Progress Reward Model for Reinforcement Learning
via Large Language Models

Xiuhui Zhang, Ning Gao, Xingyu Jiang,
Yihui Chen, Yuheng Pan, Mohan Zhang, Yue Deng*

Beihang University
37 Xueyuan Road, Haidian District, Beijing
{zhangxiuhui, gaoning_ai, jxy33zrhd}@buaa.edu.cn
{21375399, fzx12003, zmh666, ydengl}@buaa.edu.cn

Abstract

Traditional reinforcement learning (RL) algorithms face significant limitations in
handling long-term tasks with sparse rewards. Recent advancements have leveraged
large language models (LLMs) to enhance RL by utilizing their world knowledge
for task planning and reward generation. However, planning-based approaches
often depend on pre-defined skill libraries and fail to optimize low-level control
policies, while reward-based methods require extensive human feedback or ex-
haustive searching due to the complexity of tasks. In this paper, we propose the
Progress Reward Model for RL (PRM4RL), a novel framework that integrates
task planning and dense reward to enhance RL. For high-level planning, a com-
plex task is decomposed into a series of simple manageable subtasks, with a
subtask-oriented, fine-grained progress function designed to monitor task execution
progress. For low-level reward generation, inspired by potential-based reward shap-
ing, we use the progress function to construct a Progress Reward Model (PRM),
providing theoretically grounded optimality and convergence guarantees, thereby
enabling effective policy optimization. Experimental results on robotics control
tasks demonstrate that our approach outperforms both LLM-based planning and
reward methods, achieving state-of-the-art performance. The code is available at
https://github.com/deng-ai-lab/PRM4RL

1 Introduction

Reinforcement learning (RL) has shown exceptional potential in solving sequential decision-making
problems. However, in real-world scenarios involving complex, long-term tasks with sparse rewards,
agents face significant challenges in planning and decision-making due to insufficient feedback
signals[1} 2]]. Traditional RL frameworks address these challenges primarily by focusing on two
strategies: task decomposition and reward shaping. Hierarchical RL[3} 4] simplifies decision-making
by autonomously decomposing complex tasks into hierarchical subtasks, while reward shaping
techniques provide dense training signals through the reconstruction of reward functions, such as
inverse RL[5} 16} 7] and intrinsic reward mechanisms[8]]. Despite their advantages, both approaches
heavily rely on expert data for priors[9]] or supervision[10], and the large-scale acquisition of such
data is often challenging, limiting the scalability and applicability of these methods.

Recent advancements in large language model (LLM) research have made significant progress in
areas such as dialogue[L1, [12], sequential decision-making[13} 14]], and coding[[13} [16, [17]. By
leveraging the extensive and diverse human knowledge acquired during the pre-training phase, LLMs

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/deng-ai-lab/PRM4RL

possess a broad range of world knowledge and emergent reasoning abilities[18} [19]. Consequently,
LLM-Augmented RL has emerged as a promising approach to overcome the challenges faced by
traditional RL methods[20]]. To tackle the issues of long-term planning and sparse rewards, previous
LLM-based approaches have evolved into two main paradigms: LLM as a planner[21} 22, 23] and
LLM as a rewarder[24} [25| [26]], as illustrated in Figure[T] As a planner, LLM decomposes complex,
long-term tasks into a series of short-term, goal-oriented subtasks, incorporating subtask priors into
the decision-making process. As a rewarder, LLM constructs a dense reward function for sparse-
reward tasks, providing guidance to the underlying policy based on the meaningful priors encoded
within the LLM.

% Original Task

\v4
%;s LLM-Augmentation
Q@ Subtask 1 ... T3 Subtask N [[{[] GAP: NO Subtask Priors © Subtask 1 .- 3 Subtask N
|r ﬁui 'GAP: NOLLM Guidance W‘ [P LLM Guidance } [B Guidance 1} [Aicuidancc N]
\V4

Training Low-Level Control Policy

Zo
{ Fine-Grained Progress Reward Model] ;

[@ Policy with Prior m(a|s, prior)]

i ————

[LLM-Augmented Reward J
]
|

| @ Policy without Prior m(a|s) [@0 Policy with Prior m(als, prior)]

Metaworld Maniskill

(a) LLM as Planner (b) LLM as Rewarder (¢) Our Framework (d) Results on Metaworld and Maniskill

Figure 1: Quick view. (a), (b) and (c) shows the structual similarities and differences between
LLM-Augmented methods. (d) is the average evaluation results on Metaworld[27] and Maniskill[28]].

However, LLM as a planner primarily focuses on high-level planning. In the absence of LLM-
augmented dense reward guidance, task decomposition alone—relying solely on natural-language task
priors—is insufficient to support the effective learning of subtasks[29} 22]. Previous approaches have
alleviated this limitation by constructing pre-trained policy libraries[21] or incorporating traditional
motion planning to link subtasks[22], yet these methods lack flexibility and efficiency due to their
non-end-to-end nature. On the other hand, LLM as a rewarder provides low-level guidance. However,
without subtask decomposition, constructing a reward function for an entire long-term, complex
task remains a significant challenge for LLMs[30l 31]. Previous methods have enhanced the quality
of LLM-generated reward functions by incorporating human feedback[24] or evolutionary search
algorithms|[25} 26], but these approaches still require extensive search and significant human expert
assistance. As shown in Figures[Th and[Ib, both of these approaches focus on a single aspect of RL,
neglecting the importance of integrating both high-level planning and low-level reward shaping.

To address the challenges of long-term planning and sparse rewards in reinforcement learning more
efficiently, we propose a novel framework, Progress Reward Model for Reinforcement Learning
(PRM4RL), which integrates both high-level long-term planning and low-level dense rewards to
provide a comprehensive solution, as illustrated in Figure [Tk. In high-level planning, the task is
decomposed into subtasks, each with termination conditions and fine-grained progress evaluations.
For low-level reward generation, we utilize the progress to construct an efficient dense reward
signal with theoretically grounded optimality and convergence guarantees. In practice, our pipeline
decomposes a complex task into a series of manageable, goal-oriented subtasks, each associated with
a natural language subtask prior. For each subtask, we build a fine-grained progress function that
dynamically tracks the execution of the task. Inspired by the potential field theorem, we regard the
progress function as a potential function and design a Progress Reward Model with optimality and
convergence guarantees. The evaluation results in Metaworld[27]] and Maniskill[28] as shown in
Figure[Td demonstrate the effectiveness of our proposed framework, with significant improvements
in success rate and reduced LLM calls, outperforming existing methods in both performance and
efficiency.

2 Related Works

2.1 LLM for Planning

Large language models (LLMs), enriched with diverse world knowledge and human priors during
their pretraining phase, possess the ability to understanding and reasoning[[18, 19,117, 16} [11]]. When
provided with relevant task information, LLMs are able to decompose complex, long-term tasks
into simpler, short-term tasks, each focused on specific objectives[32, [33]. Numerous approaches
have leveraged Task and Motion Planning (TAMP) to realize such task decomposition in robotics
scenes[34} 135]]. However, when using RL for low-level control strategies, a significant gap arises
between high-level planning and low-level control—how to efficiently leverage the natural language
plans generated by LLMs to guide policy training? SayCan[21] addresses this challenge by utilizing
a set of pretrained policies, where the LLM simply selects the appropriate policy based on the plans.
Plan-Seq-Learn[22] uses traditional motion planning to link subtasks, alleviating the burden on RL
policies. In text-based environments, ELLM][23]] trains RL policies by describing state transition in
natural language and computing the similarity between the executed actions and the plan, using this
similarity as a reward signal. However, this approach is computationally expensive and not suitable
for robotics tasks. In contrast, our method constructs an efficient and dense reward signal through
the Progress Reward Model (PRM), effectively bridging the gap between high-level planning and
low-level policy training.

2.2 LLM for Reward Generation

Reward functions are the primary mechanism to guide RL training[36} 37], leading to numerous
approaches that utilize LLMs to generate executable reward functions that provide dense rewards.
Text2Reward[24] uses LLMs to generate executable python functions based on a goal described
in natural language, with human involvement in the loop. Eureka[25]] extends this paradigm by
introducing evolutionary search and automatic reward refinement through LLMs. CurricaLLM[38]]
translates natural language description of tasks in executable task code, including the reward code
and goal distribution code. REvolve[26] translates implicit human knowledge into explicit reward
functions for training RL with human feedback. However, these methods treat the task as a whole
and do not account for the potential stage-wise features of complex tasks. As a result, the generation
process of reward function tend to be highly complex and often require human feedback[24! [26]
or extensive search[25]. In contrast, our approach simplifies the reward generation process by
decomposing the task into short-term, simple subtasks, providing more specific and clear guidance
for each stage of the task.

3 Preliminary

In standard reinforcement learning (RL)[1] tasks, the problem is typically modeled as a Markov
Decision Process (MDP), denoted by M = (S, A, T, R,~, po). Here, S and A represent the state
and action spaces, respectively, v is the discount factor, and py is the distribution of initial states. The
dynamics of environment are captured by the transition function 7 : § x A x & — [0, 1], which
defines the probability of transitioning from one state to another given a specific action. The reward
function R : S x A — R quantifies the immediate reward received for taking an action in a particular
state. A trajectory 7 = (s, ag, 7o, - - -, ST, a1, 77) describes the sequence of states, actions, and
rewards encountered by an agent following a decision-making policy 7. At each time step ¢, the agent
selects an action a; according to a; ~ m(-|st), and the environment responds by transitioning to the
next state s;+1 ~ 7T (-|s¢, a;). The state-action value function (Q-function) Q™ (s, a) represents the
expected cumulative return when taking action a in state s and subsequently following policy 7:

T
Q" (s,a) = Erp(rim) [Z “YkR(StJrka attk)
k=0

St = S,0+ = a‘| (1)

The objective in RL is for the agent to learn a policy 7 : S — A that maximizes the expected
cumulative return defined as:

t=0

T
J(?T) = ETNP(Tlﬂ') [Z ’YtR(Sta at)] (2)

o 70) = 3
g Task gon Subtasks Decomposition @] Progress Function ®
E Subtask 1 plan_list if tcp_to_obj_dist > tcp_to_obj_thresh
rrent_step =
R “Move to object” e
- main_progress = current_step +
. (tcp_to_obj_dist/normalize_dist)
E Subtask 2 1if not is_grasped
Determination Function W(s) current_step
~ “Grasp object” ¢
3 > (L. if tcp_to_obj_dist > tcp_to_obj_thresh > main_progress = current_step
e1if peg_to_goal angle >- peg_to_goal angle thresh
PROMPT| current_step current_step
e Subtask 3 elif not is_grasped g g
Environment Info h o r main_progress - current_step +
- State Space 3 ‘Rotate object current_step - h n (peg_to_goal_angle)
=c N 1if obj_to_goal_angle > obj_to_goal_angle_thresh elif obj_to_goal dist > obj_to_goal thresh :
*+Task Description** f current_step
- Objective is .. E current_step g
= Subiasil elif obj_to_goal dist > obj_to_goal_thresh main_progress = current_step +
Instructions “Move to goal” " (obj_to_goal_dist/normalize_dist
- Think with python program IN current_step return current_step, main_progress
(a) Step-By-step Thinking of LLM
Y =] Subtask Pri
@ Progress Reward Model Env =/ ubtask Prior

@ Subtask 1 @ Subtask N
State s, Action a,
(@sub-progress 1 .os (@ sub-progress N
@ Progress Function ®
v N N { N N
Main Progress ®(s) R M & &

: B subtask1 D sutask2 T subtask3 T subtask 4
R 3 S e L “Move to object” “Grasp object” ' “Rotate object” = “Move to goal”

/
Progress reward: bise) - N Augmented Policy @ Determination Function ¥ | Y7 Current subtask step i,
Te=YP(sud) — 2(s) | [‘®Success = n(als, priOT)
Success reward: \ 4 / Sentence Encoder

o ~
N O N , Prior pr Y
m(s‘)'\/g;‘“"'d Reward ¢ rorpre pr, = Embedding(plan_list[i,])

(b) PRM Augmented RL Policy

Figure 2: An overview of our framework. (a) We prompt the LLM using a Chain-of-Thought
approach in Python code format. The reasoning process is provided as comments (e.g., using #),
while the intermediate steps and final response are represented as executable Python statements. (b)
Our framework augments RL in two ways: subtask prior and the PRM rewards.

4 Method

Our framework, as illustrated in Figure 2] bridges the gap between high-level planning and low-level
training. We begin by decomposing a complex long-term task into a series of short-term subtasks,
with a determination function ¥ to classify the current subtask (Section [#.1). Next, we construct
a potential-based Progress Reward Model (PRM) derived from the progress function ®, which
generates effective reward signals that are proved to have convergence and optimality guarantees
(Section |4.2). Finally, the policy is augmented using both the PRM reward and the subtask priors
(Section4.3).

LLM usage pattern. In our framework, we prompt an LLM to decompose the tasks and generate the
determination function ¥ and progress function ®. Considering that the intermediate inference steps
and the required final response are primarily represented as Python code (as shown later in Section
B E2), inspired from PAL[39], we require the LLM to generate programs as intermediate steps, as
shown in Figure Zh. Specifically, we instruct the LLM to generate natural language reasoning steps
using comment syntax (e.g., ‘#’ in Python), while the code itself is generated normally. Through
this program-aided Chain-of-Thought reasoning, the LLM can generate both the plan and progress
function in a single interaction.

4.1 Subtask Decomposition

Decomposing a long-term task into a series of short-term, manageable tasks provides the policy
with subtask priors and alleviates the complexity of constructing the progress function. Existing
methods[21], 22]] have demonstrated that, given sufficient environment-related information, LLMs
are capable of task decomposition. In our framework, we leverage an LLM to break down the
task into a series of subtasks, each contributing to the success of the overall task. We construct a
Pythonic representation prompt that includes semantically rich contextual information such as state

Algorithm 1 PRM4RL

Require: pythonic LLM prompt prompt, sentence encoder E, policy my, MDP M =
(S, A, T,R,~, po), RL optimization algorithm Optimize_Algo
/I Request LLM

plan_list, V(s), ®(s) = LLM (prompt)

/I Augment State Space

P : prior = E(plan_list[¥(s)])

/I Augment Reward Function

RPEM — - ®(s441) — (s¢) + 1(St41) * Thonus

// Optimizing policy under augmented MDP

M/ = <S + P? Av TJ RPRM: 7> P()>

0* = Optimize_Algo(M'")

space, environmental descriptions, and task descriptions (detailed in Appendix [A.5)), providing a
high-dimensional abstraction of environment-specific information.

While decomposing the subtasks, the LLM is also required to generate a natural language form
subtask prior, which is a description of the corresponding subtask. To ensure consistency and
generalization across the robotics control domain, we designed a fixed pattern for the subtask priors.
Specifically, we instruct the LLM to output each subtask prior in a "verb + noun" format (e.g., ‘Move
to object’ or ‘Grasp object’), significantly enhancing the generalization ability of the trained policy.
The expected output from the LLM is a Python list, called plan_list, as shown in Figure Za(II), where
each element corresponds to a subtask prior.

However, guiding the policy with subtask priors presents another challenge: real-time tracking of
which subtask the policy is currently executing. Previous approaches require calling the LLM at each
timestep, either to regenerate a real-time plan[23] or to check the completion of ongoing subtasks[22],
leading to significant time and computational overhead.

Our key insight is that, with a thorough understanding of the state space, we can determine which
subtask the policy is in based solely on current state. For the previously generated plan_list, we
instruct the LLM to identify the completion condition for each subtask and locate the relevant features
in the state space. We then construct a subtask determination function ¥(s), where given state s, it
will return the index of current subtask in plan_list. As shown in Figure @(II), the LLM ultimately
generates an efficient, low-cost logical chain that ensures rigorous subtask determination.

4.2 Potential-Based Progress Reward Model

Our framework aims to construct a dense and efficient reward signal to guide the training of low-level
policies. While previous approaches[24, 25 26] directly design a reward function, we choose to
model the progress of task execution instead. This approach is more task-relevant and provides
stronger theoretical guarantees on optimality and convergence as proved later.

With the decomposition of subtasks, the focus of our progress function shifts from a long-term,
complex task to short-term, simpler subtasks. This transformation simplifies task comprehension and
the design of usable metrics. Based on the established subtask determination logic ¥, we instruct the
LLM to further define a progress function for each subtask, and then integrating these fine-grained
sub-progress indicators into an overall evaluation of the task progress ®(s), as shown in Figure (III).
The progress function offers a precise and efficient method for monitoring overall task execution.

Inspired by potential-based framework, we treat the progress function ®(s) as a form of potential and
construct the Progress Reward Model (PRM) using the temporal difference form:

RPM = 5 ®(s041) — ®(st) + Lse41) - Toonus ©)

where RI'®M is the dense reward given by PRM at timestep ¢, is the discount factor, and the

indicator function I equals 1 when s;; meets the success conditions and O otherwise. ®(s;41)
and ®(s;) represent the progress at timesteps ¢ + 1 and ¢, respectively. The PRM reward can be
regarded as consisting of two parts: a sparse success reward and a potential-based reward shaping
term. Following [40]], we present the following theorem:

Theorem 4.1 (Policy Invariance). Define an MDP M = (S, A, T, R,~, po), where Ry = 1(8¢41) -
Thonus Tepresents the sparse reward when the task is considered successful. Giving a potential-based
reward shaping function as follows:

Fr=n-®(s41) — (st)

Let another MDP M' = (S, A, T, R+ F,~, po), then every optimal policy in M' will also be an
optimal policy in M and vice versa.

The proof of Theorem |4.1|is provided in Appendix Theorem 4. 1|indicates that RPEM does
not distort the learning of the policy by introducing "deceptive" or "short-sighted" behaviors due to
reward shaping. The optimal policy in M’ remains focused on maximizing the original task objective,
i.e. maximize success rate. Based on Theorem 4.1} we have the following corollary:

Corollary 4.2 (Convergence Guarantee). The introduction of potential-based reward shaping will
not affect the convergence of reinforcement learning algorithms.

Since the PRM reward has a theoretical convergence guarantee, we proceed to demonstrate its
efficiency in convergence, following the work of [41] (Detailed proof provided in Appendix [A.2).
Theorem 4.3 (Convergence Efficiency). Consider two MDPs: M = (S, A, T, R+ F,~, po) with
Q-function Q and M’ = (S, A, T, R,~, po). If we initialize the Q-function in M’ as follows:

Qo(s,a) = Qo(s,a) + ®(s)
Then for all timesteps t > 0 and (s,a) € S X A:

Qi(s,a) = Qi(s,a) + ®(s)
where Q; and Q) are the Q-functions of MDP M and M’ respectively.

The mathematical equivalence between PRM and Q-value initialization, as established in Theorem
3] provides two fundamental insights into why PRM accelerates convergence. First, it demonstrates
that PRM effectively provides prior knowledge-based initialization for value functions, directly
reducing the initial approximation error |Qo — Q*|. Second, the proof formally justifies that any
well-designed potential function ®(s) serves as an actionable curriculum, where the shaping term
y®(s") — ®(s) progressively guides exploration toward high-value regions without altering optimal
policies.

These theoretical results establish PRM not only as a heuristic reward design but also as a mathemati-
cally grounded approach to guide the policy with optimality and convergence.

4.3 Reinforcement Learning Augmentation

Givingan MDP M = (S, A, T, R, 7, po), our framework augment it through both high-level planning
and low-level reward shaping.

At the high level, the policy cannot directly process the natural language form of the plan_list. To
address this, we employ SimCSE[42], a sentence encoder E, to embed the subtask prior. Specifically,
the subtask prior is expressed as:

P : prior = E(plan_list[¥(s)])

where subtask prior is the embedding of current subtask corresponding to state s. The state space is
then augmented to S + P. At the low level, we use the reward R”/*M from Section 4.2]to efficiently
guide the learning of policy. Finally, the augmented MDP is expressed as:

M/ = <S + P? A7 T7 RPRM7 v, p0>

This formulation integrates both high-level planning through the subtask prior and low-level control
via the PRM reward to guide policy learning. Consequently, we can utilize existing RL optimization
algorithms to optimize the policy under the augmented MDP M. In this paper, we use Soft Actor-
Critic (SAC)[43]] and Proximal Policy Optimization (PPO)[44].

S Experiment

In this section, we evaluate PRM4RL on a diverse suite of long-term, sparse reward RL tasks, testing
its ability to provide high-level plan and guide low-level training.

drawer-close button-press window-open door-close

10

go8 |
s [
%06
. ot /
H /
0.2 //
o °%

8% 02 04 06 o

Steps 1e6 " Steps 1e6 Steps 1e6

pick-place

faucet-open sweep-into

10
8

6

Success Rate

=

1

10

0. 8
0.6 { 0.6 [2
[/ N
g el / ’
S04 / - 04 / g
/ 02 /
0,

0860 0325 050 075 Loo 125 150 175 200 800 025 050 075 Loo 125 150 175 200 800 025 050 075 100 125 150 175 200 800 035 050 075 100 125 150 175 200
Steps. 1le6 Steps. 1e6 Steps. 1le6 Steps. le6

LiftCube PickCube LiftPegUpright

/"»-M\N(w“
) MM‘NJ‘V

o

8
2
8

o.
o.
0.4
o.
o

4 06 o.
Steps 1e6

800 025 050 075 100 125 150 175 200 9860 025 050 075 100 125 150 175 2.00
Steps 16 Steps 16

pick-out-of-hole. PuliCube

10 o R |
N

/

2
a
908 N
2
8

TV
osf |/ 408 B oo

o
QDG !’ QDG
¢ / ¢
Soa / Soa
/ < 0.2

%800 0325 050 075 Loo 125 150 175 200 C°%0 05 10 15 20 25 30 35 a0 °80 0z 04 06 08 To
Steps 106 Steps 1e6 e

B ow [ELM
. T2r . Oracle

Figure 3: The learning curves of comparison methods on Metaworld and Maniskill measured by
success rate. All experiments are conducted with 5 random seeds.

5.1 Experiment Settings

The framework is implemented based on the Stable-Baselines3 framework[43]], ensuring consistency
across all methods. We employ the same RL algorithm with identical training parameters for all
methods. For all LLM-related requirements, we utilize OpenAl’s GPT-40[46]]. Details of the hyper-
parameters are provided in Appendix[A-3] To ensure robustness and reliability, all experiments are
conducted with five different random seeds.

Baselines. ELLM(ICML23) [23]] utilizes an LLM as a high-level planner, embedding subtask priors
into the policy. It serves as an example of an LLM-planner approach. T2R(ICLR24) [24] combines
LLMs and human feedback to generate dense reward functions for policy training. We use it as an
example of an LLM-rewarder approach. Oracle is the expert-written dense reward function provided
by the environment. The details of the baseline settings are provided in Appendix[A.2.2]

Environments MetaWorld[27] is an open-source simulated benchmark features a Sawyer robot
interacting with a tabletop setup that includes drawer, window, ball, faucet, door and many objects.
Maniskill[28]] is an advanced robotics simulation platform designed for high-fidelity manipulation
tasks. Further details about the environment and the tasks are provided in Appendix [A4]

5.2 Evaluation Analysis
5.2.1 Outperform previous LLM approaches

As shown in Figures [3]and @] our method consistently outperforms the comparison methods across
nearly all environments, demonstrating faster convergence and superior performance. We observe
the following advantages: (1) In complex long-term tasks such as MW-pick-out-of-hole and MS-
LiftPegUpright, the baseline methods achieve less than 15% success, while our method achieves
nearly 100% success, highlighting our ability to effectively solve challenging tasks. (2) When
compared to ELLM, our approach demonstrates a significantly improved convergence speed, which
underscores the efficiency of the Progress Reward Model in providing dense, theoretically guaranteed
rewards for the low-level control policy. This results in more stable and faster learning compared to
traditional LLM-based planning approaches. (3) In comparison with T2R, the subtask decomposition
in our framework plays a critical role in simplifying the coding process. By breaking down complex

Success Rate

MW-di lose MW-button-pi MW d P MW-d lose MW-faucet-open MW-sweep-into MW-push

1.00 0.99 097 0.980.91 1.000.981.00 0.99 0.99 0.96

Success Rate

.0 . . .
MW-pick-place MW-sweep MW-pick-out-of-hole MS-PushCube MS-PullCube MS-LiftCube MS-PickCube MS-LiftPegUpright

Figure 4: The evaluation results of comparison methods on Metaworld(With prefix ‘MW’) and
Maniskill(with prefix ‘MS’) measured by success rate. All experiments are conducted with 5 random
seeds.

tasks into more manageable subtasks, our method reduces the difficulty of understanding environment
dynamics and designing useful metrics, enabling us to solve complex tasks that T2R fails to address.
This advantage is particularly evident in tasks where the environment is more intricate and requires a
clear separation of the planning and reward stages.

window-open faucet-open sweep ick-out-of-hole

N

5

1o (SN st

- au

Success Rate
o o o
5 o @
Success Rat

°

0a___06 08 10 °800 025 050 075 100 125 150 175 200 800 035 050 075 100 125 150 175 200
Steps 1le6 Steps 1e6 Steps 1e6

(a) Training curves of ablation experiment.

100100 099 099 099

0.
MW-window-open MW-faucet-open MW-sweep MW-pick-out-of-hole

(b) Evaluation results of ablation experiment.

. Our D Our w.o. prior . T2R . Our w.o. potential reward D Our w.0. prm . Oracle

Figure 5: The evaluation results of ablation study on Metaworld measured by success rate. All
experiment is conducted with 5 random seeds.

5.2.2 Ablation Study

To further validate the effectiveness of the two augmentations in our framework, we conduct an
ablation study by constructing three additional baselines:

The results are shown in Figure[5] We observe the following findings:

(1) Compared with ‘our w.o. prm’, replacing the PRM reward with the oracle reward leads to a
significant drop in performance. This demonstrates that, without an efficient and effective reward
signal, directly feeding the subtask prior to the policy does not improve its performance. In most
cases, the training curves and evaluation results of ‘our w.o. prm’ are similar to those of the oracle,
with some instances where adding the subtask prior even causes a slight performance decrease.

(2) The performance of ‘our w.o. prior’ shows that abandoning the subtask prior results in slower
convergence in the training curves. This highlights the role of the subtask prior in enabling efficient
convergence for complex, long-term tasks. Moreover, ‘our w.o. prior’ still outperforms T2R, further
demonstrating the effectiveness of the PRM reward in guiding the policy.

w.0. PRM reward (denoted as ‘our w.o. prm’): The PRM reward is our
replaced with the oracle reward, while retaining the subtask prior.

w.o. subtask prior (denoted as ‘our w.o. prior’): No subtask prior is §*
provided, while retaining the PRM reward.

w.o. potential-based reward shaping (denoted as ‘our w.o. potential ~ * 7 .. 7 "
reward’): The progress function is used directly as the reward, while i — »
retaining the subtask prior. 0,
(3)The performance of ‘our w.o. potential reward’ further demonstrate <. 0a}

the effectiveness of our potential-based reward model, where directly ., N
using progress as reward signal lead to a significant drop in performance. o0 e e e e
We also analyzed the anomalous behavior of ‘our w.o. potential reward’, [Rewara B Success Rate
where the success rate initially rises but then declines as training pro-

gresses. As shown in Figure[f] the episode reward increases, while the Figure 6: Training details
success rate paradoxically decreases. This suggests that the using progress ~ of our and our w.o. poten-
function directly as reward function suffers from inefficiencies, as there tial reward.

are instances where the task fails despite receiving a high reward, leading

the policy to learn in an undesirable direction. In contrast, our method

ensures stable convergence, with the PRM providing well-structured and task-relevant rewards with
optimality and convergence guarantees.

In summary, the two enhancements in our framework—the subtask prior and the PRM reward—work
synergistically to produce a "1+1 > 2" effect. Without the subtask prior, convergence speed is hindered,
and without the reward signal, providing effective and efficient guidance becomes challenging.

Success Rate
o o
o ®

14
S

Onginél Task Unseen‘ Task 1 Unseeﬁ Task 2 Unseen‘ Task 3 Unseen Task 4

B our [0 ourwo.prior [] ELLM BH 1R [l Oracle

Figure 7: The evaluation results of generalization experiment. The results are averaged on 5 random
seeds and 100 evaluations per seed.

5.2.3 Generalization Results

To evaluate the generalization capabilities of the trained policy, we test the trained policy’s perfor-
mance on unseen tasks in MetaWorld. Additional results and detailed information regarding the tasks
are provided in Appendix [A.2.1] As shown in Figure[7} while most methods perform well on the
original task, we observe a performance decline on the unseen tasks. In comparison to other methods,
our framework experiences the least performance loss, demonstrating relatively strong generalization
abilities. Notably, when comparing to our ‘w.o. prior’ (our framework without the subtask prior),
we observe a significant drop in performance on unseen tasks. This highlights the critical role of the
subtask prior in enhancing generalization. The "verb + noun" pattern we designed effectively captures
commonalities across different tasks, acting as a powerful prior that guides the policy to perform well
on unseen tasks. Thus, the subtask prior serves as a robust tool for improving the generalization of
reinforcement learning policies across a wide range of tasks.

6 Conclusion

In this paper, we introduced the Progress Reward Model for Reinforcement Learning (PRM4RL),
a novel framework that integrates high-level planning and low-level reward shaping to address the
challenges of long-term planning and sparse rewards in reinforcement learning. At the high level, we

decompose a complex task into manageable subtasks with subtask prior. At the low level, we design
a Progress Reward Model with optimality and convergence guarantee. The experimental results
demonstrate the effectiveness and efficiency of our method, significantly improving both convergence
speed and the ability to solve complex, multi-stage tasks.

Limitations. Similar to T2R[24]] and other methods[23] 21} 22]] that depend on LLMs for planning
or coding, our approach could be affected by LLM hallucinations during reasoning[47]. Besides,
while our method demonstrates strong performance across various tasks, its applicability to domains
outside of robotics remains unexplored. We anticipate that further optimization and adaptation of the
framework will be necessary to address diverse environments and tasks.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (Grant No.62031001,
Grant No.62325101).

10

References

[1] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[2] Gabriel Dulac-Arnold, Nir Levine, Daniel] Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419-2468, 2021.

[3] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

[4] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical rein-
forcement learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1-35,
2021.

[5] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges,
methods and progress. Artificial Intelligence, 297:103500, 2021.

[6] Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433—-1438. Chicago, IL, USA, 2008.

[7] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International conference on machine learning, pages 49-58.
PMLR, 2016.

[8] Shanchuan Wan, Yujin Tang, Yingtao Tian, and Tomoyuki Kaneko. Deir: efficient and robust
exploration through discriminative-model-based episodic intrinsic rewards. arXiv preprint
arXiv:2304.10770, 2023.

[9] Anna Penzkofer, Simon Schaefer, Florian Strohm, Mihai Bace, Stefan Leutenegger, and Andreas
Bulling. Int-hrl: towards intention-based hierarchical reinforcement learning. Neural Computing
and Applications, pages 1-12, 2024.

[10] Xinlei Pan, Eshed Ohn-Bar, Nicholas Rhinehart, Yan Xu, Yilin Shen, and Kris M Kitani.
Human-interactive subgoal supervision for efficient inverse reinforcement learning. arXiv
preprint arXiv:1806.08479, 2018.

[11] Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

[12] Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. Advances in Neural Information Processing Systems, 36:30349—
30366, 2023.

[13] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19632-19642, 2024.

[14] Yuanzhao Zhai, Tingkai Yang, Kele Xu, Dawei Feng, Cheng Yang, Bo Ding, and Huaimin
Wang. Enhancing decision-making for llm agents via step-level g-value models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 27161-27169, 2025.

[15] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[16] Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin,
Weishan Zhao, Li Zhu, Hari Sundaram, et al. Codescope: An execution-based multilingual mul-
titask multidimensional benchmark for evaluating llms on code understanding and generation.
arXiv preprint arXiv:2311.08588, 2023.

[17] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

11

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement
learning: Concept, taxonomy, and methods, 2024.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel
Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pages 287-318. PMLR, 2023.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-
learn: Language model guided rl for solving long horizon robotics tasks. arXiv preprint
arXiv:2405.01534, 2024.

Yuging Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pages 8657-8677. PMLR, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Automated dense reward function generation for reinforcement
learning. In International Conference on Learning Representations (ICLR), 2024 (07/05/2024-
11/05/2024, Vienna, Austria), 2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires.
Revolve: Reward evolution with large language models using human feedback. arXiv preprint
arXiv:2406.01309, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), 2019.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav
Gurha, Viswesh Nagaswamy Rajesh, Yong Woo Choi, Yen-Ru Chen, Zhiao Huang, Roberto
Calandra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation
and rendering for generalizable embodied ai. Robotics: Science and Systems, 2025.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. Adapt: As-needed decomposition and planning with language models.
arXiv preprint arXiv:2311.05772, 2023.

Vishnu Sarukkai, Brennan Shacklett, Zander Majercik, Kush Bhatia, Christopher Ré, and
Kayvon Fatahalian. Automated rewards via llm-generated progress functions, 2024.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Drlc:
Reinforcement learning with dense rewards from llm critic. arXiv e-prints, pages arXiv—2401,
2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks,
2023.

Quan Yuan, Mehran Kazemi, Xin Xu, Isaac Noble, Vaiva Imbrasaite, and Deepak Ramachandran.
Tasklama: Probing the complex task understanding of language models, 2023.

12

[34] Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. NI2tl: Transforming natural
languages to temporal logics using large language models. arXiv preprint arXiv:2305.07766,
2023.

[35] Yongchao Chen, Jacob Arkin, Charles Dawson, Yang Zhang, Nicholas Roy, and Chuchu Fan.
Autotamp: Autoregressive task and motion planning with llms as translators and checkers. In
2024 IEEE International conference on robotics and automation (ICRA), pages 6695-6702.
IEEE, 2024.

[36] Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Informativeness of reward
functions in reinforcement learning, 2024.

[37] Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement learning
algorithms: Analysis and Applications, pages 25-33, 2021.

[38] Kanghyun Ryu, Qiayuan Liao, Zhongyu Li, Payam Delgosha, Koushil Sreenath, and Negar
Mehr. Curricullm: Automatic task curricula design for learning complex robot skills using large
language models, 2025.

[39] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764-10799. PMLR, 2023.

[40] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Icml, volume 99, pages 278-287. Citeseer,
1999.

[41] E. Wiewiora. Potential-based shaping and g-value initialization are equivalent. Journal of
Artificial Intelligence Research, 19:205-208, September 2003.

[42] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings, 2022.

[43] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

[46] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[47] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi

Li, and Yuchi Ma. Exploring and evaluating hallucinations in llm-powered code generation.
arXiv preprint arXiv:2404.00971, 2024.

13

A Appendix

A.1 Theoretical Proof
Theorem A.1 (Policy Invariance). Define an MDP M = (S, A, T, R,~, po), where Ry = 1(S¢41) -

Thonus represents the sparse reward when the task is considered successful. Giving a potential-based
reward shaping function as follows:

F =7 ®(s441) — P(s¢)

Let another MDP M' = (S, A, T, R + F,~, po), then every optimal policy in M’ will also be an
optimal policy in M and vice versa.

Proof. For the original MDP M, we know that its optimal @-function @}, satisfies the Bellman
Equations

Qial5:0) = Burer,) | Rlsv0.8) 4 g Qi (50|

Some simple algebraic manipulation then gives us

Qils:0) = 9(5) = B | Blsv0) 4 70(5) = 0(5) + 7 mx (Qi (') — 05|

If we now define Qs (s, a) 2 Q% (s, a) — ®(s) and substitute that and F (s, a, s') = v®(s") — B(s)
back into the previous equation, we get

Qur(s,a) =By [R(s,a, s')+ F(s,a,s") + 7 max Qu (s, a’)]
a’€
— B [R(s.0.8) + 9 mx Qur (')
a’'€

But this is exactly the Bellman equation for M’. For the undiscounted case, we moreover have
Qur (s0,a) = Q%4 (s0,a) — ®(s9) = 0— 0 = 0. So, Qur (s, a) satisfies the Bellman equations
for M’, and must in fact be the unique optimal @Q-function. Thus, Q% (s,a) = QM/(s,a) =
Q3 (s,a) — ®(s) and the optimal policy for M’ therefore satisfies.

*piyy (s) € arg max Qe (s, a) “4)
ac

— argmax Qi (s.0) — B(s))

= argmax (J} (s, a) (©6)

* and is therefore also optimal in M. To show every optimal policy in M is also optimal in M’, simply
apply the same proof with the roles of M and M’ interchanged (and using the shaping function —F).
This completes the proof. O

Theorem A.2 (Convergence Efficiency). Consider two MDPs: M = (S, A, T, R+ F,~, po) with
Q-function Q and M' = (S, A, T, R,~, po). If we initialize the Q-function in M’ as follows:

Qy(s,a) = Qo(s,a) + P(s)
Then for all timesteps t > 0 and (s,a) € S x A:

Qi(s,a) = Qu(s, a) + () ©)
where Q; and Q) are the Q-functions of MDP M and M’ respectively.

14

Proof. We prove the equivalence by induction on the update steps.
Base case (¢t = 0): By initialization definition:

Qp(s,a) = Qo(s,a) +P(s) V(s,a) (8)

Inductive step: Assume Q. (s,a) = Qx(s,a) + ®(s) holds for all (s, a) at step k. Consider the
Q-learning update for both agents when transitioning from (s, a) to (s, a’) with reward r:

In MDP M:
Quri(s,a) = Qus,a) + o [r + F(s,) + ymax Qu(s',) = Qu(s, a)]
= Qu(s.0) + ar[r + (70(5) = ©(5)) + 7max Qu(s',) = Qu(s,a)|
In MDP M’:
Qhoyr(5,@) = Qils, @) + a1 + Y max Qh(s'.a') = Qi (s.a)]

= [Q(s,0) + D()] + o[+ Y maxQu(s’ ') + B()] — [Qu(s,) + B(s)]]
= Qk(s,a) + <I)(s) + g |:T -+ ’YH}ZE}XQk(s” a/) + f)/(I)(s') _ Qk(s,a) — @(S)]

Simplify the difference:

Qhes(5,0) = Qusa(5,0) = B(s) + i [12(s)) = @(s)] — s [0(s') = ©(5)]
= a(s)

Thus Q1 (s,a) = Qry1(s,a) + ®(s) maintains the invariant. By induction, the equivalence holds
forallt > 0. O

A.2 Experiment Details

A.2.1 Additional Generalization Results

14 14
o ®

Success Rate
o
b

0.00 0.00 0.00)
Original Task Unseen Task 1 Unseen Task 2

B ouwr [0 ourre [ELLM BH 1R [l Oracle

0.00
Unseen Task 3 Unseen Task 4

Figure 8: The evaluation results of generalization experiment.

We conduct additional generalization evaluations. Specifically, for the evaluation results shown
in Section @ the original task is ‘Metaworld-faucet-open’, the unseen tasks are ‘Metaworld-
drawer-close’, ‘Metaworld-button-press-wall’, ‘Metaworld-button-press’, ‘Metaworld-coffee-button’,
respectively. For the results shown in Figure[A.2.1] the original task is ‘Metaworld-pick-place’, the
unseen tasks are ‘Metaworld-drawer-close’, ‘Metaworld-pick-place-wall’, ‘Metaworld-sweep-into’,
‘Metaworld-handle-press’, respectively. We test the trained policy in evaluation tasks, and the results
are averaged over 5 seeds and 100 test per seed.

A.2.2 Baseline Settings

ELLM(ICML23)[23]] utilizes an LLM as a high-level planner, embedding subtask priors into the
policy. Since ELLM has not been previously tested on Metaworld and Maniskill, we re-implement it

15

the experiments. For goal embedding, we gave the same subtask prior as in our framework to the
policy; For reward, we then gave it the subtask success reward, which is also goal-related as in its
original application. We also use our ¥ for determining current subtask to avoid enormous LLM
calls.

Text2Reward(ICLR24)[24] utilizes an LLLM to write dense reward function. As T2R has evaluate
its performance on Metaworld and Maniskill, we directly reuse its generated reward functions. If
there are few-shot and zero-shot versions of reward functions, we always choose the few-shot version
for better performance. Specifically, for ‘Metaworld-drawer-close’, ‘Metaworld-window-open’,
‘Metaworld-button-press’, ‘Metaworld-sweep-into’, ‘Metaworld-door-close’, ‘Maniskill-LiftCube’,
‘Maniskill-PickCube’, we reuse its generated reward functions. For other tasks that are not orginally
evaluated in T2R, we generate a reward function following its code using the same GPT-40 LLM.

A.3 Hyper-Parameter Details

In this section, we provide the hyper-parameter details used for our reward function generation and
reinforcement learning backbones. For progress function generation, we base on GPT-40. In the
experiments of the main body, the temperature of sampling is set to 0.7 for each experiment.

For reinforcement learning training, we employed the open-source PPO[44] and SAC
implementation[43]] from Stable-Baselines3[45] [, and list the hyper-parameters in Table and
A3l

Table 1: Hyper-parameter of SAC algorithm applied to each task.

Hyper-parameter Value
Discount factor 0.99
Target update frequency 2
Learning rate 3x 1074
Train frequency 1

Soft update 7 5x 1073
Gradient steps 1
Learning starts 4000
Batch Size 512

of layers 3

Hidden units per layer 256
Initial temperature 0.1
Rollout steps per episode 500

Table 2: Hyper-parameter of PPO algorithm applied to each task.

Hyper-parameter Value
Discount factor ~y 0.8

of epochs per update 15
Learning rate 1x1074
of environments 8

Batch size 400
Target KL divergence 0.1

of layers 3

Hidden units per layer 256

of steps per update 3200

We utilize a 4 NVidia Geforce RTX-3090 graphic cards, 128 core CPUs, and 256 GiB memory server
for RL training. The time required for training a policy is approximately 1 hours per task (5 seeds
running simultaneouly) for MetaWorld, and between 1 to 10 hours for ManiSkill, varying with the
task’s difficulty.

Zstable-baselines3 v2.6.0 (MIT License),
stable-baselines3

code available at https://github.com/DLR-RM/

16

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

A.4 Tasks

In this section, we provide a full list of tasks within each simulation environment, accompanied by
their corresponding language instructions. Across all tasks, we follow the default settings of their

A.4.1 Metaworld

In METAWORLD[Z]ﬂ environment, we use a 7 DoF Sawyer robot arm with a fixed base to complete
tabletop tasks. For all tasks, the observation space is a combination of the 3D position of the robot
end-effector, a normalized measurement of gripper openness, the 3D position of the manipulated
object, the quaternion of the object, all of the previous measurements, and the goal position. The
environment adopts end-effector delta position control, which means the action space consists of the
change of the end effector’s 3D position, as well as the normalized torque the gripper should apply.
For all tasks, the initial and target positions of the manipulated object and the initial joint positions of
the robot arm are variable.

button-press door-close drawer-close faucet-open Window-open
sweep-into pick-place pick-out-of-hole sweep push

Figure 9: Tasks in Metaworld.

The task descriptions are provided in the following Table[A-4.T]

Table 3: Task list of Metaworld

Task Task Description

button-press Press a button in y coordination.

door-close Close a door with a revolving joint by pushing the door’s handle.
drawer-close Close a drawer by its handle.

faucet-open Rotate the handle counter-clockwise.

window-open Push and open a sliding window by its handle.

sweep-into Sweep a puck from the initial position into a hole.
pick-place Pick up an object and move it to the goal location.
pick-out-of-hole Pick an object out of a hole and move it to the goal location.
sweep Sweep a puck off the table.

push Push an object to the goal location.

A.4.2 Maniskill

MANISKILL[28]environment uses a 7 DoF Franka Panda as the default robot arm. For all tasks, the
observation space consists of robot proprioception information (e.g. current joint positions, current
joint velocities, robot base position and quaternion in the world frame) and task-specific information
(e.g. goal position, endeffector position). We use end-effector delta pose control mode for this

SMetaworld v2.0.0 (MIT License), code available at https://github.com/Farama-Foundation/
Metaworld
*Maniskill3 v3.0.0 (Apache-2.0 License), code available at https://github.com/haosulab/ManiSkill

17

https://github.com/Farama-Foundation/Metaworld
https://github.com/Farama-Foundation/Metaworld
https://github.com/haosulab/ManiSkill

environment, which controls the change of 3D position and rotation (represented as an axis-angle in
the end-effector frame). For all tasks, the initial and target positions of the manipulated object, the
initial joint positions of the robot arm and physical parameters (e.g. friction and damping coefficient)
are variable.

PushCube

PickCube LiftPegUpright

LiftCube PullCube

Figure 10: Tasks in Maniskill.

The task descriptions are provided in the following Table|A.4.2]

Table 4: Task list of Maniskill

Task Task Description

LiftCube Pick up cube A and lift it up by 0.2 meters.
PullCube Pull a cube to the goal position.

PushCube Push a cube to the goal position.

PickCube Pick up cube A and move it to the 3D goal position.

LiftPegUpright Move a peg laying on the table to any upright position on the table.

A.5 Prompt Details

To ground LLMs into robotics simulation environments, following Text2Reward[24]] we propose
a Pythonic prompt, which can be abstracted by the experts who developed the environment. This
class-like prompt is a more compact representation than simply listing all environment attributes
linearly, which can delete redundant information and save more tokens, and this Pythonic prompt can
also better bootstrap Python code generation. More specifically, our prompt leverages python class,
class attribute, python typing and comments to recursively define the environment. For simplicity,
here we prompt the progress function to return the current subtask index together with the main
progress.

Here we provide an example of the zero-shot prompt for Metaworld manipulation tasks:

Basic Prompt provides the foundational context for the task. The prompt establishes the user’s role
as an expert in robotics, reinforcement learning, and code generation, focusing on the development of
a Python function called ‘progress function’ for RL. The objective is to help generate code that tracks
progress during task execution, guiding the learning of a low-level policy.

Basic Propmt

You are an expert in robotics, reinforcement learning and code generation.We are going to
use a robot arm to complete given tasks. Now I want you to help me write a python function
named ‘progress function’ of reinforcement learning.

Environment Information defines the environment in which the robot operates. The BaseEnv class
describes the robot and its interaction with objects in the environment, including their positions and
states. The Robot and RigidObject classes further define the robot’s end effector, object positions,
and other relevant parameters. This context provides essential details for the task, enabling the LLM
to make informed decisions about task progress and control.

18

Environment Information

class BaseEnv(gym.env):
self .robot : Robot
self.obj : RigidObject
self.goal_position : np.ndarray[(3,)]

near_object = float(tcp_to_obj <= 0.3)
success = float(obj_to_target <= 0.07)

class Robot:
self.ee_position : np.ndarray[(3,)]

self.hand_init_pos: np.ndarray[(3,)]

self.tcp = self.ee_position - [0, 0, 0.045]

class RigidObject:
self .position : np.ndarray[(3,)]

self.quaternion : np.ndarrayl[(4,)]

self.obj_init_pos : np.ndarray[(3,)]

Task Information provides a description of the task to be completed by the robot. The task
description, which needs to be filled in by the user, is crucial for decomposing the task into manageable
subtasks.

Task Information

{ Fill in the task description here. } (e.g. In pick-place, the robot need to pick up the object
and move it to the goal position.)

Basic Instructions provide guidelines for writing the code necessary for the task. The instructions
emphasize the importance of using existing Python packages only when necessary, avoiding the
invention of new variables or attributes, and incorporating step-by-step reasoning with clear comments.
These instructions ensure that the code remains efficient, understandable, and aligned with the task’s
requirements.

Basic Instruction

1. You are allowed to use any existing python package if applicable. But only use these
packages when it’s really necessary.

2. Do not invent any variable or attribute that is not given.
3. Think step by step, add comment for reasoning and thought when you write code.

Reasoning Instructions outline a step-by-step procedure for task decomposition and the generation
of key functions.

Reasoning Instructions

Follow the steps below:

a. Decompose the task and generate plan_list

a.1 Decompose the given task into a series of subtasks. Each subtask should be described in a
‘verb + noun’ form. tips: ‘move to object’, ‘grasp object’, ‘move to goal’...

a.2 Generate a python list named plan_list where each subtask is an element of the plan_list.

19

b. Write a ‘determination_function’ for determine which subtask we are in based on Environ-
ment Information above.

b.1 For each subtask in the plan_list, consider when each subtask is considered completed,
express the condition in python code form. Typical completion conditions: -‘Move’ com-
pletion: distance under threshold -‘Grasp’ completion: object’s z-coordinate higher than its
initialize z-coordinate.

b.2 Write a ‘determination_function’ using ‘if” and ‘elif” to categorize the current subtask
based on Environment Information - consider the logic of determining subtasks completion,
using ‘if not’ ‘elif not’ if needed.

b.3 The ‘determination_function’ return the current subtask’s index in plan_list.

c. Write a ‘progress_function’

c.1 For each subtask, construct a progress metric named ‘subprogress’ indicating the progress
of the corresponding subtask. The ‘subprogress’ should be range from O (no progress) to 1
(completed) Typical subprogress metric: the distance between the robot’s gripper and target
object normalized by its initial distance;

c.2 Based on the ‘determination_function’, add the ‘subprogress’ computation codes in the
corresponding ‘if” or ‘elif” block.

c.3 Add the ‘main_progress’ computation codes in each subtask’s ‘if’ or ‘elif” block. -
‘main_progress’ is the progress of the entire task. - typically, main_progress can be calcu-
lated by adding the current subtask idx and current subprogress, regarding all completed
subprogress as ‘1’. The completed progress can be set to ‘1’ without computing again.

c.4 ‘progress function’ return the main_progress and the current subtask’s index in plan_list.

A.6 Example of Generated Progress Function

In this section, to help better understand the generation ability and results, we provide zero-shot
generated reward function on Metaworld. The response of the prompt defined in Appendix[A.3]is as
follows:

LLM response in Metaworld-pick-place

import numpy as np
def generate_plan_list():

plan_list = [

]

return plan_list

def determination_function(env, plan_list):

if np.linalg.norm(env.robot.tcp - env.obj.position) > 0.3:
return O

elif env.obj.position[2] <= env.obj.obj_init_pos[2]:
return 1

20

elif np.linalg.norm(env.obj.position - env.goal_position) >
©.078

return 2 # Still moving towards the goal

Subtask 4: ’release object’
else:
return 3 # Task is completed

Progress computation for each subtask
def progress_function(env):
plan_list = generate_plan_list ()
subtask_idx = determination_function(env, plan_list)

Initialize variables
main_progress = 0.0 # Overall task progress

subprogress = 0.0 # Progress of the current subtask

Subtask 1: ’move to object’

if subtask_idx == O0:

Progress of moving towards the object

initial_distance = np.linalg.norm(env.robot.tcp - env.
obj.obj_init_pos)

current_distance = np.linalg.norm(env.robot.tcp - env.
obj.position)

subprogress = 1 - (current_distance / initial_distance)

main_progress = subtask_idx + subprogress # Task

progress is the sum of subtasks

Subtask 2: ’grasp object’
elif subtask_idx == 1:
Progress of grasping the object (object lifted above
initial position)

subprogress = (env.robot.ee_position[2] - env.obj.
obj_init_pos[2]) / 0.5 # Normalize based on height
main_progress = subtask_idx + subprogress

Subtask 3: ’move to goal’

elif subtask_idx == 2:

Progress of moving towards the goal position

initial_distance_to_goal = np.linalg.norm(env.obj.
position - env.obj_init_pos)

current_distance_to_goal = np.linalg.norm(env.obj.
position - env.goal_position)

subprogress = 1 - (current_distance_to_goal /
initial_distance_to_goal)

main_progress = subtask_idx + subprogress

Subtask 4: ’release object’

elif subtask_idx == 3:
Task is complete, no further progress is needed
subprogress = 1.0
main_progress = 1.0

return main_progress, subtask_idx

21

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contribution and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Please refer to Section [6] for limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

22

Justification: Please refer to Appendix [A.T]for the proof of the theorems.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: Please refer to Appendix [A.3]for experiment information.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

Answer: [Yes] .
Justification: We will provide the code in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: Please refer to Appendix and for training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .
Justification: Please refer to the results in Section [for error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Partially. We report the type of compute workers, memory, time of execution
in Section[A3l

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper pose no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: Please refer to Appendix [A.3]and [A.4]for detailed information of used assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

26

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .
Justification: Included in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

27

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes] .
Justification: Please refer to Section 4] for the usage of LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	LLM for Planning
	LLM for Reward Generation

	Preliminary
	Method
	Subtask Decomposition
	Potential-Based Progress Reward Model
	Reinforcement Learning Augmentation

	Experiment
	Experiment Settings
	Evaluation Analysis
	Outperform previous LLM approaches
	Ablation Study
	Generalization Results

	Conclusion
	Appendix
	Theoretical Proof
	Experiment Details
	Additional Generalization Results
	Baseline Settings

	Hyper-Parameter Details
	Tasks
	Metaworld
	Maniskill

	Prompt Details
	Example of Generated Progress Function

