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Figure 1. C3Editor: Controllable Consistent 2D Model for 3D Editing. Top: Our C3Editor method generates consistent 2D editing
results across different views by following the original 3D scene, editing text, and user guidance, thereby supporting improved 3D editing
performance. Bottom: Comparison of 2D and 3D editing results between baseline and C3Editor.

Abstract

Existing 2D-lifting-based 3D editing methods often en-
counter challenges related to inconsistency, stemming from
the lack of view-consistent 2D editing models and the diffi-
culty of ensuring consistent editing across multiple views.
To address these issues, we propose C³Editor, a control-
lable and consistent 2D-lifting-based 3D editing frame-
work. Given an original 3D representation and a text-based
editing prompt, our method selectively establishes a view-
consistent 2D editing model to achieve superior 3D editing
results. The process begins with the controlled selection of a

*Work done during internship at UC San Diego.

ground truth (GT) view and its corresponding edited image
as the optimization target, allowing for user-defined man-
ual edits. Next, we fine-tune the 2D editing model within
the GT view and across multiple views to align with the
GT-edited image while ensuring multi-view consistency. To
meet the distinct requirements of GT view fitting and multi-
view consistency, we introduce separate LoRA modules for
targeted fine-tuning. Our approach delivers more consis-
tent and controllable 2D and 3D editing results than exist-
ing 2D-lifting-based methods, outperforming them in both
qualitative and quantitative evaluations.
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1. Introduction
The remarkable success of 2D generative models [2–4, 8,
18, 23, 41, 43, 45] has spurred rapid advancements in the
field of generation, leading to successful applications in
related areas such as editing tasks [1, 6, 16, 21, 29, 34].
Leveraging the superior performance of 2D models as pri-
ors also has become a popular approach in 3D tasks [12, 25,
30, 39, 44, 46]. Given the scarcity of real-world 3D data
and the high cost of training, utilizing pretrained 2D mod-
els as guidance offers a promising solution. For example,
2D-lifting-based 3D editing methods [15] use a 2D edit-
ing model [6] to obtain edited images from different view-
points, which are then used to update the original 3D repre-
sentation.

However, directly transferring 2D priors to the 3D do-
main presents certain challenges, such as the issue of view-
point consistency [32]. Since 2D models lack view informa-
tion and 3D awareness, conflicts between views may arise
when applied to 3D tasks. In 3D editing tasks, directly us-
ing edited 2D images that lack consistency across views can
lead to errors in 3D editing. Some approaches attempt to
address this by constructing external datasets [26, 27, 37].
However, addressing the view inconsistency problem in 3D
editing remains challenging. The training process requires
datasets containing consistent editing text, original 2D im-
ages, and edited 2D images across multiple views, which
are difficult to obtain. One viable approach is to designate
the edited result of one specific view as the ground truth
(GT) and, leveraging the generalization ability of the 2D
model, gradually adapt other viewpoints to match this view-
point, achieving internal consistency across views.

Additionally, text-based editing inherently supports di-
versity, but current 2D-lifting-based 3D editing methods
suppress this diversity by uniformly processing different 2D
editing results [10, 13–15]. Our goal is to allow for the
controllability of optimization directions, enabling the 3D
editing results to express more possibilities and better align
with human intent.

In response, we propose C3Editor, a controllable and
consistent 2D-lifting-based 3D editing method. Given an
original 3D scene and an editing text prompt, we aim
to obtain a view-consistent 2D editing model selectively,
thereby achieving improved 3D editing results. By select-
ing a GT view and its corresponding edited image as the
optimization target, our approach stabilizes the GT view’s
editing results and then progressively enforces consistency
across different views through view propagation. Further-
more, we introduce separate LoRA modules to fine-tune the
model, addressing the unique requirements of GT view fit-
ting and multi-view consistency separately. This structured
approach ensures that the 2D editing model achieves co-
hesive 3D editing results across all views, enhancing both
visual consistency and user controllability.

In summary, our contributions are as follows:

• We develop a view-consistent 2D editing model based
on the original 3D representation and an editing text
prompt, facilitating enhanced 3D editing outcomes. This
approach effectively bridges the gap between 2D and 3D,
as well as between original and edited representations.

• Our controllable 3D editing method allows users to select
a ground truth (GT) edited image and manually adjust it
to produce consistent 3D editing results across views.

• Our C3Editor method mainly focuses on two aspects:
Intra-GT and Inter-view. We specifically design GT se-
lection and intra-GT Loss methods to ensure stable GT
fitting, followed by view propagation and inter-view loss
for view consistency. Different LoRAs serve separate
consistent purposes. Qualitative and quantitative exper-
iments demonstrate the effectiveness of C3Editor.

2. Related Work

2.1. Diffusion Model and Fine-tuning

Diffusion models [18, 35] have become powerful tools in
generative tasks due to their unique approach of iteratively
refining data from noise, allowing for precise control over
the generation process. These models learn data distribu-
tions through a diffusion process that gradually adds and
then reverses noise, effectively modeling complex data pat-
terns in images, audio, and even text. Because of their
robust performance, diffusion models are widely applied
in tasks [12, 25, 30, 38–40, 42] such as image synthe-
sis, inpainting, super-resolution, and conditional genera-
tion, where they can generate or manipulate visual content
based on additional inputs, such as text prompts, segmenta-
tion maps, or depth maps. This versatility makes them par-
ticularly valuable for tasks requiring high-quality, detailed
outputs and subtle adjustments.

Fine-tuning diffusion models is essential for adapting
them to specific tasks or datasets. Through targeted fine-
tuning, diffusion models can be optimized to perform con-
trolled edits, match stylistic demands, or generalize to
new domains beyond their original training data. Tech-
niques such as low-rank adaptation (LoRA) [20] and other
parameter-efficient tuning methods [19, 24, 28] allow for ef-
fective customization by focusing on updating key parts of
the model while keeping the core structure intact. This ap-
proach is especially useful when integrating diffusion mod-
els as priors in cross-domain applications, where maintain-
ing high fidelity across varying views is critical. Fine-tuning
thus enables diffusion models to meet specialized genera-
tive requirements, ensuring they maintain both visual qual-
ity and flexibility across diverse tasks.
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2.2. Diffusion-based 2D Editing

Diffusion-based 2D editing techniques [1, 6, 16, 21, 29, 34]
have revolutionized the field of image manipulation by
leveraging the denoising diffusion process to transform
noise into structured visual representations. In these mod-
els, editing is performed iteratively, where each step refines
the image by reversing the noise and generating realistic
features, allowing for adequate control over the level and
type of modifications applied.

The key advantage of diffusion-based 2D editing lies in
its ability to use conditional inputs, like text prompts or seg-
mentation maps, to guide the editing process. For exam-
ple, Instruct-Pix2Pix [6] can interpret prompts to modify
colors, add textures, or alter structures while maintaining
the coherence of the image. These models can learn data
distributions that align with specific editing goals, making
them versatile across diverse applications. By fine-tuning
or adjusting model parameters, diffusion models can also
be specialized for specific editing tasks, allowing them to
adapt to particular styles or constraints required by the user.
This combination of iterative refinement, conditional con-
trol, and adaptability has made diffusion-based 2D editing a
powerful tool in modern image generation and editing tasks.

2.3. 2D-lifting-based 3D Editing

Recent advancements in 3D editing have increasingly inte-
grated diffusion-based 2D editing models, leveraging their
established capabilities to enhance 3D workflows [7, 9, 10,
13–15]. These models, originally designed for detailed
image modifications, contribute to 3D editing by transfer-
ring their proficiency in nuanced, high-quality adjustments
to three-dimensional representations. Methods like Neural
Radiance Fields (NeRF) [31] and 3D Gaussian Splatting
(3DGS) [22] incorporate 2D editing models to improve the
consistency and detail of 3D content.

By using 2D diffusion models as priors, recent ap-
proaches enhance the fidelity and stylistic consistency of
3D edits, especially in maintaining coherence across mul-
tiple views. Some works, such as DGE [11], combine
images from different viewpoints into videos for process-
ing. A primary challenge in this domain remains ensur-
ing multi-view consistency, as traditional 2D-based edits
applied to 3D models often lead to discrepancies between
perspectives. Some methods, such as ConsistDreamer [10],
model 3D-aware consistency by means of constraints like
neural feature alignment or volume-based feature consis-
tency. This has provided inspiration for our work. How-
ever, since it is not open-sourced, it is impossible to make a
comparison for now. We compare our method with NeRF-
based Instruct-NeRF-to-NeRF [15], ViCA-NeRF [14], and
GS-based GaussianEditor [13].

3. Method

3.1. Overview
Given a 3D representation Φ (e.g., 3D GS), a text prompt
for editing y, and the original 2D editing model ΘO (like
Instruct-Pix2Pix [6]), the goal of our method is to process
ΘO to obtain ΘC that is related to y and ensures multi-view
consistency, thereby achieving improved 3D editing results.
In Sec. 3.2, the ground truth (GT) view vgt and GT edited
image Ievgt are manually selected from the 2D editing results
Iev of different views v, rendered by ΘO, which serve as the
optimization target. In Sec. 3.3, we optimize ΘO with a
specifically designed intra-GT loss to fit Ievgt . We maintain
global consistency through the view propagation method
and inter-view loss described in Sec. 3.4. In Sec. 3.5, we
introduce different LoRAs for different fine-tuning objec-
tives to separately fine-tune the diffusion model.

Using ΘC obtained, each view v in V undergoes a com-
plete editing process, producing consistent view-editing re-
sults Iev . Considering the gradient storage issues in fine-
tuning the diffusion model, each complete editing process
includes 5 diffusion denoising steps, which achieves a good
trade-off between GPU memory limits and editing quality.
The final 3D editing result is obtained by updating the orig-
inal 3D representation Φ with the edited results of all views
Iev . We adopt 3D Gaussian Splatting (3D GS) as our 3D
representation due to its efficient training speed and ex-
cellent rendering quality. We adopt widely used Instruct-
Pix2Pix [6] as our diffusion-based pre-trained 2D editing
model, for its outstanding performance in 2D editing tasks.
The method for updating 3D GS is consistent with that in
GaussianEditor. The detailed process is illustrated in Fig. 2.

3.2. Controllable Optimization Direction
The independent 2D editing processes of different views v
lead to different editing results. To avoid view conflicts in
3D editing, we select the editing result Ievgt

from a specific
view vgt as the optimization direction. In subsequent opera-
tions, the 2D editing model will use this GT as a reference to
edit images from other views, thereby preventing conflicts
in the 3D editing process.

As shown in Fig. 2 Phase 1, for each view v, an inde-
pendent editing process is performed, resulting in different
editing outcomes Iev . User then selects a specific view and
its corresponding edited result as the GT view vgt and GT
edited image Ievgt , setting the target optimization direction.
Different choices of view and edited results lead to differ-
ent optimization directions, and consequently, varying final
3D editing outcomes, which are shown in Sec. 4.3. There-
fore, this selection should follow certain guidelines, such
as choosing results of higher editing quality and selecting a
more central view. Based on these guidelines, the user can
choose their desired optimization direction.
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Figure 2. C3Editor Method Pipeline. Given a 3D representation Φ, a text prompt for editing y, and the original 2D editing model ΘO , our
method aims to process ΘO to obtain ΘC that is related to y and ensures multi-view consistency, thereby achieving improved 3D editing
results. Phase 1: Controllable optimization direction selecting and manual editing in Sec. 3.2. Phase 2: Intra-GT prior fitting in Sec. 3.3
to fit the GT information. Phase 3: View propagation and inter-view consistent construcing in Sec. 3.4. Details of LoRA modules for
separate fine-tuning are in Sec. 3.5.

For the obtained GT image Ievgt , users can directly use
it as is. However, if there are any unsatisfactory elements,
users can make manual edits according to their preferences.
They can utilize image editing tools such as Photoshop to
modify the image content, then set the edited image as the
GT image Ievgt for the model. The GT view and edited re-
sult are then used to guide the subsequent 2D editing model
fine-tuning process, ensuring that the 2D model can achieve
controllable editing results across all views.

3.3. Intra-GT Prior Fitting

With the optimization direction established, the next step is
to train the 2D diffusion model to fit the GT image. Adjust-
ments to the 2D diffusion model are divided into two parts:
intra-GT and inter-view adaptation. In this section, we need
to make the 2D model fit the chosen optimization direction
Ievgt on the GT view vgt, aiming to establish a foundational
intra-view editing stability on the GT view vgt.

As shown in Fig. 2 Phase 2, we freeze the 3D represen-
tation and add LoRA modules to the diffusion model for
fine-tuning. The edited image Ievgt is used as the GT. An
independent, complete editing process is performed on the
rendered image Irvgt of vgt to obtain an edited image Ie

′

vgt
that differs from the GT image Ievgt . Compute the loss be-
tween Ie

′

vgt and Ievgt , back-propagate, and update the LoRA.
The loss Lintra consists of two parts: the L1 loss and per-

ceptual loss between Ie
′

vgt and Ievgt .

Lintra = λ1L1(I
e′

vgt , I
e
vgt) + λ2LPerceptual(I

e′

vgt , I
e
vgt) (1)

Through multiple iterations of this process, the fine-
tuned 2D diffusion model acquires a certain fitting capabil-
ity for the GT image, while also improving editing stability
for the same view, achieving similar results across different
editing processes.

3.4. View Propagation and Inter-view Consistency
After Sec. 3.3, the 2D editing model can only fit Ievgt on vgt,
with limited generalization ability, and has limited consis-
tency in editing effects for views that differ significantly. If
the current 2D model is used directly as the prior, it can only
maintain consistent editing for vgt and views nearby, while
its performance on more distant views remains uncertain.
Therefore, in this section, we introduce additional methods
to ensure consistent editing across all views. We leverage
the interrelations between viewpoints to enable the 2D dif-
fusion model to achieve consistent editing across all views
gradually.

As shown in Fig. 2 Phase 3, specifically, we sort the
views as a sequence S by their distance of camera center
points from vgt, from closest to farthest, and then perform
fine-tuning of the 2D diffusion model on each view in S
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Figure 3. Comparison of Qualitative Results. Compared to baseline methods, C3Editor can generate view-consistent 2D images, avoiding
inter-view conflicts (highlighted in blue) and erroneous 2D edits (highlighted in red), thereby achieving better 3D editing results.

other than vgt. v0 in the sequence represents vgt. We per-
form a 2D editing process on each view vi with the index
i ∈ {1, 2, . . . , j, i, . . . , n − 1} in the sequence separately.
The resulting image Ievi serves as the GT image for vi. Next,
an independent 2D editing process is applied to this view,

and another edited image Ie
′

vi is obtained. The loss Linter

comprises three parts: loss 1 between the edited image Ie
′

vi

and the GT image Ievi
, loss 2 between Ie

′

vi and Ievj of the clos-
est processed view vj , loss 3 between Ie

′

vi and Ievgt . Linter is
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as follows:

Linter =λ3L1(I
e′

vi
, Ievi) + λ4LPerceptual(I

e′

vi , I
e
vi)︸ ︷︷ ︸

loss 1

+ λ5LPerceptual(I
e′

vi , I
e
vj )︸ ︷︷ ︸

loss 2

+ λ6LPerceptual(I
e′

vi , I
e
vgt)︸ ︷︷ ︸

loss 3

(2)

Linter is back-propagated, and LoRA is used to fine-tune
the diffusion model. After this process, we reverse the se-
quence S and repeat the above steps until reaching vgt. The
generalization capability gradually expands from the vgt to
encompass all views.

3.5. Separate Fine-tuning
To prevent the loss of GT information during the inter-view
fine-tuning process, we design two LoRAs, each serving
different fine-tuning goals. The fine-tuning of the 2D Edit-
ing model ΘO is divided into two main aspects: LoRAgt for
fitting the GT view image Ievgt , and LoRAmv for ensuring
consistency across different views. The inference process
takes place in Sec. 3.2 and Fig. 2 Phase 1, with no train-
able model parameters. In Sec. 3.3 and Fig. 2 Phase 2, we
use LoRAgt to fine-tune ΘO while keeping LoRAmv frozen.
After this step, LoRAgt helps the ΘO fit Ievgt . In Sec. 3.4
and Fig. 2 Phase 3, we freeze LoRAgt and use LoRAmv to
fine-tune ΘO. During the separate fine-tuning process, the
model uses the GT information obtained by LoRAgt and
leverages LoRAmv to achieve global consistency.

4. Experiments
4.1. Implementation Details
Our method builds on the advanced 2D-lifting-based 3D
GS Editing Method, GaussianEditor [13]. Specifically, we
use 3D GS [22] as the 3D representation and the widely-
used Instruct-Pix2Pix [6] as the diffusion-based 2D edit-
ing model. All experiments were conducted on a single
NVIDIA RTX A6000, with the fine-tuning process tak-
ing 1 minute in total. We use MipNeRF-360 [5] and
Instruct-NeRF-to-NeRF dataset [15] to measure the perfor-
mance of our method. The MipNeRF-360 dataset contains
360-degree views of 3D scenes, while the Instruct-NeRF-
to-NeRF dataset contains 3D scenes. We use the CLIP-
Score [47] (image-text and image-image) as the evaluation
metrics. The former measures the similarity between 3D
edited results and editing text, while the latter measures the
similarity between 2D images produced by the 2D editing
process. A higher score indicates greater editing quality and
view consistency. We also use the Fréchet Inception Dis-
tance (FID) [17, 36] between original rendered images and

edited results to evaluate the quality of 3D editing. A lower
FID score indicates higher image quality.

For each scene and editing text, we perform unique train-
ing to obtain the corresponding 2D editing model. Follow-
ing the same approach as GaussianEditor, we first use Gaus-
sian Semantic Tracing [13] to generate a mask of the edit-
ing target within the 3D GS. We then follow the processing
steps outlined in Sec. 3 to obtain a 2D editing model with
view consistency. This model serves as the 2D prior, achiev-
ing the final 3D editing result. For further details on the 3D
editing process, please refer to GaussianEditor [13].

The hyperparameters are set as follows: 30 iterations for
Lintra updates, and 3 iterations for Linter updates. We set
λn=1. For the two LoRA modules, we use the AdamW op-
timizer with the following settings: r = 4, LoRA alpha =
4, init LoRA weights=”gaussian”, lr = 10−4, betas =
(0.9, 0.999), weight decay = 10−2, eps = 10−8.

4.2. Comparison with Baselines
Qualitative Comparison. Fig. 3 illustrates the qualita-
tive results of our method. Compared to NeRF-based
Instruct-NeRF-to-NeRF [15], ViCA-NeRF [14], and GS-
based GaussianEditor [13] methods, our approach demon-
strates superior consistency in both 2D and 3D editing.
With the editing texts of the face scene, such as “Turn him
into Batman” and “Turn his face into a skull”, our method
addresses inconsistency issues encountered by baseline
methods, achieving accurate edits on facial features. In nat-
ural scenes, like the bonsai scene, our approach produces
improved editing results compared to baseline methods, ex-
celling in color and other details. This improvement is due
to the fact that current 3D editing techniques using 2D edit-
ing models as priors often encounter inconsistencies dur-
ing 2D editing, leading to issues such as inter-view incon-
sistency (highlighted in the blue boxes) and editing errors
(highlighted in the red boxes), which result in inaccurate or
incomplete 3D edits. Our method, however, achieves con-
sistent 2D editing results, leading to accurate 3D edits. For
more qualitative results, please refer to the following sec-
tions and supplementary materials.

Method GaussianEditor C3Editor (Ours)

Image-Text CLIP-Score (↑) 24.18 25.21

Image-Image CLIP-Score (↑) 84.20 87.46

FID (↓) 112.21 89.95

Time Difference Avg 56s more than GaussianEditor

Table 1. Comparison of Quantitative Results. Our method sur-
passes the baseline method on all of the three metrics.

Quantitative Comparison. As shown in Tab. 1, we
use CLIP-Score [47] (image-image and image-text) and
FID [17, 36] as the metrics for quantitative evaluation.

6



Specifically, we calculate the CLIP-Score between images
from edited 3D results and editing text. A higher score in-
dicates better editing loyalty. Our method achieves a higher
CLIP-Score, demonstrating the improved quality of our 3D
editing results. We also calculate the CLIP-Score within
the 2D images produced by the editing process. A higher
score indicates greater similarity between edited 2D images,
thus representing stronger view consistency. Our method
achieves a higher CLIP-Score, demonstrating the view con-
sistency of our editing approach. The lower FID score of
our method indicates better image quality in the 3D editing
results. Our method outperforms GaussianEditor in both
qualitative and quantitative evaluations, showcasing the ef-
fectiveness of our approach in achieving controllable and
consistent 3D editing results.

4.3. Controllable Editing

GT Edited

Image

2D Editing

3D Editing

(1) (2)

“Make the bike red and blue”

Figure 4. Controllable Editing Results with Different GT Se-
lections. In C3Editor, users can decide the optimization direction
by selecting the GT edited image they prefer.

Controllable GT Selection. With different selections of the
GT edited image, our method can achieve the correspond-
ing editing results. As shown in Fig. 4, given the editing
prompt “Make the bike red and blue”, the pre-trained 2D
editing model can produce different outcomes. In Fig. 4 (1),
the wheels are edited to blue while the entire bike frame is
edited to red. In Fig. 4 (2), the wheels are also blue, but
only part of the frame is edited to red. Using our method,
the obtained 2D editing model can edit images from other
views to produce the corresponding 3D editing result.

The 2D editing process inherently allows for diverse out-
comes, and our controllable GT selection effectively sup-
ports this diversity, enabling results that better align with
user intentions. By allowing targeted selection of the GT
image, our approach minimizes 3D editing errors that may
arise from inaccuracies in 2D editing, thus enhancing the
precision and stability of the final editing outcome.
Manual GT Editing. Furthermore, users can manually edit

GT 

Edited 

Image

2D

Editing

3D

Editing
Manual

Editing

Figure 5. Controllable Editing Results with Manual Editing.
In C3Editor, users can edit the GT manually and obtain the corre-
sponding 2D and 3D editing results.

the GT image according to their preferences. As shown in
Fig. 5, for the editing prompt “Make the bike red and blue”,
we modify the original edit to turn the front wheel of the
bike red. Using this manually edited image as the GT im-
age Ievgt , we proceed with the subsequent steps. The final
2D and 3D editing results maintain consistency with the
GT image and exhibit view consistency. Our method of-
fers users a manual editing option, enabling them to correct
2D editing results and align the model’s output with human
intent. This feature introduces an additional dimension of
controllable generation, allowing for enhanced customiza-
tion and adaptability in the editing process.

4.4. Ablation Study

w/o View 

Propagation

w/ View 

Propagation

“Turn him into Albert Einstein”

Figure 6. Ablation Study on View Propagation. View propaga-
tion helps obtain more view-consistent results than the GT view.

Effectiveness of View Propagation. We conduct ablation
experiments to evaluate the effectiveness of view propaga-
tion. As shown in Fig. 6, after fine-tuning the 2D diffusion
model based on the GT image Ievgt , we sort one set of views
in order based on their camera center distance to the GT
view vgt and another set in random order. We then pro-
ceed with subsequent steps under these different viewpoint
orders. It can be observed that without view propagation,
the 2D diffusion model could not achieve fully consistent
results. However, with view propagation, the consistency
significantly improved. This is because, once the model is
fitted to the GT, it gains the ability to produce stable outputs
for the GT. It also exhibits a certain level of generalization
for viewpoints close to the GT camera position. However,
for more distant viewpoints, due to the large gap between
input images Irv , it is unable to achieve a consistent editing
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result.

Method LoRA LoRAgt + LoRAmv

Image-Image CLIP-Score (↑) 87.03 87.46

Table 2. Ablation Study on Separate Fine-Tuning. Using differ-
ent LoRAs to separately fine-tune the diffusion model can achieve
better performance on view consistency.

Effectiveness of Separate LoRA Fine-tuning. We also
conduct ablation on the design of LoRA. As shown in
Tab. 2, we compare results obtained using only a single
LoRA with those achieved using different LoRAs for fine-
tuning different parts. We use the image-to-image CLIP-
Score as the evaluation metric. It is observed that when
using two LoRAs for fine-tuning different components, our
method produces better results. This is because fine-tuning
the diffusion model on the same LoRA can cause distur-
bances to the previously acquired GT information during
subsequent viewpoint fine-tuning, thereby reducing inter-
view editing consistency.

5. Visualization

“Turn him into a clown” “Turn him into Hulk”

Ours

GaussianEditor

Origin

Ours

GaussianEditor

Origin

Figure 7. Visualization of Original and Edited Image Features.
Features of edited images obtained by C3Editor are more concen-
trated than the baseline model.

Visualization of Rendered and Edited Image Features.
We visualized the image features resulting from our edits
in Fig. 7. Each point in the figure represents an image af-
ter feature extraction and dimensionality reduction. Each
2D image was feature-extracted using CLIP ViT-B/32 [33],
followed by PCA for dimensionality reduction, and these
features were plotted as 2D scatter plots and density plots.
In the figures, blue represents images generated by our
method, gray represents those generated by the baseline
method, GaussianEditor, and red represents the original ren-
dered images. The editing prompt on the left is “Turn him
into a clown,” while on the right, it is “Turn him into Hulk.”
As shown, the features of the 2D edited images produced by
our method are more concentrated than those from the base-
line method, indicating that our method achieves stronger

view consistency, nearly matching the original images’ con-
sistency. Additionally, the features generated by our method
show almost no outliers or points that are confused with the
original image features, demonstrating that our approach
avoids the erroneous edits seen in the baseline method. Our
method not only improves the consistency of the generated
images but also reduces the occurrence of incorrect edits.

Diffusion Denoising Process

Loss

Figure 8. Visualization of Loss Change During Intra-GT Prior
Fitting. The loss gradually decreases as the iterations progress, in-
dicating that the fine-tuning process effectively stabilizes the edit-
ing results for the GT view.

Visualization of Intra-GT Prior Fitting. Fig. 8 illus-
trates the change in Lintra during the Intra-GT Prior Fitting
phase. In this process, our goal is for each independently
performed diffusion denoising process on the GT view to
approximate the GT edited image. As shown in the figure,
the loss gradually decreases as the iterations progress. This
indicates that the fine-tuning process effectively stabilizes
the editing results for the GT view, consistently producing
outputs close to the GT edited image. At this phase, the 2D
editing model increasingly captures the GT information and
achieves stable editing on the GT view.

6. Conclusion

In this paper, we propose C3Editor, a controllable and con-
sistent 2D-lifting-based 3D editing method. Our approach
creates the specific 2D editing model to assist in achiev-
ing view consistency and controllable 3D editing results.
Qualitative and quantitative evaluations demonstrate that
our method outperforms baseline methods in both 2D and
3D results.
Limitations. Our method still has certain limitations. For
instance, a unique 2D editing model must be trained for
each specific scene and editing prompt. Meanwhile, the
3D optimization process may also result in the outcome
not being fully consistent with the GT edited image. In
the future, we aim to enhance the generalization capabili-
ties of the editing model and move towards developing a
truly generic multi-view 3D editing model.
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