-vanilla consistently outperform competing methods across most experimental settings. This performance advantage is particularly pronounced for the weighted Bitcoin-OTC instances, where our approach achieves superior solution quality while maintaining computational efficiency.

4.3. Effect of the "Pre-train" Stage in ROS

To evaluate the impact of the pre-training stage in ROS, we compared it with ROS-vanilla, which omits pre-training (see Section 3.3). We assessed both methods based on cut values and computational time. Figure 3 illustrates the ratios of these metrics between ROS-vanilla and ROS. In this figure, the horizontal axis represents the problem instances, while the left vertical axis (green bars) displays the ratio of objective function values, and the right vertical axis (red curve) indicates the ratio of computational times.

As shown in Figure 3a, ROS-vanilla achieves higher objective function values in most settings on the random regular graphs; however, its computational time is approximately 1.5 times greater than that of ROS. Thus, ROS demonstrates a faster solving speed compared to ROS-vanilla. Similarly, in experiments conducted on the Gset benchmark (Figure 3b), ROS reduces computational time by around 40% while maintaining performance comparable to that of ROS-vanilla. Notably, in the Max-3-Cut problem for the largest instance, G81, ROS effectively halves the solving time, showcasing the significant acceleration effect of pre-training. It is worth mentioning that the ROS model was pre-trained on random regular graphs with N = 100and generalized well to regular graphs with N = 1,000and N = 10,000, as well as to Gset problem instances of varying sizes and types. This illustrates ROS's capability to

Figure 3: The ratio of computational time and cut value comparison between ROS-vanilla and ROS.

generalize and accelerate the solving of large-scale problems across diverse graph types and sizes, emphasizing the strong out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher objective function values on individual instances, it requires longer solving times and struggles to generalize to other problem instances. This observation highlights the trade-off between a model's ability to generalize and its capacity to fit specific instances. Specifically, a model that fits individual instances exceptionally well may fail to generalize to new data, resulting in longer solving times. Conversely, a model that generalizes effectively may exhibit slightly weaker performance on specific instances, leading to a marginal decrease in objective function values. Therefore, the choice between these two training modes should be guided by the specific requirements of the application.

5. Conclusions

In this paper, we propose ROS, an efficient method for addressing the Max-k-Cut problem with arbitrary edge weights. Our approach begins by relaxing the constraints of the original discrete problem to probabilistic simplices. To effectively solve this relaxed problem, we propose an optimization algorithm based on GNN parametrization and incorporate transfer learning by leveraging pre-trained GNNs to warm-start the training process. After resolving the relaxed problem, we present a novel random sampling algorithm that maps the continuous solution back to a discrete form. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous and discrete solutions. Experiments conducted on random regular graphs, the Gset benchmark, and real-world datasets demonstrate that our method is highly efficient for solving large-scale Max-k-Cut problems, requiring only a few seconds, even for instances with tens of thousands of variables. Furthermore, it exhibits robust generalization capabilities across both in-distribution and out-of-distribution instances, highlighting its effectiveness for large-scale optimization tasks. Exploring other sampling algorithms to further boost ROS performance is a future research direction. Moreover, the ROS framework with theoretical insights could be potentially extended to other graph-related combinatorial problems, and this direction is also worth investigating as future work.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

Acknowledgement

This work was supported by the National Key R&D Program of China under grant 2022YFA1003900. Ye Xue acknowledges support from the National Natural Science Foundation of China (Grant No. 62301334), the Guangdong Major Project of Basic and Applied Basic Research (No. 2023B0303000001), Akang Wang also acknowledges support from the National Natural Science Foundation of China (Grant No. 12301416), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010306).

References

- Andrade, C. E., Pessoa, L. S., and Stawiarski, S. The physical cell identity assignment problem: A practical optimization approach. *IEEE Transactions on Evolutionary Computation*, 28(2):282–292, 2024.
- Bach, F. Learning with Submodular Functions: A Convex Optimization Perspective. Now Publishers Inc., Hanover, MA, USA, 2013. ISBN 1601987560.
- Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. Exploratory combinatorial optimization with reinforcement learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(04):3243–3250, 2020.

Barrett, T. D., Parsonson, C. W., and Laterre, A. Learning

to solve combinatorial graph partitioning problems via efficient exploration. *arXiv preprint arXiv:2205.14105*, 2022.

- Bengio, Y., Lodi, A., and Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d'horizon. *European Journal of Operational Research*, 290(2):405–421, 2021. ISSN 0377-2217.
- Bhowmick, A., Kosan, M., Huang, Z., Singh, A., and Medya, S. Dgcluster: A neural framework for attributed graph clustering via modularity maximization. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38 (10):11069–11077, 2024.
- Burer, S., Monteiro, R. D. C., and Zhang, Y. Rank-two relaxation heuristics for max-cut and other binary quadratic programs. *SIAM Journal on Optimization*, 12(2):503– 521, 2002.
- Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., and Wang, L. Graphnorm: A principled approach to accelerating graph neural network training. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 1204–1215. PMLR, 18–24 Jul 2021.
- Carlson, R. and Nemhauser, G. L. Scheduling to minimize interaction cost. *Operations Research*, 14(1):52–58, 1966.
- Chen, M., Chen, Y., Du, Y., Wei, L., and Chen, Y. Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization. *Knowledge-Based Systems*, 207:106366, 2020. ISSN 0950-7051.
- Chen, X., Liu, J., and Yin, W. Learning to optimize: A tutorial for continuous and mixed-integer optimization. *Science China Mathematics*, pp. 1–72, 2024.
- Coja-Oghlan, A., Loick, P., Mezei, B. F., and Sorkin, G. B. The ising antiferromagnet and max cut on random regular graphs. *SIAM Journal on Discrete Mathematics*, 36(2): 1306–1342, 2022.
- Cook, C., Zhao, H., Sato, T., Hiromoto, M., and Tan, S. X.-D. Gpu-based ising computing for solving max-cut combinatorial optimization problems. *Integration*, 69: 335–344, 2019. ISSN 0167-9260.
- de Klerk, E., Pasechnik, D. V., and Warners, J. P. On approximate graph colouring and max-k-cut algorithms based on the θ -function. *Journal of Combinatorial Optimization*, 8:267–294, 2004.
- De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., and Rinaldi, G. Exact ground states of ising spin glasses: New experimental results with a branch-and-cut

algorithm. *Journal of Statistical Physics*, 80:487–496, 1995.

- Eisenblätter, A. The semidefinite relaxation of the kpartition polytope is strong. In *Integer Programming and Combinatorial Optimization*, pp. 273–290, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
- Frieze, A. and Jerrum, M. Improved approximation algorithms for max k-cut and max bisection. *Algorithmica*, 18(1):67–81, 1997.
- Garvardt, J., Grüttemeier, N., Komusiewicz, C., and Morawietz, N. Parameterized local search for max c-cut. In Elkind, E. (ed.), *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*, *IJCAI-23*, pp. 5586–5594. International Joint Conferences on Artificial Intelligence Organization, 8 2023. Main Track.
- Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner, A., Kazachkov, A. M., et al. The machine learning for combinatorial optimization competition (ml4co): Results and insights. In *NeurIPS 2021 competitions and demonstrations track*, pp. 220–231. PMLR, 2022.
- Ghaddar, B., Anjos, M. F., and Liers, F. A branch-andcut algorithm based on semidefinite programming for the minimum k-partition problem. *Annals of Operations Research*, 188(1):155–174, 2011.
- Goemans, M. X. and Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):1115–1145, 1995.
- Goudet, O., Goëffon, A., and Hao, J.-K. A large population island framework for the unconstrained binary quadratic problem. *Computers & Operations Research*, 168:106684, 2024. ISSN 0305-0548.
- Gui, J., Jiang, Z., and Gao, S. Pci planning based on binary quadratic programming in lte/lte-a networks. *IEEE Access*, 7:203–214, 2019.
- Hojny, C., Joormann, I., Lüthen, H., and Schmidt, M. Mixedinteger programming techniques for the connected max-kcut problem. *Mathematical Programming Computation*, 13(1):75–132, 2021.
- Karalias, N. and Loukas, A. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. In *Advances in Neural Information Processing Systems*, volume 33, pp. 6659–6672. Curran Associates, Inc., 2020.

- Karp, R. M. *Reducibility among Combinatorial Problems*, pp. 85–103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2.
- Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. Learning combinatorial optimization algorithms over graphs. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
- Kumar, S., Spezzano, F., Subrahmanian, V. S., and Faloutsos, C. Edge weight prediction in weighted signed networks. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 221–230, 2016.
- Li, P. and Wang, J. Pci planning method based on genetic algorithm in lte network. *Telecommunications Science*, 32(3):2016082, 2016.
- Ly, A., Sawhney, R., and Chugunova, M. Data clustering and visualization with recursive goemans-williamson maxcut algorithm. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 496–500. IEEE, 2023.
- Ma, F. and Hao, J.-K. A multiple search operator heuristic for the max-k-cut problem. *Annals of Operations Research*, 248:365–403, 2017.
- Michael, R., Bartels, S., González-Duque, M., Zainchkovskyy, Y., Frellsen, J., Hauberg, S., and Boomsma, W. A continuous relaxation for discrete bayesian optimization. *arXiv preprint arXiv:2404.17452*, 2024.
- Micheal, T. The color datasets. https://mat.tepper. cmu.edu/COLOR02/, 2002.
- Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go neural: Higher-order graph neural networks. *Proceedings* of the AAAI Conference on Artificial Intelligence, 33(01): 4602–4609, Jul. 2019.
- Nath, A. and Kuhnle, A. A benchmark for maximum cut: Towards standardization of the evaluation of learned heuristics for combinatorial optimization. *arXiv preprint arXiv:2406.11897*, 2024.
- Poland, J. and Zeugmann, T. Clustering pairwise distances with missing data: Maximum cuts versus normalized cuts. In *International Conference on Discovery Science*, pp. 197–208. Springer, 2006.
- Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.

- Shah, R., Jain, K., Manchanda, S., Medya, S., and Ranu, S. Neurocut: A neural approach for robust graph partitioning. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 2584–2595, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901.
- Shinde, N., Narayanan, V., and Saunderson, J. Memoryefficient approximation algorithms for max-k-cut and correlation clustering. In *Advances in Neural Information Processing Systems*, volume 34, pp. 8269–8281. Curran Associates, Inc., 2021.
- Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph neural networks for maximum constraint satisfaction. *Frontiers in artificial intelligence*, 3:580607, 2021.
- Tönshoff, J., Kisin, B., Lindner, J., and Grohe, M. One model, any csp: Graph neural networks as fast global search heuristics for constraint satisfaction. In *Proceedings of the Thirty-Second International Joint Conference* on Artificial Intelligence, IJCAI-23, pp. 4280–4288. International Joint Conferences on Artificial Intelligence Organization, 8 2023. Main Track.
- Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E. Graph clustering with graph neural networks. *Journal of Machine Learning Research*, 24(127):1–21, 2023.
- Ye, Y. The gset dataset. https://web.stanford. edu/~yyye/gset/, 2003.

A. Related Works

Relaxation-based methods have been central to the algorithmic design for Max-Cut and its generalizations. In Table 5, we compare our proposed probability simplex relaxation with several representative approaches along key dimensions: variable complexity (# Var.), applicability to general Max-*k*-Cut, polynomial-time solvability, objective value consistency with the original problem, and scalability to large instances.

Relaxation	# Var.	Max-k-Cut	Polynomial Solvable?	Obj. Value Consistency?	Scalable?
Lovasz Extension (Bach, 2013)	$\mathcal{O}(N)$	×	×	\checkmark	\checkmark
SDP Relaxation (Goemans & Williamson, 1995)	$\mathcal{O}(N^2)$	×	\checkmark	×	×
SDP Relaxation (Frieze & Jerrum, 1997)	$\mathcal{O}(N \times k)$	\checkmark	\checkmark	×	×
Rank-2 Relaxation (Burer et al., 2002)	$\mathcal{O}(N)$	×	×	×	\checkmark
QUBO Relaxation (Andrade et al., 2024)	$\mathcal{O}(N)$	×	×	×	\checkmark
Probability Simplex Relaxation (ours)	$\mathcal{O}(N\times k)$	\checkmark	×	\checkmark	\checkmark

Table 5:	Comparison	between	Different	Relaxations
----------	------------	---------	-----------	-------------

The Lovász extension (Bach, 2013), originally designed for submodular optimization, admits scalable convex formulations but does not extend naturally to general Max-*k*-Cut problems. Seminal SDP-based methods, such as Goemans-Williamson (Goemans & Williamson, 1995) for Max-Cut and its *k*-way extension (Frieze & Jerrum, 1997), offer polynomialtime approximation guarantees. However, their reliance on large-scale semidefinite programming limits practical scalability and makes them less effective on modern large-scale instances. Non-convex formulations, including the rank-2 relaxation (Burer et al., 2002) and QUBO-based relaxation (Andrade et al., 2024), provide scalable alternatives for Max-Cut but lack theoretical guarantees for Max-*k*-Cut and are typically solved locally. These methods often exhibit poor objective consistency and limited generalization.

In contrast, our probability simplex relaxation introduces a non-convex yet tractable formulation for Max-k-Cut with $O(N \times k)$ variables. While it is not globally solvable in polynomial time, its optimal value aligns exactly with that of the original Max-k-Cut problem. Empirically, our GNN-based solver produces high-quality fractional solutions, which serve as effective initializations for randomized sampling. Overall, the proposed relaxation strikes a favorable balance between expressiveness, consistency, and scalability, offering a practical and theoretically grounded solution framework for large-scale Max-k-Cut problems.

B. Proof of Theorem 3.2

Proof. Before proceeding with the proof of Theorem 3.2, we first define the neighborhood of a vector $\bar{x} \in \Delta_k$, and establish results of Lemma B.2 and Lemma B.3.

Definition B.1. Let $\bar{x} = (\bar{x}_1, \dots, \bar{x}_k)$ denote a point in Δ_k . We define the neighborhood induced by \bar{x} as follows:

$$\widetilde{\mathcal{N}}(\bar{\boldsymbol{x}}) \coloneqq \left\{ (\boldsymbol{x}_1, \cdots, \boldsymbol{x}_k) \in \Delta_k \left| \sum_{j \in \mathcal{K}(\bar{\boldsymbol{x}})} \boldsymbol{x}_j = 1 \right. \right\},$$

where $\mathcal{K}(\bar{x}) = \{ j \in \{1, \cdots, k\} \mid \bar{x}_j > 0 \}.$

Lemma B.2. Given $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star})$, it follows that

$$\mathcal{K}(\boldsymbol{X}_{\cdot i}) \subseteq \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star}).$$

Proof. Suppose there exists $j \in \mathcal{K}(\mathbf{X}_{\cdot i})$ such that $j \notin \mathcal{K}(\mathbf{X}_{\cdot i}^{\star})$, implying $\mathbf{X}_{ji} > 0$ and $\mathbf{X}_{ji}^{\star} = 0$. We then have

$$\sum_{l \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})} \boldsymbol{X}_{li} + \boldsymbol{X}_{ji} \leq \sum_{l=1}^{k} \boldsymbol{X}_{li} = 1,$$

which leads to

$$\sum_{l \in \mathcal{K}(\boldsymbol{X}_{i}^{\star})} \boldsymbol{X}_{li} \leq 1 - \boldsymbol{X}_{ji} < 1$$

contradicting with the fact that $X_{i} \in \widetilde{\mathcal{N}}(X_{i}^{\star})$.

Lemma B.3. Let X^* be a globally optimal solution to \overline{P} , then

$$f(\boldsymbol{X}; \boldsymbol{W}) = f(\boldsymbol{X}^{\star}; \boldsymbol{W}),$$

where X has only the i^{th} column $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star})$, and other columns are identical to those of X^{\star} . Moreover, X is also a globally optimal solution to \overline{P} .

Proof. The fact that X is a globally optimal solution to \overline{P} follows directly from the equality $f(X; W) = f(X^*; W)$. Thus, it suffices to prove this equality. Consider that X^* and X differ only in the i^{th} column, and $X_{i} \in \widetilde{\mathcal{N}}(X^*_{i})$. We can rewrite the objective value function as

$$f(\boldsymbol{X}; \boldsymbol{W}) = g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) + h(\boldsymbol{X}_{\cdot - i}),$$

where X_{-i} represents all column vectors of X except the i^{th} column. The functions g and h are defined as follows:

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i} - \boldsymbol{W}_{ii} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot i},$$
$$h(\boldsymbol{X}_{\cdot - i}) = \sum_{l=1, l \neq i}^{N} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{lj} \boldsymbol{X}_{\cdot l}^{\top} \boldsymbol{X}_{\cdot j}$$

To establish that $f(X; W) = f(X^*; W)$, it suffices to show that

$$g(\mathbf{X}_{\cdot i}; \mathbf{X}_{\cdot -i}) = g(\mathbf{X}_{\cdot i}^{\star}; \mathbf{X}_{\cdot -i})$$

as $X_{\cdot-i} = X_{\cdot-i}^{\star}$.

Rewriting $g(\mathbf{X}_{\cdot i}; \mathbf{X}_{\cdot -i})$, we obtain

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i}$$
$$= 2 \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j}$$
$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot j}$$
$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{Y}_{i},$$

where $\boldsymbol{Y}_{i} := \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{j}$.

If $|\mathcal{K}(\mathbf{X}_{\cdot i}^{\star})| = 1$, then there is only one non-zero element in $\mathbf{X}_{\cdot i}^{\star}$ equal to one. Therefore, $g(\mathbf{X}_{\cdot i}^{\star}; \mathbf{X}_{\cdot -i}) = g(\mathbf{X}_{\cdot i}; \mathbf{X}_{\cdot -i})$ since $\mathbf{X}_{\cdot i} = \mathbf{X}_{\cdot i}^{\star}$.

For the case where $|\mathcal{K}(\mathbf{X}_{\cdot i}^{\star})| > 1$, we consider any indices $j, l \in \mathcal{K}(\mathbf{X}_{\cdot i}^{\star})$ such that $\mathbf{X}_{ji}^{\star}, \mathbf{X}_{li}^{\star} \in (0, 1)$. Then, there exists $\epsilon > 0$ such that we can construct a point $\tilde{\mathbf{x}} \in \Delta_k$ where the j^{th} element is set to $\mathbf{X}_{ji}^{\star} - \epsilon$, the l^{th} element is set to $\mathbf{X}_{li}^{\star} + \epsilon$, and all other elements remain the same as in $\mathbf{X}_{\cdot i}^{\star}$. Since \mathbf{X}^{\star} is a globally optimum of the function $f(\mathbf{X}; \mathbf{W})$, it follows that $\mathbf{X}_{\cdot i}^{\star}$ is also a global optimum for the function $g(\mathbf{X}_{\cdot i}^{\star}; \mathbf{X}_{-i})$. Thus, we have

$$egin{aligned} g(oldsymbol{X}^{\star}_{\cdot i};oldsymbol{X}_{\cdot -i}) &\leq g(\widetilde{oldsymbol{x}};oldsymbol{X}_{\cdot -i}) \ oldsymbol{X}_{\cdot i}^{\star op}oldsymbol{Y}_{\cdot i} &\leq \widetilde{oldsymbol{x}}^{ op}oldsymbol{Y}_{\cdot i} \ &= oldsymbol{X}_{\cdot i}^{\star op}oldsymbol{Y}_{\cdot i} - \epsilonoldsymbol{Y}_{ji} + \epsilonoldsymbol{Y}_{li}, \end{aligned}$$

which leads to the inequality

$$Y_{ji} \le Y_{li}.\tag{3}$$

Next, we can similarly construct another point $\hat{x} \in \Delta_k$ with its j^{th} element equal to $X_{ji}^{\star} + \epsilon$, the k^{th} element equal to $X_{ki}^{\star} - \epsilon$, and all other elements remain the same as in X_{i}^{\star} . Subsequently, we can also derive that

$$egin{aligned} g(oldsymbol{X}^{\star}_{\cdot i};oldsymbol{X}_{\cdot -i}) &\leq g(\hat{oldsymbol{x}};oldsymbol{X}_{\cdot -i}) \ &= oldsymbol{X}^{\star op}_{\cdot i}oldsymbol{Y}_{\cdot i} + \epsilonoldsymbol{Y}_{ji} - \epsilonoldsymbol{Y}_{li}, \end{aligned}$$

which leads to another inequality

$$Y_{li} \le Y_{ji}. \tag{4}$$

Consequently, combined inequalities (3) and (4), we have

 $Y_{ji} = Y_{li},$

for $j, l \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})$.

From this, we can deduce that

$$\boldsymbol{Y}_{j_1i} = \boldsymbol{Y}_{j_2i} = \cdots = \boldsymbol{Y}_{j_{|\mathcal{K}(\boldsymbol{X}_{i}^{\star})|}i} = t,$$

where $j_1, \cdots, j_{|\mathcal{K}(\boldsymbol{X}^{\star}_{\cdot i})|} \in \mathcal{K}(\boldsymbol{X}^{\star}_{\cdot i})$. Next, we find that

$$g(\mathbf{X}_{\cdot i}^{\star}; \mathbf{X}_{\cdot - i}) = 2\mathbf{X}_{\cdot i}^{\star \top} \mathbf{Y}_{\cdot i}$$

$$= 2\sum_{j=1}^{k} \mathbf{X}_{j i}^{\star} \mathbf{Y}_{j i}$$

$$= 2\sum_{j=1, j \in \mathcal{K}(\mathbf{X}_{\cdot i}^{\star})}^{N} \mathbf{X}_{j i}^{\star} \mathbf{Y}_{j i}$$

$$= 2t \sum_{j=1, j \in \mathcal{K}(\mathbf{X}_{\cdot i}^{\star})}^{N} \mathbf{X}_{j i}^{\star}$$

$$= 2t.$$

Similarly, we have

$$g(\mathbf{X}_{\cdot,i}; \mathbf{X}_{\cdot-i}) = 2\mathbf{X}_{\cdot,i}^{\top} \mathbf{Y}_{\cdot i}$$
$$= 2\sum_{j=1}^{k} \mathbf{X}_{ji} \mathbf{Y}_{ji}$$
$$= 2\sum_{j=1,j \in \mathcal{K}(\mathbf{X}_{\cdot,i})} \mathbf{X}_{ji} \mathbf{Y}_{ji}$$
$$\overset{\text{Lemma B.2}}{=} 2t \sum_{j=1,j \in \mathcal{K}(\mathbf{X}_{\cdot,i})} \mathbf{X}_{ji}$$
$$= 2t$$

Accordingly, we conclude that

$$\begin{split} g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) &= g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot - i}), \\ f(\boldsymbol{X}; \boldsymbol{W}) &= f(\boldsymbol{X}^{\star}; \boldsymbol{W}), \end{split}$$

which leads us to the result

where $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star}), X_{\cdot -i} = X_{\cdot -i}^{\star}$.

Accordingly, for any $X \in \mathcal{N}(X^*)$, we iteratively apply Lemma B.3 to each column of X^* while holding the other columns fixed, thereby proving Theorem 3.2.

C. Proof of Theorem 3.3

Proof. Based on \overline{X} , we can construct the random variable \widetilde{X} , where $\widetilde{X}_{i} \sim \text{Cat}(x; p = \overline{X}_{i})$. The probability mass function is given by

$$\mathbf{P}(\widetilde{\boldsymbol{X}}_{\cdot i} = \boldsymbol{e}_{\ell}) = \overline{\boldsymbol{X}}_{\ell i},\tag{5}$$

where $\ell = 1, \cdots, k$.

Next, we have

$$\mathbb{E}_{\widetilde{\mathbf{X}}}[f(\widetilde{\mathbf{X}}; \mathbf{W})] = \mathbb{E}_{\widetilde{\mathbf{X}}}[\widetilde{\mathbf{X}} \mathbf{W} \widetilde{\mathbf{X}}^{\top}] = \mathbb{E}_{\widetilde{\mathbf{X}}}[\sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{W}_{ij} \widetilde{\mathbf{X}}_{\cdot i}^{\top} \widetilde{\mathbf{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{W}_{ij} \mathbb{E}_{\widetilde{\mathbf{X}}_{\cdot i} \widetilde{\mathbf{X}}_{\cdot j}}[\widetilde{\mathbf{X}}_{\cdot i}^{\top} \widetilde{\mathbf{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{W}_{ij} \mathbb{E}_{\widetilde{\mathbf{X}}_{\cdot i} \widetilde{\mathbf{X}}_{\cdot j}}[\mathbb{1}(\widetilde{\mathbf{X}}_{\cdot i} = \widetilde{\mathbf{X}}_{\cdot j})]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{W}_{ij} \mathbb{P}(\widetilde{\mathbf{X}}_{\cdot i} = \widetilde{\mathbf{X}}_{\cdot j})$$

$$= \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \mathbf{W}_{ij} \mathbb{P}(\widetilde{\mathbf{X}}_{\cdot i} = \widetilde{\mathbf{X}}_{\cdot j}).$$
(6)

Since $\widetilde{X}_{\cdot i}$ and $\widetilde{X}_{\cdot j}$ are independent for $i \neq j$, we have

$$\mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j}) = \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}, \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}) \mathbb{P}(\widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \overline{X}_{\ell i} \overline{X}_{\ell j}$$

$$= \overline{X}_{\cdot i}^{\top} \overline{X}_{\cdot j}.$$
(7)

Substitute (7) into (6), we obtain

$$\mathbb{E}_{\widetilde{\boldsymbol{X}}}[f(\widetilde{\boldsymbol{X}};\boldsymbol{W})] = \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \overline{\boldsymbol{X}}_{\cdot i}^{\top} \overline{\boldsymbol{X}}_{\cdot j} = f(\overline{\boldsymbol{X}};\boldsymbol{W}).$$
(8)

D. The Results on Unweighted Gset Instances

S	ime (s) \downarrow	1.7	1.8	1.9	2.1	1.7	1.7	1.8	1.8	1.9	1.8	1.5	1.4	1.5	1.8	1.4	1.3	1.5	1.7	1.5	1.8	1.6	2.7	1.9	2.4	1.9	3.5	2.1	1.9	1.9	2.9	1.9	1.7	1.7	1.6	1.9
RO	Obj.↑ T	11395	11467	11370	11459	11408	1907	1804	1775	1876	1755	494	494	524	2953	2871	2916	2914	905	<i>TT</i> 2	788	848	13007	12936	12933	12947	12954	2971	2923	3089	3025	2943	1226	1208	1220	7260
nilla	ïme (s) 🔱	2.6	2.6	2.7	2.6	2.6	2.5	2.6	2.8	2.6	2.6	1.8	1.9	1.9	1.5	1.8	1.7	1.9	2.1	6	2.1	2.1	2.6	2.9	1.9	7	2.5	2.8	2.6	2.9	2.8	2.1	2.2	2.3	2.3	1.9
ROS-Va	Obj.↑ T	11423	11462	11510	11416	11505	1994	1802	1876	1839	1811	496	498	518	2932	2920	2917	2932	903	808	843	858	13028	13048	13035	13040	13054	2993	2985	3056	3004	3015	1240	1224	1238	7245
ц.	Time (s) \downarrow	7	%	10	7	7	14	7	10	13	10	=	16	23	119	80	69	104	40	49	31	32	413	150	234	258	291	152	197	293	410	412	330	349	302	1070
LF	Obj.↑ 7	11624	11620	11622	11646	11631	2178	2006	2005	2054	2000	564	556	582	3064	3050	3052	3047	992	906	941	931	13359	13342	13337	13340	13328	3341	3298	3405	3413	3310	1410	1382	1384	7686
Н	ime (s) \downarrow	1.5	4.6	1.3	5.2	1.0	3.0	3.0	5.7	3.2	68.1	0.2	3.5	0.9	251.3	52.2	93.7	129.5	112.7	266.9	43.7	155.3	352.4	433.8	<i>0.117</i>	442.5	535.1	42.3	707.2	555.2	330.5	592.6	65.8	504.1	84.2	796.7
OM	Obj.↑ T	11624	11620	11622	11646	11631	2178	2006	2005	2054	2000	564	556	582	3064	3050	3052	3047	992	906	941	931	13359	13344	13337	13340	13328	3341	3298	3405	3413	3310	1410	1382	1384	7686
EP.	$(s) \downarrow$	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1
ANYCS	bj.↑ Tir	1574	1591	1591	1596	1575	130	972	974	900	953	548	542	568	036	014	018	027	996	881	925	925	3280	3297	3284	3279	3253	300	265	348	363	241	360	342	350	624
	$(s) \downarrow 0$	3.4 1	5.2 1	5.1 1.2	5.8 1	1.2	3.3 2	5.5 1	5.5 1	5.8 2	7.1 1	5.6	7.2	5.9	3.4 3	5.2 3	5.8 3	5.8 3	5.6	7.2	3.6	5.2	8.4 10	6.7 13	9.2 10	2.6 11	1.4 10	0.2 3	1.1 3	4.3 3	0.0 3	1.4 3	8.7 1	4.3 1	8.7 1	0.6 7
ECO-DQI	↑ Time	82 23	16 25	43 26	22 26	35 22	5 23	7 25	5 25	4 26	0 23	5	1 23	5	7 23	1 26	7 26	4 25	5	8	7 28	4	59 19	96 19	96 34	46 20	26 20	2 20	0 20	2 20	7 20	5 20	9 19	0 19	0 19	9 20
	(dO) ↓	114	115	115	115	114	205	195	195	204	192	54	54	56	280	274	275	275	92	82	89	86	131	130	130	131	131	321	316	331	328	321	134	132	132	659
BQP	Time (s	11.3	11.7	11.0	11.2	11.0	11.4	11.1	11.1	14.6	10.9	11.0	11.0	10.8	1.11	11.1	14.3	12.1	11.2	11.4	11.9	14.1	95.6	95.6	95.0	102.6	96.9	98.9	96.8	96.4	99.3	96.3	92.7	89.3	95.6	95.2
	↓ Obj. 1	11406	11426	11397	11430	11406	1991	1780	1758	1845	1816	540	534	560	2985	2966	2987	2967	922	816	860	837	13004	12958	13002	12968	12966	3062	2963	3044	3074	2998	1338	1302	1314	7495
netic	Time (s)	587.4	588.3	596.8	580.5	598.2	581.2	587.5	591.8	582.3	589.5	509.4	514.8	520.0	564.2	547.7	541.3	558.9	567.0	571.2	565.8	572.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ge	Obj. ↑	10929	10926	10933	10945	10869	1435	1273	1241	1345	1313	406	388	426	2855	2836	2848	2829	643	571	633	620	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-GNN	Time (s) \downarrow	214.3	212.7	215.1	216.0	214.1	214.4	215.4	215.4	211.7	212.7	216.2	215.0	214.2	211.5	213.0	212.9	186.7	212.9	206.5	213.4	209.3	212.9	211.7	214.5	214.3	217.2	216.3	214.9	216.5	214.3	216.3	214.9	213.4	212.4	185.7
ΡI	Obj. ↑	10680	10533	10532	10805	10417	1748	1524	1566	1545	1445	464	470	480	2484	2416	2604	2456	763	725	740	740	12283	12314	11606	12233	12141	2509	2563	2578	2559	2539	1106	1068	1106	6196
Q	Time (s) \downarrow	5.1	5.3	5.3	4.8	3.7	6.9	5.9	6.1	8.0	7.3	3.0	2.4	3.0	3.1	3.1	3.8	3.3	3.7	3.6	3.5	3.0	12.2	10.2	10.0	11.7	10.8	11.2	11.2	12.3	11.7	11.5	6.8	9.9	5.8	9.4
	Obj. ↑	11320	11255	11222	11280	11156	1755	1635	1651	1720	1700	466	466	486	2930	2932	2937	2922	825	740	767	784	12777	12688	12721	12725	12725	2632	2762	2736	2774	2736	1136	1106	1118	7358
N	Time (s) \downarrow	1228.0	1225.4	1243.2	1217.8	1261.8	1261.6	1336.4	1235.2	1215.0	1227.3	N/A	N/A	N/A	1716.6	N/A	N/A	1738.2	871.7	1245.4	1015.6	1350.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0	Obj.↑ 1	11299	11299	11289	11207	11256	1776	1694	1693	1676	1675	N/A	N/A	N/A	2942	N/A	N/A	2916	838	763	781	821	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3		19176	19176	19176	19176	19176	19176	19176	19176	19176	19176	1600	1600	1600	4694	4661	4672	4667	4694	4661	4672	4667	19990	19990	19990	19990	19990	19990	19990	19990	19990	19990	4000	4000	4000	11778
7		800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Instance		GI	G2	G3	G4	G5	G6	G7	G8	69	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32	G33	G34	G35

Table 6: Complete results on Gset instances for Max-Cut.

	\uparrow (s)		5	~	-	10	6	+	-	4	-	5	~	-	6	~	-	5	~	~	~	10	10	~	4			~	10		10	~	~		~	-	~
ROS	· Time	1.4	1.5	1.8	5	2.5	2.2	2.4	51	1	51	2.5	1.5	2.1	2.2	1.9	1	1.6	1.6	1	5.5	2.5	2.5	. 1.8	4	5	5	2.2	1.4	Э	2.5	3.5	1.9	3.4	3.5	8.]	0
	Obj. ↑	7107	7141	7173	2165	2128	2139	2235	6471	6472	6489	6499	6489	5498	5452	5582	3677	3641	3658	3642	9779	3475	3078	17574	5407	13402	5011	4294	24270	7657	4826	5580	6010	8916	6102	8740	17337
anilla	Time (s) \downarrow	2.4	1.7	1.6	2.5	2.7	1.6	2.2	2.7	2.5	2.4	2.5	2.5	3.2	3.1	3.2	1.5	1.3	1.5	1.6	2.1	7	1.7	2.3	1.9	0	3.8	3.8	1.7	2.3	4.4	5.5	6.2	4.9	6.2	6	13.7
ROS-V	Obj. ↑	7235	7164	7114	2107	2207	2120	2200	6539	6498	6528	6498	6497	5640	5580	5656	3629	3526	3633	3653	9819	3444	3040	17632	5343	13433	5037	4252	24185	7508	4878	5570	0609	9004	6066	8678	12260
Id	Time (s) \downarrow	5790	4082	614	347	314	286	328	19	20	19	21	25	\$	93	06	145	119	182	140	6594	49445	3494	65737	65112	44802	74373	26537	52726	49158	21737	34062	61556	28820	42542	66662	10222
E	obj.↑ '	7680	1691	7688	2408	2400	2405	2481	6660	6650	6654	6649	6657	6000	6000	5880	3848	3851	3850	3852	10299	4017	3494	19294	6088	14190	5798	4872	27033	8752	5562	6364	6948	9594	7004	9926	1 40.00
	me (s) 1	664.5	652.8	7.9.7	787.7	472.5	377.4	777.4	1.2	5.3	6.9	67.3	43.3	0.0	0.0	532.1	189.2	209.7	299.3	190.4	1230.4	990.4	1528.3	1522.3	2498.8	2945.4	5603.3	5568.6	5492.1	4011.1	1709.5	5061.9	4214.3	8732.4	5586.6	9863.6	0,0010
MOF	bj.↑ Ti	680	1691	688	1408	1400	1405	1481	660	650	654	649	657	000	000	880	848	851	850	852	0299	016	1494	9288	087	4190	8629	868	7033	3747	560	360	942	544	998	928	
	(s) ↓ 0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 6	0.1	0.2	0.2	0.2 5	0.2 3	0.2	0.2 3	0.2	0.2 1	0.2	0.2	0.2 1	0.2	0.2 1	0.2 5	0.2 4	0.2 2	0.4 8	0.1 5	9.6	6.5 (0.2 9	0.2	0.2 5	
ANYCSE	.↑ Time	8 18	7 18	60 18	54 18	18	6 18	6 18	11 18	18 18	18 18	11 18	5 18	52 18	6 18	00 18	11 18	6 18	7 18	0 18	13 18	8 18	18 18	52 18	52 18	96 18	0 18	18 18	84 18	4 18	18 18	2 15	2 14	00 18	90 18	18 18	
	(dO ↓ (162	19/	3 762	3235	3 232	1 234	1 241	663	663	663	662	665	596	593	7 582	382	382	380	382	102	391	340	191	595	140	571	473	268	851	535	617	677	930	682	596	101
NO-DON	Time (s	195.1	204.1	200.3	198.8	3.001	203.7	200.1	44.3	42.2	41.3	43.8	46.8	881.2	871.5	876.7	45.0	41.9	38.3	44.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1	Obj.↑	6602	6555	6655	1904	2171	1925	2152	6585	6577	6581	6570	6575	5879	5879	5807	3413	3441	3469	3485	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
SQF	Time (s) \downarrow	95.3	95.4	100.6	94.4	97.3	105.8	95.5	18.0	18.5	22.4	18.4	18.4	300.4	303.0	299.8	17.7	18.5	18.0	18.0	1142.1	1147.6	1120.8	1176.6	1183.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Obj. ↑	7490	7498	7507	2196	2169	2183	2255	6209	6463	6489	6485	6491	6000	6000	5880	3759	3771	3752	3753	9862	3710	3310	18813	5490	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
eric	Time (s) \downarrow	N/A	N/A	N/A	N/A	N/A	N/A	N/A	914.4	914.3	921.5	916.2	912.4	N/A	N/A	N/A	887.9	897.7	872.8	880.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
นอก	Obj.↑	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5976	6009	6006	5978	5948	N/A	N/A	N/A	3568	3575	3545	3548	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
NN	ime (s) \downarrow	214.8	185.3	212.8	215.5	216.0	218.6	206.3	186.9	190.8	189.6	188.6	184.8	191.4	192.0	192.3	188.5	183.8	170.6	189.3	201.5	201.8	203.0	202.8	202.6	214.0	213.9	214.0	213.9	212.9	220.4	223.1	258.9	217.5	217.6	291.0	
-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T	Dbj.↑ T	6424	6224	6841	1853	1855	1898	1933	6049	6609	1609	5594	6049	4958	4938	4948	3293	3185	3029	3201	9110	2939	2650	17115	4674	11430	4225	3720	22224	6616	4208	4816	5312	8404	5386	7352	
	me $(s) \downarrow (0)$	10.1	9.3	8.6	9.2	9.0	9.1	9.5	5.0	5.0	4.9	4.8	4.7	10.6	10.1	11.3	4.1	4.7	4.5	4.4	24.4	23.8	17.3	29.2	31.6	34.8	36.0	26.1	45.1	43.7	32.5	37.3	43.4	54.3	44.2	66.0	0.000
ПЫ	Jbj.↑ Ti	7336	7400	7343	1998	1971	1969	2075	6380	6327	6329	6300	6369	5006	5086	5156	3693	3695	3670	3682	9462	3203	2770	8452	5099	3004	4592	3922	5938	7283	4520	5100	5592	8551	5638	7934	
	me (s) t	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1784.5 (1486.7 (1582.0 (1612.8 (N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A 1	N/A	N/A 1	N/A '	N/A	N/A 2	N/A	- V/N	N/A	N/A	N/A	N/A	N/A	
5	bj.↑ Ti	N/A	N/A	N/A	A/A	N/A	A/A	A/A	5340	5351 i	5355	5357	A/A	A/A	A/A	A/A	A/A	N/A	A/A	A/A	N/A	A/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A	N/A	A/A	A/A	A/A	A/A	A/A	V/A	
13	-	1766	1785	1779	1778	1766	1785	1779	9 066t	9 066t	9 066t	9 066t	0660	5000	5000	5000	5909	5916	5914	5916	2498	2498	0000	9570	9570	7148	7148	4000	1459	1459	6000	8000	0000	I 666t	0000	8000	
12	-	000	2000 1.	2000 1.	000 1	2000 1.	000 1	000 1	000	6 000.	000	6 000	000	3000 6	3000 6	3000 6	000 5	\$ 000.	000 5	000 5	5000 1.	5000 1.	5000 1(5000 2	5000 2	7000 1.	7000 1.	1 000	7000 4.	7000 4.	3000 1(000 1:	0000 20	5 0000	0000 20	4000 2;	
Istance		G36 2	G37 2	G38 2	G39 2	G40 2	G41 2	G42 2	G43 1	G44 1	G45 1	G46 1	G47 1	G48 3	G49 3	G50 3	G51 1	G52 1	G53 1	G54 1	G55 5	G56 5	G57 5	G58 5	G59 5	G60 7	G61 7	G62 7	G63 7	G64 7	G65 8	G66 9	G67 1(G70 1(G72 1(G77 14	
Ĩ																																					

Table 6: Continued.

17

	ie (s) ↓	1.9	2.3	1.9	1.9	2.9	1.8	2.4	2.1	2.2	2.3	1.4	1.5	1.4	2.1	2	1.6	1.6	1.7	1.7	1.8	1.5	2.2	2.1	Э	1.8	2	7	2.1	2	3.4	2.5	1.7	2	1.7	1.7
ROS	↑ Tin	1	2	4	1	2	1	8	1	5	-			~	2	s.	5	2	7	-	~	15	11	2	4	73	5	6	4	5	4	5	2	4	5	9
	Obj.	1496	1493	1491	1496	1496	2361	2188	2171	2185	2181	591	582	629	3892	3838	3845	3852	1067	967	993	975	1660	1670	1675	1667	1666	3532	3412	3596	3654	3525	1482	1454	1435	953(
anilla	Time (s) \downarrow	2.8	2.8	2.9	3.3	3.2	2.8	2.1	2.8	2.8	2.9	7	7	7	2.8	1.9	2.3	2.4	2.2	2.1	2.2	2.2	3.3	3.9	3.6	2.1	3.1	1.7	б	3.4	3.1	б	2.5	2.5	2.4	7
ROS-v	Obj. ↑	14949	15033	15016	14984	15006	2436	2188	2237	2246	2201	616	604	617	3914	3817	3843	3841	1094	972	1006	1011	16790	16819	16801	16795	16758	3517	3507	3634	3656	3596	1488	1449	1418	9225
НО	Time (s) ↓	557.3	333.3	269.6	300.6	98.2	307.3	381.0	456.5	282.0	569.3	143.8	100.7	459.4	88.2	80.3	1.3	7.8	0.3	0.2	13.3	55.8	28.5	45.1	16.3	64.8	44.8	53.2	38.9	68.2	150.4	124.7	160.1	62.6	88.9	66.2
Z	Obj.↑	15165	15172	15173	15184	15193	2632	2409	2428	2478	2407	699	660	686	4012	3984	3991	3983	1207	1081	1122	1109	17167	17168	17162	17163	17154	4020	3973	4106	4119	4003	1653	1625	1607	10046
(CSP	Time (s) \downarrow	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1
ANY	Obj. ↑	15115	15088	15111	15115	15092	1164	932	1007	1164	919	650	633	663	3973	3975	3945	3955	666	915	861	895	17098	17049	17042	17085	17014	2846	2778	3035	3032	2881	1590	1550	1525	9968
SQP	Time (s) \downarrow	16.5	17.0	17.0	17.1	17.3	25.0	16.6	19.3	16.5	18.2	16.4	17.4	18.9	16.9	17.3	18.2	20.2	18.7	17.0	17.0	17.5	135.5	135.6	137.7	141.8	136.3	134.3	136.4	136.2	133.6	131.0	129.3	126.2	126.0	138.1
ш	Obj. ↑	14880	14845	14872	14886	14847	2302	2081	2096	2099	2055	624	608	638	3900	3885	3896	3886	1083	962	777	984	16599	16626	16591	16661	16608	3475	3433	3582	3578	3439	1545	1517	1499	9816
etic	Time (s) \downarrow	595.3	595.3	588.6	588.7	591.9	604.4	589.9	589.7	604.4	593.3	554.5	543.6	550.8	571.1	567.6	561.5	558.7	584.0	584.2	576.8	576.3	N/A													
Gen	Obj. ↑	14075	14035	14105	14055	14104	1504	1260	1252	1326	1266	414	388	425	3679	3625	3642	3640	704	595	589	612	N/A													
DM	Time (s) ↓	9.6	8.4	6.5	6.9	8.1	7.8	8.9	7.7	8.2	7.5	4.0	4.4	4.0	5.0	4.8	5.3	5.3	4.5	4.4	4.5	4.9	15.2	15.0	16.1	16.2	15.3	16.4	16.1	16.0	16.2	17.0	11.1	10.7	10.9	14.2
	Obj. ↑	14735	14787	14663	14716	14681	2161	2017	1938	2031	1961	553	530	558	3844	3815	3825	3815	992	869	928	936	16402	16422	16452	16407	16422	3250	3198	3324	3320	3243	1342	1284	1292	9644
3	-	19176	19176	19176	19176	19176	19176	19176	19176	19176	19176	1600	1600	1600	4694	4661	4672	4667	4694	4661	4672	4667	19990	19990	19990	19990	19990	19990	19990	19990	19990	19990	4000	4000	4000	11778
<u>Z</u>	-	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Instance		G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32	G33	G34	G35

Table 7: Complete results on Gset instances for Max-3-Cut.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{\mathcal{S}}$		MD	Ge	enetic		BQP	AN	YCSP	Ι	НОР	ROS-	vanilla	ROS	
136 NA NA 976 136 997 1801 10030 743 9572 21 9581 123 149 NA NA NA 975 1323 9983 1801 10040 1166 9893 141 972 121 223 937 125 133 NA NA NA 2660 1323 2497 1811 10040 1166 9893 144 9422 125 2544 25 971 125 2541 252 2541 252 2541 252 2541 252 2541 252 2541 25 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 252 2541 <t< th=""><th>Obj. ↑</th><th>Obj. ↑</th><th></th><th>Time (s) \downarrow</th><th>Obj. ↑</th><th>Time (s) \downarrow</th><th></th><th></th></t<>	Obj. ↑	Obj. ↑		Time (s) \downarrow	Obj. ↑	Time (s) \downarrow										
	11766 9600	9600		13.6	N/A	N/A	9786	138.6	9972	180.1	10039	74.3	9372	2.1	9581	2.3
140 NA NA NA 975 14.2 980 180.1 10040 116.6 989 2.5 5970 1.5 13.3 NA NA NA 206 13.12 24.97 180.1 2673 25.3 577 25.3 577 25.3 257 25.4	11785 9632	9632		14.9	N/A	N/A	9821	139.2	9983	180.1	10052	3.4	8893	1.4	9422	1.5
134 NA NA XiA 260 13.2 2497 80.1 2003 9.0 261 2.5 2554 2.5 127 NiA NiA 266 13.2 2437 8.1 233 8.1 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.5 2534 2.7 2541 2.5 2534 2.7 254 2.7 254 2.4 2.5 2544 2.5 254 2.4 1.8 1.1 1.7 2544 2.5 2544 2.5 2544 2.5 2544 2.5 2544 2.5 2544 2.5 2544 2.5 2544 2.5	11779 9629	9629		14.0	N/A	N/A	9775	142.3	9980	180.1	10040	116.6	9489	2.5	9370	1.5
	11778 2368	2368		13.4	N/A	N/A	2600	132.8	2497	180.1	2903	9.0	2621	2.5	2557	2.2
	11766 2315	2315		13.3	N/A	N/A	2568	131.2	2428	8.6	2870	82.8	2474	7	2524	2.4
13.1 N/A N/A 2862 12.92 2665 32.1 29.00 2.5 26.68 2.7 2013 2.2 7.1 7602 926.7 83.29 2.91 8571 96.8 83.9 2.7 7.7 7602 926.7 83.26 34.2 85.30 180.1 8571 616.8 83.99 2.6 83.1 1.7 7 7602 926.7 83.12 27.3 8513 180.1 8577 2.99.4 83.99 2.6 83.1 1.7 7 7602 926.7 83.12 27.3 8513 180.1 8577 2.99.4 83.97 2.6 83.7 2.2 14.4 N/A N/A 89.8 49.40 2.7 88.9 2.6 83.7 2.2 6.4 4571 90.8 89.6 4900 180.2 6000 19.2 89.91 1.8 6.4 4571 90.81 457 90.91 <t< td=""><td>11785 2386</td><td>2386</td><td></td><td>12.7</td><td>N/A</td><td>N/A</td><td>2606</td><td>129.9</td><td>2416</td><td>8.4</td><td>2887</td><td>87.7</td><td>2521</td><td>3.2</td><td>2584</td><td>2.5</td></t<>	11785 2386	2386		12.7	N/A	N/A	2606	129.9	2416	8.4	2887	87.7	2521	3.2	2584	2.5
8.1 7624 9267 8239 299 8531 180.1 8573 380.3 8414 2.6 8349 17 7.7 7607 919.0 8326 37.7 831.5 180.1 8566 186.2 8337 2.2 7.5 7653 918.7 8312 27.3 8510 180.1 8566 186.5 8337 2.2 14.7 7603 918.7 8326 37.7 851.3 830.2 6000 0.9 8357 2.2 14.4 N/A N/A 597.8 944.0 597.4 180.2 6000 0.9 835.7 2.2 117 181 181 181 181 181 127 23 849.7 2.2 123 2.2 2.2 835.7 2.2 131 181 181 180.2 500.0 0.9 2.6 837.7 2.2 14 181 181 181 181 181 181 181 141	11779 2490	2490		13.1	N/A	N/A	2682	129.2	2685	32.8	2980	2.5	2638	2.7	2613	2.2
	9990 8214	8214		8.1	7624	926.7	8329	29.9	8531	180.1	8573	380.3	8414	2.6	8349	2.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9990 8187	8187		7.0	7617	919.0	8326	27.7	8515	180.1	8571	616.8	8369	2.6	8311	1.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9990 8226	8226		LL	7602	926.7	8296	34.2	8530	180.1	8566	186.2	8397	2.9	8342	1.8
7.2 7(9) 928(0 8322 27.3 8513 802 8357 23 8357 23 14.7 N(A N(A 5998 394.48 5958 5912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8912 23 8914 18 6.6 4571 9891 4910 27.6 5005 1802 5037 4719 4814 14 825 14 4820 117 4421 1802 5037 4719 4816 19 66 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 666 19 66 19 666 19 67 78 78 <td>9990 8229</td> <td>8229</td> <td></td> <td>7.5</td> <td>7635</td> <td>918.7</td> <td>8312</td> <td>27.8</td> <td>8501</td> <td>180.1</td> <td>8568</td> <td>215.3</td> <td>8409</td> <td>2.6</td> <td>8339</td> <td>1.7</td>	9990 8229	8229		7.5	7635	918.7	8312	27.8	8501	180.1	8568	215.3	8409	2.6	8339	1.7
	9990 8211	8211		7.2	7619	928.0	8322	27.3	8513	180.2	8572	239.4	8386	2.6	8357	2.2
144 N/A N/A N/A N/A N/A S98 404.0 5974 180.2 6000 0.9 5938 2.8 5914 1.8 14.5 4871 908.1 4971 5989 180.2 6000 119.2 5938 2.9 5918 1.8 6.4 4571 908.1 4910 27.8 5002 180.2 5039 223.9 4846 2.9 5918 1.8 6.4 4571 908.1 4910 27.8 5002 180.2 5039 213.4 480 1.9 4866 1.9 4866 1.9 4866 1.9 6.4 4571 908.1 400.2 1341.5 4408 180.2 5039 233 23 483 2.1 4803 1.6 505 2.6 4808 1.6 505 2.6 4808 1.6 505 2.1 41803 2.1 41803 2.1 41803 2.1 4191 2.4	6000 5806	5806		14.7	N/A	N/A	5998	394.8	5985	180.2	6000	0.4	5954	2.8	5912	0
145 N/A N/A N/A N/A N/A 600 427.1 5989 180.2 6000 119.2 5938 2.9 501 1.7 6.4 4571 989.5 4920 27.8 5002 180.2 5037 47.9 4814 2.4 4820 1.7 6.4 4571 9031 4910 27.8 5005 180.2 5039 23.3 4846 2.6 4808 1.6 6.4 4562 911.7 4921 1506.0 12355 180.2 5039 23.3 4846 2.6 4808 1.6 37.7 N/A N/A N/A 1204.1 1204.2 38.3 1.34.0 4833 2.2 4803 1.6 33.0 N/A N/A N/A N/A 1.90.2 1.40.3 3.35.5 3.39 2.3 4037 2.1 11965 2.6 4037 2.1 11965 2.6 4037 2.1 11965	6000 5794	5794		14.4	N/A	N/A	5998	404.0	5974	180.2	6000	0.9	5938	2.8	5914	1.8
66 4582 889.5 4922 28.6 4990 180.2 5037 479 4814 2.4 4820 1.7 6.4 4571 908.1 4910 27.8 5002 180.2 5040 0.7 4796 1.9 4866 1.9 6.8 4568 898.6 4920 27.6 5005 180.2 5036 134.0 4833 2.2 4783 1.4 7.9 NVA NVA NVA 12042 1506.0 12355 180.2 5036 134.0 4833 2.2 4783 1.4 33.5 NVA NVA NVA 1317.2 3913 180.2 716.5 569.2 576.0 2.7 478 2.1 2377 2.1 46.3 NVA NVA NA NA NA 2.66 1.9 4.86 2.6 4.93 2.5 2.8 2.8 2.8 2.3 2.2 4.83 2.5 2.8 2.8	6000 5823	5823		14.5	N/A	N/A	6000	427.1	5989	180.2	6000	119.2	5938	2.9	5918	1.8
64 4571 908.1 4910 27.8 5002 180.2 5040 0.7 4796 1.9 4866 1.9 6.4 4571 908.1 4920 27.6 5005 180.2 5039 223.9 4846 2.6 4808 1.6 6.8 4562 911.7 4201 30.1 4998 180.2 5039 223.9 4846 2.6 4808 1.6 37.9 N/A N/A 12042 1506.0 12355 180.2 5039 223.9 4837 2.1 11965 2.6 33.0 N/A N/A N/A 1317.2 3913 180.2 7519 3337 1.9 737.1 10178 120 237.4 1.9 436 3.5 53.5 2.8 3.4 3.5 2.8 3.4 3.7 2.11 11965 2.6 4308 2.1 4.037 2.1 1205 2.7 4.035 2.6 1.9 4.66	5909 4805	4805		6.6	4582	889.5	4922	28.6	4990	180.2	5037	47.9	4814	2.4	4820	1.7
6.8 4568 898.6 4920 27.6 5005 180.2 5036 134.0 4833 2.6 4808 1.6 6.4 4562 911.7 4921 30.1 4998 180.2 5036 134.0 4833 2.2 4785 1.4 37.9 N/A N/A N/A 17042 1506.0 12355 180.2 17429 383.1 12010 2.1 11955 2.6 33.0 N/A N/A N/A 137.1 6413 146.3 5.3 5.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 4.03 2.3 2.3 4.03 2.3 4.03 2.3 4.03 </td <td>5916 4849</td> <td>4849</td> <td></td> <td>6.4</td> <td>4571</td> <td>908.1</td> <td>4910</td> <td>27.8</td> <td>5002</td> <td>180.2</td> <td>5040</td> <td>0.7</td> <td>4796</td> <td>1.9</td> <td>4866</td> <td>1.9</td>	5916 4849	4849		6.4	4571	908.1	4910	27.8	5002	180.2	5040	0.7	4796	1.9	4866	1.9
6.4 4562 911.7 4921 30.1 4998 180.2 5036 134.0 4833 2.2 4785 1.4 37.9 N/A N/A 12042 1506.0 12355 180.2 12429 383.1 11965 2.6 37.9 N/A N/A 12042 1317.2 3913 180.2 12429 383.1 11965 2.6 33.0 N/A N/A 1371.2 3913 180.2 760.2 274.9 383.1 11965 2.1 33.0 N/A N/A 3631 1377.1 6178 180.2 766.2 275.5 613.3 1.7 6448 3.5 46.3 N/A N/A N/A N/A N/A 180.2 565.5 576.0 2.75 613.8 2.6 3.73 2.6 2.37 2.9 2.66 2.7 2.6 1.37 1.9 2.75 5.6 2.7 5.6 2.7 5.6 2.3 2.3	5914 4845	4845		6.8	4568	898.6	4920	27.6	5005	180.2	5039	223.9	4846	2.6	4808	1.6
37.9 N/A N/A 12042 1506.0 12355 180.2 12429 333.1 12010 2.1 11965 2.6 38.5 N/A N/A N/A 12042 1506.0 12355 180.2 1473 535.6 33.3 1001 2.1 11965 2.6 38.5 N/A N/A N/A 1317.1 6178 180.2 4752 560.2 4085 3.3 4037 2.1 46.3 N/A N/A N/A N/A N/A 14637 180.2 17716 6483 2.1 23274 1.9 57.7 N/A N/A N/A N/A N/A 1204.1 180.2 1.076 683.0 16467 2.6 16398 2.3 57.7 N/A N/A N/A N/A 180.2 5685 4 3.6 2.7 56133 1.7 6448 3.5 566 2.7 56133 2.1 1.2 2.4 56	5916 4836	4836		6.4	4562	911.7	4921	30.1	4998	180.2	5036	134.0	4833	2.2	4785	1.4
38.5 N/A N/A 4205 1341.5 4408 180.2 4752 569.2 4085 3.3 4037 2.1 33.0 N/A N/A N/A 3817 1317.2 3913 180.2 4752 569.2 4085 3.3 2357 2.1 22374 1.9 47.1 N/A N/A N/A N/A N/A 16974 180.2 7262 27.5 6133 1.7 6448 3.5 57.7 N/A N/A N/A N/A N/A N/A 16974 180.2 7262 27.5 6133 1.7 6448 3.5 57.7 N/A N/A N/A N/A N/A 180.2 7262 57.5 6133 2.6 1.9 7.3 2.3 536 2.7 56 1.937 1.9 5.4 508 2.1 1.9 5.7 5.6 1.937 1.9 5.3 5.6 5.7 5.6 1.937	12498 11612	11612		37.9	N/A	N/A	12042	1506.0	12355	180.2	12429	383.1	12010	2.1	11965	2.6
33.0 N/A N/A N/A 3817 1317.2 3913 180.2 4083 535.6 3597 3.3 3555 2.8 47.1 N/A N/A N/A 3817 1317.2 3913 180.2 4083 555.6 3597 3.3 3555 2.8 46.3 N/A N/A N/A N/A N/A N/A 16974 180.2 7262 27.5 6133 1.7 6448 3.5 58.5 N/A N/A N/A N/A N/A N/A 1002 180.2 7262 57.5 6133 1.7 6448 3.5 58.5 N/A N/A N/A N/A N/A N/A 180.2 7653 503.1 16477 2.6 16398 2.3 73.4 N/A N/A N/A N/A N/A 35070 180.2 55322 658.5 3.4 431926 1.9 73.4 N/A N/A	12498 3716	3716		38.5	N/A	N/A	4205	1341.5	4408	180.2	4752	569.2	4085	3.3	4037	2.1
47.1 N/A N/A 24603 1468.3 25025 180.2 25195 576.0 22748 2.1 23274 1.9 46.3 N/A N/A N/A 6631 1377.1 6178 180.2 7262 275 6133 1.7 6448 3.5 58.5 N/A N/A N/A N/A N/A N/A N/A 16974 180.2 17076 683.0 16467 2.6 16398 2.3 57.7 N/A N/A N/A N/A N/A N/A 180.2 5685 503.1 5861 3.6 193 2.1 25374 1.9 73.4 N/A N/A N/A N/A N/A N/A 180.2 5535 542.4 493 3.4 5086 2.7 566 1.9 73.4 N/A N/A N/A N/A N/A N/A 56.9 8911 2.8 5175 2.6 610 3.9 73.4 N/A N/A N/A N/A N/A 1709 534.7	10000 3246	3246		33.0	N/A	N/A	3817	1317.2	3913	180.2	4083	535.6	3597	3.3	3595	2.8
46.3 N/A N/A 6631 1377.1 6178 180.2 7262 27.5 6133 1.7 6448 3.5 58.5 N/A N/A N/A N/A N/A N/A N/A 1377.1 6174 180.2 7262 27.5 6133 1.7 6448 3.5 58.5 N/A N/A N/A N/A N/A N/A N/A 16974 180.2 6853 503.1 5581 2.5 581 3.5 5581 3.6 2.7 5613 3.6 2.7 5613 3.6 2.7 561 3.6 2.7 561 3.6 2.7 561 3.6 2.7 561 2.9 571 2.6 16398 2.3 73.4 N/A N/A N/A N/A N/A N/A 36.9 8911 2.6 1010 2.5 5861 1.9 5.6 5.6 5.3 3.4 31926 1.9 5.6 5.6 5.4 6610 3.9 5.6 5.6 5.4 6610 3.9 5.6	29570 24099	24099		47.1	N/A	N/A	24603	1468.3	25025	180.2	25195	576.0	22748	2.1	23274	1.9
58.5 N/A N/A <td>29570 6057</td> <td>6057</td> <td></td> <td>46.3</td> <td>N/A</td> <td>N/A</td> <td>6631</td> <td>1377.1</td> <td>6178</td> <td>180.2</td> <td>7262</td> <td>27.5</td> <td>6133</td> <td>1.7</td> <td>6448</td> <td>3.5</td>	29570 6057	6057		46.3	N/A	N/A	6631	1377.1	6178	180.2	7262	27.5	6133	1.7	6448	3.5
57.7 N/A	17148 15993	15993		58.5	N/A	N/A	N/A	N/A	16974	180.2	17076	683.0	16467	2.6	16398	2.3
49.7 N/A S086 2.7 73.4 N/A N/A N/A N/A N/A N/A N/A S086 2.4 4933 3.4 5086 2.1 73.4 N/A N/A N/A N/A N/A N/A N/A 80.1 9711 2.5 59.6 N/A N/A N/A N/A N/A N/A 7129 159.6 7416 542.5 5.4 6610 3.9 69.0 N/A N/A N/A N/A N/A N/A 7416 542.5 6501 5.4 6610 3.9 79.0 N/A N/A N/A N/A N/A N/A 7827 146.5 8086 75.7 7001 3.5 755 2.6 74.8 N/A N/A N/A N/A N/A 7827 146.5 8092 7.7 7011 3.5 7559 4.	17148 5374	5374		57.7	N/A	N/A	N/A	N/A	6426	180.2	6853	503.1	5881	2.5	5861	3.6
73.4 N/A N/A <td>14000 4497</td> <td>4497</td> <td></td> <td>49.7</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>5444</td> <td>180.2</td> <td>5685</td> <td>242.4</td> <td>4983</td> <td>3.4</td> <td>5086</td> <td>2.7</td>	14000 4497	4497		49.7	N/A	N/A	N/A	N/A	5444	180.2	5685	242.4	4983	3.4	5086	2.7
73.4 N/A N/A <td>41459 33861</td> <td>33861</td> <td></td> <td>73.4</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>35070</td> <td>180.2</td> <td>35322</td> <td>658.5</td> <td>32868</td> <td>4</td> <td>31926</td> <td>1.9</td>	41459 33861	33861		73.4	N/A	N/A	N/A	N/A	35070	180.2	35322	658.5	32868	4	31926	1.9
59.6 N/A N/A <td>41459 8773</td> <td>8773</td> <td></td> <td>73.4</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>8557</td> <td>180.4</td> <td>10443</td> <td>186.9</td> <td>8911</td> <td>2.8</td> <td>9171</td> <td>2.5</td>	41459 8773	8773		73.4	N/A	N/A	N/A	N/A	8557	180.4	10443	186.9	8911	2.8	9171	2.5
69.0 N/A N/A N/A N/A N/A 7129 159.6 7416 542.5 6501 5.4 6610 3.9 79.0 N/A N/A N/A N/A N/A 7827 146.5 8086 756.7 7001 3.5 7259 4.1 74.8 N/A N/A N/A N/A N/A 7893 180.2 9999 7.8 9982 4.2 9711 2.5 79.2 N/A N/A N/A N/A N/A 7893 180.2 8192 271.2 7210 5.1 7297 3.5 74.2 N/A N/A N/A N/A N/A 739 14.5 3.5 74.2 N/A N/A N/A N/A 11128 180.2 11578 154.9 10191 8.6 10329 8.5 241.1 N/A N/A N/A N/A N/A N/A 15658 180.2 16321 331.	16000 5212	5212		59.6	N/A	N/A	N/A	N/A	6232	180.1	6490	324.7	5735	3.5	5775	2.6
79.0 N/A N/A <td>18000 5948</td> <td>5948</td> <td></td> <td>69.0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>7129</td> <td>159.6</td> <td>7416</td> <td>542.5</td> <td>6501</td> <td>5.4</td> <td>6610</td> <td>3.9</td>	18000 5948	5948		69.0	N/A	N/A	N/A	N/A	7129	159.6	7416	542.5	6501	5.4	6610	3.9
74.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A 94.8 180.2 9999 7.8 9982 4.2 9971 2.5 79.2 N/A N/A N/A N/A N/A 7893 180.2 8192 271.2 7210 5.1 7297 3.5 142.3 N/A N/A N/A N/A N/A 11128 180.2 11578 154.9 10191 8.6 10329 8.5 241.1 N/A N/A N/A N/A N/A 1558 180.2 16321 331.2 14418 20.2 14464 9.7	20000 6545	6545		79.0	N/A	N/A	N/A	N/A	7827	146.5	8086	756.7	7001	3.5	7259	4.1
: 79.2 N/A N/A N/A N/A 7893 180.2 8192 271.2 7210 5.1 7297 3.5 142.3 N/A N/A N/A N/A 11128 180.2 11578 154.9 10191 8.6 10329 8.5 8 241.1 N/A N/A N/A N/A 15658 180.2 16321 331.2 14418 20.2 14464 9.7	9999 9718	9718		74.8	N/A	N/A	N/A	N/A	9848	180.2	6666	7.8	9982	4.2	9971	2.5
t 142.3 N/A N/A N/A N/A 11128 180.2 11578 154.9 10191 8.6 10329 8.5 8 241.1 N/A N/A N/A N/A 15658 180.2 16321 331.2 14418 20.2 14464 9.7	20000 6612	6612	~	79.2	N/A	N/A	N/A	N/A	7893	180.2	8192	271.2	7210	5.1	7297	3.5
8 241.1 N/A N/A N/A N/A 15658 180.2 16321 331.2 14418 20.2 14464 9.7	28000 9294	9294		142.3	N/A	N/A	N/A	N/A	11128	180.2	11578	154.9	10191	8.6	10329	8.5
	40000 13098	13098		241.1	N/A	N/A	N/A	N/A	15658	180.2	16321	331.2	14418	20.2	14464	9.7

Table 7: Continued.

(a) Weighted Gset with perturbation ratio [0.9, 1.1]

(b) Weighted Gset with perturbation ratio [0, 100]

Figure 4: The computational time comparison of Max-k-Cut problems.

Table 8: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0.9, 1.1].

Methods	G70 (N=	10,000)	G72 (N=	=10,000)	G77 (N=	=14,000)	G81 (N=	20,000)
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
MD	8594.38	9709.56	5647.28	6585.04	8051.81	9337.31	11326.30	13179.33
PI-GNN	8422.79	-	5309.65	-	7470.89	-	10416.44	-
ANYCSP	5198.87	5375.92	-15.57	-25.33	81.76	114.36	33.49	-4.25
ROS-vanilla ROS	$9177.21 \\ 8941.80$	9991.95 9970.72	$6542.78 \\ 6165.62$	7733.87 7366.54	$9265.65\ 8737.59$	$10944.35 \\ 10359.25$	$\frac{13132.52}{12325.85}$	$15456.28 \\ 14570.04$

E. The Results on Weighted Gset Instances

The computational time on weighted Gset with perturbation ratio of [0.9, 1.1] and [0, 100] are shown in Fig. 4a and Fig. 4b respectively. The cut values are shown in Table 8 and Table 9 respectively.

F. Ablation Study

F.1. Model Ablation

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons (denoted by ROS-MLP) in our ROS framework and (ii) solve the relaxation via mirror descent (denoted by MD). Experiments on the Gset dataset show that ROS consistently outperforms ROS-MLP and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic rounding instead of our random sampling algorithm. Results indicate that ROS generally outperforms PI-GNN, demonstrating the importance of the sampling procedure.

These comparisons, detailed in Tables 10 and 11, confirm that both the GNN-based optimization and the random sampling algorithm contribute significantly to the overall performance.

F.2. Sample Effect Ablation

We investigated the effect of the number of sampling iterations and report the results in Tables 12, 13, 14, and 15.

Cut Value (Table 12, Table 14): The cut values stabilize after approximately 5 sampling iterations, demonstrating strong performance without requiring extensive sampling.

Sampling Time (Table 13, Table 15): The time spent on sampling remains negligible compared to the total computational

Methods	G70 (N=10,000)		G72 (N=10,000)		G77 (N=14,000)		G81 (N=20,000)	
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
MD	456581.30	497167.48	338533.07	392908.80	482413.19	558264.21	682809.47	790089.41
PI-GNN	442650.59	-	312802.48	-	442354.44	-	623256.74	-
ANYCSP	467696.98	491654.75	-1903.50	-2498.86	9712.13	10130.89	2842.64	2845.46
ROS-vanilla	472067.14	498273.60	367795.62	421189.97	524010.92	597597.50	742432.41	846395.85
ROS	470268.97	498269.90	362910.89	415905.88	515991.31	590312.40	731468.67	835424.19

Table 9: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0, 100].

Table 10: Cut values returned by each method on Gset.

Methods	G70		G72		G77		G81	
	k = 2	k=3	k = 2	k = 3	k = 2	k=3	k = 2	k = 3
ROS-MLP	8867	9943	6052	6854	8287	9302	12238	12298
PI-GNN	8956	_	4544	-	6406	_	8970	_
MD	8551	9728	5638	6612	7934	9294	11226	13098
ROS	8916	9971	6102	7297	8740	10329	12332	14464

time, even with an increased number of samples.

These results highlight the efficiency of our sampling method, achieving stable and robust performance with little computational cost.

G70 G70		70	G72		G77		G81	
111001000	k=2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
ROS-MLP	3.49	3.71	3.93	4.06	8.39	9.29	11.98	16.97
PI-GNN	34.50	-	253.00	_	349.40	-	557.70	-
MD	54.30	74.80	44.20	79.20	66.00	142.30	130.80	241.10
ROS	3.40	2.50	3.90	3.50	8.10	8.50	9.30	9.70

Table 11: Computational time for each method on Gset.

Table 12: Cut value results corresponding to the times of sample T on Gset.

Т	G70		G72		G	77	G81	
-	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
0	8912.62	9968.11	6099.88	7304.45	8736.58	10323.61	12328.83	14458.09
1	8911	9968	6100	7305	8736	10321	12328	14460
5	8915	9969	6102	7304	8740	10326	12332	14462
10	8915	9971	6102	7305	8740	10324	12332	14459
25	8915	9971	6102	7307	8740	10326	12332	14460
50	8915	9971	6102	7307	8740	10327	12332	14461
100	8916	9971	6102	7308	8740	10327	12332	14462

Table 13: Sampling time results corresponding to the times of sample T on Gset.

Т	G70		G70 G72		G	77	G81	
-	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
1	0.0011	0.0006	0.0011	0.0006	0.0020	0.0010	0.0039	0.0020
5	0.0030	0.0029	0.0029	0.0030	0.0053	0.0053	0.0099	0.0098
10	0.0058	0.0059	0.0058	0.0058	0.0104	0.0104	0.0196	0.0196
25	0.0144	0.0145	0.0145	0.0145	0.0259	0.0260	0.0489	0.0489
50	0.0289	0.0289	0.0288	0.0289	0.0517	0.0518	0.0975	0.0977
100	0.0577	0.0577	0.0576	0.0578	0.1033	0.1037	0.1949	0.1953

Table 14: Cut value results corresponding to the times of sample T on random regular graphs.

T	n = 100		n = 1	1,000	n = 10,000		
-	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	
0	126.71	244.77	1291.86	2408.71	12856.53	24102.22	
1	127	245	1293	2408	12856	24103	
5	127	245	1293	2410	12863	24103	
10	127	245	1293	2410	12862	24103	
25	127	245	1293	2410	12864	24103	
50	127	245	1293	2410	12864	24103	
100	127	245	1293	2410	12864	24103	

Table 15: Sampling time results corresponding to the times of sample T on random regular graphs.

Т	n = 100		n = 1	1,000	n = 10,000		
-	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3	
1	0.0001	0.0001	0.0001	0.0001	0.0006	0.0006	
5	0.0006	0.0006	0.0007	0.0007	0.0030	0.0030	
10	0.0011	0.0011	0.0014	0.0013	0.0059	0.0059	
25	0.0026	0.0026	0.0033	0.0031	0.0145	0.0145	
50	0.0052	0.0052	0.0065	0.0060	0.0289	0.0289	
100	0.0103	0.0103	0.0128	0.0122	0.0577	0.0578	