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Abstract—Neural architecture search (NAS) has received a
lot of attention since the development of deep neural networks
(DNNs) in various scientific and application fields. By learning
the relationship between neural network architectures and their
corresponding performance, the performance predictor which
plays a critical role in the NAS methods exactly improves
the efficiency. However, the efficiency of performace predictors
mainly depends on the training approaches of performance
predictors and the encoding approches of neural network ar-
chitectures. In this paper, we propose a hybrid encoding-based
predictor building upon two computation-aware encodings with
different training approaches. It trains a generative module by
unsupervised learning to better encode architectures and a graph
flow module by supervised learning to reduce the cost of evaluated
architectures, which are beneficial to the search for the optimal
architecture representation in the latent space. Additionally, an
evolutionary neural architecture search method (HEP-ENAS) is
proposed to efficiently explore the promising architectures by
applying the hybrid encoding-based performance predictor to the
covariance matrix adaptation evolution strategy (CMA-ES). A
series of experiments conducted on NAS-Benmarks demonstrate
the benefits of hybrid encoding-based predictor for searching for
the optimal architecture in the latent space and the effectiveness
of HEP-ENAS compared with popular NAS methods.

Index Terms—Neural architecture search, evolutionary algo-
rithm, predictor-based search, deep generative model, hybrid
encodings.

I. INTRODUCTION

Due to the versatile capabilities of automatic neural net-
work design, neural architecture search (NAS) has widely
applied to many scientific and application fields such as
image classification, object detection, and natural language
processing [1]–[3]. However, NAS is time-consuming if it has
to train and evaluate numerous architectures to acquire their
absolute performance. More critically, the occasional incorrect
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orientation of traditional search algorithms also reduce the
efficiency of NAS methods. To overcome these challenges,
performance predictors are proposed to learn the relationship
between neural architectures and corresponding performance
indicators, so that the performance indicators of neural archi-
tectures can be acquired by predictors without training the
neural architectures from scratch. It has been demonstrated
that the performance predictor plays a critical role in NAS to
accelerate the search process and improve the performance of
final searched architectures.

Considerable researches have developed various predictors
to guide the search process into the promising area or estimate
the performance of candidate architectures. The efficiency of
these predictors greatly depends on the training approaches of
performance predictors and the encoding methods of neural
network architectures. The training approaches of performance
predictors are mainly divided to two types, i.e., training-free
approaches and training-based approaches.

Training-free predictors such as ProxyBO [4] aim to predict
the performance of neural architectures without training pro-
cess. However, training-free predictors usually perform well
on some certain architectures only. Training-based predictors
commonly consist of an encoder module and a regressor
module. The encoder module maps the neural architectures
into architectural feature encodings, and the regressor module
predicts the performance of neural architectures based on the
architectural feature encodings. Once the training process is
completed, training-based predictors can efficiently predict
the scores of candidate neural architectures, and significantly
accelerate the search process of NAS. Additionally, CTNAS
[5] has shown that the ranking of candidate architectures based
on the prediction scores is comparatively easier than predicting
precise performance indicators of candidate architectures in
the predictor-based NAS.

Encoding methods are particularly important in the
prediction-based NAS due to its great impact on the effec-
tiveness of performance predictors. The encodings of neural



Fig. 1. The overview of the proposed hybrid encoding-based performance predictor.

network architectures can be mainly divided to four cat-
egories, i.e., structure-aware encodings, score-aware encod-
ings, computation-aware encodings and others. structure-aware
encodings commonly treat the architectures as the directed
acyclic graphs (DAGs) represented by the adjacency and
operation matrices. Some structure-aware encodings repre-
sent architectures by converting the adjacency and operation
matrices into special vectors. Adjacency encodings and path
encodings are two typical structure-aware encodings [6]. The
adjacency encodings concatenate the adjacency matrix with a
list of operation labels, or a list of indices of possible edges
(the flattened adjacency matrix) with the list of operation labels
to represent architectures. The path encodings utilize a set of
paths from input node to output node within the architecture
DAGs to represent architectures, and each path is denoted by a
one-hot vector or a categorical feature. Score-aware encodings
use a vector to measure the indicators of architectures such as
activations, gradients and properties. Zero-cost proxies (ZCPs)
[4], which is a common type of score-aware encodings, is
usually used to predict the accuracy of neural architectures.
Since its easily accessible characteristics, zero-cost proxies
usually are applied in training-free predictors. Its goal is to
find the relationship between the architectural features and
the architectural performance indicators. Although there are
no explicit structure information of neural architectures in
zero-cost proxies, zero-cost proxies still implicitly contain the
related architectural properties. Computation-aware encodings
aim to distill the the architectural structure information related
to the performance indicators of architectures through the
computation. There are two types of computation-aware en-
codings, i.e., unsupervised computation-aware encodings and
supervised computation-aware encodings. The unsupervised
computation-aware encodings such as Arch2Vec [14] and D-
VAE [8] map the architectures with different structure infor-
mation but similar performance into the same latent space
region. In addition, the smoothness and continuity of latent
space allow the unsupervised computation-aware encodings
improve the efficiency of the downstream search optimization
algorithms. Different to the unsupervised ones, supervised
computation-aware encodings map the architectures into the
latent space in a supervised learning manner, and they are

continually evolved by sampling new architecture-accuracy
pairs. Owing to the labeled property of supervised learning,
supervised computation-aware encodings exhibit the high pre-
diction performance, but more likely to be limited in the
specific task they are trained. It means the extendibility and
transferability of the predictors using supervised computation-
aware encodings cannot always perform well.

The experiments in FLAN [9] have shown that supervised
computation-aware encodings often out-perform other encod-
ing methods. However, the supervised training process is
expensive due to it requires to train numerous neural architec-
tures, and it is not always feasible to acquire the architectural
performance indicators of sufficient architectures. Compared
to the supervised computation-aware encodings, unsupervised
computation-aware encodings are able to save a significant
amount of computational resources while capturing underlying
architectural information. In this paper, we propose a novel
hybrid encoding-based performance predictor to improve the
sample efficiency of predictors, which combines the super-
vised computation-aware encodings with the unsupervised
computation-aware encodings together. Their combination ac-
celerates the search process in NAS and improves prediction
accuracy of predictors. Furthermore, the hybrid encoding-
based performance predictor is applied to the evolutionary
optimization algorithm to propose a novel evolutionary archi-
tecture search algorithm, i.e., evolutionary architecture search
algorithm with hybrid encoding-based predictor (HEP-ENAS).
The contributions of the paper can be concluded as follows.

• The hybrid encoding-based performance predictor is de-
veloped to better balance the budget between efficiency
and performance of predictors. To demonstrate the ben-
efits, we propose the HEP-ENAS algorithm, which inte-
grates with the hybrid encoding-based performance pre-
dictor to CMA-ES algorithm to search for the promising
architectures in the continuous latent space.

• The experimental results conducted on the NAS-Bench-
101 and NAS-Bench-201 benchmarks demonstrate the
effectiveness of HEP-ENAS. Particularly, HEP-ENAS
achieves better performance than several NAS with dif-
ferent encoding-based predictors.



Fig. 2. The framework of the Transformer-based variational autoencoder encoding module.

Fig. 3. The framework of the Graph flow-based encoding module.

II. THE HEP-ENAS ALGORITHM

NAS aims to automatically design the optimal neural ar-
chitecture with limited resources. This search process can be
formulated as a bi-level optimization problem

max
α∈A

Validation.accuracy(W∗(α), α,Dval)

s.t. W∗(α) = argmin
W(α)

Ltrain(W(α), α,Dtrain),
(1)

where Ltrain is the training loss, W(α) represents the weights
of architecture α. The objective of architecture search problem
is to find the optimal architecture α∗ that maximizes the
validation accuracy on the validation dataset Dval, where the
weights W∗(α) associated with the architecture α are obtained
by minimizing the training loss Ltrain on the training dataset
Dtrain.

Based on (1), NAS contains three important components,
i.e., search space, search strategy and performance evaluation
strategy. Moreover, depending on different optimization algo-
rithms in the search strategy, NAS also can be divided into
several types, such as Bayesian optimization (BO) methods,
reinforcement learning (RL) methods, and evolutionary algo-
rithm (EA) methods. Compared to the BO and RL methods,
the candidate neural architectures are generated from the
mutations and re-combinations of sampled neural architectures
in the EA-based NAS, and the promising architectures with
better performance can be generated in the following regres-
sions. In this papar, HEP-ENAS, which is a novel EA-based
NAS algorithm , is developed with a hybrid encoding-based

performance predictor. The search process of the proposed
HEP-ENAS is shown in Algorithm 1.

A. Hybrid Encoding-based Performance Predictor

As shown in Fig. 1, the proposed hybrid encoding-based
performance predictor is built on the basis of a Transformer-
based variational autoencoder (VAE) encoding module and a
graph flow-based encoding module, which are two diferent
computation-aware encoding modules.

As a deep generative model, Transformer-based variational
autoencoder encoding module utilizes the Transformer as an
encoder to map the neural architectures into the continuous
latent space. The performance of computation-aware encod-
ings mainly depends on the performance of neural architec-
ture encoders. Traditional neural architecture encoders, such
as multilayer perceptron (MLP), long short-term memory
(LSTM) and graph neural network (GNN), limit the archi-
tecture representation ability and computation-aware encoding
effectiveness. Transformer can be used to train a performance
predictor by supervised learning, due to its capability of
feature extraction for graph structure data. On the other
hand, Transformer captures the locality information to ben-
efit encoding the architectures with simliar performance into
the same region. Transformer-based variational autoencoder
encoding module is trained using unsupervised learning to
map the architecture into the latent space and reconstructs the
architectures from latent representations. The generative model
learns a continuous representation z ∈ Z by approximating
the posterior distribution, which is achieved by the Kullback-
Leibler (KL) divergence between the approximate posterior



Algorithm 1: The implement of HEP-ENAS
Input: Search space A, the number of initial samples N , maximum evaluated number M , the initial parameters of

CMA-ES optimizer Wc, the parameters of pretrianed hybrid encoding-based predictor Wp.
1 D ← Randomsample(A,N), F ← Evaluate(D), Dz ← Encode(D).
2 //Random sampling to acquire the initial architectures with the correspending performance and latent representations.
3 while |D| < M do
4 Dzt ← CMA-ES(Dz,Wc);
5 //Sampling the candidate architectures.
6 Szt ← Predictscores(Dzt,Wp);
7 //Predicting the performance scores of the candidate architectures.
8 Dzn ← Topk(Szt, Dzt);
9 Dn ← Decode(Dzn);

10 //Selecting the top-k latent representations and decode them to the corresponding architectures.
11 Fn ← Evaluate(Dn);
12 //Evaluating the architectures to obtain performance.
13 D = D ∪Dn, Dz = Dz ∪Dzn, F = F ∪ Fn;
14 Wc ← UpdateCMA-ES(Dzt, Szt);
15 Wp ← Updatepredictor(D,Dz, F );
16 //Updating the parameters.
17 end

Output: The optimal neural architecture with the corresponding performance indicators.

and the prior distribution. Thus, the training loss is composed
of the architecture reconstruction loss and the Kullback-Leibler
divergence.

Graph flow-based encoding module inspired by GATES
[10] and TA-GATES [11] utilizes the graph-flow mecha-
nisms to capture the local information of architectures. The
Transformer-based variational autoencoder encodings implic-
itly contain the information of architectural context, but may
result in the loss of partial architectural topology informa-
tion. The calculation step by step according to the nodes of
graph flow-based encodings exactly compensates the loss of
architectural information. To encode the architectures, graph
flow-based encodings conduct an iterative process of forward
and backward flows for several times. In each iteration, graph
flow-based encodings updates the embeddings of architectures
based on the backward flows. At the final iteration, the
forward flows will be the outputs of graph flow-based encoding
module.

Considering an architecture α ∈ A, where A is search space,
the computation process of Transformer-based variational au-
toencoder encoding module can be described as

Qli,Kli, Vli = Embedding1(α), (2)

Hli = softmax(Qli,Kli, Vli), (3)

Ĥl = Concat(Hli), (4)

Hl = ReLU(Ĥl,W, b), (5)

where the Qli, Kli and Vli represent the query, key and value
matrices at lth Transformer encoder layer of ith attention head,
respectively, Hli, Hl and Ĥl represent the hidden state, W
is weight matrix and b is bias matrix, the hidden states of

final Transformer encoder layer are latent representations z,
which are the outputs of the Transformer-based variational
autoencoder encoding module.

The computation process of graph flow-based encoding
module can be described as

E0 = Embedding2(α), (6)

FI [1] = EI , (7)

FI [2 : N ] = Propagation(FI [1], EI−1, α), (8)

BI [N ] = Feedback(FI [N ]), (9)

BI [1 : N − 1] = Propagation(BI [N ], EI−1, α), (10)

EI = Update(EI−1, FI , BI), (11)

where EI represents the embeddings of architecture α at Ith
iteration, FI and BI represents the forward flows and the
backward flows, respectively, N is the number of nodes in
an architecture cell.

B. Latent Space Evolutionary Neural Architecture Search Al-
gorithm

From the generative model of Transformer-based variational
autoencoder encoding module, the optimization algorithm can
be applied to search for the optimal architecture in the continu-
ous latent space. The latent space is constructed based on the
multivariate Gaussian distribution. Compared to the discrete
search space, the continuous latent space gathers the promising
architectures to the same region. The CMA-ES algorithm is
chosen as the optimization algorithm to search for the optimal
architecture due to its powerful versatility and applicability.



TABLE I
THE PERFORMANCE COMPARISON ON NAS-BENCH-101.

Encoding methods NAS methods Queries Avg. acc(%)
structure-aware encodings BANANAS [14] 200 94.09
structure-aware encodings NAO [15] 1000 93.74

Unsupervised computation-aware encodings Arch2vec-BO [14] 400 94.05
Unsupervised computation-aware encodings Arch2vec-RL [14] 400 94.10
Unsupervised computation-aware encodings AG-Net [16] 192 94.18
Unsupervised computation-aware encodings SAENAS-NE [17] 150 94.08

Zero-cost proxies ProxyBO [18] 150 94.04
Zero-cost proxies Synflow [19] 150 91.68

− WeakNAS [20] 200 94.18
Hybrid computation-aware encodings HEP-ENAS(ours) 350 94.23

TABLE II
THE PERFORMANCE COMPARISON ON NAS-BENCH-201.

NAS methods Queries CIFAR-10 CIFAR-100 ImageNet16-120
val (%) test (%) val (%) test (%) val (%) test (%)

β–DARTS [21] 11520 91.55 94.36 73.49 73.51 46.37 46.34
PRE-NAS [22] − 91.37 94.04 71.95 72.02 45.16 45.34
ProxyBO [18] − − 91.46 − 73.48 − 47.18

BANANAS [14] 192 91.56 94.30 73.49 73.50 46.65 46.51
Arch2vec-BO [14] − 91.41 94.18 73.35 73.37 46.34 46.27
Arch2vec-RL [14] − 91.32 94.12 73.13 73.15 46.22 46.16

GANAS [23] 444 − 94.34 − 73.28 − 46.80
AG-Net [16] 192 91.60 94.37 73.49 73.51 46.64 46.43

SAENAS-NE [17] 100 91.58 94.34 73.46 73.46 46.59 46.36
HEP-ENAS(ours) 200 91.61 94.37 73.49 73.51 46.60 47.21

Optimal − 91.61 94.37 73.49 73.51 46.77 47.31

TABLE III
THE ABLATION STUDIES ON NAS-BENCH-MARKS.

Dimension size
NAS-Bench-101 NAS-Bench-201

test (%) CIFAR-10 CIFAR-100 ImageNet16-120
val (%) test (%) val (%) test (%) val (%) test (%)

16 94.20 91.59 94.37 73.47 73.51 46.48 47.10
32 94.23 91.61 94.37 73.49 73.51 46.60 47.21
64 94.21 91.61 94.37 73.49 73.48 46.65 47.16

In the Algorithm 1, we use unsupervised learning to pre-
train the Transformer-based variational autoencoder encod-
ing module, which assists to pre-train the graph flow-based
encoding module by supervised learning. When the pre-
training of hybrid encoding-based performance predictor is
completed, the CMA-ES algorithm is employed to explore the
optimal architecture in the continuous latent space. During
the search phase, the hybrid encoding-based performance
predictor will be continuously updated until the evaluated
architecture reaches the maximum evaluated number.

III. EXPERIMENTS

To assess the effectiveness and performance of the proposed
hybrid encoding-based predictor, the HEP-ENAS is evaluated
on the widely used NAS-Benchmarks such as NAS-Bench-
101 [12] and NAS-Bench-201 [13]. The NAS-Benchmarks
commonly consist of the trained and evaluated architectures
with related information, and offer a channel where we can
immediately acquire the performance indicators of architec-
tures without the time cost on training the architectures.

A. Experiments on NAS-Benchmark-101

NAS-Benchmark-101 provides 423k unique architectures
with the corresponding training information on CIFAR-10
classification task such as flops, parameters, accuracy and
training time. NAS-Bench-101 builds the architecture by stack-
ing cells and restricting the search space to a cell. The
cells are defined by DAGs, where the nodes represents the
operations and the adjacency matrix represents the connection
of different operations. For each architecture in NAS-Bench-
101, the maximum number of nodes is set as 7 and the
maximum number of edges as 9, and it has different operations
such as 3 × 3 convolution, 3 × 3 max-pooling and 1 × 1
convolution to choose.

As shown in Table I, we compare HEP-ENAS with several
different encoding-based NAS methods such as structure-
aware encodings, unsupervised computation-aware encodings
and zero-cost proxies. It is evident that HEP-ENAS achieves
the best result on NAS-Bench-101 with the average accuracy
of 94.23%, which is the top 2 on NAS-Benchmark-101.
The results show the effectiveness of the proposed hybrid



encoding-based predictor compared to other encoding-based
NAS methods.

B. Experiments on NAS-Benchmark-201

NAS-Benchmark-201 contains 15K architectures with their
training, validation and test accuracy trained on CIFAR-10,
CIFAR-100 and ImageNet-16-120 datasets. Each architecture
is generated by 4 nodes and 6 operations. The NAS-Bench-
201 provides zero, 3 × 3 convolution, skip connection, 1 × 1
convolution and 3 × 3 average pooling as candidate operations.

To further demonstrate the effectiveness of the proposed
approach, the HEP-ENAS is compared with the encoding-
based NAS methods and several other popular NAS methods
on NAS-Benchmark-201 shown in Table II. The results show
the proposed HEP-ENAS outperforms these methods.

C. Ablation studies

The Transformer-based variational autoencoder encodings
play an essential role in HEP-ENAS. The optimization al-
gorithm search for the optimal neural architecture based on
the Transformer-based variational autoencoder encodings, and
then, the hybrid encoding-based performance predictor utilizes
the Transformer-based variational autoencoder encodings to
acquire the prediction scores. Thus, a series of ablation studies
are conducted on the NAS-bench-marks to investigate the
impact of different dimension sizes of Transformer-based
variational autoencoder encodings on the final performance of
HEP-ENAS. As shown in Talbe III, the dimension size with
32 which is chosen as the default in HEP-ENAS substantially
achieves the optimal performance on NAS-benchmarks.

IV. CONCLUSIONS

In this paper, the hybrid encoding-based performance pre-
dictor is developed to better balance the budget between
efficiency and performance of the predictor-based NAS. The
hybrid encoding-based performance predictor combines the
unsupervised Transformer-based variational autoencoder en-
codings with the supervised graph flow-based encodings to
better encode the architectures and improve the efficiency of
downstream optimization algorithm. Furthermore, the CMA-
ES is employd to search for neural architectures in the continu-
ous latent space with the hybrid encoding-based performance
predictor to improve the search efficiency. The experiments
on NAS-Benchmark-101 demonstrate the effectiveness of the
proposed hybrid encoding-based predictor compared to other
encoding-based NAS methods, and the experimental results on
NAS-Benchmark-201 show competitive final performance of
the proposed HEP-ENAS to several popular NAS methods.
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