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ABSTRACT

“Read the room,” or the ability to infer others’ mental states from subtle social
cues, is a hallmark of human social intelligence but remains a major challenge for
current AI systems. Existing social reasoning datasets are limited in complexity,
scale, and coverage of mental states, falling short of the rich causal dynamics
found in real-life interactions. In this work, we introduce R3-Bench-an evaluation
benchmark with fine-grained annotations of belief, intent, desire, emotion, and
their causal chains in complex scenarios; and R3-FDT , a large-scale training
set generated through a novel automated pipeline with the same structure. We
conduct a comprehensive evaluation of state-of-the-art (SOTA) LVLMs on R3-
Bench, revealing substantial gaps in consistent multi-step social reasoning. We also
fine-tune a 7B model using group relative policy optimization (GRPO) on R3-FDT ,
achieving notable improvements across multiple social reasoning benchmarks. Our
contributions are three-fold: (i) a novel benchmark with richly annotated, multi-step
causal reasoning data; (ii) systematic evidence that SOTA LVLMs fall far short of
human-level reasoning; (iii) a scalable training dataset that significantly enhances
social reasoning performance. We will release our dataset, code and models upon
acceptance.

1 INTRODUCTION

“Read the room” requires employing Theory of Mind (ToM) (Premack & Woodruff, 1978) to read
others’ minds and perform social reasoning with subtle cues; it represents higher-level social in-
telligence, and plays a key role in helping people navigate social scenarios smoothly. Humans are
innate with the ability to perceive huge hidden information from very simple cues (Heider & Simmel,
1944; Fan et al., 2022; Zhu et al., 2020); however, it remains a great challenge for current AI. As
illustrated in Figure 1, the visible physical world is only the tip of the iceberg; beneath it lies a vast
and often invisible mental world. In just a few seconds of social interaction, people perceive layers of
causally linked mental states: who is aware of what, who is hiding what, and how others respond.
These interpretations rely not only on observable actions but also on unspoken norms and contextual
reasoning. Effective social reasoning thus involves (i) detecting subtle behavioral cues, (ii) estimating
diverse and evolving mental states, and (iii) identifying causal chains that connect the physical and
mental worlds over time.

Large language models (LLMs) have recently demonstrated strong reasoning abilities across various
domains (Brown, 2020; Wei et al., 2022; Kojima et al., 2022; Bubeck et al., 2023; Wang et al.,
2024b). However, they still struggle with complex reasoning tasks such as long-term planning and
scientific problem solving (Srivastava et al., 2022; Wang et al., 2024c; Mirzadeh et al., 2024; Glazer
et al., 2024). Social reasoning—a crucial subset of complex reasoning—also remains challenging for
LLMs (Shapira et al., 2023; He et al., 2023; Gu et al., 2024; Wang et al., 2024a). Critically, language
alone is insufficient for modeling social cognition: visual signals are essential for inferring subtle,
layered, and often concealed mental states.

To address this, large vision-language models (LVLMs) (Liu et al., 2024; Zhang et al., 2023; Lin et al.,
2023b; Team et al., 2023; 2024b; Hurst et al., 2024) have emerged, enabling multimodal understanding.
Yet, current benchmarks provide limited evaluation of (i) diverse mental state estimation and (ii)
the consistency and depth of social reasoning in complex interactions. Moreover, there remains no
large-scale video dataset covering multiple mental states and their causal relationships, hindering

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To Wait for 
a Handshake 

Eager

Happy

Excited

Disappointed

Embarrassed

Resigned 

To Intend to 
Shake Hands To Conceal the 

Original Intent to 
Shake Hands 

To Pretend the Hand 
is Raised to Pat the Head

"Next, it’s my turn 
for a handshake."

"I hope the person 
next to me didn’t notice
I tried to shake hands."

Belief

Emotion

Intent

social cue

social event

mental
state

causal chain

To Ease the 
Awkwardness

"Oh, I’ve been 
noticed after all."

Self-Deprecating 

A and C shake hands.

BA C

B extends a hand, but A 
doesn’t notice.

B places the extended 
hand on his own head.

C pats B on his shoulder; they 
exchange a glance, and  B 
spreads his hands.

belief

emotion

intent

Visible Physical World

Invisible Mental World "Oh, he didn’t see me 
and went to shake hands 
with someone else."

Figure 1: The visible physical world we live in is just the tip of the iceberg compared to the vast,
invisible mental world behind it (Zhu et al., 2020). In this example(you, 2014), a brief social
interaction reveals complex and dynamic mental activities: B extends his hand to shake with A, but
A fails to notice. B then pretends his outstretched hand was meant to touch his head, concealing
his embarrassment. C, however, sees through B’s mental state and pats him on the shoulder to offer
comfort. In response, B shrugs and gestures self-deprecatingly to ease the awkwardness. Social
reasoning is a critical aspect of social intelligence. Yet in long-term, dynamic interactions, capturing
subtle cues, recognizing social events, estimating mental states, and identifying reasoning chains
becomes increasingly difficult, making social reasoning even more intricate.

further development in this area. Current datasets like NExT-QA (Xiao et al., 2021), MVBench (Li
et al., 2024), MMBench-Video (Fang et al., 2024), and Video-MME (Fu et al., 2024) focus on factual
or visual understanding, offering limited support for mental state reasoning or causal inference.
MMToM-QA (Jin et al., 2024b), MELD (Poria et al., 2018), and IntentQA (Li et al., 2023) target
mental states like intent or emotion but lack multi-step reasoning. Causal-VidQA (Li et al., 2022) and
CausalChaos (Lam et al., 2024) include causal elements but are limited to physical events or rely
on animated content. SocialIQ (Zadeh et al., 2019) and Social-IQ 2.0 (Wilf et al., 2023) incorporate
social contexts but do not model fine-grained causal chains or assess reasoning across linked events.

We introduce Read-the-Room Reasoning for Video Question Answering (R3-VQA), a new VideoQA
dataset composed of a fine-grained evaluation benchmark (R3-Bench) and a large-scale training set
(R3-FDT). It captures rich social interactions and includes: (i) detailed social events, (ii) mental
states and their transitions, and (iii) multi-step mental-physical causal chains. We evaluate SOTA
LVLMs on R3-Bench, and further fine-tune a 7B model using group relative policy optimization
(GRPO) Shao et al. (2024) on R3-FDT . Results show: (i) current models still fall short of human-level
social reasoning; (ii) our training data provides notable improvements across several benchmarks.

In summary, our contributions are three-fold: (i) we introduce R3-Bench, a novel benchmark with
complete, fine-grained annotations for social reasoning; (ii) we show that SOTA LVLMs remain
far from human-level performance on this benchmark; (iii) we construct R3-FDT using a scalable
automated pipeline, offering valuable training data to improve LVLMs’ social reasoning capabilities.

2 R3-BENCH: A HIGH-QUALITY TESTBED

We design our dataset in a natural, intuitive, and principled way, grounded in the foundational Theory
of Mind (Premack & Woodruff, 1978), the belief-desire-intention (BDI) framework (Bratman, 1987),
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Datasets Real-World Mental State Causality CC Training Set Test Set
Belief Intent Desire Emotion # Video # MC-QA # Video # MC-QA

NExT-QA(Xiao et al., 2021) ✓ ✗ ✗ ✗ ✗ ✗ ✗ 3.9k 34k 1k 8.5k
MVBench(Li et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✗ - - 3.6k 4k
MMBench-Video(Fang et al., 2024) ✓ ✗ ✗ ✗ ✓✗ ✗ ✗ - - 0.6k 2k
Video-MME (Fu et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✗ - - 0.9k 2.7k

MMToM-QA (Jin et al., 2024a) ✗ ✓ ✓ ✗ ✗ ✗ ✗ - - 0.1k 0.6k
MELD (Poria et al., 2018) ✓ ✗ ✗ ✗ ✓ ✗ ✗ - - - -
IntentQA (Li et al., 2023) ✓ ✗ ✓ ✗ ✗ ✗ ✗ 3.2k 12k 0.6k 2.1k

CausalChaos (Lam et al., 2024) ✗ ✗ ✓✗ ✗ ✗ ✓ ✓ 3.4k 3.5k 0.7k 0.7k
SocialIQ 1 (Zadeh et al., 2019) ✓ ✓✗ ✓✗ ✓✗ ✓✗ ✓✗ ✗ 1k 6k 0.3k 1.5k
Social-IQ 2.0 (Wilf et al., 2023) ✓ ✓✗ ✓✗ ✓✗ ✓✗ ✓✗ ✗ 1.1k 6.2k 0.3k 1.7k

Our Work
R3-Bench ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - 0.3k 5k
R3-FDT ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3k 68k - -

Table 1: Dataset comparison. CC means mental-physical causal chain.

Belief
Event

Emotion
Intent

Desire

The man’s 
Emoion-1

The man’s 
Intent-1

Event-1 Event-2 Event-4 Event-5

The man’s
Desire-1

Mental-Physical Causal Chain

Penny. Penny. Penny. 

Um, well, I was worried 
that you might be missing 
Leonard.

Perhaps I should sleep 
here, so you don't miss 
Leonard as much.. 

Sweetie, did you have a 
bad dream? 

Penny’s
Belief-1

Penny’s 
Emoion-1

Event-3 Penny’s Belief-2

Desire QA

Emotion QA Intent QA

Chain-based QAs

Event QA Belief QA

Subchain-based QAs

............

Subchain

Causal-How/What QACausal-Why QA

(a) We generally illustrate our dataset design (see Sec-
tion 2.1)

Question: 
Why does Louise feel nervous?
Options:
a.Because she believes they might be in trouble.
b.Louise feels nervous because she is worried about 
getting lost.
c.Louise feels nervous because she is concerned about 
the weather.
d.Louise feels nervous because she is anxious about 
their destination.
e.Louise feels nervous because she is worried about 
car trouble.

Causal-Why (CW)

Question: 
What belief does the woman hold about the man 
towards the end of the clip?
Options:
a.She believes the man is reckless.
b.She thinks the man is in pain.
c.She believes the man is very manly.
d.She believes the man is careless.
e.She thinks the man is showing off.

Mental State Estimation (MSE)

Question: 
What results from the woman's belief that Leonard mis
-understood her farewell?
Options:
a.The woman decides to ignore Leonard's misunderstand-
ing and continues her conversation with someone else.
b.The woman responds directly to Leonard, saying 'bye, Leonard.'
c.The woman laughs at Leonard's mistake and walks away 
without saying anything further.
d.The woman apologizes to Leonard for any confusion and 
explains she was talking to the dog.
e.The woman asks Leonard if he wants to say goodbye to 
the dog as well.
                    

Causal-How/What (CH/W)

Question: 
What did the driver do with the chicken bone in the middle 
of the clip? 
Options:
a.The driver placed the chicken bone in the glove compartment.
b.The driver handed the chicken bone to the passenger.
c.The driver ate the chicken bone.
d.The driver put the chicken bone in a trash bag inside the car.
e.The driver threw a chicken bone out of the car.

Event Understanding (EU)

(b) Examples of each QA type. The option marked in
green is the correct answer.

Bandura’s social cognitive theory—particularly triadic reciprocal determinism (Bandura et al., 1986;
Bandura, 1989)—and other modern studies in social cognition (Tomasello, 2010; Pearl, 2014; 2009;
Reisenzein, 2006; 2009; Puica & Florea, 2013; Schlaffke et al., 2015; Fan et al., 2022). Our dataset
systematically integrates both physical and mental dimensions of social interaction. We include
key mental state variables (belief, intention, desire, and emotion) alongside observable physical
variables (actions, expressions, dialogue, and other social cues). We further capture comprehensive
and dynamic causal interactions among these variables, reflecting the intricate interplay between
internal states and external behaviors and environments. This framework positions our dataset as a
valuable testbed for developing and evaluating computational models of social reasoning.

2.1 OVERALL DESIGN

R3-Bench differs from traditional VideoQA benchmarks in the following aspects: (i) It includes
fine-grained annotations and generation of mental-physical causal chains; (ii) QA pairs are generated
based on these causal chains; (iii) It enables comprehensive evaluation of various social reasoning
capabilities, including reasoning consistency via causal chains. We illustrate the design and structure
of our dataset with an example in Figure 2a.

In our dataset, each video has one or more mental-physical causal chains. We denote a causal chain
as g ∈ G, and a subchain as gsub ∈ Gsub. Here, G and Gsub respectively represent all the causal
chains and subchains. Note that a chain consists of multiple subchains: g = {gsub}. A subchain gsub

comprises one result node v1 and one or several reason nodes {v0i }. All reason nodes point to the
result node via causal edges {ei}. Every reason node v0i is necessary to deduce the result node v1.

For each social causal chain g, we generate a set of related QAs according to the following rules:

(i) For each node v ∈ g, we generate a Event Understanding or Mental State Estimation QA,
depending on its node content. The content of a node is either about an event or a mental state.

1Official train/test splits are unavailable. The reported set sizes are estimated using an 80%/20% ratio.
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III. Causal Chain Annotation&
Verification

 

Mental State 
Estimation QA

Event
Understanding QA

Causal-Why QA

Causal-How 
/ What QA

. 
## Nodes:
### Penny's Belief-1: does not believe that XXX
Duration(HH:MM:SS): 00:01:30-00:01:35
### Sheldon's Emotion-1: afraid. 
Duration(HH:MM:SS): 00:01:09-00:01:59
......
## Sub-Chains
### Sub-Chain-1
- **Reason**: Sheldon's Intent-1
- **Result**: Event-1
......
Event Understanding QA Generation Rules:
a. You should summarize the event reasonably.
b. ......
Mental State Estimation QA Generation Rules:
a.The answer is the mental state described in the node. 
b. ......
Causal-Why QA Generation Rules:
a.The question is about sub-chain's result.
b. ......
Causal-How/What QA Generation Rules:
a.The answer is about the sub-chain's result.
b. ......
Think step by step.

V. QA Verification
II. Human Data 
Verification

Experts
Correct

Expert

The man’s
Emoion-1 

The man’s
Intent-1 Event-1 Event-2

Event-4

Event-5

The man’s
Desire-1Penny’s

Belief-1

Penny’s
Emoion-1 

Event-3

Penny’s Belief-2

I.Human Data Collection

Human

Video

QA

Explanation

Penny. Penny. Penny. 
Um, well, I was worried that 
you might be missing Leonard.Sweetie, did you have a bad 

dream? 

Perhaps I should sleep here, 
so you don't miss Leonard 
as much.. 

Question: Why does Sheldon want to sleep in Penny's room?
Options:a.Because Sheldon wants to discuss a scientific theory with Penny.
b.Because Sheldon is concerned about Penny's health and wants to monitor her overnight.
c.Because Sheldon needs a quiet place to work on his research and Penny's room is the 
quietest.
d.Because Sheldon is feeling afraid and seeks comfort by being in Penny's room. 
e.Because Sheldon wants to surprise Leonard by being in Penny's  room when he returns.

Although Sheldon said he was doing it for Penny, he clearly didn't calmdown from 
his nightmare. His cautious tone indicated that he only wanted to sleep in Penny's 
house because he was afraid.  

R3-VQA 
Dataset

IV. QA GenerationPrompt

Expert

Consult
&Modify

annotate verify

Figure 3: The R3-Bench construction pipeline, which consists of five stages.

(ii) For each subchain gsub, we generate a Causal-Why QA and a Causal-How/What QA, depending
on whether the reasoning is abductive or deductive.

Therefore, we have four types of QAs in total. We provide four examples selected from our dataset
for the four QA types respectively in Figure 2b:

Event Understanding (EU). Event understanding is the premise of social reasoning. We generate a
factual QA for each event node. For example, “What happens at the end of the clip?” and “What
does Person B do when Person A reaches out her hands?”.

Mental State Estimation (MSE). Mental state estimation is a crucial aspect of social intelligence.
We consider typical mental states including belief, intent, desire, and emotion. We generate an
inferential QA for each mental state node, such as “How does someone feel at the end of the clip?”

Causal-Why (CW) & Causal-How/What (CH/W). Causal-Why QAs focus on abductive reasoning
and inquire about causes of a given result—for example, the reasons why Louise feels nervous in the
third case of Figure 2b. In contrast, Causal-How/What QAs emphasize deductive reasoning and ask
about the effects of a cause, such as the outcome of the woman’s belief in the fourth case of Figure 2b.
To increase question diversity, we include variations such as “How” and “What” in phrasing. An
example Causal-How QA is: Question: “How did Sheldon’s revelation affect Penny’s emotions?”
Answer: “Sheldon’s comment about the ring’s true value led to Penny’s disappointment.”

2.2 DATASET CONSTRUCTION

R3-Bench is a comprehensive evaluation benchmark featuring high-quality and sufficiently challenging
data. This is ensured through three aspects: (i) recruiting participants to independently submit diverse
video sources—such as ads, short films, and real-life clips—that meet our criteria; (ii) using LVLMs
to filter for difficult and unpolluted samples, meaning data unlikely to appear in standard pretraining
sets; and (iii) involving domain experts to verify and annotate the content. To support this, we design
a rigorous data construction pipeline illustrated in fig. 3.

Human Data Collection. To support high-quality human-designed QA, we organize a “Read the
Room Challenge” to collect data from crowdworkers and volunteers. To guide this process, we
establish clear principles and standards: (1) Data composition: Each data sample includes a video
clip, a question, four distractors, a correct answer, and a reasoning explanation. (2) Strict standard:
Questions must involve at least one mental state and emphasize causal relations. (3) No external
knowledge required: Answers must be based solely on observable visual or auditory cues, without
relying on external background knowledge. (4) Explanation requirement: Each sample must include
an explanation describing the reasoning process and underlying causal chain. (5) Data pollution
prevention: We exclude any sample that Gemini 1.5 Pro answers correctly, ensuring the data remains
unseen and challenging. This design ensures that the collected data reflects nuanced, causal, and
human-level reasoning that current models are not yet capable of replicating.

Human Data Verification. While many submitted QA pairs successfully challenge Gemini 1.5
Pro, not all meet our quality standards. To ensure consistency, we conduct expert review involving
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annotators with backgrounds in cognitive science, linguistics, and AI. Each sample is assessed
against our criteria—such as causal depth, mental state relevance, and clarity of explanation—by two
independent reviewers. Only those approved by both are retained. Given the nuanced reasoning and
social subtleties involved, such validation cannot be reliably automated, highlighting the necessity of
human judgment for constructing a benchmark of this complexity.

Causal Chain Annotation & Verification. To capture the reasoning behind each QA, we conduct
expert annotation of mental-physical causal chains. Annotators receive training based on strict
principles and follow the structured format defined in Section 2.1. Each verified sample is annotated
by one of its original reviewers. The annotation process consists of three steps: (i) reviewing the
QA and its explanation, (ii) identifying key events and mental states as nodes, and (iii) linking these
nodes into subchains according to causal relations. After annotation, the second expert conducts an
independent review. If revisions are needed, both experts iterate to reach agreement on the final chain.
This multi-stage, fine-grained process ensures that each sample reflects a coherent and interpretable
causal reasoning flow grounded in rich multimodal context.

QA Generation & Verification. We use GPT-4o to generate QA pairs for each annotated causal
chain, following the rules in Section 2.1. We invite the same experts from the causal chain annotation
stage to verify the QA pairs generated from their own annotated chains. Each QA is checked
against the following standards: (i) adherence to generation rules, (ii) accurate and unambiguous
time references, (iii) full coverage of the corresponding node or subchain content, and (iv) only one
correct answer among five options. If a QA fails to meet these criteria, experts revise it following our
guidelines or discard it if correction is infeasible. This process yields 4,840 verified QA pairs.

The detailed statistical analysis is provided in Section A.2.2.

3 R3-FDT : AUTOMATICALLY GENERATED DATASET WITH CAUSAL CHAINS

The development of VideoQA datasets for social reasoning is constrained by two significant chal-
lenges. First, there is a scarcity of high-quality video content that captures the complexity of social
interactions. Second, the annotation process is prohibitively expensive, requiring intensive labor to
infer nuanced mental states, followed by extensive verification to reduce ambiguity. These bottlenecks
have impeded the development of foundational models in this domain. To overcome these limitations,
we introduce an automated pipeline using human annotations and large models, named ARGUS
(Automated Reasoning Generator for Universal Social Videos). As illustrated in Figure 4, it is
designed to generate large-scale training datasets at a reduced cost while maintaining high data
quality. Our methodology is centered on the following principles:

(i) Mitigation of Cross-Modal Reasoning Deficiencies: Contemporary models often exhibit limitations
such as inconsistencies and hallucinations when processing videos. Our pipeline circumvents these
issues by utilizing textual descriptions of videos to enhance the credibility of generated content.

(ii) Assurance of High-Fidelity Annotations: The pipeline exclusively uses human-annotated descrip-
tions that are aligned with videos. It ensures that the foundational data maintains a high degree of
accuracy and reliability, consistent with expert annotation standards.

The proposed pipeline offers a cost-effective and scalable solution for generating high-quality training
data, addressing a critical need for advancing foundation models in social reasoning.

3.1 INFORMATION ALIGNMENT

To enable large-scale generation of social reasoning data with mental-physical causal chains, we
leverage movie data as a rich and structured source. Compared to open-domain videos, movies
offer diverse content along with detailed scripts and annotations that describe both visual context
and mental states. This makes them naturally suitable for constructing training data that aligns
structurally with our human-curated benchmark. We extract information from publicly available
movie datasets such as MovieNet (Huang et al., 2020), MovieQA (Tapaswi et al., 2016b), and
CondensedMovies (Bain et al., 2020), as well as corresponding movie scripts. As shown in the
blue section of fig. 4, we extract key elements from each clip, including scene context, annotated
events, mental states, and aligned dialogue. To ensure all generated QAs remain within the temporal
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You’ve got your wish.
You’ve never been born.

Wait a minute.
That’s an idea.

I will help George.

Scripts

Dialogues

Aligned Information Causal Chains

QA&Options
Generation

Self-Correction

Plot
George wishes ..., so Clarence 

gives him his wish.

Scenes
TOLL HOUSE ON BRIDGE, NIGHT

Events
Clarence glances up toward Heaven.

Mental States
Clarence intends to help George. 

Script Clip DialoguesI said I wish I’d never been born.
...
You’ve got your wish.
You’ve never been born.

Relevant 
Annotations

I said I wish I'd never been born.

Relevant Annotations

Hallucination
Detection

George wishes that he'd never been
born, so Clarence gives him his wish.
Clarence intends to help George.

Script:  
...
GEORGE: I said I wish I'd never been born.
CLARENCE: ...
(gets an idea) ...
(glances up toward Heaven) ...
You've never been born.
...

B1 E1 E2 I1
George believes his existence is a burden (B1), leading
him to express a wish that he had never been born (L2). 
Clarence, upon hearing this, decides to help George 
understand the impact of his life(I1), which leads him 
to grant George's wish (L3).

Our Dataset

GEORGE: I said I wish I'd never...
...
(glances up toward Heaven)
You’ve never been born.

I said I wish I'd never...
...
You’ve never been born.

MatchingClips
Aligned

Information
Clips

Information 
Alignment

D
at

a 
G

en
er

at
io

n

Figure 4: An automated pipeline for generating large-scale video social reasoning data through pure
textual data.

boundaries of each clip, we use Whisper (Radford et al., 2023) to align scripts with detected dialogue.
The full alignment algorithm is detailed in Section A.3.1.

3.2 DATA GENERATION

Causal Chains Generation. Based on the aligned information, we prompt GPT-4o to infer causal
links between events and mental states using contextual cues. In addition to leveraging existing
annotations, the model can also identify latent mental states implied by character behavior and
dialogue, thereby enriching the reasoning structure with nodes that are not explicitly labeled but
contextually grounded. As illustrated in fig. 4, each causal chain is represented symbolically and
paired with a natural language explanation. For each clip, the model generates multiple chains that
reflect the most salient social interactions. This automated procedure retains the structural depth of
human-curated reasoning while making it feasible to build diverse and scalable training data.

Self-Correction To further improve data quality, we require GPT-4o to self-correct the causal
chains generated in the previous stage. It needs to check the consistency between the symbolic
and textual representations of chains, and remove redundant chains. In this stage, 6% of chains are
removed. Although this accounts for only a small proportion, it is necessary to prevent the model
from learning from erroneous noises.

QA & Options Generation In accordance with the guidelines outlined in Section 2.1, a QA pair is
generated for each node and subchain. To enhance the quality of the data, the inherent causal structure
is utilized to create distractors that are both challenging and plausible. Specifically, employing
the corrected causal chains and aligned information, GPT-4o generates four distractor options for
each question, adhering to two primary principles: (i) the option is designed to be plausible from a
common-sense perspective but lacks grounding in the video context; or (ii) the option is grounded
in the video context but contradicts the established causal or mentalistic logic. These strategies
necessitate a nuanced comprehension of both physical and social cues to arrive at the correct answer.

Hallucination Detection. We establish a hallucination detection stage based to filter for high-
quality QA pairs. Specifically, we input the original video and QA pairs into Gemini 2.5 Flash,
requiring it to perform a detailed hallucination analysis. During this process, the model is required
to complete three key tasks: (i) determine if a QA pair aligns with the video, (ii) provide a detailed
explanation, and (iii) output a confidence level. Only when a QA pair is determined to be completely
free of hallucination do we retain it in the final dataset. This strict quality control mechanism ensures
the reliability of the final dataset, providing high-quality data for training a foundation model.

The resulting training set, R3-FDT , consists of 41k QA pairs distributed across 2,812 videos. This
constitutes a large-scale, causally structured dataset. The detailed statistical analysis of the training
set is provided in Section A.3.2.

4 EXPERIMENTS

Our experiments consist of two primary components. First, we evaluate a broad set of popular LVLMs
on our benchmark, which includes both R3-Bench-DX and R3-Bench-Hard. The R3-Bench-Hard set

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

is directly sourced from the winning submissions of a social reasoning challenge. We begin by testing
several state-of-the-art open-source and closed-source models on the R3-Bench-DX, and then select a
subset of strong-performing models for further evaluation on the more challenging R3-Bench-Hard
set. In the second part, we train one of the best-performing models, Qwen2-VL-7B, using GRPO
on our training set. We then evaluate the resulting model on our challenge set as well as on external
social reasoning datasets to assess its generalization capabilities.

4.1 EVALUATION

Table 2: R3-Bench-Hard Evaluation
Results (%). Other LVLMs’ results
are illustrated in section A.4.5. All
models are given subtitles. “+ Ours-
FT” shows results after training on
R3-FDT .

Model Overall

Random 20

Idefics3-8B-Llama3(Laurençon et al., 2024a) 24.37
InternVL2-26B(Chen et al., 2023) 24.68
mPLUG-Owl3(Ye et al., 2024) 29.11
InternVL2-76B(Chen et al., 2023) 31.96
GPT-4o Mini2 30.70
Gemini 1.5 Pro(Team et al., 2024a) (video) 34.81
Gemini 1.5 Pro(Team et al., 2024a) (frames) 39.24
GPT-4o3 48.73
Gemini 2.5 Pro(Team et al., 2024a) (frames) 59.18

Qwen2-VL-7B 34.18
Qwen2-VL-7B+ Ours-FT 39.87

Human 80.06

Our evaluation approach consists of two dimensions: conven-
tional accuracy metrics and our proposed consistency-based
metrics. (1) Accuracy Metrics. We report the overall QA
accuracy for each model, as well as accuracies across differ-
ent QA types. In particular, we categorize questions into two
main types: EU and MSE. For the MSE category, we further
break it down into four fine-grained subtypes: Emotion, Be-
lief, Intent, and Desire. These distinctions help us identify
which dimensions of social reasoning are more challenging. (2)
Consistency Metrics. Despite achieving relatively high QA
accuracy, many LVLMs exhibit severe inconsistencies when
answering logically related questions. For instance, a model
might correctly answer the question “Why did A happen?” with
“Because of B,” yet fail when asked “Is B present in the video?”
shortly after. Humans, in contrast, demonstrate coherent rea-
soning processes across multi-step chains, maintaining internal
consistency throughout.

To better capture this gap, we introduce two evaluation metrics: Chain Consistency and Subchain
Consistency. These assess whether the model can consistently answer a set of questions derived
from a single causal chain or its subcomponents. A chain (or subchain) is marked “consistent” only if
the model answers all associated questions correctly—partial correctness is not rewarded.

Let D(g) denote the set of all QAs associated with a causal chain g, and D(gsub) for subchains gsub.
Given a video v and prompt p, the model selects an answer a∗ according to:

a∗ = argmaxa∈APθ(a|v, p) (1)

We define Chain Consistency as:

Consc =

∑
g∈G

∏
(q,a)∈D(g) I(a∗ = a)

|G|
(2)

and Subchain Consistency as:

Conssc =

∑
gsub∈Gsub

∏
(q,a)∈D(gsub) I(a∗ = a)

|Gsub|
(3)

These metrics go beyond surface-level accuracy by evaluating whether a model can sustain coherent
reasoning across entire social interaction chains. They are particularly effective at revealing hidden
weaknesses in models, where high average accuracy may mask fragmented or inconsistent behavior.

EVALUATION RESULTS AND KEY INSIGHTS

Our evaluation was conducted under two settings: a video-only basic setting and a video-plus-subtitle
+Sub setting. Beyond accuracy on MSE and EU questions, we introduce chain (Consc) and sub-chain
(Conssc) consistency metrics to assess coherent reasoning across related questions.

Two primary insights emerge. First, models find reasoning about mental states (MSE) substantially
more challenging than understanding factual events (EU). For example, in the +Sub setting, GPT-4o’s
accuracy drops from 89.77% on EU to 72.44% on MSE, highlighting the difficulty of inferring
abstract internal states.
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Table 3: R3-Bench-DX Evaluation Results (%). MSE: mental state estimation. EU: event understand-
ing. CW: causal why. CH: causal how. Consc: chain consistency. Consc: sub-chain consistency.
while “+ Ours-FT” shows results after training on R3-FDT . The reasons why human consistencies
are not reported are elaborated in section A.5.

Model Setting MSE EU CW CH/W Overall Consc Conssc

Emotion Belief Intent Desire Overall

Random - 20 20 20 20 20 20 20 20 20 - -

Video-LLaVA(Lin et al., 2023a) - 18.03 18.69 20.22 16.67 18.82 20.26 20.57 21.58 20.33 0.00 0.14
+Sub 19.08 19.63 24.38 21.43 20.90 28.28 21.64 22.88 23.14 0.00 0.36

Idefics2-8B(Laurençon et al., 2024b) - 10.48 8.41 10.80 2.38 9.74 8.93 8.90 11.48 9.77 0.00 0.07
+ Sub 21.80 21.50 22.99 19.05 21.98 20.56 22.99 22.64 22.15 0.29 1.14

mPLUG-Owl3(Ye et al., 2024) - 48.01 59.50 42.94 45.24 49.46 52.46 67.90 63.22 58.95 2.88 13.66
+ Sub 51.15 71.03 50.97 50.00 56.37 75.03 74.66 70.82 69.21 9.22 25.39

Phi-3.5-Vision(Abdin et al., 2024) - 48.85 59.50 49.86 35.71 51.54 53.46 72.31 70.74 62.87 4.09 16.36
+ Sub 46.75 62.62 53.46 40.48 52.79 68.71 76.16 72.92 68.00 8.65 23.47

Idefics3-8B-Llama3(Laurençon et al., 2024a) - 40.88 57.94 48.75 35.71 47.63 51.15 63.70 62.49 56.82 3.17 12.02
+ Sub 45.49 71.65 55.12 54.76 55.70 74.32 74.45 69.44 68.49 8.07 23.83

PLLaVA-7B(Xu et al., 2024) - 28.93 26.48 27.98 14.29 27.48 29.29 31.10 32.74 30.25 0.29 1.42
+ Sub 22.64 22.43 26.59 23.81 23.81 36.21 29.25 29.02 29.28 0.00 1.21

PLLaVA-13B(Xu et al., 2024) - 23.48 22.43 22.71 16.67 22.73 23.77 33.10 30.72 28.00 0.00 0.64
+ Sub 27.04 30.84 26.04 26.19 27.73 37.61 38.58 35.57 34.92 0.58 2.56

PLLaVA-34B(Xu et al., 2024) - 49.90 59.81 55.40 54.76 54.37 52.46 69.54 70.57 62.52 5.19 16.22
+ Sub 53.67 70.40 68.14 69.05 63.03 78.44 77.30 78.42 74.28 14.12 33.50

InternVL2-8B(Chen et al., 2023) - 47.17 51.09 42.11 47.62 46.71 46.94 61.78 58.69 54.19 3.17 11.17
+ Sub 49.90 68.54 54.57 52.38 56.37 73.22 73.38 68.31 67.83 8.06 25.04

InternVL2-26B(Chen et al., 2023) - 42.14 49.22 45.43 45.24 45.13 47.44 59.86 57.56 53.06 3.17 10.60
+ Sub 46.12 71.96 58.73 57.14 57.20 73.62 74.45 71.22 69.17 13.26 27.03

InternVL2-76B(Chen et al., 2023) - 42.35 63.86 48.48 45.24 50.04 57.87 69.11 66.61 61.43 5.75 15.58
+ Sub 53.46 75.70 65.10 64.29 63.28 81.34 79.93 76.39 75.19 17.29 35.99

GPT-4o Mini4 - 43.19 57.63 55.40 52.38 51.04 62.39 73.52 69.36 64.59 6.05 18.92
+ Sub 43.19 57.63 55.40 52.38 51.04 62.39 73.52 69.52 64.63 6.05 18.99

Gemini 1.5 Flash(Team et al., 2024a) (frame) - 48.43 65.73 60.94 52.38 56.95 67.60 73.10 70.57 67.31 6.05 23.33
+ Sub 49.90 72.90 65.37 59.52 61.03 80.84 76.87 74.78 73.22 11.24 33.14

Gemini 1.5 Pro(Team et al., 2024a) (frame) - 44.44 65.11 67.31 54.76 57.20 68.61 76.30 73.57 69.28 8.93 23.97
+ Sub 53.67 74.45 77.56 71.43 67.03 85.36 81.71 78.66 78.04 20.75 44.10

Gemini 1.5 Flash(Team et al., 2024a) (video) - 37.95 60.44 53.74 57.14 49.38 69.21 70.39 65.48 63.68 8.65 22.62
+ Sub 47.38 72.59 64.27 64.29 59.78 80.34 78.58 73.24 72.91 11.82 30.73

Gemini 1.5 Pro(Team et al., 2024a) (video) - 50.31 75.08 74.79 69.05 64.95 84.65 80.13 80.52 77.39 15.85 38.69
+ Sub 56.39 74.77 74.79 73.81 67.44 84.55 80.50 77.45 77.31 19.60 41.61

Gemini 2.5 Pro(Team et al., 2024a) (frame) - 56.81 83.49 80.06 73.81 77.12 83.85 85.84 81.57 80.79 24.50 43.53
+ Sub 65.83 88.47 85.60 88.10 85.17 93.08 88.33 86.18 86.34 36.60 58.82

GPT-4o5 - 60.17 80.37 79.50 76.19 71.94 89.17 85.84 82.54 82.23 25.07 47.94
+ Sub 61.01 80.69 79.78 76.19 72.44 89.77 86.05 82.94 82.64 25.36 48.93

Qwen2-VL-7B
- 58.07 60.75 55.40 54.76 58.51 59.28 72.31 71.87 65.93 5.48 19.63
+ Sub 58.91 70.40 63.43 59.52 70.02 78.03 79.22 78.66 74.90 12.68 33.85
+ Ours-FT 77.36 83.80 80.33 76.19 83.67 88.16 91.25 87.63 86.88 29.11 55.83

Human 86.67 90.00 89.19 100.00 89.09 92.04 90.14 92.24 90.85 - -

Second, a critical limitation is the models’ failure to maintain coherent reasoning, despite high
accuracy on individual questions. This disconnect is evident across all models. For instance, in
the +Sub setting, GPT-4o scores 82.64% in overall accuracy but only 25.36% in chain consistency
(Consc). Gemini 2.5 Pro shows a similar gap, with 86.34% accuracy versus 36.60% consistency. This
"high accuracy, low consistency" paradox reveals that models lack a holistic, structured understanding
of social interactions, a weakness that single-question accuracy metrics fail to capture.

4.2 FINE-GRAINED ANALYSIS ON COGNITIVE DIMENSIONS

To delve deeper into the specific reasoning failures of current models, we move beyond a monolithic
performance metric to a fine-grained analysis based on six cognitive dimensions. Figure 5a presents
a comprehensive performance breakdown of various models across these dimensions, benchmarked
against human performance. The results reveal a clear and consistent pattern of deficiencies, even
among the most advanced models.

Our analysis yields several key insights. Firstly, the most profound weaknesses are exposed in tasks
requiring detection of Contradiction in Words vs Behavior and pragmatic inference for Implication
/ Reading Between Lines. Even the best-performing model, Gemini 2.5 Pro, lags significantly behind
human accuracy (e.g., 48.2% vs. 78.8% in contradiction detection). This reveals a fundamental deficit
in handling modality conflicts and performing pragmatic inference, suggesting models favor literal
interpretations over grasping nuanced social contexts involving sarcasm or deceit.

Secondly, the results point to architectural limitations. Current models lack systematic modeling
of event structures and evolving psychological states, which explains why even strong models
like Gemini 2.5 Pro and GPT-4o struggle with tasks requiring an understanding of mental state
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Subtle Social
Cue (%)

Plot Twist 
Mental State Change (%)

Contradiction in
Words vs Behavior (%)

Must Combine Visual
and Verbal Cues (%)

Imagination
Beyond Video (%)

Implication /
Reading Between Lines (%)

30

50

70

90

PLLaVA-7B
Qwen2-VL-7B
Qwen2-VL-7B (Ours-FT)

Gemini 1.5 Pro (frame)
Gemini 2.5 Pro (frame)

GPT-4o
Human

(a) Radar chart of model performance (accuracy %)
across six cognitive dimensions. Results highlight the
significant gap between SOTA models and human-level
reasoning, particularly in tasks requiring detection of
multimodal contradictions and pragmatic inference.

(b) Accuracy (%) on four social reasoning benchmarks
before and after applying GRPO reinforcement learn-
ing. The “Baseline” row reports performance of the
pretrained model without fine-tuning, while “+ Ours-
FT” shows results after training on R3-FDT .

Figure 5: Comparison of cognitive and social reasoning capabilities. (a) Model accuracy across six
cognitive dimensions. (b) Improvements on social reasoning benchmarks after RLFT.

reversals. In contrast, weaker models such as PLLaVA-7B perform at near-random levels on these
tasks, underscoring their inability to transition from mere representation recognition to genuine
social-contextual reasoning.

Finally, the Imagination Beyond Video category serves as a powerful diagnostic. Here, the perfor-
mance of top-tier models like Gemini 2.5 Pro and GPT-4o (both at 68.8%) closely approaches the
human baseline (75.0%). This highlights the inherent advantage of a powerful linguistic world model
for tasks that require reasoning beyond direct perceptual evidence, affirming that strong language
priors are crucial for imaginative inference.

In summary, this fine-grained analysis indicates that future advancements in multimodal social rea-
soning must prioritize: (1) robustly modeling character mental states and motivations; (2) enhancing
pragmatic inference for non-literal language understanding; and (3) improving sensitivity to and
resolution of contradictions across modalities.

4.3 TRAINING ON R3-FDT

To address previously identified challenges in consistency and multi-step reasoning, we apply
reinforcement learning fine-tuning (RLFT) using the GRPO algorithm Shao et al. (2024) on a
sampled subset of 13k QA pairs from R3-FDT , with subtitles incorporated into prompts. Although
the training and test sets differ substantially in video domain—our training set consists of curated
movie clips, while the test benchmark includes diverse YouTube-style content—they share a unified
QA structure grounded in causal chains. This structural alignment allows the model to benefit
directly from training signals, leading to performance improvements closely aligned with evaluation
objectives. As shown in Figure 5b, training on our dataset yields substantial gains: +32.00% on the
R3-Bench-DX and +9.81% on the R3-Bench-Hardover the base model.

Further, as reported in Tables 2 and 3, the RLFT-trained Qwen2-VL-7B outperforms GPT-4o on
R3-Bench-DX and surpasses Gemini 1.5 Pro on R3-Bench-Hard, demonstrating enhanced social
reasoning across both QA types. To assess generalization, we also evaluate the model on two external
video-based social reasoning datasets: Social-IQ 2.0 and IntentQA. GRPO training brings addi-
tional accuracy gains of 6.22% and 5.86%, respectively, confirming the transferability of reasoning
capabilities acquired from our dataset.
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5 ETHICS STATEMENT

Our study involves human participants. Informed consent was obtained from all participants prior
to data collection. The released dataset has been carefully anonymized to remove any personally
identifiable information, and participants were informed that their data may be shared for research
purposes. To mitigate potential misuse, the dataset is distributed under a research-only license, and
documentation describing appropriate usage scenarios is provided. We believe that the potential
benefits of this dataset for advancing research outweigh possible risks, and we have taken steps to
minimize privacy, security, and fairness concerns in accordance with the ICLR Code of Ethics.

6 REPRODUCIBILITY STATEMENT

We have taken multiple measures to ensure the reproducibility of our results. We provide a detailed
description of our data collection method in Section 2 and Section 3, and report implementation
details in Section A. To further support reproducibility, we will release our dataset, code, and models
upon acceptance.
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Videos R3-Bench-DX R3-Bench-Hard
EU MSE CW CH/W Overall QAs

312 997 1201 1405 1237 4840 316

Chains Subchains Nodes
Event Belief Intent Desire Emotion Overall

347 1406 997 321 361 42 477 2198

Table 4: Statistics of R3-Bench dataset

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs in the following aspects: (1) We utilized LLM in dataset construction process; (2) We
evaluated task performance on several LLMs; (3) We finetuned a LLM; (4) We use LLM to assist us
with paper writing slightly.

A.2 MORE DETAILS OF R3-Bench

A.2.1 VALIDITY OF ANNOTATED CAUSAL CHAINS

In our dataset, each causal chain is approved by three people: the participant who designed the QA
and two experts for verification (one of whom annotated the causal chain). The participant submits
the QA and the textual description of the reasoning process behind it, establishing the main content of
the causal chain. After being verified by two experts, the filtered data is approved by all three people.
The expert in charge of annotation only appropriately expanded and completed the reasoning process
without affecting the essence of the causal chain. Also, the annotated causal chains are verified by the
other expert. If they fail to pass the verification, the two experts will consult and revise them together.
Therefore, we can consider the annotated causal chains to be widely acceptable.

A.2.2 STATISTICAL ANALYSIS

Video Statistics. Our R3-Bench dataset contains 312 videos, each annotated with one or more causal
chains and multiple QA pairs. Figure 6a shows the distribution of video durations. All videos are
under 180 seconds, with an average duration of 66.6 seconds. The increased video length amplifies
the challenge of social reasoning, as identifying relevant social cues becomes more difficult, and
causal chains may become longer with more steps, involving a greater variety of events and mental
states and requiring tracking of all dynamic changes of all states throughout the video.

Causal Chain Statistics. Table 4 presents the statistics of causal chains in our R3-Bench dataset. The
dataset includes 347 causal chains composed of 2198 nodes and 1406 single-step subchains. These
nodes are categorized into 997 Event nodes, 321 Belief nodes, 361 Intent nodes, 42 Desire nodes, and
477 Emotion nodes. Aside from Desire, each mental state category has over 300 nodes, providing
ample cases to assess specific mental states. In total, 1201 mental state nodes indicate a rich presence
of mental state dynamics. The lengths of causal chains range from 1 to 10 steps, with an average
length of 3.3 steps, as shown in Figure 6b. Over 60% have no less than three steps, suggesting that
the videos require complex and in-depth reasoning.

QA Statistics. As detailed in Table 4, there are 4840 QAs in R3-Bench-DX, and there are 316 QAs in
R3-Bench-Hard. Figure 6c and Figure 6d show the distributions of question, answer, and incorrect
option lengths among R3-Bench-DX. The average question length is 13.2 words—longer than many
popular VideoQA datasets (Tapaswi et al., 2016a; Zadeh et al., 2019; Fu et al., 2024; Yu et al., 2019;
Zeng et al., 2017). Answers and incorrect options average 14.4 and 12.8 words respectively, making
the distractors similar in length to the correct answers and thus more challenging.
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Figure 6: Statistics of R3-Bench-DX. A&O means Answer and Options

A.3 MORE DETAILS OF R3-FDT

A.3.1 MORE DETAILS OF INFORMATION EXTRACTION

The algorithm to extract annotations from existing movie datasets is shown in algorithm 1. We
align the dialogues recognized by Whisper with the time-stamped annotations provided in MovieNet
to identify the temporal boundaries of each clip within the full movie. Using these identified
temporal boundaries, we then extract the relevant data from both MovieNet and MovieQA, including
question–answer pairs, action tags, place tags, and scene descriptions.

Algorithm 1 ExtractAnnotation

Require: Video v, Recognized Dialogue D, Movienet Annotation File A, MovieQA Set Q
Ensure: Clip time (ts, te), MovieNet Annotation M , MovieQA Annotation Y

1: Sa ← ExtractSubtitle(A, v)
2: Sd ← ExtractDialogue(D, v)
3: Ea ← GetEmbeddings(Sa)
4: Ed ← GetEmbeddings(Sd)
5: (is, ie)← MatchIndex(Ea, Ed)
6: if is = None or ie = None then
7: return None
8: end if
9: (ts, te)← GetTimestamps(Sa, is, ie)

10: M ← MatchMovieNet(A, ts, te)
11: Y ← MatchMovieQA(Q, ts, te)
12: return (ts, te), M , Y

Movie scripts include content beyond the target clips. To avoid using such unrelated information,
we extract script segments based on aligned dialogues. As shown in algorithm 2, we first identify
character names as anchors to locate dialogue in the script. We then parse the script S into two parts:
scene descriptions and dialogues, yielding a structured script S

′
. Finally, we match the dialogues

recognized by Whisper with those in S
′

and extract the corresponding script segments aligned with
each movie clip.

A.3.2 STATISTICAL ANALYSIS

Video Statistics. Our R3-FDT includes 2812 videos. The average video duration is 128.76 seconds
and the median duration is 131 seconds. Figure 7a shows the distribution of video durations.

QA Statistics. Figure 7b and Figure 7c show the distributions of question, answer, and incorrect
option lengths of R3-FDT . The average question length is 9.55, the average answer length is 11.32
and the average option length is 9.88.

2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/,
2024-07-18

3https://openai.com/index/hello-gpt-4o/, 2024-05-13
4https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/,

2024-07-18
5https://openai.com/index/hello-gpt-4o/, 2024-05-13
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Algorithm 2 ExtractScript

Require: Script S, Movie ID I , Recognized Dialogue D
1: C ← GetCharacters(I)
2: S

′ ← ParseScript(S,C)

3: Sc ← Grounding(S
′
, D)

4: if Len(Sc) < ϵ then
5: return Sc

6: end if
7: return None

Videos EU Belief Desire Intent Emotion CW Overall

2812 14749 5645 220 1552 4532 14831 41529

Table 5: Statistics of R3-FDT dataset

A.4 MORE DETAILS OF EXPERIMENTS

A.4.1 CONFIGURATION

Our evaluation is based on VLMEval6 repository, an open-source toolkit for assessing LVLMs across
multiple benchmarks without extensive data preparation. By extending VLMEval, we incorporates
our dataset as a new benchmark.

We process videos according to the models’ capabilities. For models that cannot process video data
directly (e.g., Idefics2(Chen et al., 2023)), we uniformly sample 16 frames from each video to serve
as input. For models that accept video inputs (e.g., Gemini(Team et al., 2024a)), we use raw videos
and frames respectively. Additionally, we provide video subtitles generated using Whisper (Radford
et al., 2023) and incorporate them into the text prompts.

Our task is formulated as a multiple-choice VideoQA problem. Models receive the raw video or
selected frames, along with a question and five options, and must select the correct option. We
enforce output formatting constraints and determine selected option through exact matching, ensuring
reproducible evaluation results. In Section 4.1, we present our specific evaluation metrics.

A.4.2 GRPO TRAINING DETAILS

We implement GRPO training based on verl7. During training, we input 8 frames to Qwen2-VL-7B,
each with a resolution of 280× 280, and input the dialogue recognized by Whisper to the model. We
use a rule-based reward function as following:

rf =

{
1 if the response meets the format requirements
−1 otherwise

(4)

racc =

{
2 if the answer is correct
−2 otherwise

(5)

r = rf + racc (6)

We denote the reference model as πref , the old policy model as πθold and the policy model as πθ.

For each question q, we sample a group of responses o = {o1, o2, ..., oN} and compute a group of
rewards r = {r1, r2, ..., rN}. For each ri ∈ r, the corresponding advantage Ai is computed as:

Ai =
ri −mean(r)

std(r)
(7)

6https://github.com/open-compass/VLMEvalKit/
7https://github.com/volcengine/verl.git
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Figure 7: Statistics of R3-FDT . A&O means Answer and Options

Then the policy model πθ is updated according to the following optimization objective:

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Ni=1 ∼ πθold(O | q)

]
1

N

N∑
i=1

(
min

(
πθ (oi | q)
πθold (oi | q)

Ai, clip

(
πθ (oi | q)
πθold (oi | q)

, 1− ε, 1 + ε

)
Ai

)
− βDKL (πθ||πref )

)
,

DKL (πθ||πref ) =
πref (oi | q)
πθ (oi | q)

− log
πref (oi | q)
πθ (oi | q)

− 1,

(8)

Both the video context and the dialogue are required to answer R3-Bench-DX and R3-Bench-Hard
in R3-Bench and QAs in SocialIQ 2.0 correctly. Therefore, when evaluating on these datasets, we
also provide the dialogue to Qwen-2-VL-7B. Previous studies mostly input only the video context to
models. When evaluating on IntentQA , we do not provide the dialogue to the model. We input the
model with a 16× 360× 640 video context when evaluating. We report the training parameters and
visualizations in the supplementary material.

A.4.3 COMPUTE RESOURCES

All evaluations were conducted on machines equipped with NVIDIA A100 GPUs. For models
with fewer than 10B parameters (e.g., Idefics2-8B (Laurençon et al., 2024b)), we used a single
A100 GPU. For mid-scale models in the 20–40B range, such as PLLaVA-34B (Xu et al., 2024) and
InternVL2-26B (Chen et al., 2023), we used two A100 GPUs. Large-scale models with over 70B
parameters, including InternVL2-76B (Chen et al., 2023), were evaluated using four A100 GPUs.
During the training stage, all models were trained using four NVIDIA A100 GPUs.

A.4.4 ADDITIONAL RESULTS ON R3-Bench-DX

Further Classification of Subchains We further divide subchains (stand for social causality) into
six categories. Category I is MS→ E, which means that an event is the result of one or more mental
states. Category II is MS & E→ E, which means that an event is the result of the combination of one
or more mental states and one or more events. Category III is E→ E, which means that an event is
the result of one or more events . Category IV is E→MS, which means that a mental state is one
or more events. Category V is E & MS→MS, which means that a mental state is the result of the
combination of one or more events and one or more mental states. Category VI is MS→MS, which
means that a mental state is the result of one or more mental states. Through division, we can delve
deeper into discussing Large Vision-Language Models’ (LVLMs’) performance on various types of
social causality and analyze their strengths and weaknesses.

We have quantified the number of CW QAs and CH/W QAs generated according to each of the six
categories of subchains, as presented in Table 6. Among these, the questions that involve mutual
reasoning between MS and E (i.e., Categories I and IV) are the most prevalent. In contrast, questions
that employ both E and MS to reason about MS (i.e., Category V) are the least numerous and
constitute the most challenging subset of QAs.
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Table 6: Total Quantities per Category. The table categorizes social causality into six categories: I.
MS→ E. II. MS & E→ E. III. E→ E. IV. E→MS. V. E & MS→MS. VI. MS→MS.

Category Total Subchains CW CH/W QAs Total QAs

I 434 434 392 826
II 199 199 170 369
III 96 96 91 187
IV 464 463 403 863
V 79 79 65 144
VI 134 134 116 250

Total 1406 1405 1237 2642

Table 7: Additional Results on R3-Bench-DX. The table categorizes social causality into six categories:
I. MS→ E. II. MS & E→ E. III. E→ E. IV. E→MS. V. E & MS→MS. VI. MS→MS. All values
are reported as percentages (without % symbols). The Conssc columns are shown in bold.
while “+ Ours-FT” shows results after training on R3-FDT.

Setting Method I II III IV V VI

CW CH/W Conssc CW CH/W Conssc CW CH/W Conssc CW CH/W Conssc CW CH/W Conssc CW CH/W Conssc

Video-LLaVA - 20.51 19.90 0.00 22.61 22.35 0.00 12.50 9.89 0.00 21.81 23.33 0.22 22.78 29.23 0.00 17.16 25.00 0.75
+ Sub 21.20 22.96 0.23 24.12 23.53 0.00 13.54 12.09 0.00 23.76 23.82 0.86 22.78 27.69 0.00 16.42 24.14 0.00

Idefics2-8B - 9.68 10.20 0.00 10.05 14.12 0.00 11.46 12.09 0.00 7.56 11.66 0.00 8.86 10.77 0.00 7.46 11.21 0.75
+ Sub 23.96 23.98 1.15 22.11 22.94 1.01 28.12 21.98 1.04 23.33 21.34 1.72 20.25 20.00 0.00 17.91 24.14 0.00

mPLUG-Owl3 - 59.91 66.07 13.36 71.36 65.29 9.55 77.08 65.93 18.75 73.00 60.05 17.03 60.76 66.15 3.80 68.66 57.76 11.19
+ Sub 65.67 75.77 23.04 76.88 76.47 24.12 87.50 80.22 45.83 79.05 63.03 28.66 77.22 70.77 13.92 74.63 65.52 15.67

Phi-3.5-Vision - 65.67 74.23 14.06 78.89 74.12 11.56 78.12 64.84 15.62 74.51 66.75 20.91 78.48 75.38 6.33 68.66 69.83 21.64
+ Sub 68.66 77.55 20.05 82.91 82.94 19.60 80.21 64.84 27.08 79.05 67.74 28.66 78.48 69.23 15.19 76.12 68.97 24.63

Idefics3-8B-Llama3 - 57.14 64.03 11.29 68.34 64.71 9.05 77.08 57.14 12.50 65.23 60.79 14.01 60.76 67.69 5.06 64.18 61.21 15.67
+ Sub 67.74 75.51 22.35 77.89 79.41 23.62 83.33 68.13 35.42 76.03 62.53 24.78 81.01 64.62 12.66 75.37 62.07 23.88

PLLaVA-7B - 31.34 33.16 1.15 33.67 32.94 0.50 30.21 23.08 1.04 31.10 34.00 2.37 30.38 40.00 0.00 26.87 30.17 1.49
+ Sub 29.03 30.10 0.69 28.64 28.82 0.00 25.00 20.88 2.08 31.10 30.02 2.16 31.65 29.23 1.27 25.37 28.45 0.75

PLLaVA-13B - 31.80 27.30 0.23 33.17 32.94 0.00 28.12 21.98 1.04 34.77 33.75 1.08 37.97 36.92 0.00 31.34 31.90 1.49
+ Sub 38.02 33.42 2.07 37.19 37.65 0.50 40.62 29.67 5.21 39.96 37.72 3.02 37.97 41.54 1.27 35.82 33.62 4.48

PLLaVA-34B - 61.98 71.68 14.29 72.86 70.00 8.54 80.21 70.33 16.67 72.79 70.47 21.55 72.15 66.15 5.06 68.66 70.69 21.64
+ Sub 73.50 83.16 33.87 82.41 83.53 32.16 82.29 84.62 50.00 80.78 70.97 33.19 87.34 72.31 20.25 78.36 78.45 31.34

InternVL2-8B - 52.53 56.38 9.22 63.32 61.18 7.04 73.96 59.34 15.62 66.95 60.05 13.36 58.23 66.15 7.59 64.93 53.45 14.93
+ Sub 64.52 71.68 22.12 76.38 79.41 25.13 80.21 68.13 40.62 78.62 62.28 26.72 73.42 67.69 15.19 74.63 62.07 23.13

InternVL2-26B - 53.23 56.38 9.68 60.30 60.59 7.54 69.79 46.15 8.33 65.01 59.55 13.36 59.49 58.46 2.53 55.97 58.62 14.93
+ Sub 66.59 76.28 28.11 72.86 77.65 22.11 83.33 74.73 39.58 79.91 64.52 28.23 79.75 64.62 8.86 73.88 68.97 28.36

InternVL2-76B - 61.75 69.90 15.67 74.37 73.53 10.05 75.00 62.64 14.58 73.00 62.53 19.40 72.15 67.69 8.86 65.67 62.07 14.93
+ Sub 73.50 79.85 36.18 85.43 88.24 35.68 84.38 86.81 51.04 82.51 66.75 36.21 81.01 70.77 25.32 79.85 75.86 30.60

GPT-4o mini - 66.59 71.68 16.59 80.90 72.35 16.08 86.46 64.84 27.08 76.46 68.24 22.41 72.15 72.31 6.33 66.42 62.93 20.15
+ Sub 66.59 72.19 16.82 80.90 72.35 16.08 86.46 64.84 27.08 76.46 68.24 22.41 72.15 72.31 6.33 66.42 62.93 20.15

Gemini 1.5 flash (frame) - 67.74 73.47 21.20 78.89 75.29 22.11 79.17 72.53 31.25 74.51 65.76 24.78 75.95 73.85 13.92 70.90 67.24 26.87
+ Sub 72.35 78.57 31.57 78.39 83.53 34.17 87.50 81.32 50.00 77.97 67.25 33.41 75.95 70.77 13.92 78.36 72.41 35.07

Gemini 1.5 pro (frame) - 72.35 73.21 23.96 79.40 81.18 18.59 79.17 75.82 33.33 76.67 71.71 25.86 81.01 70.77 11.39 78.36 69.83 26.12
+ Sub 79.26 82.65 44.70 84.92 88.24 45.23 85.42 87.91 58.33 82.72 70.97 42.46 81.01 70.77 27.85 78.36 75.00 45.52

Gemini 1.5 flash (video) - 64.06 67.35 20.51 69.85 73.53 20.60 77.08 68.13 34.38 74.30 60.55 25.22 75.95 70.77 16.46 70.15 59.48 18.66
+ Sub 74.42 77.81 32.26 79.90 82.35 27.14 86.46 76.92 43.75 80.13 64.76 29.96 73.42 64.62 11.39 82.09 75.86 35.82

Gemini 1.5 pro (video) - 72.58 83.16 34.79 81.91 87.06 35.68 87.50 81.32 59.38 85.31 77.42 42.24 84.81 76.92 25.32 76.12 74.14 36.57
+ Sub 76.50 80.10 41.94 79.90 84.12 35.68 86.46 84.62 50.00 83.37 71.46 43.53 79.75 78.46 30.38 79.85 73.28 43.28

GPT-4o - 81.34 85.97 47.93 87.94 90.00 52.76 89.58 89.01 64.58 87.47 76.67 46.98 88.61 76.92 31.65 87.31 78.45 41.79
+ Sub 81.34 86.48 49.08 88.44 90.59 53.77 89.58 89.01 64.58 87.26 77.42 48.28 89.87 75.38 31.65 88.81 78.45 42.54

Gemini 2.5 pro (frame) - 82.03 82.14 43.09 86.43 85.29 34.17 86.46 87.91 60.42 87.69 78.16 44.83 88.61 80.00 29.11 88.81 81.90 50.75
+ Sub 86.41 88.78 58.53 89.95 94.12 61.31 89.58 96.70 76.04 88.55 79.40 55.17 88.61 80.00 48.10 90.30 84.48 62.69

Qwen2-VL-7B
- 63.82 76.53 17.51 75.38 75.29 16.08 82.29 62.64 19.79 76.46 67.74 21.77 74.68 72.31 15.19 72.39 72.41 26.87
+ Sub 71.43 84.69 31.11 82.41 84.71 31.66 93.75 79.12 55.21 80.99 71.71 34.91 77.22 73.85 18.99 84.33 75.86 35.82
+ Ours-FT 88.71 91.58 54.84 96.48 90.59 56.28 95.83 89.01 68.75 90.06 83.87 57.76 94.94 90.77 43.04 90.30 80.17 50.00

Results and Analysis We conducted a further analysis of the R3-Bench-DX by categorizing them
according to the six subchain classifications outlined in Section A.4.4. As shown in Table 7, we
employed the same models and settings reported in the main paper to evaluate our dataset. These
settings included scenarios without subtitles (-) and with subtitles (+ Sub). The metrics we report
are similar to those in the main paper, encompassing both the accuracy of the QAs and the Subchain
consistency (Conssc) for each subchain. However, we further disaggregated the performance statistics
based on the six subchain categories. This detailed analysis revealed several intriguing insights:

Subchain Consistency for Mental State Reasoning: Reasoning about events generally exhibits
higher Subchain consistency compared to reasoning about mental states. Specifically, Categories
I, II, and III, which involve inferring events from events or mental states, demonstrate higher
performance than Categories IV, V, and VI, which involve inferring mental states from events or
mental states. Notably, event-to-event reasoning (Category III) achieves the highest accuracy and
Subchain consistency, significantly outperforming the other categories that involve mental state
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reasoning (Categories I, II, IV, V, and VI). This indicates that current LVLMs are more adept at
factual causal reasoning than at inferring mental states, which remains more challenging.

Difficulty in Cross-Domain Reasoning: Inferring mental states from events or mental states is
typically more challenging than inferring events from events or mental states. In Categories I and II,
the core of the reasoning process is based on mental states (MS), with events (E) serving as auxiliary
information to aid in accurately inferring the events. This auxiliary role of events facilitates correct
reasoning, resulting in Categories I (MS inferring E) and II (MS & E inferring E) not exhibiting a
pronounced increase in difficulty. Conversely, Category V, where both events (E) and mental states
(MS) are used to infer mental states (MS), is the most difficult, significantly more so than Category
IV, which involves events (E) inferring mental states (MS). In these categories, the mental states are
the primary focus of inference, and the inclusion of additional mental state information introduces
complexity that leads to a substantial decline in model performance. This further underscores the
current limitations of LVLMs in inferring mental states.

A.4.5 ADDITIONAL RESULTS ON R3-Bench-Hard

We report the accuracies of other LVLMs on R3-Bench-Hard, which is shown in Table 8. We can see
that ToM prompting can still improve models’ accuracies.

Table 8: Additional Evaluation Results of R3-Bench-Hard.

Model Overall
Random 20

Idefics2-8B 15.19%
Video-LLaVA 18.35%
Phi-3.5-Vision 23.73%
PLLaVA-7B 17.09%
PLLaVA-13B 20.25%
PLLaVA-34B 30.06%
InternVL2-8B 24.68%
Gemini 1.5 Flash (video) 28.48%
Gemini 1.5 Flash (frame) 30.38%

A.5 HUMAN STUDY

Human studies are completely harmless to human subjects, and we clearly explain all requirements
to the subjects before conducting studies.

We sample 43 causal chains and 481 of R3-Bench-DX for the human study. QAs generated from
the same causal chain are interrelated. For fairness, we can not provide all QAs generated from the
same causal chain with human (however, model experiments are set up like this) due to human’s
memory. Therefore, we ask each subject to answer only one question from the same reasoning chain.
Please note that, in this setting, the reasoning consistencies of human are severely underestimated.
We recruit 38 subjects to do human study and results are shown in the main paper.

B CONCLUSION

In this work, we address the challenge of consistent and multi-step social reasoning in video through
the lens of LVLMs. We introduce R3-VQA, a large-scale dataset constructed via an automated pipeline,
comprising R3-Bench for evaluation and R3-FDT for model development. The dataset includes fine-
grained annotations of social events, mental states, and their causal links. Our benchmark highlights
that current state-of-the-art LVLMs still struggle to reason consistently across causal chains. Fine-
tuning a 7B model with GRPO on our training set leads to notable gains across multiple social
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reasoning benchmarks. At present, our automatic QA generation focuses on single-step questions;
extending it to multi-step causal reasoning remains future work. The annotated explanations of causal
chains also show promise as training captions but are not yet utilized. We hope this dataset and
framework will contribute to building socially intelligent, multimodal systems and inspire further
progress in this direction.
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