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Abstract

Training large deep learning models is predomi-
nantly done in data centers with NVIDIA GPUs,
which are unavailable to most researchers. In this
paper, we explore the feasibility of training large
language models (LLMs) on clusters of consumer
hardware, particularly Apple devices. Compared
to NVIDIA GPUs, a cluster of Apple devices
has substantially more VRAM, fewer FLOPS,
unified memory, and poor bandwidth between
nodes. To address these unique hardware con-
straints, we introduce three key innovations: (1)
KPOP, an optimizer that employs Adam in the
Kronecker-factored eigenbasis (KFE), enabling
efficient training on each node. While this re-
quires more VRAM than AdamW, it outperforms
it; (2) a distributed implementation fully leverag-
ing parallel usage of CPU and GPU; and (3) an
extension of the optimizer for low-bandwidth en-
vironments using top eigenvalues. We provide an
extensive evaluation of the proposed methodolog-
ical advancements, in some cases even outper-
forming state-of-the-art optimizers such as SGD
and Adam even in standard non-Apple training
settings. Finally, by combining the proposed
techniques, we demonstrate effective training of
LLMs on clusters ranging from 2 to 16 Macs.

1. Introduction
There is a clear trend in machine learning towards training
increasingly large models on massive compute clusters. This
trajectory has been shaped by the hardware and software
platforms that dominate the field, often favoring approaches
that align well with the prevailing ecosystem.
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Figure 1. A cluster of 16 Mac Minis, connected via Thunderbolt 5,
training a large language model.

Hooker (2021) characterizes the hardware lottery as the
phenomenon where ‘an idea wins because it is suited to the
available software and hardware and not because the idea is
superior to alternative research directions’, highlighting the
often invisible influence of infrastructure on the trajectory
of machine learning research.

In turn, this raises the question of how much recent algorith-
mic and methodological progress reflects genuine insight,
and how much is merely an artifact of a development path
optimized for specific hardware, particularly massive clus-
ters predominantly composed of NVIDIA GPUs.

Meanwhile, advancements in consumer-grade hardware,
particularly in modern Apple Mac systems, have led to sig-
nificant improvements in computational capabilities (Apple
Inc., 2024). These devices now integrate energy-efficient
CPUs, high-performance integrated GPUs, and a unified
memory architecture, offering a viable alternative to tradi-
tional high-performance computing infrastructure for certain
machine learning workloads. In this paper, we ask ourselves
the question: How far can we get training a large language
model on a cluster of consumer-grade Apple Macs?

Similarly, (Geiping and Goldstein, 2023) assesses how far
one can get when training modern models from scratch on a
single GPU. In contrast, we do not restrict ourselves to small
models that fit on a single device, but instead aim to train
large-scale models across clusters of consumer hardware.
This requires hardware differences and practical trade-offs
to be taken into account in the design of the training algo-
rithm. In particular, we propose optimizer modifications
that trade compute and memory for reduced communication
cost, enabling training in low-bandwidth environments.
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2. Analysis of hardware constraints
In this section, we provide a high-level overview of how
Apple Silicon, the backbone of Apple Mac hardware, differs
from NVIDIA hardware. In particular, we analyze differ-
ences in the total number of floating point operations per sec-
ond (FLOPS), the amount of video random access memory
(VRAM) available in specialized graphics processing units
(GPUs) typically used for training machine learning models,
memory bandwidth, and the concept of unified memory. We
also discuss inter-node bandwidth in distributed training
setups.

Comparison of total FLOPS NVIDIA’s data center
GPUs, such as the A100 and H100, offer exceptionally
high compute throughput, often exceeding 300 TFLOPS
for FP16 and Tensor Core operations. These accelerators
are purpose-built for large-scale machine learning training.
In contrast, Apple Silicon chips like the M3 Ultra provide
around 10–30 TFLOPS across the GPU and Neural Engine.
Although this is significantly lower per device, Macs are
also much cheaper. As a result, a cluster of Apple devices
can be cost-effective, provided that distributed training is
efficient and the workload scales well across nodes.

Comparison of total VRAM High-end NVIDIA GPUs
feature 40–80 GB of dedicated HBM2e or HBM3 memory,
optimized for bandwidth and large model capacity. Apple
Silicon uses a unified memory architecture, where CPU,
GPU, and other components share a common memory pool.
The M3 Ultra supports up to 512 GB of unified memory,
making it feasible to fit large models directly into mem-
ory. However, this memory is shared across subsystems
and lacks the dedicated high-bandwidth characteristics of
NVIDIA’s GPU VRAM.

Comparison of communication bandwidth Distributed
training often depends on high-speed communication.
NVIDIA GPUs use technologies like NVLink, NVSwitch,
and Infiniband, enabling bandwidths of up to 900 GB/s
within a node and up to 400 Gbps between nodes. Apple
Silicon does not support such interconnects, but Thunder-
bolt 5 offers up to 120 Gbps of bi-directional bandwidth in
boosted mode. While this is far below Infiniband speeds, it
may be sufficient for small-scale clusters if communication
is carefully optimized.

3. Method
In this section, we describe a novel optimizer named KPOP,
which builds upon recent insights in optimization literature.
The motivation behind the optimizer is to utilize high mem-
ory per node while allowing low communication bandwidth.
Interestingly, even in our standard training setting experi-

ments (see Section 4), in which we use NVIDIA GPUs, we
find that the optimizer outperforms state-of-the-art optimiz-
ers, including Adam (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019), both in terms of the number of iterations and
wall-clock time. We find this a notable result, highlighting
that the optimizer may be generally useful and applicable
beyond the scope of this work, which focuses on demon-
strating training large models with consumer hardware, in
particular clusters of Apple Macs.

Our optimizer is built upon the KFAC optimizer (Martens
and Grosse, 2015), which provides a practically effective
and scalable approximation of the natural gradient by factor-
izing the Fisher information matrix. In particular, we build
on the Kronecker-Factored Eigenbasis (KFE) formulation
introduced by George et al. (2018), which diagonalizes the
KFAC approximation to enable more efficient computation
and better conditioning. The idea of applying component-
wise adaptive optimizers, such as Adam, in the KFE was
suggested as a promising future direction in their work but,
as far as we know, was never actualized. In this paper, we
develop this idea into a practical optimizer, KPOP, which
applies Adam in the KFE. Our approach operationalizes this
suggestion by combining curvature-aware preconditioning
with adaptive learning rates. We demonstrate that KPOP
retains the benefits of natural-gradient methods while im-
proving robustness and ease of use.

3.1. KPOP: Adam in the KFE

KFAC approximation We start by considering the
Fisher information matrix for the model parameters θ =
(W1, . . . ,WL), where {Wi}Li=1 denote the weight matri-
ces of the linear layers that make up the architecture. In
KFAC (Martens and Grosse, 2015), it was shown that by as-
suming independence between layers and input and outputs,
the Fisher matrix can be approximated as a block-diagonal
matrix where each block consists of a Kronecker product:

F ≈ diag (R1 ⊗C1,R2 ⊗C2, ...,RL ⊗CL) (1)

between Ri ∈ RR×R and Ci × RC×C represent the
row and column Kronecker factors for each weight ma-
trix Wi ∈ RR×C , respectively. Although the true Fisher
information matrix F scales quadratically in the number of
parameters O(P 2), the KFAC approximation can be repre-
sented using only O(LR2 + LC2) memory, where L is the
number of weight matrices and R and C are the respective
maximum number of rows and columns used in the archi-
tecture, drastically reducing the number of parameters. An
example of this approximation being scaled to large lan-
guage models with over a billion parameters can be found
in van der Ouderaa et al. (2023).

EMA Updates of Kronecker Factors To adapt the Fisher
information matrix during training, we employ Exponential
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Moving Averages (EMA) for the row and column Fisher
factors. At each iteration, we compute the batch-level es-
timates for the row and column Fisher factors, Ri and Ci,
as:

Ci ←
1

B
XiX

⊤
i ∈ RC×C and (2)

Ri ←
1

B
∆Yi∆Y⊤

i × RR×R (3)

where Xi ∈ RC×B is the activation matrix for the i-th layer,
∆Yi = ∇Yi

L ∈ RR×B is the gradient of the final cross-
entropy training loss L with respect to the output of linear
layer associated to weight Wi, and B is the batch size (both
batch and sequence length in LLM setting). We then update
the EMA estimates of the row and column Fisher factors
using decay parameters α:

Ĉi ← αĈi + (1− α)Ci and (4)

R̂i ← αR̂i + (1− α)Ri (5)

The matrices Ĉi and R̂i provide running estimates of the
Kronecker-factored Fisher information matrix approxima-
tion throughout the training process, while maintaining a
constant memory footprint.

Projection to the KFE Eigenbasis In the next step, we
transform the Fisher approximation into the Kronecker-
Factored Eigenbasis (KFE) (George et al., 2018; Bae et al.,
2018). The KFE representation diagonalizes the Fisher fac-
tors Ci and Ri by projecting them onto their respective
eigenbases. Specifically, we compute the eigenbasis matri-
ces Q̂C

i and Q̂R
i for the column and row factors:

Q̂C
i = Eig(Ĉi)

Q̂R
i = Eig(R̂i)

(6)

where Eig(·) denotes the eigen-decomposition. Although
direct computation of this decomposition can be expensive,
it can be made efficient through various strategies, such as
reusing eigenvector estimates from previous iterations. We
discuss these strategies in more depth in Section 3.2.

The eigenvectors in Q̂C
i and Q̂R

i represent rotations of the
weight space. We then transform the gradient Gi from the
original parameter space into the KFE:

G′
i = Q̂R

i Gi(Q̂
C
i )

⊤ (7)

This transformation rotates the weight space to the KFE,
where the Fisher approximation is closer to diagonal. This
aligns more closely with the assumptions of adaptive opti-
mizers like Adam, which implicitly assume diagonal curva-
ture.

Adaptive Optimization in the KFE Finally, we apply the
Adam optimizer (Kingma and Ba, 2015) within the KFE.
Adam adapts the learning rate for each parameter based on
the first and second moment estimates. In the KFE space,
we compute the first and second moment estimates for the
transformed gradient G′

i. By writing the projected gradients
as a vector vec(G′), we can write the Adam update in its
most canonical form: starting with an EMA of the mean
and squared (in our case rotated) gradients:

mi ← β1mi + (1− β1)vec(G′
i) and (8)

vi ← β2vi + (1− β2)vec(G′
i)

2 (9)

where β1 and β2 are the decay rates for the moment esti-
mates, and ·2 denotes the element-wise square. The bias-
corrected moment estimates are given by:

m̂i ←
mi

1− βt
1

and v̂i ←
vi

1− βt
2

(10)

The parameter update is then computed as:

∆Wi ← −mat
(
α

m̂i√
v̂i + ϵ

)
(11)

where mat(·) reshapes the vector into a matrix and is defined
to be the inverse of vec(·) and a small constant ϵ is added
for numerical stability. Finally, we rotate the update back to
the original weight space using the inverse of the eigenbasis
matrices:

Wi ←Wi + (Q̂R
i )

⊤∆WiQ̂
C
i (12)

This completes the update for the weight matrix Wi.

Final algorithm and related work Pseudocode for the
full KPOP algorithm is presented in 1. The algorithm is
very closely related to SOAP (Vyas et al., 2024b), a recently
proposed optimizer that performs Adam in the eigenbasis of
Shampoo (Gupta et al., 2018). The eigenbasis of Shampoo
and KFAC require the same amount of memory and are
closely related, as discussed in Appendix B of (Anil et al.,
2020). Although using the top eigenvalues of the KFE has
been explored in the context of post-training pruning (Wang
et al., 2019), we are not aware of applying it to compress
gradients during training. Similar compressions for the
momentum term have been proposed in GaLoRe (Zhao
et al., 2024) and AdaMeM (Vyas et al., 2024a). Notably,
Vyas et al. also hypothesizes top eigenvalues of the KFE
can be useful in optimization, but did not attempt this in any
of the experiments.

3.1.1. TOP EIGENVALUE GRADIENTS: TOPKPOP

To reduce communication overhead, we propose TopKPOP,
which extends KPOP by retaining only the top eigenvalues
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of the Kronecker-factored eigenbasis (KFE). Concretely,
instead of using all eigenvectors, we introduce a sparsity
ratio 0 < s < 1 and compute only the top eigenvectors:

Q̂R
i = TopEig(R, R′) ∈ RR×R′

Q̂C
i = TopEig(R, C ′) ∈ RC×C′ (13)

where TopEig(R, R′) denotes the matrix containing the top
R′ eigenvectors of R. We set R′ =

√
sR and C ′ =

√
sC.

In practice, R′ and C ′ may not be integers, in which case
we round to the nearest integer, typically using ceiling. The
projected gradients then have shape

G′
i = Q̂R

i
⊤GiQ̂

C
i ∈ RR′×C′

(14)

and Adam effectively operates on a lower-dimensional linear
subspace of dimension

vec(G′
i) ∈ RsRC (15)

This reduces the memory overhead of the Adam optimizer,
specifically the storage required for the m and v vectors, by
a factor of s. It also reduces communication overhead by
the same factor, since the projected gradients vec(G′

i) are
the quantities exchanged between nodes.

3.1.2. LARGE BATCH SIZES

A final strategy to reduce communication time relative to
computation time is to increase the batch size. While this
does not reduce communication per se, it increases the com-
putation per step, thereby lowering the relative cost of com-
munication.

Second-order optimizers, like KPOP, are particularly well-
suited to large batch training because they adapt to the cur-
vature of the loss landscape, allowing for more informed up-
dates even when gradients become less noisy at larger batch
sizes, as argued in (Grosse and Martens, 2016; Martens
and Grosse, 2015; Osawa et al., 2019). In Section 4.3, we
demonstrate that indeed KPOP scales favourably with large
batch sizes compared to first-order methods like Adam.

3.2. Implementation details and efficiency

What gradients are preconditioned Most of the parame-
ter of a large language model are weight matrices of linear
layers (e.g. Q, K, V matrices and fully-connected MLP
blocks). Since KFAC only applies to these weight matrices,
we only compute a preconditioner for the matrix-valued
gradients of these weight matrices Wi to the KFE when
doing KPOP. For the embedding layer, last layer and other
(e.g. scalar and vector-valued) parameters, we use standard
Adam.

Scheduling A strategy to avoid the costly computation of
the preconditioner is to refrain from computing the precon-
ditioner matrix at every iteration. In Vyas et al. (2024b),

it was found to be practical to perform this computation
every 10 or 100 iterations, which we also adopt in our ex-
periments. In addition, we propose using a warm-up period
during which the preconditioner is computed at every itera-
tion, regardless of the chosen frequency. After this period,
we switch to infrequent updates.

Reusing previous estimates Following (Wang et al.,
2019) and (Vyas et al., 2024b), we can approximate eigen-
value composition by a single power iteration Eig(M) ≈
QR(MQ), where M is the current estimate Ĉi or R̂i and
Q corresponds to the last previous eigenvector estimate.

MLX Implementation We implemented our algorithm
using the MLX framework (Hannun et al., 2023), which
provides a functional programming environment for dif-
ferentiable graph compilation that supports compilation of
computational graphs containing operations both on GPU
and CPU. Since MLX is a functional framework, we cannot
rely on hooks, as one would in PyTorch, to obtain Kro-
necker factors. Instead, we drew inspiration from a JAX
implementation approach that uses dummy variables to ob-
tain gradients with respect to the outputs of linear layers, as
discussed in the JAX community (Johnson, 2024).

4. Results in regular training setting
This paper aims to make progress toward training LLMs
on consumer hardware, such as Apple Silicon. Motivated
by this, we propose several methodological advances, in-
cluding the novel KPOP optimizer and extensions for low-
bandwidth training. To establish a clear baseline, we first
evaluate KPOP on a standard NVIDIA setup, ensuring that
observed performance improvements are due to the pro-
posed methods rather than hardware-specific factors. Inter-
estingly, we find that our proposed optimizer may in some
cases also outperform existing baselines in this setting. Re-
sults on Apple Silicon are presented in section Section 5.

4.1. Quantitative performance

It is well known that papers proposing new deep learn-
ing optimizers often report strong results within their own
carefully constructed experimental setups, but these results
frequently fail to generalize or replicate consistently across
broader tasks and architectures. Despite the steady stream
of proposed alternatives, Adam has remained the de facto
standard in both research and practice due to its robustness
and ease of tuning. Whether KPOP will achieve similar
longevity remains to be seen, but in this work, we make a
concerted effort to compare it against well-tuned baselines
of competitive optimizers under fair and realistic conditions.
To that end, we use NanoGPT as our testing ground (Karpa-
thy, 2022), a lightweight, modular codebase widely used by
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practitioners for speed runs and by researchers for optimizer
evaluation. NanoGPT has also served as a benchmark in
recent optimization papers (Jordan et al., 2024; Liu et al.,
2025; Vyas et al., 2024b), making it a credible and widely
accepted baseline for quantitative comparison.
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Figure 2. Quantitative evaluation of KPOP optimizer on standard
NVIDIA training set-up. Using 125M model on 8xH100 GPU.

4.2. Computational and Memory Cost

The KPOP optimizer introduces overhead in per iteration
computation and memory. In particular, computing the
preconditioner matrices QR

i and QC
i and synchronizing

Kronecker factors Ri and Ci requires additional time, and
storing running estimates of the Kronecker factors R̂i and
Ĉi requires additional memory. In Figure 3, we measure
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Figure 2. (a) Memory overhead.
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Figure 2. (b) Computational overhead.

Figure 3. Comparing memory and computational overhead of
KPOP optimizer to Adam on a standard 8×H100 NVIDIA training
setup. KPOP incurs additional cost due to synchronization of Kro-
necker factors (R,C) and computing preconditioners (QR,QC).

total memory usage using the same experimental setup as
before, reporting statistics from nvidia-smi for reserved
memory, allocated memory, and peak allocated VRAM.
Similarly, we report the total compute time per iteration
in Figure 3, segmented across the forward pass, backward
pass, communication time, and optimizer time. On average,
KPOP iterations take about 10–20% more time than Adam

in this measurement. However, as shown in Section 4.1,
KPOP is more effective in terms of wall-clock time: indi-
vidual iterations are slower, but is more efficient with each
iteration yielding a larger gain in test performance.

4.3. Large batch size scaling

Larger batch sizes help amortize communication overhead
by increasing the amount of computation between synchro-
nization points, thus improving the efficiency of distributed
training. In theory, scaling the batch size by a factor of
two should reduce the number of optimization steps needed
to reach a target performance by half. In practice, how-
ever, this linear scaling holds only up to a certain batch
size threshold, referred to as the critical batch size (Mc-
Candlish et al., 2018). Beyond this point, efficiency gains
diminish. As both model and data sizes continue to grow,
it becomes increasingly important to design optimization
algorithms that are robust to large batch training, enabling
higher critical batch sizes and better utilization of compute
in parallel environments. As discussed in Section 3.1.2,
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Figure 4. Comparing the number of iterations it takes to reach a
validation loss of 4.1 for Adam, SOAP and KPOP.

second-order optimizers, like KPOP, have been found to
be more amenable for large batch size training. To verify
whether this also holds for KPOP, we compare KPOP to
Adam. We follow the set-up described in Section 6.3 of
(Vyas et al., 2024b) and evaluate the training steps it takes
to reach a certain validation loss, in our case 4.1, each time
halving the batch size and doubling the preconditioner fre-
quency and do not use any preconditioner warm-up for this
experiment. We also include the SOAP (Vyas et al., 2024b)
optimizer in the experiment as a reference, which we find to
have similar performance as KPOP both in absolute perfor-
mance as well as scaling in batch size. We report results in
Figure 4, and find that KPOP scales favourably with batch
size compared to Adam, in our experiment. This adds evi-
dence to the fact that second-order optimizers can remain
effective at larger batch sizes.
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Method Sparsity Test. Loss Test. PPL
KPOP 1.0 3.41 30.3
TopKPOP 0.9 3.41 30.3

0.7 3.43 30.9
0.5 3.46 31.8
0.3 3.51 33.4
0.2 3.55 34.8
0.1 3.65 38.5
0.01 4.04 56.8

Table 1. Performance at different TopKPOP sparsity levels.

4.4. Reducing bandwidth with TopKPOP

In this section, we explore using the use of top eigenval-
ues as discussed in Section 3.1.1. In particular, we have a
percentage s ∈ (0, 1] where s = 1 is standard KPOP and
lower values 0 < s < 1 result in faster preconditioner com-
putation, lower communication overhead, but at the cost of
lower performance per iteration. We assess the effect of s
by measuring optimization and synchronization time and
final test performance after a full training run using the same
set-up as in previous chapters.

5. Results on Apple Silicon

Figure 5. 16×Mac Mini clus-
ter (M4), Thunderbolt 5.

Figure 6. 2×Mac Studio clus-
ter (M3 Ultra), Thunderbolt 5.

We demonstrate that KPOP and its communication-efficient
variant, TopKPOP, enable large language model training on
consumer-grade Apple hardware. We evaluate two configu-
rations: (1) a cluster of 16 Mac Minis with M4 chips, and (2)
a smaller setup with 2 Mac Studios equipped with M3 Ultra
chips. All devices are connected via Thunderbolt 5. Due to
differences in implementation, results in this section are not
directly comparable to the NVIDIA-based experiments of
the previous section, which used PyTorch instead of MLX.

The model employs a small-scale LLaMA architecture (Tou-
vron et al., 2023) with 4 transformer layers, a hidden size
of 128, and an intermediate feedforward dimension of 256.
We train on FineWeb dataset (Penedo et al., 2024) for 11-12

K iterations with 16384 tokens per batch, 16 batches of
1024 tokens. Training is conducted for a single epoch using
a batch size of 16 and an initial learning rate of 0.02 and
a cosine annealed (Loshchilov and Hutter, 2016) and no
weight decay.

Table 2. Training transformer models on Apple Silicon clusters.
Optimizer Setup Nodes Chip Model size Iterations Train time Test loss Test PPL

Adam Mac Studio Cluster 2 M3 Ultra 35.7 M 11 K 34 min 5.33 205.7
KPOP (ours) Mac Studio Cluster 2 M3 Ultra 35.7 M 7.9 K (early stop) 34 min 4.76 117.0
KPOP (ours) Mac Studio Cluster 2 M3 Ultra 35.7 M 11 K 48 min 4.70 110.5

Adam Mac Mini Cluster 16 M4 1.7 M 12 K 5 min 6.48 648.8
KPOP (ours) Mac Mini Cluster 16 M4 1.7 M 2.4 K (early stop) 5 min 5.41 222.5
KPOP (ours) Mac Mini Cluster 16 M4 1.7 M 12 K 25 min 4.87 130.8

TopKPOP @ 10% (ours) Mac Mini Cluster 16 M4 1.7 M 12 K 25 min 5.27 194.2

In Table 2, we compare the performance of Adam and our
proposed optimizer, KPOP, on the two Apple Silicon clus-
ters. For each cluster, we report two KPOP configurations:
one early-stopped to match Adam’s wall-clock time, and
one run for the same number of iterations as Adam. This
enables a fair comparison in terms of both time-to-quality
and final performance. In both cases, KPOP significantly
outperforms Adam in final test loss and perplexity. The
early-stopped KPOP results demonstrate faster convergence,
while the full KPOP runs achieve stronger final performance.
We also evaluate TopKPOP, a sparsified variant, on the 16×
Mac Mini cluster. While it does not reduce wall-clock time,
suggesting the setup is limited more by computation or mem-
ory than communication, it nonetheless demonstrates a real
reduction in communication overhead while maintaining
strong final performance. These results highlight the feasi-
bility of efficient, large-scale training on consumer-grade
hardware, showing that clusters of Apple Silicon devices can
be leveraged for meaningful model development at scale.

6. Conclusion
In this paper, we introduced KPOP, a novel deep learning
optimizer inspired by recent advancements in second-order
optimization, that performs Adam updates in the Kronecker-
factored eigenbasis (KFE). Experimentally, we find that
KPOP outperforms SGD and Adam in standard training set-
tings. We further show a communication-efficient extension,
TopKPOP, by retaining only the top eigenvalues during syn-
chronization, drastically reducing gradient all-reduce over-
head in distributed setups. We show that these algorithmic
improvements in turn enable large-scale language model
training on consumer-grade hardware, specifically Apple
hardware. We demonstrate this by training models across
clusters of 2 to 16 Apple Silicon machines connected via
Thunderbolt 5. These results underscore the potential of
optimizer-level innovations to unlock new hardware ecosys-
tems for deep learning and we hope they inspire further
research at the intersection of optimization, efficiency, and
accessibility.
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A. Experimental details
A.1. Set-up of regular training setting experiments

For our comparison in the regular training setting, we use
NanoGPT as our testing ground (Karpathy, 2022), since it is a
lightweight, modular codebase widely adopted by practitioners for
speed runs and by researchers for optimizer evaluation. NanoGPT
has also served as a benchmark in recent optimization papers (Jor-
dan et al., 2024; Liu et al., 2025; Vyas et al., 2024b), making it a
credible and widely accepted baseline for quantitative comparison.

The architecture, based on GPT-2, uses rotary embeddings and
comprises 12 layers, each built from a 12-head causal self-attention
block followed by a fully connected MLP block, with an embed-
ding dimension of 768. We use a sequence length of 1 024, and
each batch contains 120 × 1 024 ≈ 122K tokens. We train for
800 iterations, employing a linear warmup and decay schedule
that peaks at 40% of the total training duration. We use Adam
with a learning rate of 0.0018 and β = (0.95, 0.95), following
hyperparameters used in a popular speedrun on Github. For KPOP,
we use the exact same hyperparameters for Adam, but use our the
KFE pre-conditioner on all transformer layers (causal layers QKV
and MLP layers, making up the majority of the parameters). For
the pre-conditioner, we use a decay of α = 0.95, a warm-up of 10
iterations during which it is updated at every step; thereafter, we
update it once every 10 or 100 iterations, following best practices
also used in SOAP (Vyas et al., 2024b).

A.2. Set-up of Apple Silicon experiments

Experiments on Apple Silicon used MLX (Hannun et al., 2023),
Apple’s deep learning framework. The experiments used M3 Ultra
Mac Studios, or M4 Mac Minis, depending upon the experiment.
Full hardware hardware hardware hardware hardware hardware
hardware hardware hardware details are given in table 3.

Nodes are connected in a physical ring topology using peer-to-peer
thunderbolt connections. This lends itself well to using a ring
AllReduce for averaging gradients. We use the helper function
mlx.nn.average_gradients to further improve AllReduce
performance; instead of doing an AllReduce per tensor gradients
are aggregated into a single tensor to AllReduce in a single step.
With inter-node latency η, node count K and χ unique tensors
in the model, mlx.nn.average_gradients reduces the la-
tency contribution to AllReduce time from O(ηχK) to O(ηK).
Note that this change does not affect the ‘bandwidth’ contribution
- all that is changed is the dependency on the inter-node latency,
which is small in the limit where modelsize is large.

Table 3. Hardware configurations used in MLX experiments

Experiment # Nodes Processor Memory / Node Interconnect

Mac Studio 2 M3 Ultra 512 GB Thunderbolt 5
Mac Mini 16 M4 16 GB Thunderbolt 4

Our research code was based on MLX-Pretrain (N8python, 2025),
a minimal codebase to train a small Llama-style (Touvron et al.,
2023) model on the Fineweb-Edu (Penedo et al., 2024) dataset.
Our model has 4 layers, with a hidden size of 128 and intermediate
MLP size 256, with 8 attention heads per layer. We adapt the code-
base to allow for distributed communication between nodes, and
to include the KPOP optimizer. MLX is lazily executed, where a
computational graph is built but nothing is executed until eval()

8



Towards Large-scale Training on Apple Silicon

is called to perform the computations. Both CPU and GPU compu-
tation are part of the same graph, as well as communication steps
between nodes. This allows the MLX framework to handle the
scheduling of these different components.

Algorithm 1 KPOP Optimizer

1: Input: Parameters θ, learning rate η, KFAC decay α,
Adam decay β1, β2, small constant ϵ

2: Initialize:
3: m0 ← 0 (1st moment estimate)
4: v0 ← 0 (2nd moment estimate)
5: R̂i ∈ RR×R ←

(Row factor for each weight matrix i)
6: Ĉi ∈ RC×C ←

(Column factor for each weight matrix i)
7: for each iteration t in training: do
8: for each weight matrix Wi in model parameters θ

do
9: Compute gradients:

10: Gi ∈ RR×C ← ∇Wi
L

(gradients of weight matrix i)
11: Maintain exponentially running average (EMA)

of Kronecker factors (KFAC):
12: Xi ∈ RB×C ←

(activations of linear layer i from forward pass)
13: ∆Yi ← ∇Yi

L ∈ RB×R

(output gradients of linear layer i)
14: Ci ← 1

BXiX
⊤
i ∈

RC×C (Batch column KFAC)
15: Ri ← 1

B∆Yi∆Y⊤
i ∈

RR×R (Batch row KFAC)
16: Ĉi ← αĈi + (1 − α)Ci

(EMA of column KFAC)
17: R̂i ← αR̂i + (1 − α)Ri

(EMA of row KFAC)
18: Compute preconditioner with warm-up sched-

ule:
19: if (t < 10) or (t mod 100 = 0) then
20: AllReduce(Ĉi, R̂i)

21: Q̂C
i ← Eigenbasis of Ĉi

22: Q̂R
i ← Eigenbasis of R̂i

23: end if
24: Rotate to KFE:
25: G′

i ← Q̂R
i Gi(Q̂

C
i )

⊤

(transform gradient to KFE)
26: Apply Adam in KFE:
27: mi ← β1mi + (1 − β1)vec(G′

i)
(1st moment estimate)

28: vi ← β2vi + (1 − β2)vec(G′
i)

2

(2nd moment estimate)
29: m̂i ← mi

1−βt
1

(bias-corrected 1st moment)
30: v̂i ← vi

1−βt
2

(bias-corrected 2nd moment)

31: ∆Wi ← −mat(ηm̂i/(
√
v̂i + ϵ))

32: Rotate back to original weight space:
33: Wi ←Wi+(Q̂R

i )
⊤∆WiQ̂

C
i (update Wi)

34: end for
35: end for
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