Under review as a conference paper at ICLR 2026

KAN-SEMI: A SEMI-SUPERVISED APPROACH COM-
BINING SELF-SUPERVISED PRE-TRAINING, HIERAR-
CHICAL PRIORS, AND KOLMOGOROV-ARNOLD NET-
WORKS FOR LANDMARK-BASED BIOMETRY ESTIMA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Ultrasound (US)-based biometric estimation is crucial for monitoring labor pro-
gression and diagnosing fetal and maternal abnormalities. Reliable biometry es-
timation relies heavily on accurate landmark localization on standard planes, a
process traditionally performed by sonographers. However, manual measurement
is time-consuming, operator-dependent, and prone to variability. Although au-
tomated segmentation methods based on fully supervised models show promise,
they often suffer from multi-stage error accumulation and a lack of expertly an-
notated data. To address these challenges, we introduce KAN-Semi, a semi-
supervised network that combines self-supervised pre-training, hierarchical pri-
ors, and Kolmogorov-Arnold Networks (KANs). First, we utilize in-domain
self-supervised pre-training with a Masked Autoencoder (MAE) to learn robust,
domain-adapted representations for a novel CNN-ViT hybrid backbone. Next,
we propose a Hierarchical Guidance Decoder, which encodes symbolic medical
priors to regularize the model’s reasoning, progressively guiding it from stable
to variable structures. Finally, we explore Kolmogorov-Arnold Network (KAN)-
enhanced heads as an alternative to conventional predictors, demonstrating their
efficacy in complex spatial regression tasks. We perform extensive experiments
on three intrapartum ultrasound datasets collected from 24 medical centers and
institutions, showing that our approach significantly outperforms fully super-
vised models in landmark detection performance. Our work offers a structured
framework for designing effective learning systems that integrate self-supervision,
knowledge-based architectural design, and emerging network paradigms.

1 INTRODUCTION

Intrapartum ultrasound is a cornerstone of maternal and neonatal care, playing a critical role in
safeguarding health during labor, a principle underscored by guidelines from bodies like the World
Health Organization (WHO) (Organization et al., [2020) and the International Society of Ultrasound
in Obstetrics and Gynecology (ISUOG) (Ghi et al., 2018)). Despite its widespread use, its clinical
impact remains constrained by significant challenges in accurately visualizing cranial landmarks
and by substantial observer variability due to differences in operator skill (Youssef et al., |2017).
Traditional manual assessment of fetal biometry, such as measuring the angle of progression (AoP),
typically relies on single ultrasound images. The operator freezes a frame in a specific view and uses
calipers to measure anatomical features. Some clinical guidelines even recommend repeating these
measurements multiple times to ensure consistency. However, this manual process is not only time-
consuming, particularly for less experienced practitioners, but also prone to both expected-value
bias and selection bias.

Automating the process of landmark detection using artificial intelligence (Al) presents a promising
solution to these challenges. Al can reduce variability, enhance measurement efficiency, and provide
a more consistent, objective approach to biometry assessment. However, several technical barriers
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need to be overcome for Al-based methods to be viable in real-world clinical practice. First, deep
learning models typically require large annotated datasets for training, a well-documented challenge
in the medical domain where expert annotations are labor-intensive and costly, while vast amounts
of unlabeled data remain underutilized (Cheplygina et al., 2019). Second, some existing pipelines,
such as those that first segment anatomical structures before identifying landmarks, can be prone to
cumulative error propagation, limiting their efficiency and accuracy for real-time intrapartum use.
Third, many landmark detection methods lack explicit anatomical priors, making accurate localiza-
tion difficult when confronted with anatomical variability or incomplete views of the fetus. Finally,
ultrasound images are frequently affected by artifacts such as speckle noise and acoustic shadowing,
which further complicate automated landmark detection and necessitate the development of robust,
generalizable models.

To systematically address these interconnected challenges of data scarcity, cumulative error, and
anatomical variability, we propose KAN-Semi, a novel framework that integrates self-supervised
pre-training, architectural priors, and an advanced semi-supervised fine-tuning pipeline. Our main
contributions are threefold:

1. We leverage in-domain self-supervised pre-training with a Masked Autoencoder (MAE) (He
et al.} |2022) to learn robust, domain-adapted representations for a novel CNN-ViT hybrid back-
bone, effectively mitigating the effects of data scarcity and image artifacts.

2. We design a Hierarchical Guidance Decoder that explicitly encodes symbolic anatomical priors
into the network architecture, guiding the model from stable to variable structures to handle
anatomical variability and reduce localization ambiguity.

3. We conduct an early exploration of Kolmogorov-Arnold Network (KAN) enhanced heads as a
substitute for conventional predictors, demonstrating their efficacy for precise spatial localization
in a direct, end-to-end manner, thus avoiding the cumulative errors of multi-stage pipelines.

2 RELATED WORK

Our research is situated at the intersection of automated medical biometry, data-efficient learning,
and advanced network architectures. This section reviews the most relevant prior work in these key
domains to contextualize our contributions.

2.1 AUTOMATED LANDMARK DETECTION IN MEDICAL ULTRASOUND

The automation of biometric measurements in ultrasound is a long-standing goal. Early work by
Youssef et al.[(2017) on Angle of Progression (AoP) measurement established the feasibility of au-
tomated methods but also highlighted accuracy challenges compared to manual techniques. While
deep learning has become the standard for related tasks, such as gestational sac segmentation (Dan-
ish et al.,|2024), most fully supervised, multi-stage pipelines remain vulnerable to data scarcity and
cumulative error propagation. The most proximate work, DSTCT by Jiang et al.|(2024]), successfully
applies a semi-supervised model to the segmentation of the same anatomical structures. However,
its architecture does not explicitly encode the hierarchical relationship between them. Our work
differs by focusing on direct, end-to-end localization and introducing a novel architectural prior to
leverage this anatomical knowledge.

2.2 DATA-EFFICIENT LEARNING IN MEDICAL IMAGING

To address the pervasive data scarcity in medical imaging, we leverage a two-stage data-efficient
learning paradigm.

Self-Supervised Pre-training has emerged as a powerful technique to learn representations from
unlabeled data. We focus on the generative approach of Masked Image Modeling (MIM), where
the Masked Autoencoder (MAE) framework (He et al., [2022)) stands as a state-of-the-art method, in
contrast to contrastive methods like SImCLR (Chen et al.||2020). Critically, works like Models Gen-
esis (Zhou et al., |2019) have demonstrated the superiority of in-domain pre-training over ImageNet
pre-training for medical tasks, motivating our approach.
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Semi-Supervised Fine-tuning further utilizes unlabeled data during the main training phase. The
principle of consistency regularization, which evolved from early methods like the II-Model (Ras-
mus et al.,[2015) and Temporal Ensembling (Laine & Aila, 2016), is effectively implemented in the
Mean Teacher framework (Tarvainen & Valpolal 2017) and has been refined in subsequent works
like FixMatch (Sohn et al., 2020). Our KAN-Semi framework adopts this robust paradigm, which
complements other data-efficient strategies like task-driven data augmentation (Chaitanya et al.,
2019).

2.3 ADVANCED NETWORK ARCHITECTURES

Our model’s architecture integrates several advanced design principles, moving beyond founda-
tional keypoint detectors like DeepPose (Toshev & Szegedy, 2014} and Stacked Hourglass Networks
(Newell et al., 2016)).

Hybrid CNN-Transformer Architectures are now prominent, combining the spatial inductive bi-
ases of CNNs, built upon designs like ResNet (He et al.| 2016)) and EfficientNet (Tan & Le} |2019),
with the global context modeling of Vision Transformers (ViTs) (Dosovitskiy et al., 2020). The
synergy of this approach has been validated by works like CoAtNet (Dai et al., [2021) and UNETR
(Hatamizadeh et al.| 2022)). Our work contributes a novel hybrid design while also noting that pow-
erful pure-CNN (e.g., ConvNeXt (Liu et al., |2022))) and pure-Transformer (e.g., Swin-Unet (Cao
et al.| 2022)) backbones are typically knowledge-agnostic.

Kolmogorov-Arnold Networks (KANSs), recently proposed by |Liu et al.| (2024)), represent a fun-
damental shift from traditional MLP design by using learnable splines as activation functions on
network edges. Their application to dense prediction tasks like heatmap regression is still in its
infancy, and our work contributes some of the first empirical evidence in this emerging area.

3 METHODOLOGY

We propose KAN-Semi, a comprehensive two-stage learning pipeline designed to address the chal-
lenges of automated landmark detection in ultrasound. Our framework first learns powerful domain-
specific representations via self-supervision, then fine-tunes a knowledge-informed, semi-supervised
model for the localization task. The overall architecture is illustrated in Figure

3.1 STAGE 1: SELF-SUPERVISED PRE-TRAINING FOR REPRESENTATION LEARNING

A significant challenge in medical imaging is the domain gap between general-purpose datasets like
ImageNet and the specialized characteristics of ultrasound imagery. To overcome this, our paradigm
begins with a dedicated self-supervised pre-training stage on all available in-domain ultrasound
images. We adapt the Masked Autoencoder (MAE) framework (He et al.| 2022)) for this purpose.

The MAE operates on the principle of masked image modeling: a high percentage of image patches
are randomly masked, and a ViT-based encoder is trained on the remaining visible patches to produce
a latent representation from which a lightweight decoder reconstructs the original masked content.
The learning objective is to minimize the Mean Squared Error (MSE) between the reconstructed and
original patches, computed only over the masked set M:

Lyae = W1| Z [[xi — ’A%H2 (1
ieEM
where x; is the i-th patch from the original image and X; is its reconstruction by the decoder. This
demanding task forces the encoder to learn robust, high-level semantic representations. After pre-
training, we retain the ViT encoder’s weights to serve as a powerful, domain-adapted initialization
for our downstream model.

3.2 STAGE 2: SEMI-SUPERVISED FINE-TUNING OF KAN-SEMI

In the second stage, the pre-trained encoder is integrated into our main KAN-Semi model, which
is then fine-tuned using a semi-supervised approach. The student model within this framework is
composed of three key architectural components.
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Figure 1: The overall architecture of our proposed KAN-Semi framework, which consists of two
main stages. Stage 1 (Self-Supervised Pre-training): A Vision Transformer (ViT) encoder is pre-
trained on all available in-domain unlabeled data using a Masked Autoencoder (MAE) objective.
The learned weights provide a powerful, domain-adapted initialization. Stage 2 (Semi-Supervised
Fine-tuning): The pre-trained ViT is integrated into the bottleneck of our HGS-KAN student model.
The student model is then fine-tuned using both labeled and unlabeled data within a Mean Teacher
framework. The total loss (£;) combines a supervised loss (L,;,) on labeled data and a consistency
loss (Lynsup) on unlabeled data.

3.2.1 HYBRID CNN-TRANSFORMER BACKBONE

Our network backbone is a hybrid architecture based on the successful U-Net architecture (Ron-
neberger et al., 2015), which is prized for its effective use of skip connections. We employ an
EfficientNet-B4 (Tan & Le, 2019) as the primary CNN encoder for its parameter efficiency and
strong feature extraction. At the U-Net’s bottleneck—the point of highest semantic abstraction—we
insert the lightweight ViT module pre-trained in Stage 1. This ViT bottleneck acts as a global context
aggregator, modeling long-range dependencies between anatomical structures from the high-level
feature maps provided by the CNN encoder.

3.2.2 HIERARCHICAL GUIDANCE DECODER

To exphcltly incorporate anatomical prlors we introduce the Hierarchical Guidance Decoder, which
mimics an “easy-to-hard” expert reasoning process. As detailed in Figure [2} let 7 € R *W*C pe
the shared feature map from the backbone. The process is formalized as:

Hbase = hbase (]:) (2)
Fyuided = Concat (F, sg(Hpase)) 3)
Hadv = hadv (fquided) (4)

where hyqse and hq, are the base and advanced prediction heads. The base heatmaps (Hp, ) for
stable landmarks are predicted first. They are then concatenated with F—after a stop-gradient (sg)
operation—to form a guided feature map, Fgy;deq. This map is then used to predict the advanced
heatmaps (H ,4,) for the more variable landmarks.

3.2.3 KAN-ENHANCED PREDICTION HEAD

We challenge the standard use of a simple 1 x 1 convolution for the final feature-to-heatmap map-
ping by proposing a KAN-Enhanced Prediction Head (KANHead), based on Kolmogorov-Arnold
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Figure 2: The architecture of our Hierarchical Guidance Decoder. The shared feature map (F) from
the backbone is first used by a Base Head to predict the base heatmaps for stable landmarks (Hpse)-
These heatmaps, after a stop-gradient (sg) operation, are concatenated with the original feature map
to form a guided feature map. An Advanced Head then uses this guided map to predict the heatmap
for the more variable landmark (H,4,). Finally, the base and advanced heatmaps are concatenated
along the channel dimension to form the complete multi-channel output.
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Figure 3: Conceptual comparison between a conventional head and our proposed KAN-Enhanced
Head. Left (Conventional): A standard 1 x 1 convolution applies a linear transformation followed
by a fixed activation (e.g., ReLU). Right (Our KAN-Head): A KAN composes learnable, univariate
spline functions on its edges, allowing for a more expressive mapping.

Networks (KANs) (Liu et al.| [2024). As illustrated in Figure EL unlike a conventional head which
uses a linear transformation with a fixed activation, a KAN composes learnable spline activation
functions on its edges. This provides superior non-linear modeling capabilities, allowing for a more
expressive and efficient mapping from features to heatmap intensities. Our work provides early
empirical validation of KANs for this complex, dense regression task.

3.3 REGULARIZATION STRATEGIES FOR ROBUSTNESS

To enhance generalization, we employ two regularization strategies: Spatial Regularization via
Dropout2d in the decoder, and Label Space Regularization, where we add Gaussian noise to the
ground-truth keypoint coordinates before generating heatmaps to act as a form of label smoothing
for regression.
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3.4 LEARNING OBJECTIVE AND SEMI-SUPERVISED STRATEGY

The fine-tuning stage is driven by a composite loss within the Mean Teacher (Tarvainen & Valpola,
2017) semi-supervised framework. The total loss for the student model is:

£lotal = Es + )\(t) . Eu (5)

The supervised loss, Ls,,p, is the Mean Squared Error (MSE) between the student’s predictions on
a strongly-augmented labeled batch and the perturbed ground-truth heatmaps. The consistency loss,
Loynsup» s the MSE between the student’s predictions on a strongly-augmented unlabeled batch and
the pseudo-labels generated by the teacher model. The student’s parameters, 6, are updated via
gradient descent on Ly, . The teacher’s parameters, 6;, are an exponential moving average (EMA)
of the student’s parameters:

0; < B0: + (1 — )0, (6)
where (3 is the EMA decay rate. The consistency weight A(¢) and the decay rate 8 are dynamically
scheduled during training to stabilize the learning process.

4 EXPERIMENTS

We conduct a series of experiments to evaluate KAN-Semi. We aim to answer: (1) How does our
architecture compare to strong baselines? (2) What is the contribution of each component? (3) How
effective is our semi-supervised strategy?

4.1 EXPERIMENTAL SETUP
4.1.1 DATASET AND METRICS

Our study is validated on a large-scale, multi-center dataset from **24 medical centers**, col-
lected under IRB approval. The raw collection contains 53,996 frames from 434 videos, all of
which are used for our MAE self-supervised pre-training. For the downstream fine-tuning task, we
use a curated subset of expertly annotated standard-plane frames, which is split into a training set
(2,431 labeled, 5,497 unlabeled), a validation set (443 labeled), and a test set (501 labeled). We
evaluate performance using two primary metrics: Mean Radial Error (MRE) in pixels, measur-
ing localization precision, and Absolute Progression Difference (APD) in degrees, calculated as
mean(|AoPpq — A0Py|) to assess clinical measurement accuracy.

4.1.2 IMPLEMENTATION DETAILS

Our entire framework was implemented using PyTorch and trained on NVIDIA RTX 4090 GPUs
with 24GB of memory. Key hyperparameters are summarized in Table

Stage 1 (MAE Pre-training): We pre-train a ViT-Tiny encoder for 200 epochs on 224 x 224 images
with a 75% masking ratio, using the AdamW optimizer.

Stage 2 (Fine-tuning): The KAN-Semi model, featuring an EfficientNet-B4 backbone and our
MAE pre-trained ViT bottleneck, is fine-tuned for 200 epochs on 512 x 512 images. We employ
extensive data augmentations and two key regularization strategies: Dropout2d (p=0.1) and label
perturbation (o = 2.0 pixels). The model is trained with a batch size of 24 (12 labeled, 12 unlabeled)
using AdamW and a cosine annealing learning rate scheduler with a 5-epoch warmup. Our dynamic
Mean Teacher strategy involves a 30-epoch ramp-up for the consistency weight and EMA decay,
and a confidence threshold ramping from 0.5 to 0.9.

4.2 MAIN PERFORMANCE COMPARISON

We first compare the architectural merits of KAN-Semi against several strong and representative
baselines under a fair, fully-supervised setting. We then present the result of our full semi-supervised
model to demonstrate the additional gains from leveraging unlabeled data. The results are presented
in Table 21

The results in Table [2] clearly establish the superior performance of our proposed approach. First,
when focusing on the fully-supervised setting to compare architectural merits, our KAN-Semi model
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Table 1: Key hyperparameters for our two-stage training process.

Stage 1: MAE Pre-training Stage 2: Fine-tuning

Parameter Value Parameter Value
Encoder ViT-Tiny CNN Encoder EfficientNet-B4
Image Size 224 x 224 | Image Size 512 x 512
Masking Ratio 0.75 Optimizer AdamW
Epochs 200 Initial LR 5x 1074
Batch Size 64 LR Scheduler Cosine Annealing
Optimizer AdamW Warmup Epochs 5
Learning Rate (LR) 1.5 x 10~ | Total Epochs 200
Weight Decay 0.05 Labeled Batch Size 12

Unlabeled Batch Size 12

Dropout Probability 0.1

Label Perturb. o 2.0

EMA Decay 0.99 — 0.999

Confidence Thresh. 0.5—09

Table 2: Quantitative comparison with representative baseline methods on the test set. All methods
are trained in a fully-supervised setting, except for our final model. Best results are in bold.

Method Training Setting MRE (pixels) | APD (°) |
Classic and Hybrid Baselines

U-Net (Ronneberger et al.,[2015) Fully-Supervised 16.48 6.98
TransUNet* (Chen et al., 2021} Fully-Supervised 17.60 7.01
Modern Representative Backbones

Swin-Unet* (Cao et al., [2022) Fully-Supervised 16.51 6.89
ConvNeXt-Unet* (Liu et al.}[2022)  Fully-Supervised 16.05 5.77
Our Proposed Framework

KAN-Semi (ours) Fully-Supervised 15.54 5.74
KAN-Semi (ours) Semi-Supervised 14.45 4.99

achieves the best performance with an MRE of 15.54 pixels. It not only surpasses the classic U-Net
and TransUNet but also outperforms models equipped with powerful modern backbones like Swin-
Unet and ConvNeXt-Unet. Notably, while the ConvNeXt-Unet achieves a strong APD of 5.77°, our
model matches this performance while achieving a lower MRE, indicating more precise landmark
localization overall. This highlights the intrinsic advantages of our design, where the synergy of a
domain-adapted ViT backbone, hierarchical guidance, and a KAN-enhanced head is more effective
than relying on a powerful general-purpose backbone alone.

Second, the impact of our full two-stage paradigm is demonstrated by comparing the semi-
supervised version of KAN-Semi to all other methods. By leveraging unlabeled data, our model
achieves a new state-of-the-art with an MRE of 14.45 pixels and, most critically, a significantly
lower APD of 4.99°. The substantial improvement from its own fully-supervised version (a 7.0%
relative reduction in MRE and a 13.5% relative reduction in APD) provides clear validation for
our semi-supervised strategy. This comprehensive comparison confirms that our framework, which
combines a superior architecture with an effective data-efficient learning strategy, is a more robust
and accurate solution for this challenging task. A detailed breakdown of each component’s contri-
bution will be presented in the following ablation studies.

4.3 IN-DEPTH ABLATION STUDIES AND ANALYSIS

To understand the individual contribution and synergistic effects of our core components, we conduct
a comprehensive ablation study. We start from our full KAN-Semi framework and systematically
deactivate or replace key innovations. All models in this study were trained under the same semi-
supervised setting for a fair comparison. The results are detailed in Table
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Table 3: Ablation study on the contributions of our core components. All models are trained under
the semi-supervised setting. HG denotes Hierarchical Guidance.

# Configuration MAE+ViT HG KAN | MRE (pix) | APD(°) |
1 KAN-Semi (ours) v v v 14.45 4.99
Ablating Architectural Components

2 w/o Hierarchical Guidance v X v 14.53 5.18

3 w/o KAN Head v v X 14.70 5.81

4  w/o HG and KAN v X X 14.89 5.30
Ablating Pre-training Strategy

5 w/o MAE+ViT (CNN-only) X v an 15.73 6.72

4.3.1 ANALYSIS OF ARCHITECTURAL COMPONENTS

The results in Table 3] highlight the importance of our two primary architectural innovations. Re-
moving the Hierarchical Guidance (HG) decoder (Row 2 vs. Row 1) leads to a notable performance
drop, which confirms the value of our knowledge-informed design. By decomposing the problem
into an “easy-to-hard” sequence, the architecture is effectively regularized, improving localization
robustness.

The impact of the KAN-Enhanced Head is even more pronounced. Replacing the KAN Head with
a conventional predictor (Row 3 vs. Row 1) results in a substantial degradation, especially in the
clinical APD metric (from 4.99° to 5.81°). To understand why, we visualize a representative spline
activation function learned by our KAN-Head in Figure[d] Unlike the fixed, piece-wise linear ReLU
function, our KAN head learns a smooth, highly non-linear mapping. This demonstrates its superior
expressive power to capture the complex relationships between features and heatmap values, which
is critical for high-precision localization.

KAN Learned Activation vs. ReLU (Dual Y-Axis)

== Learned KAN Func (In[4] -> Out[4]) . 2.00
===+ RelU Function /

)
N
S

0.245

0.240

KAN Output (In[4]->0ut[4])
ReLU Output

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Input Activation

Figure 4: Visualization of a representative spline activation function learned within our KAN-
Enhanced Head, compared to the fixed ReLU function. The learned function exhibits a smooth,
highly non-linear behavior, demonstrating its superior expressive capability over standard fixed ac-
tivations.

4.3.2 THE CRITICAL ROLE OF SELF-SUPERVISED REPRESENTATION

The most significant performance drop is observed when ablating our two-stage learning paradigm.
By replacing the MAE pre-trained ViT backbone with a standard CNN-only backbone (Row 5 vs.
Row 1), the MRE deteriorates sharply by 1.28 pixels to 15.73, and the APD worsens to 6.72°. This
result provides unequivocal evidence that our in-domain, self-supervised pre-training strategy is the
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most critical factor for success, building a powerful and domain-adapted feature foundation upon
which our architectural innovations can thrive. In summary, the ablation study confirms that all
three components are essential and synergistic contributors to the overall success of the KAN-Semi
framework.

4.4 QUALITATIVE RESULTS

To provide a more intuitive understanding of our model’s robustness, Figure [5] presents a visual
comparison of landmark detection results on two particularly challenging cases from our test set.
We compare our full KAN-Semi model against our strongest fully-supervised baseline, ConvNeXt-
Unet.

The top row showcases a case with severe acoustic shadowing that obscures a significant portion
of the fetal head. The baseline model is visibly distracted by this artifact, erroneously placing the
fetal head landmark far from the ground truth. In contrast, our KAN-Semi model, likely benefiting
from the robust representations learned during in-domain MAE pre-training, successfully ignores
the artifact and provides a precise localization.

The bottom row presents a case with low overall contrast and indistinct tissue boundaries around the
pubic symphysis. The baseline model struggles with this ambiguity, resulting in noticeable errors
for all three landmarks. Our model, however, demonstrates superior resilience to the poor image
quality, with its predictions closely aligning with the ground-truth annotations.

These qualitative examples visually corroborate the quantitative results from our main experiments.
They highlight our framework’s enhanced robustness in clinically realistic scenarios, demonstrating
its ability to overcome common challenges like image artifacts and low signal-to-noise ratios where
strong baseline models may fail.

Ours vs. GT

Ground Truth . Ground Truth
Baseline % Ours

Baseline vs. GT

Ground Truth

Figure 5: Qualitative comparison on challenging cases from the test set. For each case (row), we
show the original image, the predictions of our strongest baseline (ConvNeXt-Unet, ), and the
predictions of our KAN-Semi model (X), all overlaid with the ground truth (@).
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript and the accompanying source code, we utilized a large language
model (LLM), specifically a version of Google’s Gemini Pro, as a general-purpose assistive tool. In
accordance with ICLR 2026 policy, the usage of the LLM was confined to the following aspects.

1. Writing Assistance and Polishing. The LLM was employed to aid in the drafting and refine-
ment of the manuscript’s text. This included tasks such as improving sentence structure, ensuring
grammatical correctness, rephrasing for clarity, and checking for consistency in style across differ-
ent sections. For example, initial drafts of technical descriptions were collaboratively refined with
the LLM to enhance their readability and formal academic expression.

2. Literature Retrieval and Discovery. The LLM served as an advanced search tool to help
identify relevant prior work and contextualize our contributions. For instance, it assisted in finding
foundational papers for concepts like Masked Autoencoders and Kolmogorov-Arnold Networks, and
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helped identify recent, high-performance baseline models for comparison. This process acted as a
supplement to our own comprehensive literature review using traditional academic search engines.

3. Code Refinement and Debugging. The LLM was also used to assist with code development.
Its role included helping to refactor certain code blocks for better readability and efficiency, sug-
gesting alternative implementations for specific functions, and assisting in debugging by identifying
potential errors or suggesting troubleshooting steps.

It is important to emphasize that all core scientific contributions—including the initial research
ideation, the design of the KAN-Semi framework’s core logic, the implementation of the overall
experimental pipeline, the execution and final analysis of experiments, and the conclusions drawn—
were conducted entirely by the human authors. The LLM’s role was strictly that of an assistive tool
for writing, information retrieval, and code refinement. The authors take full responsibility for all
content presented in this paper, including the correctness of the source code, the accuracy of the
technical claims, and the validity of the experimental results.

A.2 CODE AND REPRODUCIBILITY

The complete source code for our KAN-Semi framework is provided as supplementary material to
facilitate the verification of our results and to ensure reproducibility. The implementation includes
both core stages of our methodology: the MAE-based self-supervised pre-training and the semi-
supervised fine-tuning. Detailed instructions for environment setup, data preparation, and execution
of the training pipeline are available in the accompanying README . md file.
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