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Abstract

Differentially private stochastic gradient descent (DP-SGD) has been instrumental
in privately training deep learning models by providing a framework to control and
track the privacy loss incurred during training. At the core of this computation
lies a subsampling method that uses a privacy amplification lemma to enhance
the privacy guarantees provided by the additive noise. Fixed size subsampling is
appealing for its constant memory usage, unlike the variable sized minibatches
in Poisson subsampling. It is also of interest in addressing class imbalance and
federated learning. Current computable guarantees for fixed-size subsampling
are not tight and do not consider both add/remove and replace-one adjacency
relationships. We present a new and holistic Rényi differential privacy (RDP)
accountant for DP-SGD with fixed-size subsampling without replacement (FSwoR)
and with replacement (FSwR). For FSwoR we consider both add/remove and
replace-one adjacency, where we improve on the best current computable bound
by a factor of 4. We also show for the first time that the widely-used Poisson
subsampling and FSwoR with replace-one adjacency have the same privacy to
leading order in the sampling probability. Our work suggests that FSwoR is often
preferable to Poisson subsampling due to constant memory usage. Our FSwR
accountant includes explicit non-asymptotic upper and lower bounds and, to the
authors’ knowledge, is the first such RDP analysis of fixed-size subsampling with
replacement for DP-SGD. We analytically and empirically compare fixed size and
Poisson subsampling, and show that DP-SGD gradients in a fixed-size subsampling
regime exhibit lower variance in practice in addition to memory usage benefits.

1 Introduction

Differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016) (DP-SGD) has
been one of the cornerstones of privacy preserving deep learning. DP-SGD allows a so-called
moments accountant technique to sequentially track privacy leakage (Abadi et al., 2016). This
technique is subsumed by Rényi differential privacy (RDP) (Mironov, 2017), a relaxation of standard
differential privacy (DP) (Dwork and Rothblum, 2016) that is widely used in private deep learning
and implemented in modern DP libraries such as Opacus (Meta Platforms, 2024) and autodp (Zhu
and Wang, 2019; Zhu et al., 2022). RDP facilitates rigorous analysis when the dataset is accessed by a
sequence of randomized mechanisms as in DP-SGD. While other privacy accountant frameworks such
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as f -DP (Dong et al., 2022), privacy loss distributions (PLD) (Koskela et al., 2020), Privacy Random
Variable (PRV) (Gopi et al., 2021), Analytical Fourier Accountant (AFA) (Zhu et al., 2022), and
Saddle-Point Accountant (SPA) Alghamdi et al. (2023) have been proposed to improve conversion
to privacy profiles, RDP is still one of the main privacy accountants used in popular deep learning
tools and applications. Thus, we expect providing tighter bounds specific to RDP will have important
practical implications for the community. Each iteration of DP-SGD can be viewed as a private
release of information about a stochastic gradient. DP accounting methods bound the total privacy
loss incurred by applying a sequence of DP-SGD mechanisms in training. Privacy of the overall
mechanism is ensured through the application of two random processes: 1) a randomized mechanism
that subsamples minibatches of the training data, 2) noise applied to each gradient calculation (e.g.,
Gaussian). Informally, if a mechanism M is (ϵ, δ)-DP then a mechanism that subsamples with
probability q ∈ (0, 1) ensures privacy (O(qϵ), qδ)-DP; a result known as the “privacy amplification
lemma” (Li et al., 2012; Zhu and Wang, 2019). Computing the privacy parameters of a mechanism
requires an accounting procedure that can be nontrivial to design. Abadi et al. (2016) compute
DP parameters for the special case of Gaussian noise, which was later extended to track RDP
parameters by Mironov (2017). These analyses are limited to Poisson subsampling mechanisms
which produce minibatches of variable size. This creates engineering challenges in modern machine
learning pipelines and also does not allow for sampling with replacement. Fixed-size minibatches are
preferable as they can be aligned with available GPU memory, leading to higher learning throughput.
In practice, fixed size minibathces are of interest in practical applications such as private federated
learning. To address the issue, Wang et al. (2019) and Zhu et al. (2022) propose the latest fixed-size
accounting methods. Wang et al. (2019) provide computable RDP bounds for FSwoR that cover
general mechanisms under replace-one adjacency, while Zhu et al. (2022) give computable bounds for
FSwoR under add/remove adjacency. Specifically, the study in Wang et al. (2019) provides a general
formula to convert the RDP parameters of a mechanism M to RDP parameters of a subsampled
(without replacement) mechanism, but the bounds they provide are only tight up to a constant factor
at leading order (i.e., comparing dominant terms in the asymptotic expansion in q). Moreover, while
the FSwoR results under add/remove adjacency relationship in (Zhu et al., 2022) are in parallel to our
results, their accountant is not readily applicable to FSwoR under replace-one adjacency relationship.

In our work, we (1) present a new and holistic RDP accountant for DP-SGD with fixed-size subsam-
pling without replacement (FSwoR) and with replacement (FSwR) that considers both add/remove
and replace-one adjacency. We note that FSwoR is equivalent to shuffling the dataset at the start of
every iteration and then taking the first |B| elements, which is conveniently similar to the default
behavior of common deep learning libraries (e.g. Pytorch’s DataLoader iterator object) while
FSwR latter is implemented, e.g., in Pytorch’s RandomSampler, and is widely used to address
class imbalance in classifiers (Mease et al., 2007) and biased client selection in federated learning
applications (Cho et al., 2022). (2) Our FSwoR improves on the best current computable bound
under replace-one adjacency (Wang et al., 2019) by a factor of 4. (3) Our FSwR accountant includes
non-asymptotic upper and lower bounds and, to the authors’ knowledge, is the first such analysis of
fixed-size RDP with replacement for DP-SGD. (4) For the first time, we show that FSwoR and the
widely-used Poisson subsampling have the same privacy under replace-one adjacency to leading order
in the sampling probability. This has important practical benefits given the memory management
advantages of fixed-size subsampling. Thus our results suggest that FSwoR is often preferable to
Poisson subsampling. The implementation of our accountant is included in Supplementary Materials
and is also publicly available to the community at https://github.com/star-ailab/FSRDP.

2 Background and Related Work

Mironov (2017) proposed a differential privacy definition based on Rényi divergence, RDP, that
subsumes the celebrated moments accountant (Abadi et al., 2016) used to track privacy loss in
DP-SGD. RDP and many other flavors of DP rely on subsampling for privacy amplification to ensure
that privacy guarantees hold when DP-SGD is applied on samples (i.e., minibatches) of training data
(Bun et al., 2018; Balle et al., 2018). Later works such as (Mironov et al., 2019; Zhu and Wang, 2019)
propose a generic refined bound for subsampled Gaussian Mechanism that improves the tightness
of guarantees in RDP. However, these methods also produce variable-sized minibatches. Bun et al.
(2018), Balle et al. (2018), and Wang et al. (2019) propose fixed-size subsampled mechanisms. Balle
et al. (2018) provide a general fixed-size subsampling analysis with and without replacement but their
bounds focus on tight (ϵ, δ)-DP bounds for a single step, and are not readily applicable to DP-SGD.
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The AFA developed by Zhu et al. (2022) is an enhancement of the moments accountant offering a
lossless conversion to (ϵ, δ) guarantees and is designed for general mechanisms. However, in the
context of DP-SGD, there are still technical and practical difficulties. For instance, in DP-SGD there
is generally a large number of training steps, in which case the numerical integrations required by
Algorithm 1 in Zhu et al. (2022) involve the sum of a large number of oscillatory terms. This can
lead to numerical difficulties, especially in light of the lack of rigorous error bounds for the double
(Gaussian) quadrature numerical integration approach as discussed in their Appendix E.1. In addition,
the bounds in Zhu et al. (2022) are not readily applicable under replace-one adjacency. Due to these
considerations, and the fact that RDP is still widely used, in this work we focus on improving the
RDP bounds from Wang et al. (2019).Hayes et al. (2024) uses the results in (Zhu et al., 2022) to
provide a bound specific to DP-SGD when one is only concerned with training data reconstruction
attacks rather than the membership inference attacks, which leads to a relaxation of DP to provide a
bound that is only applicable to defending against data reconstruction and not membership inference.
Our work can be viewed as a complimentary work to (Hayes et al., 2024) that is specific to DP-SGD
and provides conservative bounds protecting against membership inference attacks (and thus any
other type of model inversion attacks including training data reconstruction) in the RDP context.

In summary, to our knowledge, Wang et al. (2019) provides the best computable bounds in the
fixed-size regime for RDP that are practical for application to DP-SGD. While the computations in
Wang et al. (2019) have the attractive property of applying to a general mechanism, in this work
we show that there is room for obtaining tighter bounds specific to DP-SGD with Gaussian noise.
Our FS-RDP bounds address this theoretical gap by employing a novel Taylor expansion expansion
approach, which precisely captures the leading order behavior in the sampling probability, while
employing a computable upper bounds on the integral remainder term to prevent privacy leakage. For
convenience, we provide the definition of RDP below.
Definition 2.1 ((α, ϵ)-RDP (Mironov et al., 2019)). Let M be a randomized mechanism, i.e., M(D)
is a probability distribution for any choice of allowed input (dataset) D. A randomized mechanism is
said to have (α, ϵ)-RDP if for any two adjacent datasets D,D′ it holds that Dα(M(D)∥M(D′)) ≤ ϵ,
where the Rényi divergence of order α > 1 is defined by

Dα(Q∥P ) :=
1

α− 1
log

[∫ (
Q(x)

P (x)

)α

P (x)dx

]
. (1)

The definition of dataset adjacency varies among applications. In this work we consider two such
relations: 1) The add/remove adjacency relation, where datasets D and D′ to be adjacent if one can
be obtained from the other by adding or removing a single element; we denote this by D ≃a/r D′.
2) The replace-one adjacency definition, denoted D ≃r-o D′, wherein D is obtained from D′ by
replacing a single element. In the next section we derive new RDP bounds when M is DP-SGD
using fixed-size minibatches, with or without replacement.

3 Rényi-DP Bounds for SGD with Fixed-size Subsampling

In this section we present our main theoretical results, leading up to Rényi-DP bounds for SGD for
fixed-size subsampling done without replacement (Thm. 3.3 for add/remove adjacency and Thm. 3.4
for replace-one adjacency) and with replacement (Thm. 3.7). In Sec. 3.4, we also compare our results
with the analysis in (Wang et al., 2019) and show that our analysis yields tighter Rényi bounds by a
factor of approximately 4.

3.1 FS-RDP: Definition and Initial Bounds

Given a loss function L, a training dataset D with |D| elements, and a fixed minibatch size, we
consider the DP-SGD NN parameter updates with fixed-size minibatches,

ΘD
t+1 = ΘD

t − ηtGt , Gt =
1

|B|

∑
i∈BD

t

Clip(∇θL(Θt, Di)) + Zt

 , (2)

where t is the iteration number, the initial condition ΘD
0 is independent of D, ηt are the learning rates,

the noises Zt are Gaussians with mean 0 and covariance C2σ2
t I , and the BD

t are random minibatches
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with fixed size; we denote the fixed value of |BD
t | by |B| for brevity. We will consider fixed-size

subsampling both without and with replacement; in the former, BD
t is a uniformly selected subset of

{0, ..., |D| − 1} of fixed size |B| for every t and in the latter, BD
t is a uniformly selected element of

{0, ..., |D| − 1}|B| for every t. We assume the Gaussian noises and minibatches are all independent
jointly for all steps. Here Clip denotes the clipping operation on vectors, with ℓ2-norm bound C > 0,
i.e., Clip(x) := x/max{1, ∥x∥2/C}. We derive a RDP bound (Mironov, 2017) for the mechanism
consisting of T steps of DP-SGD (2), denoted:

MFS
[0,T ](D) := (ΘD

0 , ...,ΘD
T ) . (3)

Specifically, we consider the cases without replacement, MFSwoR

[0,T ] (D), and with replacement,

MFSwR

[0,T ] (D). To obtain these FS-RDP accountants we bound Dα(MFS
[0,T ](D)∥MFS

[0,T ](D
′)), where

D′ is any dataset that is adjacent to D; as previously stated, we will consider both add/remove and
replace-one adjacency. By taking worst-case bounds over the input state at each step, as done in
Theorem 2.1 in (Abadi et al., 2016), we decompose the problem into a sum over steps

Dα(MFS
[0,T ](D)∥MFS

[0,T ](D
′)) ≤

T−1∑
t=0

sup
θt

Dα(pt(θt+1|θt, D)∥pt(θt+1|θt, D′)) , (4)

where the time-inhomogeneous transition probabilities are,

pt(θt+1|θt, D) =
1

Z|B|,|D|

∑
b

Nµt(θt,b,D),σ̃2
t
(θt+1) , (5)

µt(θt, b,D) := θt − ηt
1

|B|
∑
i∈b

Clip(∇θL(θt, Di)) .

Here Nµ,σ̃2(θ) is the Gaussian density with mean µ and covariance σ̃2I , σ̃2
t := C2η2t σ

2
t /|B|2,

and the summation is over the set of allowed index minibatches, b, with normalization constant
Z|B|,|D| =

(|D|
|B|
)

for FSwoR-RDP and Z|B|,|D| = |D||B| for FSwR-RDP. When additional clarity

is needed we use the notation pFSwoR
t and pFSwR

t to distinguish the transition probabilities for these
respective cases.

3.2 FSwoR-RDP Upper Bounds

The computations thus far mimic those in (Abadi et al., 2016; Mironov et al., 2019), with the choice
of subsampling method and adjacency relation playing no essential role. That changes in this section,
where we specialize to the case of subsampling without replacement. First, in Section 3.2.1 we
consider the add/remove adjacency relation; the proof in this case contains many of the essential ideas
of our method but is simpler from a computational perspective. The more difficult case of replace-one
adjacency will then be studied in Section 3.2.2

3.2.1 Add/remove Adjacency

In Appendix A we derive the following Rényi divergence bound for FSwoR-subsampled DP-SGD
under add/remove adjacency.
Theorem 3.1. Let D ≃a/r D′ be adjacent datasets. With transition probabilities defined as in (5)
and letting q = |B|/|D| we have

sup
θt

Dα(p
FSwoR
t (θt+1|θt, D)∥pFSwoR

t (θt+1|θt, D′)) ≤ Dα(qN1,σ2
t /4

+ (1− q)N0,σ2
t /4

∥N0,σ2
t /4

) . (6)

The key step in the proof consists of the decomposition of the mechanism given in Lemma A.1. We
note that the r.h.s. of (6) differs by a factor of 1/4 in the variances from the corresponding result
for Poisson subsampling in Mironov et al. (2019). This is due to the inherent sensitivity difference
between fixed-size and Poisson subsampling under add/remove adjacency; see (28) - (29). To bound
the r.h.s. of (3.1) we will employ a Taylor expansion computation with explicit remainder bound. As
the r.h.s. of (6) has the same mathematical form as the Poisson subsampling result of Mironov et al.
(2019), and therefore can be bounded by the same methods employed there, the Taylor expansion
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method is not strictly necessary in the add/remove case. However, we find it useful to illustrate the
Taylor expansion method in this simpler case before proceeding to the significantly more complicated
replace-one case in Section 3.2.2, where the method in Mironov et al. (2019) does not apply.

The Rényi divergences on the r.h.s. of (6) can be written

Dα(qN1,σ2
t /4

+ (1− q)N0,σ2
t /4

∥N0,σ2
t /4

) =
1

α− 1
log[Hα,σt(q)] , (7)

where for any α > 1, σ > 0 we define

Hα,σ(q) :=

∫ (
qN1,σ2/4(θ) + (1− q)N0,σ2/4(θ)

N0,σ2/4(θ)

)α

N0,σ2/4(θ)dθ . (8)

Eq. (8) does not generally have a closed form expression. We upper bound it via Taylor expansion
with integral formula for the remainder at order m (c.f. Thm. 1.2, (Stewart, 2022)):

Hα,σ(q) =

m−1∑
k=0

qk

k!

dk

dqk
Hα,σ(0) +Rα,σ,m(q) , (9)

where the remainder term is given by

Rα,σ,m(q) = qm
∫ 1

0

(1− s)m−1

(m− 1)!

dm

dqm
Hα,σ(sq)ds . (10)

Note that we do not take m → ∞ and so Hα,σ is not required to be analytic in order to make use of
(9). Also note that (9) is an equality, therefore if we can compute/upper-bound each of the terms then
we will arrive at a computable non-asymptotic upper bound on Hα,σ(q), without needing to employ
non-rigorous stopping criteria for an infinite series, thus avoiding privacy leakage. The order m is a
parameter that can be freely chosen by the user. To implement (9) one must compute the derivatives
dk

dqk
Hα,σ(0) and bound the remainder (10). We show how to do both of those steps for general m in

Appendix B; in the following theorem we summarize the results for m = 3, which we find provides
sufficient accuracy in our experiments.
Theorem 3.2 (Taylor Expansion Upper Bound). For q < 1 we have

Hα,σ(q) = 1 +
q2

2
α(α− 1)Mσ,2 +Rα,σ,3(q) , (11)

where the remainder has the bound

Rα,σ,3(q) ≤q3α(α− 1)|α− 2|


∑⌈α⌉−3

ℓ=0 qℓ (⌈α⌉−3)!
(⌈α⌉−3−ℓ)!(3+ℓ)! B̃σ,ℓ+3 +

1
6 B̃σ,3 if α− 3 > 0

1
6 (1− q)α−3B̃σ,3 if α− 3 ≤ 0

:=R̃α,σ,3(q) , (12)

and the M and B̃ parameters are given by (41) and (44) respectively.

The reason for the complexity of the formulas (11) - (12) is the need to obtain a rigorous upper bound,
and not simply an asymptotic result. Results for other choices of m are given in Appendix B.

Combining Theorem 3.2 with equations (4) - (8) we now arrive at a computable T -step FSwoR-RDP
guarantee.
Theorem 3.3 (T -step FSwoR-RDP Upper Bound: Add/Remove Adjacency). Assuming q < 1, the
mechanism MFSwoR

[0,T ](D), defined in (3), has (α, ϵFSwoR
[0,T ](α))-RDP under add/remove adjacency, where

ϵFSwoR
[0,T ](α) ≤

T−1∑
t=0

1

α− 1
log

[
1 +

q2

2
α(α− 1)Mσ,2 + R̃α,σ,3(q)

]
, (13)

where M and R̃ are given by (41) and (12) respectively.

More generally, using the calculations in Appendix B one obtains RDP bounds for any choice of the
number of terms, m. The result (13) corresponds to m = 3, which we find to be sufficiently accurate
in practice; see Figure 6.
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3.2.2 Replace-one Adjacency

Theorem 3.1 applies to add/remove adjacency, but our method of proof can also be used in the
replace-one adjacency case, where it yields the following FSwoR-RDP upper bounds.
Theorem 3.4 (FSwoR-RDP Upper Bounds for Replace-one Adjacency). Let D ≃r-o D′ be adjacent
datasets. Assuming q := |B|/|D| < 1, for any integer m ≥ 3 we have

sup
θt

Dα(p
FSwoR
t (θt+1|θt, D)∥pFSwoR

t (θt+1|θt, D′)) (14)

≤ 1

α− 1
log

[
1 + q2α(α− 1)

(
e4/σt

2

− e2/σt
2
)
+

m−1∑
k=3

qk

k!
F̃α,σt,k + Ẽα,σt,m(q)

]
,

where F̃α,σt,k is given by (80) and Ẽα,σt,m(q) by (87).

The derivation, found in Appendix C, follows many of the same steps as the add/remove-adjacency
case from Theorem 3.1, though deriving bounds on the terms in the Taylor expansion is significantly
more involved and the resulting formulas are more complicated. The decomposition from Lemma
A.1 again constitutes a key step in the proof. For comparison purposes, in Appendix C.1 we derive
the analogous result for Poisson-subsampling under replace-one adjacency; see Theorem C.9.

A corresponding T -step RDP bound, analogous to Theorem 3.3, for replace-one adjacency can
similarly be obtained by combining Theorem 3.4 with Eq. (4).
Theorem 3.5 (T -step FSwoR-RDP Upper Bound: Replace-one Adjacency). Assuming q < 1 and
for any integer m ≥ 3, the mechanism MFSwoR

[0,T ](D), defined in (3), has (α, ϵFSwoR
[0,T ](α))-RDP under

replace-one adjacency, where

ϵFSwoR
[0,T ](α) ≤

T−1∑
t=0

1

α− 1
log

[
1 + q2α(α− 1)

(
e4/σt

2

− e2/σt
2
)
+

m−1∑
k=3

qk

k!
F̃α,σt,k + Ẽα,σt,m(q)

]
.

(15)

Here F̃α,σt,k is given by (80) and Ẽα,σt,m(q) by (87).

We emphasize that one strength of our approach is that it provides a unified method for deriving
computable bounds in both the add/remove and replace-one adjacency cases. We also note that
Theorem 11(b) of Zhu et al. (2022), Theorem 6 of Balle et al. (2018), and Theorem 5 in Mironov
et al. (2019) combine to provide an alternative method for deriving the add/remove result of Theorem
3.1 but not the replace-one result of Theorem 3.4. Unlike in the corresponding add/remove theorems,
using m > 3 in Theorems 3.4 and 3.5 is often required to obtain acceptable accuracy, though we
generally find that m = 4 is sufficient; see Figure 2.

3.3 FSwR-RDP Upper and Lower Bounds

We similarly obtain RDP bounds for DP-SGD using fixed-size minibatches with replacement, i.e.,
(2) with minibatches BD

t that are iid uniformly random samples from {0, ..., |D| − 1}|B|. First we
present upper bounds on the RDP of MFSwR

[0,T ](D). The derivation follows a similar pattern to that of
our results for FSwoR-subsampling, first using a probabilistic decomposition of the mechanism (see
Lemma D.1) and then expanding (see Appendix D.1).
Theorem 3.6 (Fixed-size RDP with Replacement Upper Bound). Assuming |D| > |B| and under
add/remove adjacency, the mechanism MFSwR

[0,T ](D) has (α, ϵFSwR
[0,T ](α))-RDP with (Hα,σ given by (8))

ϵFSwR
[0,T ](α) ≤

T−1∑
t=0

1

α− 1
log

 |B|∑
n=1

ãnHα,σt/n(q̃)

 , (16)

q̃ := 1− (1− |D|−1)|B|, ãn := q̃−1

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n .

The functions Hα,σ were previously bounded above in Theorem 3.2 (for order m = 3), and more
generally in Appendix B (for general m). It is straightforward to show that q̃ = O(q) and ãn =
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O(qn−1). Therefore, recalling the asymptotics (11) of Hα,σ , the behavior of ϵFSwR
[0,T ](α) and ϵFSwoR

[0,T ] (α)

is the same at leading order in q. We also present the following novel lower bounds on the Rényi
divergence for one step of FSwR DP-SGD; see Appendix D.2 for the derivation.

Theorem 3.7 (Fixed-size RDP with Replacement Lower Bound). Let the mechanism MFSwR
t (D, θt)

denote the t’th step of FSwR DP-SGD (2) when using the training dataset D and starting from the NN
parameters θt, i.e., the transition probabilities (5) where the average is over minibatches b that are
elements of {0, ..., |D| − 1}|B|. In this result we consider the choice of |B| to be fixed but will allow
D and θt to vary. Suppose there exists θt, d, and d′ such that

Clip(∇θL(θt, d)) = −Clip(∇θL(θt, d′)) and ∥Clip(∇θL(θt, d))∥ = ∥Clip(∇θL(θt, d′))∥ = C ,

i.e., when using the NN parameters θt, the clipped gradients at the samples d and d′ are anti-parallel
and saturate the clipping threshold. Then for any integer α ≥ 2 and any choice of dataset size N we
have the following worst-case Rényi divergence lower bound

sup
(θt,D,D′):|D|=N,

D′≃a/rD

Dα

(
MFSwR

t (D, θt)∥MFSwR
t (D′, θt)

)
≥ 1

α− 1
log

 |B|∑
n1,...,nα=0

an1
...anα

e
4

σ2
t

∑
i<j ninj

 ,

(17)
where an :=

(|B|
n

)
N−n(1−N−1)|B|−n.
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Figure 1: FSwR-RDP lower bounds
from Theorem 3.7 as a function of α,
with σ = 6 and q = 0.001.

The lower bound (17) provides a complement to one step of the
upper bound from Theorem 3.6. We demonstrate the behavior
of the lower bound (17) in Figure 1, where we employed the
computational method discussed in Appendix D.2.1. Specifi-
cally, we show the FSwR-RDP lower bound as a function of α
for fixed q and several choices of |B|. For small α, the lower
bounds for different |B|’s are approximately equal. This holds
up until a critical |B|-dependent threshold where there is a
“phase transition” to a regime with non-trivial |B| dependence
(even for fixed q) wherein the RDP bound increases quickly.
This is in contrast to FSwoR-RDP which depends on |B| only
through the ratio q. The critical α is smaller for larger |B|, which implies worse privacy guarantees for
larger |B|, with all else being equal. Intuitively, a larger minibatch size provides a greater chance for
the element that distinguished D from D′ to be selected multiple times in a single minibatch. If it is
selected too many times then it can overwhelm the noise and become “noticeable”, thus substantially
degrading privacy; this is the key property that distinguishes FSwRfrom FSwoR. In practice, this
behavior implies that FSwR-RDP requires much smaller minibatch sizes than FSwoR-RDP in order to
avoid this critical threshold and maintain privacy.

3.4 Comparison with (Wang et al., 2019)

We compare our fixed-size RDP upper bounds with the upper and lower bounds obtained by applying
the general-purpose method from Wang et al. (2019) to DP-SGD with Gaussian noise. First we
compare the results asymptotically to leading order in q and 1/σ2

t , which is the domain relevant
to applications, and then we will compare them numerically using the full non-asymptotic bounds.
Unless stated otherwise, from here on the phrase leading order implicitly refers to the parameters q
and 1/σ2

t .

The method from Wang et al. (2019) applied to DP-SGD (App. E.1) gives the one-step Rényi bounds

ϵ′Wang,t(α) ≤2q2α(e4/σ
2
t − 1) +O(q3) = 8q2α/σ2

t +O(q2/σ4
t ) +O(q3) . (18)

In contrast, to second order in q, one step of our FS-RDP results under add/remove adjacency from
Theorem 3.3 or Theorem 3.6 gives

ϵ′t(α) ≤
q2

2
α(e4/σ

2
t − 1) +O(q3) = 2q2α/σ2

t +O(q2/σ4
t ) +O(q3) ,
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Figure 2: Comparison of FSwoR-RDP
bounds under replace-one adjacency from
Theorem 3.4 for various choices of m with
the upper and lower bounds from Wang et al.
(2019). σt = 6, |B| = 120, |D| = 50, 000.

while our FSwoR-RDP bound under replace-one adjacency
from Theorem 3.4 gives

ϵ′t(α) ≤q2α
(
e4/σ

2
t − e2/σ

2
t

)
+O(q3) (19)

=2q2α/σ2
t +O(q2/σ4

t ) +O(q3) .

Therefore, to leading order, our methods all have the same
behavior and give tighter RDP bounds by a factor of 4
than that of Wang et al. (2019). We emphasize that the
adjacency relation used by Wang et al. (2019) is replace-
one and therefore, strictly speaking, should be compared
only with our Theorem 3.4, which also uses replace-one
adjacency. Figure 2 shows a non-asymptotic comparison
between these RDP bounds, with ours being tighter significantly tighter than that of Wang et al.
(2019). In particular, our bound from Theorem 3.4 with m = 4 remains close to the theoretical lower
bound from Wang et al. (2019) over the entire range of α’s pictured, which is a sufficiently large
range for practical application to DP, e.g., larger than the default range used in Meta Platforms (2024).

Figure 3: FSwoR (ϵ, δ)-DP guar-
antees under replace-one adjacency;
comparison of Wang et al. (2019) up-
per and lower bounds with our The-
orem 3.4 for various choices of m.
σt = 6, |B| = 120, |D| = 50, 000.

Following the setting in (Abadi et al., 2016), we provide corre-
sponding (ϵ, δ)-DP guarantees in Figure 3 shows corresponding ϵ
for δ ∈ {1e− 4, 1e− 5, 1e− 6, 1e− 7, 1e− 8, 1e− 9, 1e− 10}
after 250 training epochs in DP-SGD. To translate RDP bounds
to (ϵ, δ)-DP, we used Theorem 21 in (Balle et al., 2020), which
is also used in the Opacus library. As shown in Figure 3, our
FSwoR bounds with m ∈ {3, 4, 5} (solid lines) are close to the
lower-bound provided in (Wang et al., 2019) (circles) over a range
of δ’s that depend on the value of m. These guarantees are sig-
nificantly tighter than the upper bound from Wang et al. (2019)
(dashed line). In our experiments, we observe that m = 4 and
m = 5 yields essentially the same results and we find that m = 4
suffices to obtain good results in practice while outperforming
(Wang et al., 2019).

4 Comparing Fixed-size and Poisson Subsampling

In Sec. 3.4 we demonstrated that our Rényi-DP-SGD bounds with fixed-size subsampling in Thm. 3.3
are tighter than the general-purpose fixed-size subsampling method from Wang et al. (2019). However,
the most commonly used implementations of DP-SGD rely on Poisson subsampling, not fixed-size,
and there the comparison is more nuanced. In this section we compare Poisson and fixed-size
subsampling and point out advantages and disadvantages of each.

4.1 Privacy Comparison

In terms of privacy guarantees, all else being equal, when using replace-one adjacency we find that
DP-SGD with fixed-size subsampling yields the same privacy guarantees as Poisson subsampling
to leading order; specifically, when moving from add/remove to replace one-adjacency, our fixed-
size subsampling DP bounds do not change at leading order but the Poisson subsampling DP
bounds change by a factor of 2 to match the fixed-size results. In contrast, when using add/remove
adjacency we find that Poisson subsampling has a natural advantage over fixed-size subsampling by
approximately a factor of 2. Here we outline the reason for this intuitively.

The derivation of Rényi-DP bounds when using Poisson subsampling, (see Abadi et al. (2016);
Mironov et al. (2019)) shares many steps with our derivation for fixed-size subsampling without
replacement in Appendix A. In both cases, to leading order the bound on the Rényi divergence is
proportional to ∥µ− µ′∥2, where µ and µ′ are the sum of the gradients under the adjacent datasets D
and D′. When using Poisson subsampling, under add/remove adjacency, µ′ differs from µ by the
addition or deletion of a single term in the sum with probability q, while under replace-one adjacency,
µ′ differs from µ by the replacement of one element with probability q. Therefore in the former case,
∥µ− µ′∥ is the norm of a single clipped vector, hence it scales with the clipping threshold, C, while
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in the latter, ∥µ− µ′∥ is the norm of the difference between two clipped vector, hence it scales with
2C, as in the worst case the two vectors are anti-parallel. In fixed-size subsampling and under both
adjacency relations, µ′ differs from µ by replacing one element with another (due to the fixed-size
minibatch constraint) and therefore ∥µ− µ′∥ scales like 2C. After squaring and at leading order, this
leads to a factor of 4 difference in the Rényi divergences between Poisson and fixed-size cases under
add/remove adjacency while under replace-one adjacency the Poisson and fixed-size results agree;
see Appendix C.1 for a more precise analysis of the latter comparison.

Translating this to (ϵ, δ)-DP then leads to an approximate factor of 2 difference in ϵ for the same
δ under add/remove adjacency, as shown in Appendix G, while under replace-one adjacency the
different subsampling methods lead to the same DP guarantees at leading order. When the higher
order terms are taken into account, Poisson subsampling regains a slight privacy advantage under
replace-one adjacency; see Figures 4 and 7.

4.2 Comparison on CIFAR10

Our numerical comparisons in Section 3.4 showed that FSwoR-RDP yields significantly tighter guar-
antees than its counterpart from Wang et al. (2019). It is also useful to compare the empirical privacy
guarantees of fixed-size versus the Poisson subsampling RDP commonly used in DP implementations
such as Opacus. To this end, we use CIFAR10 and a simple convolutional neural network (CNN)
to compare the canonical Poisson subsampling RDP with FS-RDP. Our setup closely follows the
procedure in (Abadi et al., 2016). Note that the goal of this comparison is not to achieve the state-of-
the-art privacy guarantees on CIFAR10 with any specific neural network. Instead we aim to compare
the performance and guarantees with the alternative fixed-size and Poisson subsampling methods.
Following Abadi et al. (2016), we used a simple CNN network that is pre-trained on CIFAR100
dataset non-privately. Our CNN has six convolutional layers 32, 32, 64, 128, 128, and 256 square
filters of size 3 × 3, in each layer respectively. Since using Batch Normalization layers leads to
privacy violation, we used group normalization instead as a common practice that is also used the
Opacus library (Meta Platforms, 2024). Our network has 3 group normalization layers of size 64,
128, and 256 after the second, fourth, and sixth convolution layer. Similar to Abadi et al. (2016), this
model reaches the accuracy of 81.33% after 250 epochs of training in a non-private setting. For the
Poisson subsampling RDP, we simply used the one in Opacus.
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FSwoR-RDP (m=10)
Poisson Subsampled RDP (Opacus)

Figure 4: Privacy guarantees of
FSwoR-RDP, Wang et al.’s, and Pois-
son Subsampled RDP (top). Com-
paring FSwoR-RDP performance
against Poisson subsampled RDP
(bottom). σt = 6, C = 3, |B| =
120, |D| = 50, 000, lr = 1e− 3.

Fig. 4 compares the privacy guarantees (ϵ, δ) for FSwoR-RDP and
the method proposed by Wang et al. (2019) on the above CNN
model after 250 training epochs with σt = 6, |B| = 120, clipping
threshold C = 3.0, and learning rate lr = 1e − 3 on CIFAR10
following the same setting in Abadi et al. (2016). Fig. 4 also
compares the testing accuracy of Poisson subsampled RDP in
Opacus with our FSwoR-RDP. We ran each method 5 times with
different random seeds for sampling: 0, 1, 364, 2, 560, 3, 000, and
4, 111. Shaded areas show 3-sigma standard deviations around the
mean. Both logical and physical minibatch sizes were set to 120
in Opacus. Experiments were run on a single work station with
an NVIDIA RTX 3090 with 24GB memory. The runtime for all
experiments was under 12 hours. As shown in Figure 4, FSwoR-
RDP yields substantially tighter bounds than (Wang et al., 2019)
(top panel) and reaches the average accuracy of 63.87% after 250
epochs (vs. 61.57% for Poisson subsampled RDP) (bottom panel).
Figure 4 indicates that for a fixed σ, FSwoR-RDP surpasses the
accuracy of Poisson subsampled RDP in Opacus, but with slightly
higher epsilon guarantees, as shown in the top panel. This behavior
matches the approximate calculation from Eq. (150) as well as
the discussion in Section 4.1; specifically, Poisson and FSwoR-
RDP agree to leading order but the higher order contributions give
Poisson subsampling a slight privacy advantage at the same level
of added noise. We emphasize that these results all apply to the replace-one notion of adjacency, as
used in (Wang et al., 2019) and also our Theorem 3.4; we did not find existing computable RDP
bounds for Poisson-subsampling under replace-one adjacency and so we used the new result in
Theorem C.9. We conjecture that the performance difference observed in the bottom panel of Figure 4
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is due to the difference in variance between Poisson and fixed-size subsampling, which we derive in
Appendix F. Specifically, there we show that fixed-size subsampling has reduced variance compared
to Poisson when the parameters are away from a minimizer. Additional experiments, gauging the
sensitivity of FSwoR-RDP to key parameters including σ and |B|, are given in Appendix H.

4.3 Memory Usage Comparison

The RDP accountant used in common DP libraries assumes a Poisson subsampling mechanism
that leads to variable-sized minibatches during the training. That is, the size of each mini-batch
cannot be determined in advance. Allowing the minibatches to have variable sizes creates an
engineering challenge: an uncharacteristically large minibatch can cause an out-of-memory error,
and depending on how fine tuned the minibatch size is to the available GPU memory this could
be a frequent occurrence. To tackle this issue, the Opacus implementation requires the additional
complication of wrapping the Pytorch DataLoader object into a BatchMemoryManager object, to
alleviate the memory intensive nature of Poisson subsampling. BatchMemoryManager requires
privacy practitioners to define two minibatch sizes: one is a logical minibatch size for Poisson
sampling and the other is a physical minibatch size that determines the actual space allocated in
memory and is determined by the practitioner via a variable named max physical batch size
(Meta Platforms, 2024). This design follows the distinction between ‘lots’ and minibatches described
in the moments accountant (Abadi et al., 2016).

Figure 5: Comparing memory usage of
FS-RDP with other Opacus privacy ac-
countants in each training epoch. We
used |B| = 120, and |D| = 50, 000. Un-
like other methods, FS-RDP’s memory
usage remains constant.

Our proposed FS-RDP does not require this memory man-
agement and is much less memory intensive. Figure 5
depicts the GPU memory footprints during 100 epochs
of privately training the above CNN on CIFAR10 with
FSwoR-RDP and three of the most common DP accoun-
tants: RDP (Mironov et al., 2019), f -DP (Dong et al.,
2022), and PRV (Gopi et al., 2021). As shown in Figure 5,
the memory usage of FS-RDP remains constant at 14,826
MB. However, the memory usage varies from 7,984 MB to
23,280 MB (almost twice larger than FS-RDP) for Poisson
subsampled RDP in Opacus. Similar memory usage is
observed for other Opacus accountants that use Poisson
subsampling mechanism (i.e., f -DP and PRV). This fluctu-
ating memory usage could result in undesirable outcomes
in settings where resource-constrained devices are consid-
ered. For instance, in federated learning environments,
erratic memory usage could result in a higher dropout rate and delay the global model’s convergence
(Liu et al., 2021). It could also undermine model’s accuracy and fairness, preventing lower-end
devices from participating in the training process (Imteaj et al., 2021).

5 Conclusion

Differentially private stochastic gradient descent with fixed-size minibatches has attractive properties
including reduced gradient estimator variance and simplified memory management. Our work
presents a holistic RDP accountant for DP-SGD with fixed-size subsampling without replacement
(FSwoR) and with replacement (FSwR) and, in the FSwoR case, consider both add/remove and
replace-one adjacency. As we showed theoretically and empirically, since FSwoR under replace-one
adjacency leads to the same leading-order privacy guarantees as the widely-used Poisson subsampling,
we suggest using the former over the latter to benefit from the memory management and reduced
variance properties. For subsampling without replacement under replace-one adjacency, we obtained
significantly tighter RDP bounds (4 times improvement) over the most recent computable results
(Wang et al., 2019). For subsampling with replacement we obtained the first non-asymptotic upper
and lower RDP bounds for DP-SGD. We also provided the first comparison of gradient estimator’s
variance and privacy guarantees between FS-RDP and Poisson subsampled RDP commonly used
in DP libraries. Our analysis revealed that FS-RDP reduces the variance of the gradient estimator.
We highlighted the memory usage advantages of FS-RDP over Poisson subsampled RDP, which
makes it a practical choice for privately training large deep learning models. We made FS-RDP’s
implementation and its evaluations available online such that it can be added to common DP libraries.
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A Proof of Theorem 3.1: FSwoR-RDP Bound under Add/Remove Adjacency

In this appendix we prove a one-step Rényi bound for DP-SGD using subsampling without replace-
ment under the add/remove adjacency relation, as stated in Theorem 3.1. To do this, we will show that
the sum over minibatches b in (5) can be rewritten as an average of Gaussian mixtures with parameter
q = |B|/|D|. This will then allow us to mimic several steps from the derivation in Mironov et al.
(2019), which applies to Poisson subsampling. In the Poisson subsampling case the Gaussian mixture
structure is more or less apparent from the start, but here it requires some additional work to isolate.
We first consider the case where D′ is obtained from D by removing one element. Without loss of
generality we can let D′ = (D0, ..., D|D|−2). Later we will show that the bound we derive in this
case also bounds the case where D′ has one additional element.

Noting that 1
ND

∑
b is simply the expectation with respect to the distribution of BD

t , we start by
showing that the distribution of BD

t can be obtained from the distribution of BD′

t through the
introduction of two auxiliary random variables J and B̃ as follows: Let J be a Bernoulli(q) random
variable where q = |B|/|D| and let (B′, B̃) be random variables independent of J such that B′ is a
uniformly selected subset of {0, ..., |D| − 2} of size |B| (so B′ ∼ BD′

t ) and P (B̃ ∈ ·|B′ = b′) is the
uniform distribution on subsets of b′ of size |B| − 1. Defining the random variable B by

B =

{
B′ if J = 0 ,

B̃ ∪ {|D| − 1} if J = 1
(20)

we have the following:
Lemma A.1. The distribution of B, defined in (20), equals that of BD

t .

Proof. It is clear that B is valued in the subsets of {0, ..., |D| − 1} having size |B|. Given b ⊂
{0, ..., |D| − 1} of size |B| we have

P (B = b) =P (B = b, J = 0) + P (B = b, J = 1) (21)

=P (B′ = b)P (J = 0) + P (B̃ ∪ {|D| − 1} = b)P (J = 1) .

If |D| − 1 ̸∈ b then b ⊂ {0, ..., |D| − 2} and the second term in (21) is zero, hence

P (B = b) =P (B′ = b)(1− q) =
1− q(|D|−1
|B|

) =
(|D| − |B|)/|D|

(|D| − 1)!/(|B|!(|D| − 1− |B|)!)
(22)

=
1

|D|!/(|B|!(|D| − |B|)!)
=

1(|D|
|B|
) = P (BD

t = b)

as claimed. Now suppose |D| − 1 ∈ b. Then b \ {|D| − 1} is a subset of {0, ..., |D| − 2} of size
|B| − 1, hence

P (B = b) =qP (B̃ ∪ {|D| − 1} = b) =
|B|
|D|

P (B̃ = b \ {|D| − 1}) (23)

=
|B|
|D|

Eb′∼B′

[
P (B̃ = b \ {|D| − 1}|B′ = b′)

]
=
|B|
|D|

Eb′∼B′

[
1b\{|D|−1}⊂b′P (B̃ = b \ {|D| − 1}|B′ = b′)

]
=

1

|D|
P (b \ {|D| − 1} ⊂ B′) =

1

|D|
|D| − 1− (|B| − 1)(|D|−1

|B|
)

=
1(|D|
|B|
) = P (BD

t = b) .

This completes the proof.

Using Lemma A.1, we can express the expectation with respect to BD
t in terms of J , B′, and B̃. This

will provide us with the desired decomposition of the sum in (5). The definition (20) is reminiscent
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of the constructions in Proposition 23 in Appendix C of Wang et al. (2019), however our analysis will
also result in tighter bounds for DP-SGD than one gets from the general-purpose method in Wang
et al. (2019).

Using Lemma A.1 in the manner discussed above, the transition probabilities (5) for one step of
DP-SGD with FSwoR-subsampling can be rewritten as follows:

pt(θt+1|θt, D) =Eb∼BD
t

[
Nµt(θt,b,D),σ̃2

t
(θt+1)

]
(24)

=E(b′ ,̃b)∼(B′,B̃)

[
qNµt(θt ,̃b∪{|D|−1},D),σ̃2

t
(θt+1) + (1− q)Nµt(θt,b′,D),σ̃2

t
(θt+1)

]
.

Recalling that B′ ∼ BD′

t and noting that µt(θt, B
′, D′) = µt(θt, B

′, D) (as D′ agrees with D except
for the last missing entry, which by definition cannot be contained in B′), the transition probabilities
pt(θt+1|θt, D′) can similarly be written

pt(θt+1|θt, D′) =Eb′∼B̃D′
t

[
Nµt(θt,b′,D′)(θt+1)

]
(25)

=E(b′ ,̃b)∼(B′,B̃)

[
Nµt(θt,b′,D),σ̃2

t
(θt+1)

]
.

The outer expectations in the expressions (24) and (25) are now both with respect to the same
distribution, with the key difference being captured by the parameter q. The construction (20) was
introduced precisely so that we might obtain such a decomposition. It allows the next step to proceed
as in DP-SGD with Poisson subsampling Abadi et al. (2016); Mironov et al. (2019). Namely, we
use quasiconvexity of the Rényi divergences (i.e., the data processing inequality) Van Erven and
Harremos (2014) to obtain

Dα(p(θt+1|θt, D)∥pt(θt+1|θt, D′)) (26)

≤max
(b′ ,̃b)

Dα

(
qNµt(θt ,̃b∪{|D|−1},D),σ̃2

t
+ (1− q)Nµt(θt,b′,D),σ̃2

t
∥Nµt(θt,b′,D),σ̃2

t

)
=max

(b′ ,̃b)
Dα

(
qN∥µt(θt ,̃b∪{|D|−1},D)−µt(θt,b′,D)∥,σ̃2

t
+ (1− q)N0,σ̃2

t
∥N0,σ̃2

t

)
,

where, as in Abadi et al. (2016); Mironov et al. (2019), we used a change of variables to reduce the
computation to 1-dimension in the last line.
Remark A.2. We note that the above analysis can be applied to any divergence, D, that is quasiconvex
in its arguments, not just the Rényi divergences. In the general case one similarly finds

D(p(θt+1|θt, D)∥pt(θt+1|θt, D′) (27)

≤max
(b′ ,̃b)

D
(
qNµt(θt ,̃b∪{|D|−1},D),σ̃2

t
+ (1− q)Nµt(θt,b′,D),σ̃2

t
∥Nµt(θt,b′,D),σ̃2

t

)
.

For instance, this holds for all f divergences, including the important class of hockey-stick divergences
that are important for other DP frameworks such as in Zhu et al. (2022).

Returning to (26), recalling that C is the clipping bound and that b̃ ⊂ b′ and |b′ \ b̃| = 1, we can
compute

∥µt(θt, b̃ ∪ {|D| − 1}, D)− µt(θt, b
′, D)∥2 (28)

=
η2t
|B|2

∥Clip(∇θL(θt, D|D|−1))−
∑

i∈b′\b̃

Clip(∇θL(θt, Di))∥2

≤4C2η2t
|B|2

:= r2t . (29)

We note that this result is 4 times as large as the corresponding calculation in the case of Poisson
subsampling, i.e., the sensitivity in the case of fixed-sized subsampling is inherently twice that of
Poisson subsampling when using add/remove adjacency. This is because in Poisson subsampling
when the minibatch from D differs from that of D′ it is due to the inclusion of a single additional
element. However, in fixed-size subsampling, when the minibatches are not identical then they differ
by a replacement; this contributes more to the difference in means by a factor of 2.
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Combining (29) with the fact that scaling the means in Gaussian mixtures by the same factor c ≥ 1
can only increase the Rényi divergence, see Section 2 in Mironov et al. (2019), we obtain the
following uniform Rényi bound.

sup
θt

Dα(p(θt+1∥θt, D)|pt(θt+1|θt, D′)) ≤ Dα

(
qNrt,σ̃2

t
+ (1− q)N0,σ̃2

t
∥N0,σ̃2

t

)
. (30)

Now we show that the right-hand-side of (30) also bounds the case where D′ has one additional
element. Repeating the steps in the above derivation, in this case we obtain

sup
θt

Dα(p(θt+1|θt, D)∥pt(θt+1|θt, D′)) ≤ Dα(N0,σ̃2
t
∥q̃Nrt,σ̃2

t
+ (1− q̃)N0,σ̃2

t
) , (31)

where q̃ = |B|/(|D| + 1); the appearance of |D′| = |D| + 1 here is due to the interchange of the
roles of D and D′ in the decomposition (20) for this case. Next use Theorem 5 in Mironov et al.
(2019) to obtain

Dα(N0,σ̃2
t
∥q̃Nrt,σ̃2

t
+ (1− q̃)N0,σ̃2

t
) ≤ Dα(q̃Nrt,σ̃2

t
+ (1− q̃)N0,σ̃2

t
∥N0,σ̃2

t
) . (32)

Quasiconvexity of the Rényi divergences implies the right-hand-side of (32) is non-decreasing in q̃.
Therefore, as q̃ ≤ q, we obtain

sup
θt

Dα(p(θt+1|θt, D)∥pt(θt+1|θt, D′)) ≤ Dα(qNrt,σ̃2
t
+ (1− q)N0,σ̃2

t
∥N0,σ̃2

t
) . (33)

The upper bound here is the same as the one we obtained in (30) when D′ had one fewer element
than D. Finally, by changing variables we can rescale the mean to 1 and therefore, noting that

σ̃t/rt = σt/2 , (34)

we obtain

sup
θt

Dα(p(θt+1|θt, D)∥pt(θt+1|θt, D′)) ≤ Dα(qN1,σ2
t /4

+ (1− q)N0,σ2
t /4

∥N0,σ2
t /4

) . (35)

This completes the proof.

B Taylor Expansion of Hα,σ(q)

In this appendix we provide details regarding the Taylor expansion (9) of Hα,σ(q) (Eq. (8)), which
can be written

Hα,σ(q) :=

∫ (
q
N1,σ2/4(θ)

N0,σ2/4(θ)
+ (1− q)

)α

N0,σ2/4(θ)dθ .

In Section 3.2.1 we obtained one-step RDP bounds in terms of the Rényi divergence

Dα(qN1,σ2
t /4

+ (1− q)N0,σ2
t /4

∥N0,σ2
t /4

) =
1

α− 1
log[Hα,σt

(q)] . (36)

To obtain the computable RDP bounds in Theorem 3.3 and also in Theorem 3.6 we must bound
Hα,σ(q). We proceed by computing the coefficients in its Taylor expansion, including an explicit
upper bound on the remainder term (10). First note that using the dominated convergence theorem
(see, e.g., Theorem 2.27 in Folland (1999)), it is straightforward to see that Hα,σ(q) is smooth in q
and can be differentiated under the integral any number of times:

dk

dqk
Hα,σ(q) =

k−1∏
j=0

(α− j)

∫ (
q
N1,σ2/4(θ)

N0,σ2/4(θ)
+ (1− q)

)α−k (
N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

)k

N0,σ2/4(θ)dθ .

(37)

This justifies the use of Taylor’s theorem with integral remainder to Hα,σ for any order m ∈ Z+ to
arrive at

Hα,σ(q) =1 +

m−1∑
k=2

qk

k!

k−1∏
j=0

(α− j)

Mσ,k +Rα,σ,m(q) , (38)
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where

Mσ,k :=

∫ (
N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

)k

N0,σ2/4(θ)dθ (39)

(note that the Mσ,1 = 0, which is why the summation in Eq. (38) starts at k = 2) and the remainder
term is given by

Rα,σ,m(q) = qm
∫ 1

0

(1− s)m−1

(m− 1)!

dm

dqm
Hα,σ(sq)ds . (40)

For integer k ≥ 0, the Mσ,k’s can be computed using the binomial theorem together with the formula
for the moment generating function (MGF) of a Gaussian:

Mσ,k =

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)∫ (
N1,σ2/4(θ)

N0,σ2/4(θ)

)ℓ

N0,σ2/4(θ)dθ (41)

=

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
e−ℓ/(2σ2/4)

∫
eℓθ/(σ

2/4)N0,σ2/4(θ)dθ

=

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
eℓ(ℓ−1)/(σ2/2)

=

k∑
ℓ=2

(−1)k−ℓ

(
k

ℓ

)
e2ℓ(ℓ−1)/σ2

+ (−1)k−1(k − 1) .

In particular, Mσ,0 = 1 and Mσ,1 = 0. If α is an integer then the expansion (38) truncates at a finite
number of terms (terms with k > α are zero), but for non-integer α one must bound the remainder
term. To enhance numerical stability of the computations, in practice we add terms starting from the
highest order and proceeding to the lowest order.

Bounding the Taylor Expansion Remainder Term:
To bound the remainder term (40) we need to bound dm

dqmHα,σ(sq) for t, q ∈ (0, 1). We will break
the calculation into two cases, where different methods are appropriate. Here we assume q < 1.

In these bounds, it will be useful to employ the following definition for integer j ≥ 0:

Bσ,j :=

∫ ∣∣∣∣N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

∣∣∣∣j N0,σ2/4(θ)dθ . (42)

For j even we have Bσ,j = Mσ,j and for j odd we can use the Cauchy-Schwarz inequality to bound

Bσ,j ≤ B
1/2
σ,j−1B

1/2
σ,j+1 = M

1/2
σ,j−1M

1/2
σ,j+1 , (43)

as j ± 1 are both even. Therefore an explicitly computable upper bound for all integer j ≥ 1 is given
by

Bσ,j ≤

{
Mσ,j if j even
M

1/2
σ,j−1M

1/2
σ,j+1 if j odd

:= B̃σ,j , (44)

where Mσ,k is given by (41).
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Case 1: α−m > 0
Using the bound xα−m ≤ 1 + x⌈α⌉−m for all x > 0 we can compute∣∣∣∣ dmdqm

Hα,σ(sq)

∣∣∣∣ (45)

≤
m−1∏
j=0

|α− j|
∫ (

1 +

(
sq

N1,σ2/4(θ)

N0,σ2/4(θ)
+ (1− sq)

)⌈α⌉−m
)∣∣∣∣N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

∣∣∣∣m N0,σ2/4(θ)dθ

=

m−1∏
j=0

|α− j|

[∫ (
sq

(
N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

)
+ 1

)⌈α⌉−m ∣∣∣∣N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

∣∣∣∣m N0,σ2/4(θ)dθ +Bσ,m

]

=

m−1∏
j=0

|α− j|

[ ⌈α⌉−m∑
ℓ=0

(
⌈α⌉ −m

ℓ

)
(sq)ℓ

∫ (
N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

)ℓ

(46)

×
∣∣∣∣N1,σ2/4(θ)

N0,σ2/4(θ)
− 1

∣∣∣∣m N0,σ2/4(θ)dθ +Bσ,m

]

≤
m−1∏
j=0

|α− j|

⌈α⌉−m∑
ℓ=0

(
⌈α⌉ −m

ℓ

)
(sq)ℓB̃σ,ℓ+m + B̃σ,m

 .

Therefore

|Rα,σ,m(q)| (47)

≤qm
m−1∏
j=0

|α− j|

⌈α⌉−m∑
ℓ=0

(
⌈α⌉ −m

ℓ

)
qℓB̃σ,ℓ+m

∫ 1

0

(1− s)m−1

(m− 1)!
sℓds+

1

m!
B̃σ,m


=qm

m−1∏
j=0

|α− j|

⌈α⌉−m∑
ℓ=0

qℓ
(⌈α⌉ −m)!

(⌈α⌉ −m− ℓ)!(m+ ℓ)!
B̃σ,ℓ+m +

1

m!
B̃σ,m

 .

Case 2: α−m ≤ 0
In this case we have (

sq
N1,σ2/4(θ)

N0,σ2/4(θ)
+ (1− sq)

)α−m

≤ (1− q)α−m (48)

and therefore ∣∣∣∣ dmdqm
Hα,σ(sq)

∣∣∣∣ ≤ (1− q)α−m
m−1∏
j=0

|α− j|Bσ,m . (49)

This leads to the following bound on the remainder

|Rα,σ,m(q)| ≤qm
∫ 1

0

(1− s)m−1

(m− 1)!
(1− q)α−m

m−1∏
j=0

|α− j|Bσ,mds (50)

=
qm

m!
(1− q)α−m

m−1∏
j=0

|α− j|Bσ,m , (51)

where B̃σ,m is defined by (44).

Explicit bounds for m = 3: We find that m = 3 generally yields sufficiently accurate bounds. Here
we specialize the above results to this case. For q < 1 we have

Hα,σ(q) = 1 +
q2

2
α(α− 1)Mσ,2 +Rα,σ,3(q) (52)
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with

Rα,σ,3(q) ≤ q3α(α− 1)|α− 2|


∑⌈α⌉−3

ℓ=0 qℓ (⌈α⌉−3)!
(⌈α⌉−3−ℓ)!(3+ℓ)! B̃σ,ℓ+3 +

1
6 B̃σ,3 if α− 3 > 0

1
6 (1− q)α−3B̃σ,3 if α− 3 ≤ 0

.

(53)

This completes the proof of Theorem 3.2.

To illustrate the use of these bounds, and the fact that m = 3 is often sufficient in practice, in Figure
6 we plot the FSwoR-RDP bound from Theorem 3.3 (which uses the expansion and bound (52) - (53))
for one step (i.e, T = 1) and with the parameter values σt = 6, |B| = 120, and |D| = 50, 000. Note
that the difference between the bound for m = 3 and m = 4 is negligible over a wide range of α
(sufficient to cover the default α range needed by Meta Platforms (2024)). The value of q in this
example is far from being unrealistically small; smaller values of q will only make the effect of m
even less important. Therefore m = 3 is generally sufficient.
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Figure 6: One step of Theorem 3.3 for m = 3, 4, using the parameter values σt = 6, |B| = 120, and
|D| = 50, 000.

C Proof of Theorem 3.4: FSwoR-RDP Bound under Replace-One Adjacency

We now prove the FSwoR-RDP bound under replace-one adjacency as stated in Theorem 3.4 above.
Without loss of generality, we can assume that D and D′ share all elements except the last. The
derivation shares several initial steps with the add/remove case from Appendix A. Specifically, we
apply Lemma A.1 to the transition probabilities for one step of DP-SGD with FSwoR-subsampling,
both for D and for D′ (as they now have the same number of elements), to obtain

pt(θt+1|θt, D) =E(b′ ,̃b)∼(B′,B̃)

[
qNµt(θt ,̃b∪{|D|−1},D),σ̃2

t
(θt+1) + (1− q)Nµt(θt,b′,D),σ̃2

t
(θt+1)

]
,

pt(θt+1|θt, D′) =E(b′ ,̃b)∼(B′,B̃)

[
qNµt(θt ,̃b∪{|D|−1},D′),σ̃2

t
(θt+1) + (1− q)Nµt(θt,b′,D′),σ̃2

t
(θt+1)

]
,

(54)

similarly to (24). Now we again use quasiconvexity, this time in both arguments simultaneously, to
bound the effect of the mixture (expectation) over (b′, b̃) by the worst case, yielding the one-step
Rényi bound

Dα (p(θt+1|θt, D)∥pt(θt+1|θt, D′)) ≤ max
(b′ ,̃b)

Dα

(
qQb̃ + (1− q)Pb′∥qQ′

b̃
+ (1− q)P ′

b′
)
, (55)

Qb̃ := Nµt(θt ,̃b∪{|D|−1},D),σ̃2
t
, Q′

b̃
:= Nµt(θt ,̃b∪{|D′|−1},D′),σ̃2

t
,

Pb′ := Nµt(θt,b′,D),σ̃2
t
, P ′

b′ := Nµt(θt,b′,D′),σ̃2
t
.
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Using the fact D and D′ agree on the index minibatch b′, and hence µt(θt, b
′, D) = µt(θt, b

′, D′),
we see that Pb′ = P ′

b′ . We can therefore change variables to center both of their means at zero, giving

Dα(p(θt+1|θt, D)∥pt(θt+1|θt, D′)) (56)

≤max
(b′ ,̃b)

Dα

(
qN∆µt(b′ ,̃b),σ̃2

t
+ (1− q)N0,σ̃2

t
∥qN∆µ′

t(b
′ ,̃b),σ̃2

t
+ (1− q)N0,σ̃2

t

)
,

∆µt(b
′, b̃) := µt(θt, b̃ ∪ {|D| − 1}, D)− µt(θt, b

′, D) ,

∆µ′
t(b

′, b̃) := µt(θt, b̃ ∪ {|D| − 1}, D′)− µt(θt, b
′, D) .

The means of the Gaussians satisfy the bounds

∥∆µt(b
′, b̃)∥ ≤ rt , ∥∆µ′

t(b
′, b̃)∥ ≤ rt , ∥∆µt(b

′, b̃)−∆µ′
t(b

′, b̃)∥ ≤ rt , (57)

where rt was defined in (29); the first two inequalities follow directly from (28) while the proof of
the third is almost identical due to D and D′ differing only in the last element.
Remark C.1. Note that, similarly to Remark A.2, Eq. (56) remains true when the Rényi divergences
Dα are replaced by any other divergence D that is quasiconvex in both of its arguments, e.g., the
hockey-stick divergences. This fact is useful for other differential privacy paradigms, though using
the quasiconvexity bound does not always lead the tightest possible bounding pair of distributions;
see Lebeda et al. (2024).

The key difference between the bound (56) and the corresponding result (26) in the add/remove
adajcency case is that both arguments of the Rényi divergence on the right-hand side of (56) are now
Gaussian mixtures with mixing parameter q; in the add/remove adjacency case only one argument is
a Gaussian mixture. This difference makes the following computations more involved, though the
same Taylor expansion technique can be applied.

Using the definition of Rényi divergences we can write

Dα

(
qN∆µt(b′ ,̃b),σ̃2

t
+ (1− q)N0,σ̃2

t
∥qN∆µ′

t(b
′ ,̃b),σ̃2

t
+ (1− q)N0,σ̃2

t

)
=

1

α− 1
log [Fα(q)] ,

Fα(q) :=

∫ (
qN∆µt(b′ ,̃b),σ̃2

t
(θ) + (1− q)N0,σ̃2

t
(θ)
)α

(
qN∆µ′

t(b
′ ,̃b),σ̃2

t
(θ) + (1− q)N0,σ̃2

t
(θ)
)α−1 dθ . (58)

Next we Taylor expand the argument of the logarithm:

Fα(q) =

m−1∑
k=0

qk

k!

dk

dqk
Fα(0) + Eα,m(q) , (59)

where here the remainder term is given by

Eα,m(q) := qm
∫ 1

0

(1− s)m−1

(m− 1)!

dm

dqm
Fα(sq)ds . (60)

Using the formula dk

dxk (fg) =
∑k

j=0

(
k
j

)
dj

dxj f
dk−j

dxk−j g along the dominated convergence theorem to
justify differentiating under the integral, the derivatives can be computed as follows:

dk

dqk
Fα(q) (61)

=

k∑
j=0

(
k

j

)(j−1∏
ℓ=0

(α− ℓ)

)(
k−j−1∏
ℓ=0

(1− α− ℓ)

)∫ (
qN∆µt(b′ ,̃b),σ̃2

t
(θ) + (1− q)N0,σ̃2

t
(θ)
)α−j

(
qN∆µ′

t(b
′ ,̃b),σ̃2

t
(θ) + (1− q)N0,σ̃2

t
(θ)
)α+k−j−1

×
(
N∆µt(b′ ,̃b),σ̃2

t
(θ)−N0,σ̃2

t
(θ)
)j (

N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)−N0,σ̃2

t
(θ)
)k−j

dθ .
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Taylor expansion coefficients for k = 0, 1, 2: Evaluating (61) at q = 0 we have

dk

dqk
Fα(0) (62)

=

k∑
j=0

(−1)k−j

(
k

j

)(j−1∏
ℓ=0

(α− ℓ)

)(
k−j−1∏
ℓ=0

(α+ ℓ− 1)

)

×
∫ (

N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

)j(
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)k−j

N0,σ̃2
t
(θ)dθ .

Note that we have not yet been able to maximize over b′, b̃; doing so while incorporating the constraints
(57) is nontrivial and constitutes one of the the primary difficulties in obtaining sufficiently tight
bounds. We will make particular attention to the first few terms and then use looser (but still
sufficiently tight in practice) approximations for the higher order terms. First note that Fα(0) = 1
and

d

dq
Fα(0) =− (α− 1)

∫ (
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)−N0,σ̃2

t
(θ)
)
dθ (63)

+ α

∫ (
N∆µt(b′ ,̃b),σ̃2

t
(θ)−N0,σ̃2

t
(θ)
)
dθ = 0 .

For k = 2 we can expand (62) and then evaluate the integrals by using the formula for the MGF of a
Gaussian to obtain

d2

dq2
Fα(0) (64)

=α(α− 1)

(
exp

(
∥∆µt(b

′, b̃)∥2

σ̃2
t

)
+ exp

(
∥∆µ′

t(b
′, b̃)∥2

σ̃2
t

)
− 2 exp

(
∆µt(b

′, b̃) ·∆µ′
t(b

′, b̃)

σ̃2
t

))
.

Using the third constraints in Eq. (57) we obtain the bound

exp

(
∆µt(b

′, b̃) ·∆µ′
t(b

′, b̃)

σ̃2
t

)
(65)

=exp

(
∥∆µt(b

′, b̃)∥2 + ∥∆µ′
t(b

′, b̃)∥2 − ∥∆µt(b
′, b̃)−∆µ′

t(b
′, b̃)∥2

2σ̃2
t

)

≥ exp

(
∥∆µt(b

′, b̃)∥2 + ∥∆µ′
t(b

′, b̃)∥2 − r2t
2σ̃2

t

)
.

Elementary calculus along with the bounds ∥∆µt(b
′, b̃)∥ ≤ rt, ∥∆µ′

t(b
′, b̃)∥ ≤ rt then imply

d2

dq2
Fα(0) ≤2α(α− 1)

(
er

2
t /σ̃t

2

− er
2
t /(2σ̃t

2)
)
= 2α(α− 1)

(
e4/σt

2

− e2/σt
2
)
, (66)

where we used (34). These terms are sufficient to precisely capture the leading-order behavior.

Bounding the coefficients for k ≥ 3: For the higher-order terms we obtain an upper bound which
relies on the following lemmas. It will be useful to phrase various bounds in terms of the χβ

divergences.
Definition C.2. For β > 0 define the χβ divergences

Dχβ (Q∥P ) = EP [|dQ/dP − 1|β ] . (67)

It will also be convenient to adopt the notation Dχ0 := 1, despite it not defining a divergence.

The following property is a imply consequence of Hölder’s inequality.
Lemma C.3. Let γ ≥ β > 0. Then

Dχβ (Q∥P ) ≤ Dχγ (Q∥P )β/γ . (68)
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The next lemma will be used to obtain a uniform bound, i.e., not dependent on b′, b̃, or θt.
Lemma C.4. For k ≥ 0 an integer we have

max
b′ ,̃b

Dχk

(
N∆µt(b′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)
≤ B̃σt,k , (69)

max
b′ ,̃b

Dχk

(
N∆µt(b′ ,̃b),σ̃2

t
∥N∆µ′

t(b
′ ,̃b),σ̃2

t

)
≤ B̃σt,k ,

where B̃ was defined in (44). These bounds also hold with ∆µt and ∆µ′
t interchanged.

Proof. Dχk is the f divergence corresponding to fβ(y) = |y − 1|k, therefore it is jointly convex in
(Q,P ). Therefore the same argument as in Section 2 of Mironov et al. (2019) (which only relies on
the convexity of the divergence) implies

Dχk

(
N∆µt(b′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)
≤ Dχk

(
Nrt,σ̃2

t
∥N0,σ̃2

t

)
(70)

=Dχk

(
N1,σ2

t /4
∥N0,σ2

t /4

)
= Bσt,k ≤ B̃σt,k ,

where we used (57) and (44). The second result in (69) is proven in a similar manner, where we
must also change variables to center the second Gaussian at zero and then employ the third bound in
(57).

The second lemma we require is a slight improvement on Lemma 24 of (Wang et al., 2019).
Lemma C.5. Let p, q, r be strictly positive probability densities and k ≥ 1 be an integer. Then∫ (

p(θ)− q(θ)

r(θ)

)k

r(θ)dθ (71)

≤Dχk(q∥p) +Dχk(p∥q) +Dχk(p∥r) +
{
Dχk(q∥r) if k is even
0 if k is odd

.

Remark C.6. Note that a key difference between our technique and that of Wang et al. (2019) is that
we only apply Lemma C.5 to the higher order terms (i.e., when k ≥ 2) while we bounded the leading
contribution (66) more precisely. In contrast, Wang et al. (2019) used Lemma C.5 (their Lemma 24)
on all terms.

Proof. We proceed by breaking the domain of integration into four regions, depending on the sizes
of p, q, r and then use the appropriate bounds to replace one of the densities with another:∫ (

p(θ)− q(θ)

r(θ)

)k

r(θ)dθ (72)

=

∫
r≥p

(p(θ)− q(θ))k

r(θ)k−1
dθ +

∫
r<p,r≥q

(p(θ)− q(θ))k

r(θ)k−1
dθ

+

∫
r<p,r<q,q≥p

(p(θ)− q(θ))k

r(θ)k−1
dθ +

∫
r<p,r<q,q<p

(p(θ)− q(θ))k

r(θ)k−1
dθ

≤
∫
r≥p

|p(θ)− q(θ)|k

p(θ)k−1
dθ +

∫
r<p,r≥q

|p(θ)− q(θ)|k

q(θ)k−1
dθ

+

{∫
r<p,r<q,q≥p

(q(θ)−r(θ))k

r(θ)k−1 dθ if k is even
0 if k is odd

+

∫
r<p,r<q,q<p

(p(θ)− r(θ))k

r(θ)k−1
dθ

≤
∫

|p(θ)− q(θ)|k

p(θ)k−1
dθ +

∫
|p(θ)− q(θ)|k

q(θ)k−1
dθ

+

{∫ |q(θ)−r(θ)|k
r(θ)k−1 dθ if k is even

0 if k is odd
+

∫
(p(θ)− r(θ))k

r(θ)k−1
dθ .

This completes the proof.
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Lemma C.7. Let β1, β2 > 0 with β1 + β2 and integer. Then

max
b′ ,̃b

∫ ∣∣∣N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β1
∣∣∣N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β2

N0,σ̃2
t
(θ)dθ (73)

≤B̃σt,β1+β2 ,

where B̃σ,k was defined in (44).

Proof. Let p, q > 1 be conjugate exponents, i.e., they satisfy 1/p + 1/q = 1. Using Hölder’s
inequality we can compute∫ ∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β1
∣∣∣N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β2

N0,σ̃2
t
(θ)dθ (74)

≤Dχβ1p

(
N∆µt(b′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)1/p
Dχβ2q

(
N∆µ′

t(b
′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)1/q
.

We now use a simple heuristic that allow for p, q to be chosen so as to minimize the right-hand side
of this upper bound when β1, β2 are large. Lemma C.4 together with (44) and (41) suggest that
the two factors on the right-hand side approximately behave like exp(2pβ2

1/σ
2
t ) and exp(2qβ2

2/σ
2
t )

respectively. Therefore, to make the upper bound as tight as possible, we want to to minimize
pβ2

1 + qβ2
2 subject to p > 1, q = p/(p − 1). Simple calculus shows that the minimum occurs at

p := 1 + β2/β1, q = 1 + β1/β2. Making this choice, using Lemma C.3 to convert to integer orders,
and then employing Lemma 69 we find∫ ∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β1
∣∣∣N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣β2

N0,σ̃2
t
(θ)dθ (75)

≤Dχ⌈β1p⌉

(
N∆µt(b′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)β1/⌈β1p⌉
Dχ⌈β2q⌉

(
N∆µ′

t(b
′ ,̃b),σ̃2

t
∥N0,σ̃2

t

)β2/⌈β2q⌉

≤
(
B̃σt,⌈β1p⌉

)β1/⌈β1p⌉ (
B̃σt,⌈β2q⌉

)β2/⌈β2q⌉
.

In the case where β1 + β2 is an integer the above can be simplified via(
B̃σt,⌈β1p⌉

)β1/⌈β1p⌉ (
B̃σt,⌈β2q⌉

)β2/⌈β2q⌉
= B̃σt,β1+β2

.

We use these lemmas to bound the higher order derivatives as follows. First rewrite (62) as

dk

dqk
Fα(0) (76)

=(α− 1)αk−1
k∑

j=0

(−1)k−j

(
k

j

)
×
∫ (

N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

)j(
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)k−j

N0,σ̃2
t
(θ)dθ

+ (α− 1)αk−1
k∑

j=0

(−1)k−j

(
k

j

)[
α

α− 1

(
j−1∏
ℓ=0

(1− ℓ/α)

)(
k−j−1∏
ℓ=0

(1 + (ℓ− 1)/α)

)
− 1

]

×
∫ (

N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

)j(
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)k−j

N0,σ̃2
t
(θ)dθ

=(α− 1)αk−1

∫ (
N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)−N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)
)k

N0,σ̃2
t
(θ)dθ

+ (α− 1)αk−1
k∑

j=0

(−1)k−j

(
k

j

)[
α

α− 1

(
j−1∏
ℓ=0

(1− ℓ/α)

)(
k−j−1∏
ℓ=0

(1 + (ℓ− 1)/α)

)
− 1

]

×
∫ (

N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

)j(
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)k−j

N0,σ̃2
t
(θ)dθ .
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The first family of integrals can be bounded using Lemma C.5 and then Lemma C.4 to obtain∫ (
N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)−N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)
)k

N0,σ̃2
t
(θ)dθ (77)

≤

4Mσt,k if k is even

3M
1/2
σt,k−1M

1/2
σt,k+1 if k is odd

.

The second family of integrals can be bounded by using Lemma C.7 (when j, k− j > 0) and Lemma
C.4 (when j = 0 or j = k), which yields∣∣∣∣∫ (N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)j(
N∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

)k−j

N0,σ̃2
t
(θ)dθ

∣∣∣∣ (78)

≤B̃σt,k ,

Therefore we find

dk

dqk
Fα(0) (79)

≤(α− 1)αk−1

4Mσt,k if k is even

3M
1/2
σt,k−1M

1/2
σt,k+1 if k is odd

+ (α− 1)αk−1
k∑

j=0

(
k

j

)∣∣∣∣∣ α

α− 1

(
j−1∏
ℓ=0

(1− ℓ/α)

)(
k−j−1∏
ℓ=0

(1 + (ℓ− 1)/α)

)
− 1

∣∣∣∣∣ B̃σt,k

:=F̃α,σt,k , (80)

where M and B̃ are given by (41) and (44) respectively.

Bounding the remainder term: We now proceed to bound the remainder term (60). Using (61), for
q < 1 we can compute

|Eα,m(q)| ≤ qm
∫ 1

0

(1− s)m−1

(m− 1)!

∣∣∣∣ dmdqm
Fα(sq)

∣∣∣∣ ds (81)

≤qm
m∑
j=0

(
m

j

)(j−1∏
ℓ=0

|α− ℓ|

)(
m−j−1∏
ℓ=0

(α+ ℓ− 1)

)

×
∫ 1

0

(1− s)m−1

(m− 1)!

∫ (
sqN∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ) + (1− sq)

)α−j

(
sqN∆µ′

t(b
′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ) + (1− sq)

)α+m−j−1

×
∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθds

≤qm

m!

m∑
j=0

(1− q)
−(α+m−j−1)

(
m

j

)(j−1∏
ℓ=0

|α− ℓ|

)(
m−j−1∏
ℓ=0

(α+ ℓ− 1)

)
Kα,m,j(q) ,

Kα,m,j(q) := m

∫ 1

0

(1− s)m−1

∫ (
sqN∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ) + (1− sq)

)α−j

×
∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθds ,

where to obtain the final inequality we used the fact that α+m− j − 1 > 0 and

sqN∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ) + (1− sq) ≥ 1− q , (82)

to upper bound the reciprocal of the denominator.

To bound the integrals Kα,m,j we consider the following two cases.
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Case 1: α− j ≤ 0:
In this case we use(

sqN∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ) + (1− sq)

)α−j

≤ (1− q)α−j (83)

to bound the first factor in the integrand. Then, using Lemma C.7 and Lemma C.4, we can compute
Kα,m,j(q) (84)

≤(1− q)α−j

∫ ∣∣∣N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθ

≤(1− q)α−jB̃σt,m .

Case 2: α− j > 0:
In this case use the bound xα−j ≤ 1 + x⌈α⌉−j for all x > 0, followed by the binomial formula and
Lemma C.7 to compute

Kα,m,j(q) ≤ m

∫ 1

0

(1− s)m−1

∫ (
1 +

(
sqN∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ) + (1− sq)

)⌈α⌉−j
)

(85)

×
∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθds

=

∫ ∣∣∣N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθ

+m

⌈α⌉−j∑
ℓ=0

qℓ
(
⌈α⌉ − j

ℓ

)∫ 1

0

(1− s)m−1sℓ
∫ (

N∆µt(b′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

)ℓ
×
∣∣∣N∆µt(b′ ,̃b),σ̃2

t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣j ∣∣∣N∆µ′
t(b

′ ,̃b),σ̃2
t
(θ)/N0,σ̃2

t
(θ)− 1

∣∣∣m−j

N0,σ̃2
t
(θ)dθds

≤B̃σt,m +

⌈α⌉−j∑
ℓ=0

qℓ
(⌈α⌉ − j)!m!

(⌈α⌉ − j − ℓ)!(m+ ℓ)!
B̃σt,ℓ+m .

Putting the above two cases together we arrive at the remainder bound

|Eα,m(q)| ≤ qm
∫ 1

0

(1− s)m−1

(m− 1)!

∣∣∣∣ dmdqm
Fα(sq)

∣∣∣∣ ds (86)

≤qm

m!

m∑
j=0

(1− q)
−(α+m−j−1)

(
m

j

)(j−1∏
ℓ=0

|α− ℓ|

)(
m−j−1∏
ℓ=0

(α+ ℓ− 1)

)

×

(1− q)α−jB̃σt,m if α− j ≤ 0

B̃σt,m +
∑⌈α⌉−j

ℓ=0 qℓ (⌈α⌉−j)!m!
(⌈α⌉−j−ℓ)!(m+ℓ)! B̃σt,ℓ+m if α− j > 0

:=Ẽα,σt,m(q) . (87)

Combining the above results, we obtain the following FSwoR-RDP bounds under replace-one adja-
cency:

sup
θt

Dα(p(θt+1|θt, D)∥pt(θt+1|θt), D′) (88)

≤ 1

α− 1
log

[
1 + q2α(α− 1)

(
e4/σt

2

− e2/σt
2
)
+

m−1∑
k=3

qk

k!
F̃α,σt,k + Ẽα,σt,m(q)

]
,

where m ≥ 3 is an integer, F̃α,σt,k is given by (80), and Ẽα,σt,m(q) is given by (87); both of these
quantities are expressed in terms of M and B̃, as given by (41) and (44) respectively. This completes
the proof of Theorem 3.4.
Remark C.8. The same M ’s appear many times during in the formulas for F̃α,σt,k and Ẽα,σt,m(q).
Therefore, in practice, we compute all required values once and recall them as needed.
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C.1 Comparison with Poisson Subsampling under Replace-one Adjacency

In this appendix we provide a precise comparison between RDP for fixed-size and Poisson subsam-
pling under replace-one adjacency, complimenting the intuitive discussion in Section 4.1.

Here we let pPoisson
t (θt+1|θt, D) denote the transition probabilities for one step of DP-SGD with

Poisson subsampling. By Mirroring the analysis in Section 2 of Mironov et al. (2019), but now under
the assumption that D and D′ have the same size and differ in only their last elements, we arrive at
the one-step Rényi divergence bound

Dα

(
pPoisson
t (θt+1|θt, D)∥pPoisson

t (θt+1|θt, D′)
)

(89)

≤max
T

Dα

(
qN∆µt(T ),σ̃2

t
+ (1− q)N0,σ̃2

t
∥qN∆µ′

t(T ),σ̃2
t
+ (1− q)N0,σ̃2

t

)
,

∆µt(T ) := µt(θt, T ∪ {|D| − 1}, D)− µt(θt, T,D) ,

∆µ′
t(T ) := µt(θt, T ∪ {|D| − 1}, D′)− µt(θt, T,D) ,

where T denotes the collection of indexes from {0, ..., |D| − 2} that were randomly selected during
Poisson sampling.

This is similar to the result (56) for FSwoR-subsampling, except here the means satisfy the constraints

∥∆µt(T )∥ ≤ rt/2 , ∥∆µ′
t(T )∥ ≤ rt/2 , ∥∆µt(T )−∆µ′

t(T )∥ ≤ rt , (90)

and these bounds are achieved when the differing elements from D and D′ are anti-parallel and
saturate the clipping threshold C. As we will show, this difference only contributes at higher order.

We now mirror the analysis from earlier in this section, taking the new constraints (90) into account.
We again have a Taylor expansion of the form

Dα

(
qN∆µt(T ),σ̃2

t
+ (1− q)N0,σ̃2

t
∥qN∆µ′

t(T ),σ̃2
t
+ (1− q)N0,σ̃2

t

)
(91)

=
1

α− 1
log

[
1 +

m−1∑
k=2

qk

k!

dk

dqk
F̂α(0) + Êα,m(q)

]
. (92)

The coefficient at k = 2 can be computed as in (62), which gives

d2

dq2
F̂α(0) (93)

=α(α− 1)

(
exp

(
∥∆µt(T )∥2

σ̃2
t

)
+ exp

(
∥∆µ′

t(T )∥2

σ̃2
t

)
− 2 exp

(
∆µt(T ) ·∆µ′

t(T )

σ̃2
t

))
≤2α(α− 1)

(
e1/σ

2
t − e−1/σ2

t

)
.

This bound is optimal in that equality is achieved when the distinct elements in D and D′ are
anti-parallel and saturate the clipping bound. To leading order in 1/σ2

t we therefore have

d2

dq2
F̂α(0) ≤ 4α(α− 1)/σ2

t +O(1/σ4
t ) , (94)

which agrees with the leading order behavior of the corresponding term in the FSwoR-subsampling
case (66). As the second order coefficient in the Taylor expansion controls the dominant behavior of
the RDP bound, we can therefore conclude that Poisson and FSwoRsubsampling give the same DP
bounds under replace-one adjacency to leading order.

Our method for bounding the higher order terms, as in (80), and remainder, as in (86), only uses
bounds on the norms of ∆µ′ and µ′; it does not incorporate the bound that couples these two quantities.
Therefore the corresponding bounds on the higher order terms for Poisson subsampling are obtained
by simply replacing rt with rt/2 in our prior calculations; this is equivalent to replacing σt with 2σt

in (80) and (86). Therefore we arrive at the following non-asymptotic bound for Poisson subsampling
under replace-one adjacency.
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Theorem C.9 (Poisson-RDP Upper Bounds for Replace-one Adjacency). Let D ≃r-o D′ be adjacent
datasets. Assuming q := |B|/|D| < 1, for any integer m ≥ 3 we have

sup
θt

Dα(p
Poisson
t (θt+1|θt, D)∥pPoisson

t (θt+1|θt, D′)) (95)

≤ 1

α− 1
log

[
1 + q2α(α− 1)

(
e1/σ

2
t − e−1/σ2

t

)
+

m−1∑
k=3

qk

k!
F̃α,2σt,k + Ẽα,2σt,m(q)

]
,

where F̃α,2σt,k and Ẽα,2σt,m(q) are computed via (80) and (87) respectively (with σt replaced by
2σt).

While our FSwoRand Poisson-subsampled RDP bounds agree to leading order, the effect of the higher
order terms leads to Poisson subsampling having a slight privacy advantage over FSwoR-subsampling
in practice, especially when larger α’s are required. This proven in Figure 7, where we see that
the upper bound on Poisson-subsampled RDP (dashed line) is slightly below the theoretical lower
bound for FSwoR-subsampled RDP derived in Wang et al. (2019) (circles) while our FSwoR-RDP
bound from Theorem 3.4 (solid line) is slightly above the theoretical lower bound. All three are
significantly below the upper bound from Wang et al. (2019) (dot-dashed line). We emphasize that
the Poisson result does not contradict the lower bound from Wang et al. (2019), which only applies to
FSwoR-subsampled RDP.
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Figure 7: Comparison of our FSwoR-RDP and Poisson-RDP upper bounds under replace-one adja-
cency, Theorems 3.4 and C.9 respectively, with the upper and lower bounds on FSwoR-RDP from
Wang et al. (2019). We used σt = 6, |B| = 120, and |D| = 50, 000.

D Rényi DP-SGD Bounds for Fixed-size Subsampling with Replacement

In this Appendix we provide a detailed derivation of Rényi DP-SGD bounds when using fixed-size
subsampling with replacement (FSwR). In addition to the lower bound stated in Theorem 3.7, we
also derive an upper bound.

As in case without replacement in Appendix A, a key step is a decomposition of the sampling
distribution into a baseline (where D and D′ agree) and a perturbation where they disagree. The
derivation for subsampling with replacement is a non-trivial generalization of sampling without
replacement, with Lemma D.1 below requiring a several key new ingredients, as compared to Lemma
A.1.

First let D′ be obtained from D by removing one element. Without loss of generality, assume it is the
last (i.e., at index |D|−1) and call that element d. Let B′ = (B′

1, ..., B
′
|B|) where the components are

iid Uniform({0, ..., |D|′−1}) random variables, so that B′ uniformly samples from {0, ..., |D|′−1}
with replacement. Now let N ∼ Binomial(|B|, |D|−1) and Π be a uniformly random permutation
of (1, ..., |B|). Assume that B′, N , and Π are independent. In the following lemma we show how
sampling from D with replacement can be obtained from B′, N , and Π. In short, N will determine
the number of entries of B′ are replaced by |D| − 1 and Π will determine the indices of the entries
that are to be replaced.
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Lemma D.1. For i = 1, ..., |B| define

Bi =

{
|D| − 1 if Π(j) = i for some j ≤ N

B′
i otherwise

:= Φi(B
′, N,Π) . (96)

Then the Bi are iid Uniform({0, ..., |D| − 1}) random variables, i.e., B := (B1, ..., B|B|) uniformly
samples from {0, ..., |D| − 1} with replacement.

Proof. Let b ∈ {0, ..., |D| − 1}|B| and define n = |{i : bi = |D| − 1}|. Let i1, ..., in be the unique
indices with bij = |D| − 1. If B = b then we must have N = n, therefore if we let Sn denote the set
of permutations on {1, ..., n} we have

P (B = b) =P (B = b,N = n, {Π(1), ...,Π(n)} = {i1, ..., in}) (97)

=
∑
τ∈Sn

P
(
Bi = bi for i ̸∈ {i1, ..., in}, N = n, (Π(1), ...,Π(n)) = (iτ(1), ..., iτ(n))

)
=
∑
τ∈Sn

P
(
B′

i = bi for i ̸∈ {i1, ..., in}, N = n, (Π(1), ...,Π(n)) = (iτ(1), ..., iτ(n))
)
.

Using independence and that |D′| = |D| − 1 and |Sn| = n! we can then compute

P (B = b) (98)

=
∑
τ∈Sn

 ∏
i ̸∈{i1,...,in}

P (B′
i = bi)

P (N = n)P
(
(Π(1), ...,Π(n)) = (iτ(1), ..., iτ(n))

)
=
∑
τ∈Sn

|D′|−(|B|−n)

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n (|B| − n)!

|B|!

=n!|D|−|B|
(
|B|
n

)
(|B| − n)!

|B|!
=|D|−|B| .

This holds for all b, therefore we can conclude that the distribution of B is the uniform distribution
on {0, ..., |D| − 1}|B|. All the remaining claims then immediately follow from this fact.

Using Lemma D.1 we can decompose the transition probabilities for one step of DP-SGD with
FSwR-subsampling as follows

pt(dθt+1|θt, D′) =

∫
Nµt(θ,b′,D′),σ̃2

t
(dθt+1)PB′,Π(db

′dπ) , (99)

pt(dθt+1|θt, D) =

∫
Nµt(θt,b,D),σ̃2

t
(dθt+1)PB(db) (100)

=

∫ |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nNµt(θt,Φ(b′,n,π),D),σ̃2

t
(dθt+1)PB′,Π(db

′dπ) .

Noting that µt(θ, b
′, D′) = µt(θ, b

′, D), as D′ differs from D only by removal of the last element,
we now use quasiconvexity to compute

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) (101)

≤max
b′,π

Dα

 |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nNµt(θt,Φ(b′,n,π),D),σ̃2

t

∥∥∥∥Nµt(θt,b′,D),σ̃2
t

 .

Remark D.2. As in Remarks A.2 and C.1, Eq. (101) remains true when the Rényi divergences Dα are
replaced by any other divergence D that is quasiconvex in both of its arguments, e.g., the hockey-stick
divergences. This fact is useful for other differential privacy paradigms.
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D.1 Upper Bound on FSwR-RDP

The next stages in the calculation are more complex than in the case of sampling without replacement,
as the first argument of the above Rényi divergence is a mixture of |B|+ 1 Gaussians, as opposed to
simply two as in the case without replacement. This is because the binomial random variable N in
(D.1) is playing the role that the Bernoulli random variable J did in Lemma A.1.

Start by rewriting Eq. (101) as

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) ≤ max
b′,π

Dα

 |B|∑
n=0

anN∆µn,σ̃2
t

∥∥∥∥N0,σ̃2
t

 ,

an :=

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n , ∆µn := µt(θt,Φ(b

′, n, π), D)− µt(θt, b
′, D) . (102)

Let 1 < K ≤ |B|, choose q̃ satisfying

1 ≥ q̃ ≥

(
1 +

a0∑K
n=1 an

)−1

(103)

and decompose the mixture of distributions as follows

|B|∑
n=0

anN∆µn,σ̃2
t
=a0N0,σ̃2

t
+

K∑
n=1

anN∆µn,σ̃2
t
+

|B|∑
n=K+1

anN∆µn,σ̃2
t

(104)

=ã0N0,σ̃2
t
+

K∑
n=1

ãn

(
q̃N∆µn,σ̃2

t
+ (1− q̃)N0,σ̃2

t

)
+

|B|∑
n=K+1

anN∆µn,σ̃2
t
,

ã0 := a0 − (1/q̃ − 1)

K∑
n=1

an , ãn := an/q̃ for n ≥ 1 .

The assumption (103) implies ãn ∈ [0, 1] and ã0 +
∑K

n=1 ãn +
∑|B|

n=K+1 an = 1 and therefore we
can use convexity to bound (102) as follows:

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) (105)

≤max
b′,π

1

α− 1
log

[
ã0 +

K∑
n=1

ãn

∫ (
q̃
N∆µn,σ̃2

t
(θ)

N0,σ̃2
t
(θ)

+ (1− q̃)

)α

N0,σ̃2
t
(θ)dθ

+

|B|∑
n=K+1

an

∫ (
N∆µn,σ̃2

t
(θ)

N0,σ̃2
t
(θ)

)α

N0,σ̃2
t
(θ)dθ

 ,

≤ 1

α− 1
log

[
ã0 +

K∑
n=1

ãn

∫ (
q̃
N1,σ2

t /(4n
2)(θ)

N0,σ2
t /(4n

2)(θ)
+ (1− q̃)

)α

N0,σ2
t /(4n

2)(θ)dθ

+

|B|∑
n=K+1

ane
2α(α−1)n2/σ2

t


=

1

α− 1
log

ã0 + K∑
n=1

ãnHα,σt/n(q̃) +

|B|∑
n=K+1

ane
2α(α−1)n2/σ2

t

 ,

where H was defined in Eq. (8) and can be bounded using the techniques from Appendix B.

Now suppose D′ is obtained from D by adding one new element. By reversing the role of D and D′

in Lemma D.1 and then mirroring the above derivation while also employing Theorem 5 in Mironov
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et al. (2019) we arrive at

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) (106)

≤ 1

α− 1
log

ã′0 + K∑
n=1

ã′nHα,σt/n(q̃) +

|B|∑
n=K+1

a′ne
2α(α−1)n2/σ2

t

 ,

a′n :=

(
|B|
n

)
|D′|−n(1− |D′|−1)|B|−n ,

ã′0 := a′0 − (1/q̃ − 1)

K∑
n=1

a′n , ã′n := a′n/q̃ for n ≥ 1 ,

whenever q̃ satisfies (103). Note that (103) also implies

q ≥

(
1 +

a′0∑K
n=1 a

′
n

)−1

(107)

due to the fact that a0 is increasing in |D| and an is decreasing in |D| for n ≥ 1. These properties
also imply

ã′0 +

K∑
n=1

ã′nHα,σt/n(q̃) +

|B|∑
n=K+1

a′ne
2α(α−1)n2/σ2

t (108)

≤ã0 +

K∑
n=1

ãnHα,σt/n(q̃) +

|B|∑
n=K+1

ane
2α(α−1)n2/σ2

t ,

and therefore we can conclude that

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) (109)

≤ 1

α− 1
log

ã0 + K∑
n=1

ãnHα,σt/n(q̃) +

|B|∑
n=K+1

ane
2α(α−1)n2/σ2

t


whenever D′ ≃a/r D and any choice of q̃ that satisfies

1 ≥ q̃ ≥

(
1 +

a0∑K
n=1 an

)−1

. (110)

Note that if one chooses q̃ =
(
1 + a0∑K

n=1 an

)−1

then ã0 = 0. If one also takes K = |B| then

q̃ = 1− (1− |D|−1)|B|. This is the version of the result we present above in Theorem 3.6.

D.2 Lower Bound on FSwR-RDP

Here we derive a lower bound on the one-step RDP of SGD with fixed-size subampling with
replacement. To do this, suppose that all entries of D′ are the same, equal to d′, and that the extra
entry d in D satisfies d ̸= d′. Moreover, suppose there exists θt such that the clipped gradients
at d and d′ are anti-parallel with both having norm equal to the clipping bound, C. In this case,
µt(θt, b

′, D) and µt(θt,Φ(b
′, n, π), D) are independent of both π and b′ and

∥µt(θt, b
′, D)− µ(θt,Φ(b

′, n, π), D)∥ = nrt . (111)
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This also implies that (101) is an equality (and the argument of the divergence is independent of b′
and π). By changing variables and using (111) we can therefore write

Dα(pt(dθt+1|θt, D)∥pt(dθt+1|θt, D′)) (112)

=max
b′,π

Dα

 |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nN∥µt(θt,Φ(b′,n,π),D)−µt(θt,b′,D)∥,σ̃2

t

∥∥∥∥N0,σ̃2
t


=Dα

 |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nNnrt,σ̃2

t

∥∥∥∥N0,σ̃2
t


=Dα

 |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nNn,σ2

t /4

∥∥∥∥N0,σ2
t /4

 .

This gives the one-step RDP lower bound

ϵ′t(α) ≥
1

α− 1
log

∫  |B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n

Nn,σ2
t /4

(θ)

N0,σ2
t /4

(θ)

α

N0,σ2
t /4

(θ)dθ

 .

(113)

The integral over θ can be computed as follows. First note that summation in (113) is the average
of Nn,σ2

t /4
(θ)/N0,σ2

t /4
(θ) under the Binomial distribution Binomial(|B|, |D|−1). As a convenient

shorthand we write this average as
∫
...dn. With this notation, for integer α we can rewrite the

argument of the logarithm in the lower bound (113) an iterated integral, then exchange the order of
the integrals and evaluate the integral over θ using the formula for the MGF of a Gaussian as follows∫  |B|∑

n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n

Nn,σ2
t /4

(θ)

N0,σ2
t /4

(θ)

α

N0,σ2
t /4

(θ)dθ (114)

=

∫ ∫
...

∫ α∏
i=1

Nni,σ2
t /4

(θ)

N0,σ2
t /4

(θ)
dn1...dnαN0,σ2

t /4
(θ)dθ

=

∫
...

∫ ∫
e−

∑
i n

2
i /(σ

2/2)+θ
∑

i ni/(σ
2/4)N0,σ2

t /4
(θ)dθdn1...dnα

=

∫
...

∫
e

4

σ2
t

∑
i<j ninj

dn1...dnα . (115)

Therefore we arrive at the lower bound

ϵ′t(α) ≥
1

α− 1
log

[∫
...

∫
e

4

σ2
t

∑
i<j ninj

dn1...dnα

]
. (116)

Recalling the definition of the dni’s, this completes the proof of Theorem 3.7.

The lower bound (115) behaves somewhat differently from the one derived for subsampling without
replacement in Wang et al. (2019) and restated in Appendix E.2. In particular, note that the explicit
|B| and |D| dependence in the lower bound (113) cannot be removed simply by reparameterizing
the expression in terms of q = |B|/|D|. In contrast, the FSwoR-RDP lower bound in Appendix E.2
depends on |B| and |D| only through q. This fact can be further illustrated through a simple loosening
of the bound (113), where we bound the sum below by the term at n = |B| to obtain

ϵ′t(α) ≥
1

α− 1
log

[
|D|−α|B|

∫ (
N|B|,σ2

t /4
(θ)

N0,σ2
t /4

(θ)

)α

N0,σ2
t /4

(θ)dθ

]
(117)

=
α|B|
α− 1

(
2|B|(α− 1)/σ2

t − log |B| − log(1/q)
)
.

For fixed ratio q = |B|/|D|, the right-hand-side of (117) approaches ∞ as |B| → ∞. Therefore we
can conclude that ϵ′t(α) has nontrivial |B| dependence, even for fixed q as claimed. This accounts for
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Figure 8: FSwR-RDP lower bounds as a function of |B|, with α = 2 and q = 0.001.

some of the difference in behavior between fixed-size subsampling with and without replacement.
This behavior is also illustrated numerically in Figure 8, where we show the exact value of the lower
bound (113) as a function of |B| for α = 2 (this case is straightforward to compute via the binomial
theorem and MGF of a Gaussian) and for fixed q = 0.001; we show results for several values of σ.
Note that initially each curve starts out horizontal, mirroring the case of FSwoR-RDP, which has no
|B| dependence outside of q. However, for each σ there is a threshold value of |B| as which there is a
“phase transition”, i.e., after which the explicit |B| dependence becomes important and the RDP value
increases rapidly.

D.2.1 Comptutable FSwR-RDP Lower Bounds

When α is an integer the lower bound (116) can, in principle, be computed exactly by recalling that
the integrals with respect to dni are shorthand for the expectation with respect to the distribution
Binomial(B, |D|−1). Therefore the lower bound (116) consists of α nested sums of |B|+ 1 terms
each. Clearly, when α is larger than 2 and |B| is not small iterated summation this quickly becomes
computationally impractical. The looser lower bound (117) is easy to compute, but is much too
inaccurate for most purposes. Here, for integer α, we will show how obtain lower bounds that are
both practical and significantly more accurate.

Recall that the integrals with respect to the dn’s are actually finite sums, each over |B|+ 1 elements,
and so in principle the above expression can be computed exactly but it is still not practical. We
next show how to obtain recursively defined lower bounds that are significantly less computationally
expensive than the O(|B|α) computations that the more naive formula (116) requires. To begin, for
any integer k ≥ 2 define

Fk(c, d) =

∫
...

∫
ec

∑
i<j ninj+d

∑
i nidnk...dn1 . (118)

For k = 2 we can reduce the computation to a single summation by using the formula for the MGF
of the Binomial distribution:

F2(c, d) =

|B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nedn(1− |D|−1 + |D|−1ecn+d)|B| . (119)
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For k > 2 we explicitly write out the integral over nk as a summation and then simplify to obtain
Fk(c, d) (120)

=

∫
...

∫
ec

∑k−1
j=2

∑j−1
i=1 ninj+d

∑k−1
i=1 ni

∫
e(c

∑k−1
i=1 ni+d)nkdnkdnk−1...dn1

=

|B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−n

∫
...

∫
ec

∑k−1
j=2

∑j−1
i=1 ninj+d

∑k−1
i=1 nie(c

∑k−1
i=1 ni+d)ndnk−1...dn1

=

|B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nedn

∫
...

∫
ec

∑k−1
j=2

∑j−1
i=1 ninj+(d+cn)

∑k−1
i=1 nidnk−1...dn1

=

|B|∑
n=0

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nednFk−1(c, d+ cn) .

As stated, the recursive formula provided by (119) and (120) is still too computationally expensive
due to each recursive call requiring the summations over |B| + 1 elements. However, noting that
terms in the summations are all positive, we can obtain a practical lower bound by retaining only
a small number of terms. More specifically, given choices of Tk ⊂ {0, ..., |B|} for each k, if we
recursively define

FT,k(c, d) :=
∑
n∈Tk

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nednFk−1(c, d+ cn, Tk−1) (121)

with

FT,2(c, d) :=
∑
n∈T2

(
|B|
n

)
|D|−n(1− |D|−1)|B|−nedn(1− |D|−1 + |D|−1ecn+d)|B| . (122)

Then, by induction, we have Fk(c, d) ≥ FT,k(c, d) for all k, T, c, d and therefore

ϵ′t(α) ≥
1

α− 1
FT,α(4σ

2
t , 0) (123)

for all α and all choices of Tk, k = 2, ..., α. By appropriately choosing the number of terms Tk

for each k one trades between accuracy and computational cost. In particular, if each |Tk| = 1
then the computation of (123) only requires O(α) computations. If |Tk| = ℓ > 2 for all k then the
computation of (123) required O(ℓα−1) computations. In contrast, using the exact recursive formula
(120) requires O(|B|α−1) computations, which is intractable unless α or |B| is sufficiently small.
However, despite this improvement, we should note that computational difficulties persist for cases
where the number of nontrivial terms is too large.

In our experiments in Figure 9 we find that that using Tk = {|B|} for k > 2 and T2 = {0, ..., |B|}
gives an accurate and computationally tractable lower bound. In the example in Figure 1 more terms
were required; we show results obtained by using Tk = {0, 1, 2, |B|} for k > 2 and T2 = {0, ..., |B|}.

D.3 Comparison of Upper and Lower FSwR-RDP Bounds

Now we will compare our lower bound for FSwR-RDP from Theorem 3.7 with the upper bound
derived in Appendix D.1. In Figure 9 we show the FSwR-RDP upper bound (solid line) and lower
bound (circles) and, for comparison, we also show our bound on FSwoR-RDP (dashed line). Note that
all three are very similar when α is close to 1; this is to be expected, due to them having the same
leading order behavior in q, given by (19). However, as α increases the non-leading order behavior
becomes more important and we observe that, after some threshold α, both the FSwR-RDP upper
and lower bounds increase rapidly. A similar “phase transition” was observed earlier in Wang et al.
(2019) for subsampling without replacement, though for these parameters it occurs at much higher
values of α. A key difference between these two cases is that, for FSwR-RDP, the phase transition
can be brought on by increasing |B| while leaving q = |B|/|D| fixed, as demonstrated in Appendix
D.2; see (117) and Figure 8. In contrast, the lower bound for FSwoR-RDP from Wang et al. (2019)
depends on |B| and |D| only through their ratio q. We anticipate that the gap between the upper and
lower bounds on FSwR-RDP in Figure 9 could be reduced by using a higher order expansion in q, but
we leave that to future work. We also emphasize that the dashed FSwoR-RDP upper bounds is only
for comparison purposes as it does not apply to the FSwRcase considered in this section.
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Figure 9: Comparison of our upper and lower bounds on FSwR-RDP from Theorems 3.6 and 3.7. We
used σt = 6, |B| = 120, and |D| = 50, 000.

E Comparison with Wang et al. (2019)

In Wang et al. (2019), Rényi-DP enhancement of fixed-size subsampling was analyzed in a framework
that applies to arbitrary mechanisms. In this appendix we specialize their results to fixed-size subsam-
pling DP-SGD with Gaussian noise. This will facilitate comparison with our results. Specifically, we
will show that our specialized method results in a factor tighter bounds by approximately a factor of
4.

E.1 Upper Bound from Wang et al. (2019), Theorem 9

For integer α ≥ 2, the following the general fixed-size subsampling Rényi-DP enhancement bound
(for one step) was derived in Wang et al. (2019):

ϵ′t(α) ≤
1

α− 1
Kt(α) , (124)

Kt(α) := log

1 + 2q2α(α− 1)(eϵt(2) − 1) +

α∑
j=3

2qj
∏j−1

ℓ=0(α− ℓ)

j!
e(j−1)ϵt(j)


(if α = 2 then the empty summation is interpreted to be zero), where ϵt(j) denotes a Rényi-DP bound
for the mechanism without random subsampling. For DP-SGD we have

Dj(Nµ′,σ̃2
t
∥Nµ,σ̃2

t
) =

j∥µ′ − µ∥2

2σ̃2
t

≤ 2jC2η2t
|B|2σ̃2

t

=
2j

σ2
t

(125)

and therefore we can use

ϵt(j) :=
2j

σ2
t

. (126)

Note that (125) uses the same bound on the means that we use in our method, and therefore (126)
will yield a fair comparison. Comparing the leading order behavior of (124) with the leading order
behavior of a single step of our result in Theorem 3.3, we see that our bound is smaller by a factor of
4. In practice we find similar behavior even when including the higher order terms; see Figure 2.

For non-integer α ≥ 2 they use the following bound, which follows from convexity of Kt(α) in α:

ϵ′t(α) ≤
1− (α− ⌊α⌋)

α− 1
Kt(⌊α⌋) +

α− ⌊α⌋
α− 1

Kt(⌊α⌋+ 1) , (127)

where ⌊x⌋ denotes the floor of x. For α ∈ (1, 2) the convexity bound is

ϵ′t(α) ≤
α− ⌊α⌋
α− 1

Kt(2) = Kt(2) (128)

which simplifies to

ϵ′t(α) ≤ ϵ′t(2) , α ∈ (1, 2) . (129)
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E.2 Lower Bound from (Wang et al., 2019), Proposition 11

A general lower-bound on fixed-size subsampling enhancement was also derived in (Wang et al.,
2019); we repeat it here for convenience. For integer α ≥ 2 they show

ϵ′t(α) ≥
α

α− 1
log(1− q) +

1

α− 1
log

1 + α
q

1− q
+

α∑
j=2

∏j−1
ℓ=0(α− ℓ)

j!

(
q

1− q

)j

e(j−1)ϵt(j)

 ,

(130)

where ϵt(j) is again given by (126). In Figure 2 we demonstrate that our result is very close to this
theoretical RDP lower bound.

E.3 Comparison with Replace-One Adjacency Bounds in Theorem 3.4

The analysis in Wang et al. (2019) is done under the replace-one adjacency definition and is therefore
directly compatible to our Theorem 3.4. In Section 3.4 we showed that our replace-one and our
add/remove adjacency results, Theorem 3.4 and 3.1 respectively, lead to the same RDP bounds to
leading order in q and 1/σ2

t , including the factor of 4 improvement over Wang et al. (2019); this
confirms that the improvement made by our approach is not reliant on the adjacency definition.

In this appendix we provide a conjecture as to the origin of this difference. The leading order behavior
comes from the calculations (64)-(66), where we used the constraints on the means from (57):

∥∆µt(b
′, b̃)∥ ≤ rt , ∥∆µ′

t(b
′, b̃)∥ ≤ rt , ∥∆µt(b

′, b̃)−∆µ′
t(b

′, b̃)∥ ≤ rt . (131)

However, if one doesn’t use the constraint on the difference and only uses the first two upper bounds
on the means then the best bound on the dot product becomes

|µt(b
′, b̃) ·∆µ′

t(b
′, b̃)| ≤ r2t (132)

and so the bound (66) is weakened to

d2

dq2
Fα(0) ≤ 2α(α− 1)

(
e4/σ

2
t − e−4/σ2

t

)
= 16α(α− 1)/σ2

t +O(1/σ4
t ) , (133)

which at leading order is a factor of 4 larger than our result (66) which was derived using all three
constraints in (57). The strategies we employ differ from Wang et al. (2019) in a way that makes it
difficult to pinpoint exactly what the essential differences are, however the above calculation leads us
to conjecture that the difference originates in the failure to account for the constraint that couples
∆µt and ∆µ′

t. See also Remark C.6.

F Variance of Fixed-size vs. Poisson Subsampling

In this appendix we provide detailed calculations of the variance comparison that was discussed in
Section 4.2. Let ai ∈ R, i = 1, ..., |D| (for application to DP-SGD, one can take ai = ∇θL(di) · v,
the gradient of the loss at the i’th training sample di in the direction v) and let |B| ∈ {1, ..., |D|}. Let
Ji, i = 1, ..., |D| be iid Bernoulli(|B|/|D|) random variables, B be a random variable that uniformly
selects a subset of size |B| from {2, ..., |D|}, and Rj , j = 1, ..., |B| be iid uniformly distributed over
{1, ..., |D|}. We will compare the variance of the Poisson-subsampled average,

ZP :=
1

|B|

|D|∑
i=1

aiJi (134)

with that of fixed-size subsampling with replacement,

ZR :=
1

|B|

|B|∑
j=1

aRj , (135)

and with fixed-size subsampling without replacement,

ZB :=
1

|B|
∑
i∈B

ai . (136)
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They all have the same expected value, equaling the average of the samples:

E[ZP ] =
1

|B|

|D|∑
i=1

aiE[Ji] =
q

|B|

|D|∑
i=1

ai =
1

|D|

|D|∑
i=1

ai := a , (137)

E[ZR] =
1

|B|

|B|∑
j=1

E[aRj ] =
1

|B|

|B|∑
j=1

E[
∑
i

ai1Rj=i] (138)

=
1

|B|

|B|∑
j=1

|D|∑
i=1

aiP (Rj = i) =
1

|D|

|D|∑
i=1

ai = a ,

and

E[ZB ] =
1

|B|

|D|∑
i=1

aiP (i ∈ B) =
1

|B|

|D|∑
i=1

ai

(|D|−1
|B|−1

)(|D|
|B|
) = a . (139)

The variances are

Var[ZP ] =
1

|B|2
|D|∑

i,j=1

aiajE[JiJj ]− a2 (140)

=
1

|B|2
∑
i

a2iE[Ji] +
1

|B|2
∑
i ̸=j

aiajE[Ji]E[Jj ]− a2

=
1

|B||D|
∑
i

a2i +
1

|D|2
∑
i ̸=j

aiaj −
1

|D|2
∑
i,j

aiaj

=

(
1

|B|
− 1

|D|

)
1

|D|

|D|∑
i=1

a2i ,

Var[ZR] =
1

|B|2
|B|∑

ℓ,j=1

E[aRjaRℓ
]− a2

=
1

|B|2
|B|∑
j=1

E[a2Rj
] +

1

|B|2
∑
ℓ ̸=j

E[aRj ]E[aRℓ
]− a2

=
1

|B|2
|B|∑
j=1

E[a2Rj
] +

1

|B|2
∑
ℓ ̸=j

a2 − a2

=
1

|B|2
|B|∑
j=1

E[
∑
i

1Rj=ia
2
i ] +

1

|B|2
(|B|2 − |B|)a2 − a2

=

|D|∑
i=1

a2i
1

|B|2
|B|∑
j=1

E[1Rj=i] + (1− 1/|B|)a2 − a2

=

|D|∑
i=1

a2i
1

|B|2
|B|∑
j=1

P (Rj = i)− 1

|B|
a2

=
1

|B||D|

|D|∑
i=1

a2i −
1

|B|
a2

=(1− |B|/|D|)−1Var[ZP ]−
1

|B|
a2 ,
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and

Var[ZB ] =
1

|B|2
|D|∑

i,j=1

aiajP (i ∈ B, j ∈ B)− a2 (141)

=
1

|B|2
∑
i

a2iP (i ∈ B) +
1

|B|2
∑
i ̸=j

aiajP (i ∈ B, j ∈ B)− a2

=
q

|B|2
∑
i

a2i +
1

|B|2
∑
i ̸=j

aiaj

(|D|−2
|B|−2

)(|D|
|B|
) − a2

=

(
1

|B|
− 1

|D|

) 1

|D|
∑
i

a2i −
1

|D|(|D| − 1)

∑
i̸=j

aiaj


=

|D|
|D| − 1

(
Var[ZP ]−

(
1

|B|
− 1

|D|

)
a2
)

.

Therefore, defining a2 = 1
|D|
∑|D|

i=1 a
2
i , when |B| < |D| and a2 ̸= 0 we obtain the following variance

relations

V ar[ZR]

V ar[ZP ]
=

1

1− q

(
1− a2

a2

)
, (142)

Var[ZB ]

Var[ZP ]
=

1

1− 1/|D|

(
1− a2

a2

)
, (143)

and

Var[ZR] =
1− 1/|D|
1− q

Var[ZB ] . (144)

In particular, we see that fixed-size subsampling with replacement always has larger variance than
fixed-size subsampling without replacement by the constant multiple 1−1/|D|

1−q > 1; however, this
factor is close to 1 when q is small. Therefore, for practical purposes we can consider them equivalent
from the perspective of the variance. When |B| < |D| the ratio of fixed-size and Poisson variances is

Var[ZB ]

Var[ZP ]
=

1

1− 1/|D|

(
1− a2

a2

)
. (145)

The Cauchy-Schwarz inequality implies 0 ≤ a2/a2 ≤ 1 and so we see that Var[ZB ] < Var[ZP ]
when a ̸= 0 and |D| is sufficiently large; in DP-SGD the condition a ̸= 0 corresponds to being
away from a (local) minimizer or critical point of the loss. This calculation suggests that fixed-sized
minibatches are better to use when one is away from the optimizer, as they lead to a (potentially
substantial) reduction in variance, but they can become (slightly) worse than Poisson-sampled
minibatches when one is close to a local minimizer (i.e., a ≈ 0). However, for a typical training-set
size |D| ≫ 1 we have (1 − 1/|D|)−1 ≈ 1 and so the variance advantage of Poisson subsampling
when a ≈ 0 is very minor. In addition, due to the effect of noise, DP-SGD cannot reach a = 0.
Therefore, from the perspective of the variance, we conclude that fixed-size subsampling (with or
without replacement) is generally preferable over Poisson subsampling.

G Comparison of Poisson and Fixed-size DP Bounds under Add/Remove
Adjacency

Using the conversion from Proposition 3 in Mironov (2017), if a mechanism satisfies ϵ′(α)-RDP then
it satisfies (ϵ, δ)-DP with

ϵ = ϵ′(α) +
log(1/δ)

α− 1
. (146)
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Under add/remove adjacency, to leading order, both Poisson and fixed-size subsampling satisfy RDP
bounds with ϵ′(α) = αR for some R > 0 (see Abadi et al. (2016); Mironov et al. (2019)) and (19).
Assuming that the optimal α is not close to one, and hence we can approximate α with λ := α− 1,
minimizing over α gives

ϵ = inf
α>1

{
ϵ′(α) +

log(1/δ)

α− 1

}
≈ inf

λ>0

{
λR+

log(1/δ)

λ

}
= 2
√
log(1/δ)R . (147)

For t steps of fixed-size subsampling (with or without replacement), and with constant variance σ,
Eq. (19) implies

RFS ≈ tq2

2
(e4/σ

2

− 1) ≈ 2tq2

σ2
. (148)

In contrast, for Poisson subsampling the results in Abadi et al. (2016); Mironov et al. (2019) imply

RP ≈ tq2

2
(e1/σ

2

− 1) ≈ tq2

2σ2
. (149)

Therefore RFS ≈ 4RP at leading order and so (147) implies

ϵFS ≈ 2
√

2t log(1/δ)
q

σ
≈ 2ϵP . (150)

From a privacy perspective, this suggests that ϵ for Poisson subsampling has an intrinsic advantage
over fixed-size subsampling by approximately a factor of 2 when using the add/remove adjacency
relation. Noting the scaling of (150) with σ, we see that fixed-size subsampling requires noise 2σ
to obtain the same privacy guarantee (at leading order) as Poisson sampling with noise σ. Tighter
translation between RDP and (ϵ, δ)-DP, such as Theorem 21 in Balle et al. (2020) which is used by
Meta Platforms (2024), alters this story somewhat but the general picture we have outlined here is
corroborated by the empirical comparison provided in Section 4.2. We emphasize that this factor of
two gap disappears when using replace-one adjacency; in that case Poisson subsampling and FSwoR
subsampling lead to the same DP guarantees, as discussed in Section 4.1.

H Additional Experiments

To assess the sensitivity of our proposed method to important parameters such as σ and batch size |B|,
we conducted a series of additional experiments to compare our proposed fixed-size method with the
non-fixed size setting while varying values of B ∈ {50, 100, 150, 200} and σ ∈ {3.0, 4.5, 6.0, 12.0}.
Figure 10 depicts the results of these experiments.

As shown in Figure 10, the results for varying values of σ and |B| align with what we reported in
Section 4.2, showing that the proposed method is not sensitive to parameter settings.
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a Performance with different values of σ ∈ {3.0, 4.5, 6.0, 12.0}

b Performance with different values of batch size |B| ∈ {50, 100, 150, 200}

Figure 10: Comparing Fixed and Non-Fixed Size Performance with different σ (a) and batch sizes (b)
on CIFAR10
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paper’s contributions and scope?

Answer: [Yes]

Justification: The paper provides the first fixed-size subsampled analysis of DP-SGD, which
practically contributes to constant memory usage in DP applications. The improvements on
the state-of-the-art fixed size method proposed by Wang et al. is clearly shown by theory
and in practice on CIFAR-10.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 4.3 and Figure 4 clearly state the benefits and limitations with respect to
both state-of-the-art fixed size sub-sampling methods and traditional non-fixed-size sampling
supported by empirical results on CIFAR-10.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
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a complete (and correct) proof?
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Justification: The paper provides rigorous and complete proofs for the upper-bounds obtained
in the fixed-size regime, both for with and without replacement cases. All proofs and
derivations are carefully double-checked to be correct and complete.
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• The answer NA means that the paper does not include theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to meticulously stating all key parameters in the experiments in
Section 4 and all plots, the code to exactly replicate our results in Section 4, accompanied
with all the numerical analysis and generated plots throughout the paper was made available
during submission. We will also make the privacy accountant publicly available upon
acceptance.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted the code of our privacy accountant to allow exact replication of
our results. The repository includes the code to replicate the results in Section 4, an example
of using our accountant on CIFAR 10 as well as all the numerical analysis and generated
plots throughout the paper. We will also make the repository for our privacy accountant and
experiments publicly available upon acceptance.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The key (hyper)parameters are meticulously stated in the experiment section
as well as all numerical analyses.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Justification: We noted in the main body that Figure 4 was plotted with 3-sigma standard
deviation around mean based on five runs each with different random seeds for sampling: 0,
1, 364, 2, 560, 3, 000, and 4, 111. Also, the code that generates the plots were provided in
our provided source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper states that the experiments were run on a single work station with
an NVIDIA RTX 3090 with 24GB internal memory. The runtime for all experiments was
under 12 hours.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We envision no negative impacts of our work. Not human subjects was used.
Datasets are publicly available. Also, the code associated with this work is not envisoned to
be used for malicious purposes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction and conclusion both highlight the positive societal impact of
our work on privacy preserving machine learning by providing a new privacy accountant that
advances the status quo in enhancing users privacy as machine learning and deep learning
becomes more ubiquitous in individuals lives. As noted above, we do not envision any
negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset is a publicly available common benchmark. Also the the proposed
accountant helps privacy-preserving ML and is not envisioned to be used in a malicious
manner.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The CIFAR-10 dataset and Opacus library are both widely-used open-source
and were properly cited in the main body. No other external assets was used.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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privacy accountnt and describes how to replicate the results in the experiment section.
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• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subject or crowdsourcing was involved in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsouring or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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