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ABSTRACT

“Read the room,” or the ability to infer others’ mental states from subtle social
cues, is a hallmark of human social intelligence but remains a major challenge for
current Al systems. Existing social reasoning datasets are limited in complexity,
scale, and coverage of mental states, falling short of the rich causal dynamics
found in real-life interactions. In this work, we introduce R*-Bench-an evaluation
benchmark with fine-grained annotations of belief, intent, desire, emotion, and
their causal chains in complex scenarios; and R*-FDT, a large-scale training
set generated through a novel automated pipeline with the same structure. We
conduct a comprehensive evaluation of state-of-the-art (SOTA) LVLMs on R’-
Bench, revealing substantial gaps in consistent multi-step social reasoning. We also
fine-tune a 7B model using group relative policy optimization (GRPO) on R*-FDT,
achieving notable improvements across multiple social reasoning benchmarks. Our
contributions are three-fold: (i) a novel benchmark with richly annotated, multi-step
causal reasoning data; (ii) systematic evidence that SOTA LVLMs fall far short of
human-level reasoning; (iii) a scalable training dataset that significantly enhances
social reasoning performance. We will release our dataset, code and models upon
acceptance.

1 INTRODUCTION

“Read the room” requires employing Theory of Mind (ToM) (Premack & Woodruff, |1978)) to read
others’ minds and perform social reasoning with subtle cues; it represents higher-level social in-
telligence, and plays a key role in helping people navigate social scenarios smoothly. Humans are
innate with the ability to perceive huge hidden information from very simple cues (Heider & Simmell
1944; [Fan et al., 2022} [Zhu et al., 2020); however, it remains a great challenge for current Al. As
illustrated in Figure|I] the visible physical world is only the tip of the iceberg; beneath it lies a vast
and often invisible mental world. In just a few seconds of social interaction, people perceive layers of
causally linked mental states: who is aware of what, who is hiding what, and how others respond.
These interpretations rely not only on observable actions but also on unspoken norms and contextual
reasoning. Effective social reasoning thus involves (i) detecting subtle behavioral cues, (ii) estimating
diverse and evolving mental states, and (iii) identifying causal chains that connect the physical and
mental worlds over time.

Large language models (LLMs) have recently demonstrated strong reasoning abilities across various
domains (Brown) 2020; [Wei et al., [2022; Kojima et al.|, [2022; Bubeck et al., |2023; [Wang et al.,
2024b). However, they still struggle with complex reasoning tasks such as long-term planning and
scientific problem solving (Srivastava et al., [2022} [Wang et al., [2024c} Mirzadeh et al., 2024; Glazer
et al.} 2024). Social reasoning—a crucial subset of complex reasoning—also remains challenging for
LLMs (Shapira et al., [2023]; |He et al.| 2023 |Gu et al., [2024; [Wang et al.l 2024a). Critically, language
alone is insufficient for modeling social cognition: visual signals are essential for inferring subtle,
layered, and often concealed mental states.

To address this, large vision-language models (LVLMs) (Liu et al., 2024} Zhang et al., 2023 [Lin et al.|
2023b;[Team et al., 2023} 2024b; Hurst et al.,|2024) have emerged, enabling multimodal understanding.
Yet, current benchmarks provide limited evaluation of (i) diverse mental state estimation and (ii)
the consistency and depth of social reasoning in complex interactions. Moreover, there remains no
large-scale video dataset covering multiple mental states and their causal relationships, hindering
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Figure 1: The visible physical world we live in is just the tip of the iceberg compared to the vast,
invisible mental world behind it 2020). In this example(you, 2014), a brief social
interaction reveals complex and dynamic mental activities: B extends his hand to shake with A, but
A fails to notice. B then pretends his outstretched hand was meant to touch his head, concealing
his embarrassment. C, however, sees through B’s mental state and pats him on the shoulder to offer
comfort. In response, B shrugs and gestures self-deprecatingly to ease the awkwardness. Social
reasoning is a critical aspect of social intelligence. Yet in long-term, dynamic interactions, capturing
subtle cues, recognizing social events, estimating mental states, and identifying reasoning chains
becomes increasingly difficult, making social reasoning even more intricate.

further development in this area. Current datasets like NExT-QA (Xiao et al.|[2021), MVBench

et al.}[2024), MMBench-Video (Fang et al., 2024), and Video-MME (Fu et al., 2024) focus on factual

or visual understanding, offering 11m1ted support for mental state reasoning or causal inference.
MMToM-QA (Jin et al., 2024b), MELD (Poria et al.| 2018)), and IntentQA m 2023) target
mental states like intent or emotlon but lack multi-step reasonmg Causal-VidQA (Li et al., 2022) and
CausalChaos 2024) include causal elements but are limited to physical events or rely

on animated content. SociallQ (Zadeh et al.,[2019) and Social-1Q 2.0 (Wilf et al.} 2023) incorporate

social contexts but do not model fine-grained causal chains or assess reasoning across linked events.

We introduce Read-the-Room Reasoning for Video Question Answering (R*-VQA), a new VideoQA
dataset composed of a fine-grained evaluation benchmark (R*-Bench) and a large-scale training set
(R*-FDT). 1t captures rich social interactions and includes: (i) detailed social events, (ii) mental
states and their transitions, and (iii) multi-step mental- physical causal chains. We evaluate SOTA
LVLMs on R3-Bench, and further fine-tune a 7B model using group relative policy optimization
(GRPO)M on R-FDT. Results show: (i) current models still fall short of human-level
social reasoning; (ii) our training data provides notable improvements across several benchmarks.

In summary, our contributions are three-fold: (i) we introduce R3-Bench, a novel benchmark with
complete, fine-grained annotations for social reasoning; (ii) we show that SOTA LVLMs remain
far from human-level performance on this benchmark; (iii) we construct R3-FDT using a scalable
automated pipeline, offering valuable training data to improve LVLMs’ social reasoning capabilities.

2 R3-BENCH: A HIGH-QUALITY TESTBED

We design our dataset in a natural, intuitive, and principled way, grounded in the foundational Theory
of Mind (Premack & Woodruff, [T978)), the belief-desire-intention (BDI) framework 1987),
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Belief
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(a) We generally illustrate our dataset design (see Sec-  (b) Examples of each QA type. The option marked in
tion@ green is the correct answer.

Bandura’s social cognitive theory—particularly triadic reciprocal determinism (Bandura et al.| {1986

Bandura, [[989)—and other modern studies in social cognition (Tomasello| 2010, 2014; 2009
Reisenzein), 2006; 2009; [Puica & Florea, 2013} [Schlaffke et al, 2015} |[Fan et al.,[2022). Our dataset

systematically integrates both physical and mental dimensions of social interaction. We include
key mental state variables (belief, intention, desire, and emotion) alongside observable physical
variables (actions, expressions, dialogue, and other social cues). We further capture comprehensive
and dynamic causal interactions among these variables, reflecting the intricate interplay between
internal states and external behaviors and environments. This framework positions our dataset as a
valuable testbed for developing and evaluating computational models of social reasoning.

2.1 OVERALL DESIGN

R3-Bench differs from traditional VideoQA benchmarks in the following aspects: (i) It includes
fine-grained annotations and generation of mental-physical causal chains; (ii) QA pairs are generated
based on these causal chains; (iii) It enables comprehensive evaluation of various social reasoning
capabilities, including reasoning consistency via causal chains. We illustrate the design and structure
of our dataset with an example in Figure2a]

In our dataset, each video has one or more mental-physical causal chains. We denote a causal chain
as g € G, and a subchain as g*“* € G*“*. Here, G and G*“* respectively represent all the causal
chains and subchains. Note that a chain consists of multiple subchains: g = {g*“’}. A subchain g*"
comprises one result node v! and one or several reason nodes {v)}. All reason nodes point to the
result node via causal edges {e; }. Every reason node v{ is necessary to deduce the result node v?.

For each social causal chain g, we generate a set of related QAs according to the following rules:

(i) For each node v € g, we generate a Event Understanding or Mental State Estimation QA,
depending on its node content. The content of a node is either about an event or a mental state.

' Official train/test splits are unavailable. The reported set sizes are estimated using an 80%/20% ratio.
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Figure 3: The R*-Bench construction pipeline, which consists of five stages.

(ii) For each subchain g*“?, we generate a Causal-Why QA and a Causal-How/What QA, depending
on whether the reasoning is abductive or deductive.

Therefore, we have four types of QAs in total. We provide four examples selected from our dataset
for the four QA types respectively in Figure [2b}

Event Understanding (EU). Event understanding is the premise of social reasoning. We generate a
factual QA for each event node. For example, “What happens at the end of the clip?” and “What
does Person B do when Person A reaches out her hands?”.

Mental State Estimation (MSE). Mental state estimation is a crucial aspect of social intelligence.
We consider typical mental states including belief, intent, desire, and emotion. We generate an
inferential QA for each mental state node, such as “How does someone feel at the end of the clip?”

Causal-Why (CW) & Causal-How/What (CH/W). Causal-Why QAs focus on abductive reasoning
and inquire about causes of a given result—for example, the reasons why Louise feels nervous in the
third case of Figure 2b] In contrast, Causal-How/What QAs emphasize deductive reasoning and ask
about the effects of a cause, such as the outcome of the woman’s belief in the fourth case of Figure@
To increase question diversity, we include variations such as “How” and “What” in phrasing. An
example Causal-How QA is: Question: “How did Sheldon’s revelation affect Penny’s emotions?”
Answer: “Sheldon’s comment about the ring’s true value led to Penny’s disappointment.”

2.2 DATASET CONSTRUCTION

R’-Bench is a comprehensive evaluation benchmark featuring high-quality and sufficiently challenging
data. This is ensured through three aspects: (i) recruiting participants to independently submit diverse
video sources—such as ads, short films, and real-life clips—that meet our criteria; (ii) using LVLMs
to filter for difficult and unpolluted samples, meaning data unlikely to appear in standard pretraining
sets; and (iii) involving domain experts to verify and annotate the content. To support this, we design
a rigorous data construction pipeline illustrated in fig. 3]

Human Data Collection. To support high-quality human-designed QA, we organize a “Read the
Room Challenge” to collect data from crowdworkers and volunteers. To guide this process, we
establish clear principles and standards: (1) Data composition: Each data sample includes a video
clip, a question, four distractors, a correct answer, and a reasoning explanation. (2) Strict standard:
Questions must involve at least one mental state and emphasize causal relations. (3) No external
knowledge required: Answers must be based solely on observable visual or auditory cues, without
relying on external background knowledge. (4) Explanation requirement: Each sample must include
an explanation describing the reasoning process and underlying causal chain. (5) Data pollution
prevention: We exclude any sample that Gemini 1.5 Pro answers correctly, ensuring the data remains
unseen and challenging. This design ensures that the collected data reflects nuanced, causal, and
human-level reasoning that current models are not yet capable of replicating.

Human Data Verification. While many submitted QA pairs successfully challenge Gemini 1.5
Pro, not all meet our quality standards. To ensure consistency, we conduct expert review involving
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annotators with backgrounds in cognitive science, linguistics, and Al. Each sample is assessed
against our criteria—such as causal depth, mental state relevance, and clarity of explanation—by two
independent reviewers. Only those approved by both are retained. Given the nuanced reasoning and
social subtleties involved, such validation cannot be reliably automated, highlighting the necessity of
human judgment for constructing a benchmark of this complexity.

Causal Chain Annotation & Verification. To capture the reasoning behind each QA, we conduct
expert annotation of mental-physical causal chains. Annotators receive training based on strict
principles and follow the structured format defined in Section[2.1} Each verified sample is annotated
by one of its original reviewers. The annotation process consists of three steps: (i) reviewing the
QA and its explanation, (ii) identifying key events and mental states as nodes, and (iii) linking these
nodes into subchains according to causal relations. After annotation, the second expert conducts an
independent review. If revisions are needed, both experts iterate to reach agreement on the final chain.
This multi-stage, fine-grained process ensures that each sample reflects a coherent and interpretable
causal reasoning flow grounded in rich multimodal context.

QA Generation & Verification. We use GPT-40 to generate QA pairs for each annotated causal
chain, following the rules in Section[2.1] We invite the same experts from the causal chain annotation
stage to verify the QA pairs generated from their own annotated chains. Each QA is checked
against the following standards: (i) adherence to generation rules, (ii) accurate and unambiguous
time references, (iii) full coverage of the corresponding node or subchain content, and (iv) only one
correct answer among five options. If a QA fails to meet these criteria, experts revise it following our
guidelines or discard it if correction is infeasible. This process yields 4,840 verified QA pairs.

The detailed statistical analysis is provided in Section[A.2.7]

3 R’-FDT: AUTOMATICALLY GENERATED DATASET WITH CAUSAL CHAINS

The development of VideoQA datasets for social reasoning is constrained by two significant chal-
lenges. First, there is a scarcity of high-quality video content that captures the complexity of social
interactions. Second, the annotation process is prohibitively expensive, requiring intensive labor to
infer nuanced mental states, followed by extensive verification to reduce ambiguity. These bottlenecks
have impeded the development of foundational models in this domain. To overcome these limitations,
we introduce an automated pipeline using human annotations and large models, named ARGUS
(Automated Reasoning Generator for Universal Social Videos). As illustrated in Figure |4} it is
designed to generate large-scale training datasets at a reduced cost while maintaining high data
quality. Our methodology is centered on the following principles:

(i) Mitigation of Cross-Modal Reasoning Deficiencies: Contemporary models often exhibit limitations
such as inconsistencies and hallucinations when processing videos. Our pipeline circumvents these
issues by utilizing textual descriptions of videos to enhance the credibility of generated content.

(i1) Assurance of High-Fidelity Annotations: The pipeline exclusively uses human-annotated descrip-
tions that are aligned with videos. It ensures that the foundational data maintains a high degree of
accuracy and reliability, consistent with expert annotation standards.

The proposed pipeline offers a cost-effective and scalable solution for generating high-quality training
data, addressing a critical need for advancing foundation models in social reasoning.

3.1 INFORMATION ALIGNMENT

To enable large-scale generation of social reasoning data with mental-physical causal chains, we
leverage movie data as a rich and structured source. Compared to open-domain videos, movies
offer diverse content along with detailed scripts and annotations that describe both visual context
and mental states. This makes them naturally suitable for constructing training data that aligns
structurally with our human-curated benchmark. We extract information from publicly available
movie datasets such as MovieNet (Huang et al., 2020), MovieQA (Tapaswi et al.| 2016b), and
CondensedMovies (Bain et al., [2020)), as well as corresponding movie scripts. As shown in the
blue section of fig. i] we extract key elements from each clip, including scene context, annotated
events, mental states, and aligned dialogue. To ensure all generated QAs remain within the temporal



Under review as a conference paper at ICLR 2026

Information - N
Alignment Aligned Information

[c Plot mj L Scenes j
[ Events ] E/IentalStateﬂ

Our Dataset

o000 5 Y

Bl E1 E2 il
. ) Hallucination
Detection

T
1
1
1
> |
1
Clips )@ Matching E> | @ ﬁ (ﬁ‘
| ¢
1
1
1
1
1

Script Clip Dial &

o e e N 5

2 : Eelf-CnrrectiorD => QA&OP“.O“S
Generation

Figure 4: An automated pipeline for generating large-scale video social reasoning data through pure
textual data.

Relevant
Annotations

=

Scripts N

boundaries of each clip, we use Whisper (Radford et al.| 2023) to align scripts with detected dialogue.
The full alignment algorithm is detailed in Section[A.3.1]

3.2 DATA GENERATION

Causal Chains Generation. Based on the aligned information, we prompt GPT-40 to infer causal
links between events and mental states using contextual cues. In addition to leveraging existing
annotations, the model can also identify latent mental states implied by character behavior and
dialogue, thereby enriching the reasoning structure with nodes that are not explicitly labeled but
contextually grounded. As illustrated in fig. ] each causal chain is represented symbolically and
paired with a natural language explanation. For each clip, the model generates multiple chains that
reflect the most salient social interactions. This automated procedure retains the structural depth of
human-curated reasoning while making it feasible to build diverse and scalable training data.

Self-Correction To further improve data quality, we require GPT-40 to self-correct the causal
chains generated in the previous stage. It needs to check the consistency between the symbolic
and textual representations of chains, and remove redundant chains. In this stage, 6% of chains are
removed. Although this accounts for only a small proportion, it is necessary to prevent the model
from learning from erroneous noises.

QA & Options Generation In accordance with the guidelines outlined in Section[2.1] a QA pair is
generated for each node and subchain. To enhance the quality of the data, the inherent causal structure
is utilized to create distractors that are both challenging and plausible. Specifically, employing
the corrected causal chains and aligned information, GPT-40 generates four distractor options for
each question, adhering to two primary principles: (i) the option is designed to be plausible from a
common-sense perspective but lacks grounding in the video context; or (ii) the option is grounded
in the video context but contradicts the established causal or mentalistic logic. These strategies
necessitate a nuanced comprehension of both physical and social cues to arrive at the correct answer.

Hallucination Detection. We establish a hallucination detection stage based to filter for high-
quality QA pairs. Specifically, we input the original video and QA pairs into Gemini 2.5 Flash,
requiring it to perform a detailed hallucination analysis. During this process, the model is required
to complete three key tasks: (i) determine if a QA pair aligns with the video, (ii) provide a detailed
explanation, and (iii) output a confidence level. Only when a QA pair is determined to be completely
free of hallucination do we retain it in the final dataset. This strict quality control mechanism ensures
the reliability of the final dataset, providing high-quality data for training a foundation model.

The resulting training set, R3-FDT, consists of 41k QA pairs distributed across 2,812 videos. This
constitutes a large-scale, causally structured dataset. The detailed statistical analysis of the training
set is provided in Section[A.3.2]

4 EXPERIMENTS

Our experiments consist of two primary components. First, we evaluate a broad set of popular LVLMs
on our benchmark, which includes both R*-Bench-DX and R3-Bench-Hard. The R3-Bench-Hard set
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is directly sourced from the winning submissions of a social reasoning challenge. We begin by testing
several state-of-the-art open-source and closed-source models on the R3-Bench-DX, and then select a
subset of strong-performing models for further evaluation on the more challenging R*-Bench-Hard
set. In the second part, we train one of the best-performing models, Qwen2-VL-7B, using GRPO
on our training set. We then evaluate the resulting model on our challenge set as well as on external
social reasoning datasets to assess its generalization capabilities.

4.1 EVALUATION

Our evaluation approach consists of two dimensions: conven- Typle 2: R3-Bench-Hard Evaluation
tional accuracy metrics and our proposed consistency-based Regylts (%). Other LVLMs’ results
metrics. (1) Accuracy Metrics. We report the overall QA ;e j[lustrated in section [A4.5] All
accuracy for each model, as well as accuracies across differ- dels are given subtitles. “+ Ours-
ent QA types. In particular, we categorize questions into tWo  FT* gshows results after training on
main types: EU and MSE. For the MSE category, we further p3_ppr.

break it down into four fine-grained subtypes: Emotion, Be-

lief, Intent, and Desire. These distinctions help us identify  moda Overall
which dimensions of social reasoning are more challenging. (2)  Random 20

i i 1 1 1 1 1 Idefics3-8B-Llama3(Laurencon et al.|{2024a)  24.37
Consistency Metrics. Desp;tct achlevmg relatllvely hlgh QA ldefiess-8B Llumad(Laurencon et 2
accuracy, many LVLMs exhibit severe inconsistencies when  mPLUG-Ow3({yeetarizuzz] 29.11
. : . . InternVL2-76B(Chen et al.{|2023) 31.96
answering logically related questions. For instance, a model  Gprao minf] 30.70
. . . : Gemini 1.5 Pro(Tea 1.112024a) (vid 34.81
might correctly answer the question “Why did A happen?” with — Gomn |3 ol e (e 3924
I3 ” . 113 . . 99 GPT-4 48.73
Because of B,” yet fail When asked “Is B present in the video?” ~ GPT4dl ProfTeam e al|2024] (frames) 59,18
shortly after. Humans, in contrast, demonstrate coherent rea- Quenz-vi7s 3418
soning processes across multi-step chains, maintaining internal ~ _QvenzVL-78+ Our I S
Human 80.06

consistency throughout.

To better capture this gap, we introduce two evaluation metrics: Chain Consistency and Subchain
Consistency. These assess whether the model can consistently answer a set of questions derived
from a single causal chain or its subcomponents. A chain (or subchain) is marked “consistent” only if
the model answers all associated questions correctly—partial correctness is not rewarded.

Let D(g) denote the set of all QAs associated with a causal chain g, and D(g*“?) for subchains g*“.
Given a video v and prompt p, the model selects an answer a* according to:

a* = argmaz.e 4Py (alv,p) M

We define Chain Consistency as:
2yeq gayen Ma" =a)

Cons® = iG] )
and Subchain Consistency as:
subgGsu a supy 1(a* = a
Congee — 2vvegn Hgaenen Ia” =) 3

|gsub|

These metrics go beyond surface-level accuracy by evaluating whether a model can sustain coherent
reasoning across entire social interaction chains. They are particularly effective at revealing hidden
weaknesses in models, where high average accuracy may mask fragmented or inconsistent behavior.

EVALUATION RESULTS AND KEY INSIGHTS

Our evaluation was conducted under two settings: a video-only basic setting and a video-plus-subtitle
+Sub setting. Beyond accuracy on MSE and EU questions, we introduce chain (C'ons®) and sub-chain
(C'ons®*®) consistency metrics to assess coherent reasoning across related questions.

Two primary insights emerge. First, models find reasoning about mental states (MSE) substantially
more challenging than understanding factual events (EU). For example, in the +Sub setting, GPT-40’s
accuracy drops from 89.77% on EU to 72.44% on MSE, highlighting the difficulty of inferring
abstract internal states.
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Table 3: R*-Bench-DX Evaluation Results (%). MSE: mental state estimation. EU: event understand-
ing. CW: causal why. CH: causal how. C'ons®: chain consistency. C'ons®: sub-chain consistency.
while “+ Ours-FT” shows results after training on R*-FDT. The reasons why human consistencies
are not reported are elaborated in section E}

MSE

Model Setting EU CW CHW Overall Cons® Cons*
Emotion  Belief Intent Desire  Overall
Random B 20 0 20 20 20 20 20 20 20
, ' ' , 1803 1869 2022 1667 1882 2026 2057 2158 2033 | 000 014
Video-LLaVALin et al. j2023a] +Sub 1908 1963 2438 20143 2090 2828 2164 2288 2314 000 036
) . R 1048 841 1080 238 974 893 890 1148 977 000 007
Idefics2-8B{Laurengon et al. §2024b) +Sub 2180 2150 2299 19.05 2198 20.56 2299 2264 2215  0.29 114
- 4801 5950 4294 4524 4946 5246 6790 6322 5895 288  13.66
mPLUG-OwI3{Ye et al. §2024] +Sub SIS 7103 5097 5000 5637 7503 7466 7082 6921 | 922 2539
o ' , 4885 5950 4986 3571 5154 5346 7231 7074 6287 409 1636
Phi-3.5-VisionfAbdin et al {2024 +Sub 4675 6262 5346 4048 5279 6871 7616 7292 6800 865 2347
i — . - 4088 5794 4875 3571 4763 5115 6370 6249 5682 317 1202
Idefics3-8B-Llama3{Laurencon et al 2024a) g, 4549 7165 5512 5476 5570 7432 7445 6944 6849 807 2383
- 2893 2648 2798 1429 2748 2929 3110 3274 3025 | 029 142
PLLaVA-7B{Xu et al 2024] +Sub 2264 2243 2659 2381 2381 3621 2925 2902 2928  0.00 121
- 2348 2243 2271 1667 2273 2377 3310 3072 2800 | 000 064
PLLaVA-13B{Xu et al {2024 +Sub 2704 3084 2604 2619 2773 3761 3858 3557 3492 058 2.6
R 4990 5981 5540 5476 5437 5246 6954 7057 6252 519 1622
PLLaVA-34B{Xu et al |P024 +Sub 5367 7040 68.04 6905 6303 7844 7730 7842 7428 1412 33.50
. R 4717 5100 4211 4762 4671 4694 6178 5869 5419 317 1117
InternVL.2-8B{Chen et al. §2023] +Sub 4990  68.54 5457 5238 5637 7322 7338 6831 6783 806 2504
' R 4214 4922 4543 4524 4513 4744 5986 5756 5306 | 347 1060
InternVL2-26B{Chen et al. {2023} +Sub 4612 7196 5873 5714 5720 7362 7445 7122 69.17 1326  27.03
. E 4235 6386 4848 4524 5004 5787 6901 6661 6143 575 1558
InternVL2-76B{Chen et al. 2025} +Sub 5346 7570 6510 6429 6328 8134 7993 7639 7519 1729 3599
GPTdo Minf] R 4319 5763 5540 5238 5104 6239 7352 6936 6459 605 1892
o i +Sub 4319 5763 5540 5238 5104 6239 7352 69.52 6463 | 6.05 18.99
N - 4843 6573 6094 5238 5695 6760 7310 7057 6731 605 2333
Gemini 1.5 Flash{Team et al. {2024a (frame) g, , 4990 7290 6537 5952 6103 8084 7687 7478 7322 | 1124 3314
— ) , 4444 6511 6731 5476 5720 6861 7630 7357 6928 893 2397
Gemini 1.5 Pro{Team et al 2024a] (frame) g, S3.67 7445 7756 7143 6705 8536 8171 7866 7804 | 2075  44.10
— L R 3795 6044 5374 5714 4938 6921 7039 6548 6368 865 2262
Gemini 1.5 Flash{Team et al. 2024a] (video) g, 4738 7259 6427 6429 5978 8034 7858 7324 7291 1182 3073
: - R 5031 7508 7479 6905 6495 8465 8013 8052 7739 1585 3869
Gemini 1.5 Pro{Team et al 2024a] (video) | g 5639 7477 7479 7381 6744 8455 8050 7745 7731 1960 4161
— - S681 8349 8006 7381  77.12 8385 8584 8157 8079 2450 4353
Gemini 2.5 Pro{leam et al 2024a] (frame) ., 6583 8847 8560 8810 8517 9308 8833 8618 8634 | 3660 5882
orrad R 60.17 8037 7950 7619 7194 89.17 8584 8254 8223 2507  47.94
- +Sub 6101 8069 7978 7619 7244 $9.77 8605 8294 8264 2536 4893

- 58.07 60.75 5540 54.76 58.51 59.28 7231 7187 65.93 548 19.63
Qwen2-VL-7B + Sub 58.91 7040 6343  59.52 70.02  78.03 7922 78.66 74.90 12.68 33.85
+ Ours-FT 71.36 83.80 8033 76.19 83.67 88.16 91.25 87.63 86.88 29.11 55.83

Human 86.67 90.00 89.19 100.00 89.09 92.04 90.14 92.24 90.85

Second, a critical limitation is the models’ failure to maintain coherent reasoning, despite high
accuracy on individual questions. This disconnect is evident across all models. For instance, in
the +Sub setting, GPT-40 scores 82.64% in overall accuracy but only 25.36% in chain consistency
(Cons®). Gemini 2.5 Pro shows a similar gap, with 86.34% accuracy versus 36.60% consistency. This
"high accuracy, low consistency" paradox reveals that models lack a holistic, structured understanding
of social interactions, a weakness that single-question accuracy metrics fail to capture.

4.2 FINE-GRAINED ANALYSIS ON COGNITIVE DIMENSIONS

To delve deeper into the specific reasoning failures of current models, we move beyond a monolithic
performance metric to a fine-grained analysis based on six cognitive dimensions. Figure [5a]presents
a comprehensive performance breakdown of various models across these dimensions, benchmarked
against human performance. The results reveal a clear and consistent pattern of deficiencies, even
among the most advanced models.

Our analysis yields several key insights. Firstly, the most profound weaknesses are exposed in tasks
requiring detection of Contradiction in Words vs Behavior and pragmatic inference for Implication
/ Reading Between Lines. Even the best-performing model, Gemini 2.5 Pro, lags significantly behind
human accuracy (e.g., 48.2% vs. 78.8% in contradiction detection). This reveals a fundamental deficit
in handling modality conflicts and performing pragmatic inference, suggesting models favor literal
interpretations over grasping nuanced social contexts involving sarcasm or deceit.

Secondly, the results point to architectural limitations. Current models lack systematic modeling
of event structures and evolving psychological states, which explains why even strong models
like Gemini 2.5 Pro and GPT-40 struggle with tasks requiring an understanding of mental state
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SociallQ-2.0 IntentQA

Implicatjén /
Reading Betweén Lin

Accuracy (%)

Baseline +5ub + Ours-FT. Baseline +5ub + Ours-FT
R3-Bench-DX R3-Bench-Hard

Accuracy (%)

Baseline +5ub + Ours-FT Baseline +5ub + Ours-FT
78 ame)
—— QWen2VL-7B (Ours:FT) = Baseline EEN +Sub EEE + Ours-FT

(a) Radar chart of model performance (accuracy %) (b) Accuracy (%) on four social reasoning benchmarks
across six cognitive dimensions. Results highlight the before and after applying GRPO reinforcement learn-
significant gap between SOTA models and human-level ing. The “Baseline” row reports performance of the
reasoning, particularly in tasks requiring detection of pretrained model without fine-tuning, while “+ Ours-
multimodal contradictions and pragmatic inference. ~ FT” shows results after training on R*-FDT.

Figure 5: Comparison of cognitive and social reasoning capabilities. (a) Model accuracy across six
cognitive dimensions. (b) Improvements on social reasoning benchmarks after RLFT.

reversals. In contrast, weaker models such as PLLaVA-7B perform at near-random levels on these
tasks, underscoring their inability to transition from mere representation recognition to genuine
social-contextual reasoning.

Finally, the Imagination Beyond Video category serves as a powerful diagnostic. Here, the perfor-
mance of top-tier models like Gemini 2.5 Pro and GPT-4o (both at 68.8%) closely approaches the
human baseline (75.0%). This highlights the inherent advantage of a powerful linguistic world model
for tasks that require reasoning beyond direct perceptual evidence, affirming that strong language
priors are crucial for imaginative inference.

In summary, this fine-grained analysis indicates that future advancements in multimodal social rea-
soning must prioritize: (1) robustly modeling character mental states and motivations; (2) enhancing
pragmatic inference for non-literal language understanding; and (3) improving sensitivity to and
resolution of contradictions across modalities.

4.3 TRAINING ON R*-FDT

To address previously identified challenges in consistency and multi-step reasoning, we apply
reinforcement learning fine-tuning (RLFT) using the GRPO algorithm [Shao et al.| (2024) on a
sampled subset of 13k QA pairs from R*-FDT, with subtitles incorporated into prompts. Although
the training and test sets differ substantially in video domain—our training set consists of curated
movie clips, while the test benchmark includes diverse YouTube-style content—they share a unified
QA structure grounded in causal chains. This structural alignment allows the model to benefit
directly from training signals, leading to performance improvements closely aligned with evaluation
objectives. As shown in Figure[5b] training on our dataset yields substantial gains: +32.00% on the
R’-Bench-DX and +9.81% on the R3-Bench-Hardover the base model.

Further, as reported in Tables 2] and [3] the RLFT-trained Qwen2-VL-7B outperforms GPT-40 on
R’-Bench-DX and surpasses Gemini 1.5 Pro on R*-Bench-Hard, demonstrating enhanced social
reasoning across both QA types. To assess generalization, we also evaluate the model on two external
video-based social reasoning datasets: Social-IQ 2.0 and IntentQA. GRPO training brings addi-
tional accuracy gains of 6.22% and 5.86%, respectively, confirming the transferability of reasoning
capabilities acquired from our dataset.
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5 ETHICS STATEMENT

Our study involves human participants. Informed consent was obtained from all participants prior
to data collection. The released dataset has been carefully anonymized to remove any personally
identifiable information, and participants were informed that their data may be shared for research
purposes. To mitigate potential misuse, the dataset is distributed under a research-only license, and
documentation describing appropriate usage scenarios is provided. We believe that the potential
benefits of this dataset for advancing research outweigh possible risks, and we have taken steps to
minimize privacy, security, and fairness concerns in accordance with the ICLR Code of Ethics.

6 REPRODUCIBILITY STATEMENT

We have taken multiple measures to ensure the reproducibility of our results. We provide a detailed
description of our data collection method in Section [2]and Section [3] and report implementation
details in Section[A] To further support reproducibility, we will release our dataset, code, and models
upon acceptance.
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Videos ‘ R3-Bench-DX ‘ R’-Bench-Hard
| EU MSE CW CH/W Overall | QAs
312 ‘ 997 1201 1405 1237 4840 ‘ 316
. . Nodes
Chains | Subchains \ Event Belief Intent Desire Emotion Overall
347 | 1406 | 997 321 361 42 477 2198

Table 4: Statistics of R°-Bench dataset

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs in the following aspects: (1) We utilized LLM in dataset construction process; (2) We
evaluated task performance on several LLMs; (3) We finetuned a LLM; (4) We use LLM to assist us
with paper writing slightly.

A.2 MORE DETAILS OF R’-Bench
A.2.1 VALIDITY OF ANNOTATED CAUSAL CHAINS

In our dataset, each causal chain is approved by three people: the participant who designed the QA
and two experts for verification (one of whom annotated the causal chain). The participant submits
the QA and the textual description of the reasoning process behind it, establishing the main content of
the causal chain. After being verified by two experts, the filtered data is approved by all three people.
The expert in charge of annotation only appropriately expanded and completed the reasoning process
without affecting the essence of the causal chain. Also, the annotated causal chains are verified by the
other expert. If they fail to pass the verification, the two experts will consult and revise them together.
Therefore, we can consider the annotated causal chains to be widely acceptable.

A.2.2 STATISTICAL ANALYSIS

Video Statistics. Our R*-Bench dataset contains 312 videos, each annotated with one or more causal
chains and multiple QA pairs. Figure[6a]shows the distribution of video durations. All videos are
under 180 seconds, with an average duration of 66.6 seconds. The increased video length amplifies
the challenge of social reasoning, as identifying relevant social cues becomes more difficult, and
causal chains may become longer with more steps, involving a greater variety of events and mental
states and requiring tracking of all dynamic changes of all states throughout the video.

Causal Chain Statistics. Table [4] presents the statistics of causal chains in our R*-Bench dataset. The
dataset includes 347 causal chains composed of 2198 nodes and 1406 single-step subchains. These
nodes are categorized into 997 Event nodes, 321 Belief nodes, 361 Intent nodes, 42 Desire nodes, and
477 Emotion nodes. Aside from Desire, each mental state category has over 300 nodes, providing
ample cases to assess specific mental states. In total, 1201 mental state nodes indicate a rich presence
of mental state dynamics. The lengths of causal chains range from 1 to 10 steps, with an average
length of 3.3 steps, as shown in Figure[6b] Over 60% have no less than three steps, suggesting that
the videos require complex and in-depth reasoning.

QA Statistics. As detailed in Table there are 4840 QAs in R*-Bench-DX, and there are 316 QAs in
R*-Bench-Hard. Figure and Figure [6d|show the distributions of question, answer, and incorrect
option lengths among R’-Bench-DX. The average question length is 13.2 words—longer than many
popular VideoQA datasets (Tapaswi et al.,|2016aj;Zadeh et al., 2019; [Fu et al., [2024; |Yu et al.,|2019;
Zeng et al.,|2017). Answers and incorrect options average 14.4 and 12.8 words respectively, making
the distractors similar in length to the correct answers and thus more challenging.
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Figure 6: Statistics of R*-Bench-DX. A&O means Answer and Options

A.3 MORE DETAILS OF R’-FDT

A.3.1 MORE DETAILS OF INFORMATION EXTRACTION

The algorithm to extract annotations from existing movie datasets is shown in algorithm [I] We
align the dialogues recognized by Whisper with the time-stamped annotations provided in MovieNet
to identify the temporal boundaries of each clip within the full movie. Using these identified
temporal boundaries, we then extract the relevant data from both MovieNet and MovieQA, including
question—answer pairs, action tags, place tags, and scene descriptions.

Algorithm 1 ExtractAnnotation

Require: Video v, Recognized Dialogue D, Movienet Annotation File A, MovieQA Set )
Ensure: Clip time (s, t. ), MovieNet Annotation M, MovieQA Annotation Y
: S, + ExtractSubtitle(4,v)
Sq < ExtractDialogue(D,v)
E, + GetEmbeddings(S,)
E; «+ GetEmbeddings(Sy)
(is,7¢) < MatchIndex(E,, E4)
if i, = None or 7, = None then
return None
end if
(ts,te) ¢ GetTimestamps(Sy,is,ic)
10: M + MatchMovieNet(A,ts,te)
11: Y + MatchMovieQA(Q,ts,t.)
12: return (tg,t.), M,Y

PRI RN

o

Movie scripts include content beyond the target clips. To avoid using such unrelated information,
we extract script segments based on aligned dialogues. As shown in algorithm 2] we first identify
character names as anchors to locate dialogue in the script. We then parse the script S into two parts:

scene descriptions and dialogues, yielding a structured script s’ Finally, we match the dialogues
recognized by Whisper with those in S" and extract the corresponding script segments aligned with
each movie clip.

A.3.2 STATISTICAL ANALYSIS

Video Statistics. Our R*-FDT includes 2812 videos. The average video duration is 128.76 seconds
and the median duration is 131 seconds. Figure [7a]shows the distribution of video durations.

QA Statistics. Figure[7band Figure [7c|show the distributions of question, answer, and incorrect
option lengths of R*-FDT. The average question length is 9.55, the average answer length is 11.32
and the average option length is 9.88.

Zhttps://openai.com/index/gpt-4o-mini-advancing—cost-efficient—intelligence/,
2024-07-18

*https://openai.com/index/hello-gpt—40/, 2024-05-13

‘nttps://openai.com/index/gpt-4o-mini-advancing-cost-efficient—intelligence/|
2024-07-18

Shttps://openai.com/index/hello-gpt-40/}2024-05-13
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Algorithm 2 ExtractScript

Requ1re Script S, Movie ID I, Recognized Dialogue D
C ¢+ GetCharacters(I)
S ParseScript(S,C)
S, < Grounding(S’, D)
if Len(S.) < e then
return S,
end if
return None

>‘E’.\H‘.{>H’!\.”—‘

Videos| EU Belief Desire Intent Emotion CwW Overall
2812 |14749 5645 220 1552 4532 14831 41529

Table 5: Statistics of R*-FDT dataset

A.4 MORE DETAILS OF EXPERIMENTS

A.4.1 CONFIGURATION

Our evaluation is based on VLMEvaE] repository, an open-source toolkit for assessing LVLMs across
multiple benchmarks without extensive data preparation. By extending VLMEval, we incorporates
our dataset as a new benchmark.

We process videos according to the models’ capabilities. For models that cannot process video data
directly (e.g., Idefics2(Chen et al.,2023)), we uniformly sample 16 frames from each video to serve
as input. For models that accept video inputs (e.g., Gemini(Team et al., [2024a))), we use raw videos
and frames respectively. Additionally, we provide video subtitles generated using Whisper (Radford
et al.| 2023) and incorporate them into the text prompts.

Our task is formulated as a multiple-choice VideoQA problem. Models receive the raw video or
selected frames, along with a question and five options, and must select the correct option. We
enforce output formatting constraints and determine selected option through exact matching, ensuring
reproducible evaluation results. In Section .1} we present our specific evaluation metrics.

A.4.2 GRPO TRAINING DETAILS

We implement GRPO training based on Verﬂ During training, we input 8 frames to Qwen2-VL-7B,
each with a resolution of 280 x 280, and input the dialogue recognized by Whisper to the model. We
use a rule-based reward function as following:

1 if the response meets the format requirements
rp= . @)
—1 otherwise
2 if the answer is correct
Tace = . S
—2 otherwise
r=ry + Tace (6)

We denote the reference model as .. ¢, the old policy model as 7y, and the policy model as g.

For each question ¢, we sample a group of responses o = {01, 02, ..., oy } and compute a group of
rewards r = {ry, ro, ..., 7N }. For each r; € r, the corresponding advantage A; is computed as:
r; — mean(r)

A= W @)

®https://github.com/open-compass/VLMEvalKit/
"nttps://github.com/volcengine/verl.git
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Figure 7: Statistics of R*-FDT. A&O means Answer and Options

Then the policy model 7y is updated according to the following optimization objective:

jGRPO(e) =E |:q ~ P(Q)7 {Oi}ﬁil ~ TOu1a (O | q):|

1 79 (05 | q) 7 (0; | q)
N Z <min (Az', clip (), 1—¢,1+ €> Ai) — Dk (770|7rref)> )

i—1 0014 (Oi ‘ Q) 9014 (Oi | q
Tref (0i | q) Tref (0i | @)
Dgr (mol|mres) = —1lo —1,
( H ref) T (01‘ | C]) g T (Oi | q)

®)

Both the video context and the dialogue are required to answer R*-Bench-DX and R*-Bench-Hard
in R3-Bench and QAs in SociallQ 2.0 correctly. Therefore, when evaluating on these datasets, we
also provide the dialogue to Qwen-2-VL-7B. Previous studies mostly input only the video context to
models. When evaluating on IntentQA , we do not provide the dialogue to the model. We input the
model with a 16 x 360 x 640 video context when evaluating. We report the training parameters and
visualizations in the supplementary material.

A.4.3 COMPUTE RESOURCES

All evaluations were conducted on machines equipped with NVIDIA A100 GPUs. For models
with fewer than 10B parameters (e.g., Idefics2-8B (Laurencgon et al.l 2024b))), we used a single
A100 GPU. For mid-scale models in the 20—40B range, such as PLLaVA-34B (Xu et al.,|2024) and
InternVL2-26B (Chen et al.| [2023)), we used two A100 GPUs. Large-scale models with over 70B
parameters, including InternVL2-76B (Chen et al.,|2023)), were evaluated using four A100 GPUs.
During the training stage, all models were trained using four NVIDIA A100 GPUs.

A.4.4 ADDITIONAL RESULTS ON R3-Bench-DX

Further Classification of Subchains We further divide subchains (stand for social causality) into
six categories. Category I is MS — E, which means that an event is the result of one or more mental
states. Category Il is MS & E — E, which means that an event is the result of the combination of one
or more mental states and one or more events. Category IIl is E — E, which means that an event is
the result of one or more events . Category IV is E — MS, which means that a mental state is one
or more events. Category V is E & MS — MS, which means that a mental state is the result of the
combination of one or more events and one or more mental states. Category VI is MS — MS, which
means that a mental state is the result of one or more mental states. Through division, we can delve
deeper into discussing Large Vision-Language Models’ (LVLMs’) performance on various types of
social causality and analyze their strengths and weaknesses.

We have quantified the number of CW QAs and CH/W QAs generated according to each of the six
categories of subchains, as presented in Table[6] Among these, the questions that involve mutual
reasoning between MS and E (i.e., Categories I and IV) are the most prevalent. In contrast, questions
that employ both E and MS to reason about MS (i.e., Category V) are the least numerous and
constitute the most challenging subset of QAs.
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Table 6: Total Quantities per Category. The table categorizes social causality into six categories: I.
MS—-E.II.MS&E—E.IIILE—E.IV.E = MS. V.E & MS — MS. VI. MS — MS.

Category Total Subchains CW  CH/W QAs Total QAs

I 434 434 392 826
II 199 199 170 369
III 96 96 91 187
10Y 464 463 403 863
v 79 79 65 144
VI 134 134 116 250

Total 1406 1405 1237 2642

Table 7: Additional Results on R?-Bench-DX. The table categorizes social causality into six categories:
IMS—-EINMS&E—E.INLLE—E.IV.E—MS.V.E&MS — MS. VL. MS — MS. All values
are reported as percentages (without % symbols). The Cons®¢ columns are shown in bold.
while “+ Ours-FT” shows results after training on R3-FDT.

Setting Method [ | 1 | 1 | v | v | VI
CW  CHW Cons™® | CW CH/W Cons® | CW CHW Cons® | CW CHW Cons® | CW CH/W  Cons® | CW  CHW Cons™

20.51  19.90 0.00 2261 2235 0.00 1250 9.89 0.00 21.81 2333 0.22 2278 29.23 0.00 17.16  25.00 0.75
13.54  12.09 0.00 2376 23.82 0.86 2278 27.69 0.00 1642 24.14 0.00

Video-LLaVA +Sub

76.12  74.14 36.57
79.85  73.28 43.28

72.58  83.16 34.79
76.50  80.10 4194 | 7990 84.12 35.68

‘ 81.91 87.06 35.68
81.34  85.97 47.93 ‘87.94 90.00 52.76

87.50  81.32 59.38
86.46  84.62 50.00

8531 7742 4224
83.37 7146 4353

84.81  76.92 2532

Gemini 1.5 pro (video) | ¢ 1 79.75 7846 | 3038

89.58  89.01 64.58 | 87.47 76.67 46.98 | 88.61 76.92 31.65 | 87.31 7845 4179

|
|
‘ 2120 2296 023 | 2412 2353 000
Jdefics2-8B - 968 1020 000 | 1005 1412 000 | 1146 1209 000 | 756 1166 000 | 886 1077 = 000 | 746 1121 075
* +Sub 2396 2398 LIS | 2201 2294 101 | 2812 2198 104 | 2333 2134 172 | 2025 2000 000 | 1791 2414  0.00
MPLUG-OWI3 - 5991 6607 | 1336 | 7136 6529 | 955 |77.08 6593 | 1875 | 73.00 60.05 | 1703 | 60.76 6615 | 380 | 68.66 5776 | 1119
+Sub 65.67 7577 | 2304 | 7688 7647 2412 | 87.50 80.22 = 4583 | 79.05 63.03 & 2866 | 7722 7077 | 1392 | 7463 6552 1567
Phi-3.5-Vision - 65.67 7423 | 1406 | 7889 7412 | 1156 | 78.12 6484 | 1562 | 7451 6675 | 2091 | 7848 7538 | 633 | 68.66 6983 & 21.64
VS +Sub 68.66 77.55 = 2005 | 8291 8294  19.60 | 8021 64.84 =~ 27.08 | 79.05 67.74 = 28.66 | 7848 6923 1519 | 76.12 6897 = 24.63
Ldefics3-8B-Llama3 - 5714 6403 1129 | 6834 6471 905 |77.08 57.14 | 1250 | 6523 60.79 = 1401 | 60.76 67.69 506 | 6418 6121 | 15.67
S ) +Sub 67.74 7551 | 2235 | 77.89 7941 & 2362 | 8333 6813 3542 | 7603 6253 & 2478 |81.01 6462 1266 | 7537 6207 = 2388
PLLaVA7B - 3134 3316 LIS | 3367 3294 050 | 3021 2308 104 | 3110 3400 237 | 3038 4000 000 | 2687 3017 149
A +Sub 2003 3010  0.69 | 2864 2882 000 | 2500 20.88 208 |31.10 3002 216 | 3165 2923 127 | 2537 2845 075
PLLAVA.13B - 3180 2730 © 023 | 3307 3294 000 | 2812 2198 104 | 3477 3375 108 | 3797 3692 000 | 3134 3190 149
i + Sub 3802 3342 207 |37.19 3765 050 | 4062 2967 521 | 3996 3772 302 | 3797 4154 127 |3582 3362 448
PLLAVA4B - 6198 7168 1429 | 7286 70.00 = 854 | 8021 7033 | 1667 | 7279 7047 | 2155 | 7215 6615 | 506 | 68.66 7069 & 21.64
AVA=S +Sub 7350 8316 | 3387 | 8241 8353 3216 | 8229 8462 5000 |80.78 7097 | 3319 |87.34 7231 | 2025 | 7836 7845 3134
InternVL2-8B - 5253 5638 922 | 6332 6118  7.04 | 7396 5934 | 1562 | 6695 60.05 1336 | 5823 66.15 759 | 6493 5345 | 14.93
ntermnVL.2- +Sub 6452 7168 2212 | 7638 7941 | 2513 | 8021 6813 4062 | 7862 6228 & 2672 | 7342 67.69 1519 | 74.63 6207 = 23.13
InternVL2-268 - 5323 5638 | 9.68 | 6030 60.59 | 7.54 | 69.79 4615 | 833 | 6501 5955 | 1336 | 5949 5846 | 2.53 | 5597 5862 | 1493
- +Sub 6659 7628 2811 | 7286 77.65 2211 | 8333 7473 3958 | 7991 6452 2823 | 7975 6462 = 886 | 7388 6897 2836
[ - 6175 69.90 | 1567 | 7437 7353 | 1005 | 7500 6264 | 1458 | 73.00 6253 | 1940 | 72.15 67.69 | 886 | 6567 6207 | 1493
- +Sub 7350 7985 | 3618 | 8543 8824 3568 | 84.38 8681 5104 | 8251 6675 3621 |81.01 7077 | 2532 | 7985 7586 = 30.60
GPTdo mi - 6659 7168 1659 | 8090 7235 1608 | 8646 64.84 | 27.08 | 7646 6824 = 2241 | 7215 7231 = 633 | 6642 6293 | 20.15
~o mint +Sub 6659 7219 1682 | 80.90 7235 = 1608 | 8646 64.84  27.08 | 7646 6824 2241 | 7215 7231 = 633 | 6642 6293 = 20.15
Gomini 15 fiash (rame) 67.74 7347 | 2120 | 7889 7529 | 2211 | 79.17 7253 | 3125 | 7451 6576 | 2478 | 7595 7385 | 1392 | 7090 67.24 | 2687
- fhas +Sub 7235 7857 | 3157 | 7839 8353 3417 |87.50 8132 5000 | 7797 6725 @ 3341 | 7595 7077 | 1392 | 7836 7241 3507
Gomini 15 pro (rame) 7235 7321 | 2396 | 7940 8118 | 1859 | 79.17 7582 | 3333 | 76.67 7171 | 2586 | 81.01 7077 | 1139 | 7836 69.83 | 26.12
> pro (fra +Sub 7926 8265 4470 | 8492 8824 4523 | 8542 8791 5833 | 8272 7097 & 4246 |81.01 7077 2785 | 7836 7500 4552
Gesming 1.5 fash (video) 6406 6735 | 2051 | 69.85 7353 | 2060 | 77.08 6813 | 3438 | 7430 60.55 | 2522 | 7595 7077 | 1646 | 70.15 5948 | 18.66
> 1 + Sub 7442 7781 | 3226 | 7990 8235 | 27.14 | 8646 7692 4375 8200 7586 3582

80.13  64.76 = 29.96 ‘ 7342 6462 1139

GPT-4o + Sub 81.34  86.48 49.08 | 88.44 90.59 53.77 | 89.58 89.01 6458 | 87.26 77.42 4828 | 89.87 75.38 31.65 | 88.81 7845 4254
Gemini 2.5 pro (frame) - 82.03 82.14 43.09 | 86.43 85.29 3417 | 86.46 8791 60.42 | 87.69 78.16 44.83 | 88.61 80.00 29.11 88.81  81.90 50.75
2P ° + Sub 86.41  88.78 58.53 | 89.95 94.12 61.31 | 89.58 96.70 76.04 | 8855 79.40 5517 | 88.61 80.00 4810 | 9030 84.48 62.69

- 6382  76.53 17.51 | 7538 7529 16.08 | 8229 62.64 19.79 | 7646 67.74 21.77 | 74.68 7231 1519 | 7239 7241 26.87

Qwen2-VL-7B + Sub 7143 84.69 3111 8241 8471 3166 | 93.75 79.12 5521 80.99 71.71 3491 | 7722 73.85 18.99 | 8433 75.86 3582
+Ours-FT | 88.71 91.58 5484 | 9648 90.59 56.28 | 95.83 89.01 68.75 | 90.06 83.87 57.76 | 94.94 90.77 43.04 | 90.30 80.17 50.00

Results and Analysis We conducted a further analysis of the R*-Bench-DX by categorizing them
according to the six subchain classifications outlined in Section[A.4.4] As shown in Table[7] we
employed the same models and settings reported in the main paper to evaluate our dataset. These
settings included scenarios without subtitles (-) and with subtitles (+ Sub). The metrics we report
are similar to those in the main paper, encompassing both the accuracy of the QAs and the Subchain
consistency (C'ons®¢) for each subchain. However, we further disaggregated the performance statistics
based on the six subchain categories. This detailed analysis revealed several intriguing insights:

Subchain Consistency for Mental State Reasoning: Reasoning about events generally exhibits
higher Subchain consistency compared to reasoning about mental states. Specifically, Categories
I, II, and III, which involve inferring events from events or mental states, demonstrate higher
performance than Categories IV, V, and VI, which involve inferring mental states from events or
mental states. Notably, event-to-event reasoning (Category III) achieves the highest accuracy and
Subchain consistency, significantly outperforming the other categories that involve mental state
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reasoning (Categories I, II, IV, V, and VI). This indicates that current LVLMs are more adept at
factual causal reasoning than at inferring mental states, which remains more challenging.

Difficulty in Cross-Domain Reasoning: Inferring mental states from events or mental states is
typically more challenging than inferring events from events or mental states. In Categories I and II,
the core of the reasoning process is based on mental states (MS), with events (E) serving as auxiliary
information to aid in accurately inferring the events. This auxiliary role of events facilitates correct
reasoning, resulting in Categories I (MS inferring E) and II (MS & E inferring E) not exhibiting a
pronounced increase in difficulty. Conversely, Category V, where both events (E) and mental states
(MS) are used to infer mental states (MS), is the most difficult, significantly more so than Category
IV, which involves events (E) inferring mental states (MS). In these categories, the mental states are
the primary focus of inference, and the inclusion of additional mental state information introduces
complexity that leads to a substantial decline in model performance. This further underscores the
current limitations of LVLMs in inferring mental states.

A.4.5 ADDITIONAL RESULTS ON R3-Bench-Hard

We report the accuracies of other LVLMs on R3-Bench-Hard, which is shown in Table|8] We can see
that ToM prompting can still improve models’ accuracies.

Table 8: Additional Evaluation Results of R*-Bench-Hard.

Model Overall
Random 20

Idefics2-8B 15.19%
Video-LLaVA 18.35%
Phi-3.5-Vision 23.73%
PLLaVA-7B 17.09%
PLLaVA-13B 20.25%
PLLaVA-34B 30.06%
InternVL2-8B 24.68%

Gemini 1.5 Flash (video) 28.48%
Gemini 1.5 Flash (frame) 30.38%

A.5 HUMAN STUDY

Human studies are completely harmless to human subjects, and we clearly explain all requirements
to the subjects before conducting studies.

We sample 43 causal chains and 481 of R’-Bench-DX for the human study. QAs generated from
the same causal chain are interrelated. For fairness, we can not provide all QAs generated from the
same causal chain with human (however, model experiments are set up like this) due to human’s
memory. Therefore, we ask each subject to answer only one question from the same reasoning chain.
Please note that, in this setting, the reasoning consistencies of human are severely underestimated.
We recruit 38 subjects to do human study and results are shown in the main paper.

B CONCLUSION

In this work, we address the challenge of consistent and multi-step social reasoning in video through
the lens of LVLMs. We introduce R*-VQA, a large-scale dataset constructed via an automated pipeline,
comprising R*-Bench for evaluation and R*-FDT for model development. The dataset includes fine-
grained annotations of social events, mental states, and their causal links. Our benchmark highlights
that current state-of-the-art LVLMs still struggle to reason consistently across causal chains. Fine-
tuning a 7B model with GRPO on our training set leads to notable gains across multiple social
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reasoning benchmarks. At present, our automatic QA generation focuses on single-step questions;
extending it to multi-step causal reasoning remains future work. The annotated explanations of causal
chains also show promise as training captions but are not yet utilized. We hope this dataset and
framework will contribute to building socially intelligent, multimodal systems and inspire further
progress in this direction.
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