
Hierarchical State Space Models
for Continuous Sequence-to-Sequence Modeling

Raunaq Bhirangi 1 2 Chenyu Wang 3 Venkatesh Pattabiraman 3 Carmel Majidi 1 Abhinav Gupta 1

Tess Hellebrekers 2 Lerrel Pinto 3

Abstract

Reasoning from sequences of raw sensory data is
a ubiquitous problem across fields ranging from
medical devices to robotics. These problems often
involve using long sequences of raw sensor data
(e.g. magnetometers, piezoresistors) to predict
sequences of desirable physical quantities (e.g.
force, inertial measurements). While classical
approaches are powerful for locally-linear predic-
tion problems, they often fall short when using
real-world sensors. These sensors are typically
non-linear, are affected by extraneous variables
(e.g. vibration), and exhibit data-dependent drift.
For many problems, the prediction task is exac-
erbated by small labeled datasets since obtaining
ground-truth labels requires expensive equipment.
In this work, we present Hierarchical State-Space
models (HiSS), a conceptually simple, new tech-
nique for continuous sequential prediction. HiSS
stacks structured state-space models on top of
each other to create a temporal hierarchy. Across
six real-world sensor datasets, from tactile-based
state prediction to accelerometer-based inertial
measurement, HiSS outperforms state-of-the-art
sequence models such as causal Transformers,
LSTMs, S4, and Mamba by at least 23% on
MSE. Our experiments further indicate that HiSS
demonstrates efficient scaling to smaller datasets
and is compatible with existing data-filtering tech-
niques. Code, datasets and videos can be found
on https://hiss-csp.github.io

1Carnegie Mellon University, Pittsburgh, USA 2FAIR, Meta
3New York University, NYC, USA. Correspondence to: Raunaq
Bhirangi <rbhirang@cs.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

CSP
Bench

Transformer
LSTM
Mamba
S4
HiSS

M
ag

ne
to

m
et

er

sig
na

l
M

ar
ke

r p
os

iti
on

 in

 x
 (c

m
)

Normalized Mean Squared Error
on CSP-Bench ()↓

Time (in seconds)

© 2022 MPL, ShanghaiTech Uni., China.

All rights reserved.

Figure 1. CSP-Bench is a publicly accessible benchmark for con-
tinuous sequence prediction on real-world sensory data. We show
that Hierarchical State Space Models (HiSS) improve over conven-
tional sequence models on sequential sensory prediction tasks.

1. Introduction
Sensors are ubiquitous. From air conditioners to smart-
phones, automated systems analyze sensory data sequences
to control various parameters. This class of problems - con-
tinuous sequence-to-sequence prediction from streaming
sensory data - is central to real-time decision-making and
control (Schütze et al., 2004; Stetco et al., 2019). Yet, it has
received limited attention compared to discrete sequence
problems in domains like language (Devlin et al., 2018) and
computer vision (Deng et al., 2009).

Existing approaches for prediction from sensory data have
largely relied on model-based solutions (Welch et al., 1995;
Daum, 2005). However, these approaches require domain
expertise and accurate modeling of complex system dynam-
ics, which is often intractable in real-world applications.
Moreover, sensory data contains noise and sensor-specific
drift that must be accounted for to achieve high predictive
performance (Liu et al., 2020b). In this work, we investigate
deep sequence-to-sequence models that can address these
challenges by learning directly from raw sensory streams.

However, to make progress on continuous sequence pre-
diction (CSP), we first need a representative benchmark to
measure performance. Most prior works in CSP focus on a
single class of sensors (Herath et al., 2020; Liu et al., 2020b),

1

https://hiss-csp.github.io

HiSS: Hierarchical State Space Models

making it difficult to develop general-purpose algorithms.
To address this, we created CSP-Bench, a benchmark con-
sisting of six real-world labeled datasets. This collection
consists of three datasets created in-house and three curated
from prior work – a cumulative 40 hours of real-world data.

Given data from CSP-Bench, an obvious modeling choice
is to use state-of-the-art sequence models like LSTMs or
Transformers. However, sensory data is high-frequency,
leading to long sequences of highly correlated data. For such
data, Transformers quickly run out of memory, as they scale
quadratically in complexity with sequence length (Vaswani
et al., 2017), while LSTMs require significantly larger hid-
den states (Kuchaiev & Ginsburg, 2017). Deep State Space
Models (SSMs) (Gu et al., 2021a; Gu & Dao, 2023) are a
promising new class of sequence models. These models
have been shown to effectively handle long context lengths
while scaling linearly with sequence length in time and mem-
ory complexity, with strong results on audio (Goel et al.,
2022) and language modeling. On CSP-Bench, we find that
SSMs consistently outperform LSTMs and Transformers
with an average of 10% improvement on MSE metrics (see
Section 6). But can we do better?

A key insight into continuous sensor data is that it has a
significant amount of temporal structure and redundancies.
While SSMs are powerful for modeling this type of data,
they are still temporally flat in nature, i.e. every sample in
the sequence is reasoned with every other sample. Therefore,
inspired by work in hierarchical modeling (You et al., 2019;
Thu & Han, 2021), we propose Hierarchical State-Space
Models (HiSS). HiSS stacks two SSMs with different tem-
poral resolutions on top of each other. The lower-level SSM
temporally chunks the larger full-sequence data into smaller
sequences and outputs local features, while the higher-level
SSM operates on the smaller sequence of local features to
output global sequence prediction. This leads to further im-
proved performance on CSP-Bench, outperforming the best
flat SSMs by 23% median MSE performance across tasks.
We summarize the contributions of this paper as follows:

1. We release CSP-Bench, the largest publicly accessible
benchmark for continuous sequence-to-sequence predic-
tion for multiple sensor datasets. (Section 4)

2. We show that SSMs outperform prior SOTA models like
LSTMs and Transformers on CSP-Bench. (Section 6.1)

3. We propose HiSS, a hierarchical sequence modeling ar-
chitecture that further improves upon SSMs across tasks
in CSP-Bench. (Section 5)

4. We show that HiSS increases sample efficiency with
smaller datasets, and is compatible with standard sen-
sor pre-processing techniques such as low-pass filtering.
(Sections 6.5, 6.6)

2. Related Work
2.1. Sequence-to-sequence prediction for sensory data

Most real world control systems, such as wind turbine condi-
tion monitoring (Stetco et al., 2019), MRI recognition (Kong
et al., 2016) and inertial odometry (Amini et al., 2011; Liu
et al., 2020a), often process noisy sensory data to deduce
environmental states. Traditionally, these problems were
solved as estimation and control problems using filtering
techniques, like the Kalman Filter (Mathieu et al., 2012;
Simon, 2006), that still require complex sensor models.
Deep learning has shown promise in domains without an-
alytical models, yet many solutions continue to be sensor-
specific (Yan et al., 2018; Herath et al., 2020).

More recently, a number of works (Hasani et al., 2022; Ma
et al., 2022; Rusch et al., 2021; Morrill et al., 2021; Orvieto
et al., 2023) have been directed at developing neural archi-
tectures that improve over conventional sequence models
in modeling long-range dependencies. This bodes well for
learning sensory prediction models which must naturally
reason over long sequences owing to the high frequency na-
ture of sensory data. To the best of our knowledge, however,
none of these models have been evaluated on continuous
sensing data beyond audio (Goel et al., 2022). In this work,
we focus on deep state space models (SSMs) (Gu et al.,
2021a; Poli et al., 2023; Smith et al., 2022; Gu & Dao,
2023; Hasani et al., 2022), an emerging class of models in
long range neural sequence modeling. We benchmark deep
SSMs on six sequence-to-sequence prediction tasks on sen-
sors like ReSkin, XELA, accelerometers, and gyroscopes.

2.2. Hierarchical Modeling

Incorporating temporal hierarchies into sequence modeling
architectures has been shown to improve performance across
a number of tasks like recommender systems (You et al.,
2019), human activity recognition (Thu & Han, 2021) and
reinforcement learning (Sutton et al., 1999; Gardiol, 2000;
Kulkarni et al., 2016). HiSS is inspired by this line of work
and extends it to SSMs for continuous seq-to-seq tasks.

2.3. Data for Continuous Sequence Prediction

A primary challenge with developing general models for
continuous sequence prediction is the lack of a concrete eval-
uation benchmark. Odometry/SLAM datasets (Geiger et al.,
2013; Maddern et al., 2017) are viable candidates (Chang
et al., 2019; Sun et al., 2020) for CSP datasets. But most
data across sensory modalities like audio (Warden, 2018;
Gemmeke et al., 2017), ECG (Moody & Mark, 2001; Wag-
ner et al., 2020), IMU (Chavarriaga et al., 2013; Micucci
et al., 2017; Chen et al., 2021) and tactile sensing (Pinto
et al., 2016; Funabashi et al., 2019; Bhirangi et al., 2023) is
labeled sparsely only at the sequence level.

2

HiSS: Hierarchical State Space Models

The recent proliferation of sensors in smartphones and other
smart devices has resulted in renewed interest in creating
labeled datasets for CSP (Chen et al., 2018; Herath et al.,
2020). A common setting is to use a motion capture system
to obtain dense, sequential labels for sensory data from
inexpensive IMU sensors (Trumble et al., 2017; Gao et al.,
2022). In this work, we curate three such datasets as part of
CSP-Bench: a continuous sequence prediction benchmark.

Another category of sensors of significant interest for CSP
are touch sensors. Touch sensors capture the dynamics
of contact between the robot and its surroundings. Deep
learning and rapid prototyping have driven a rapid surge
across a range of tactile modalities from optical (Lambeta
et al., 2020; Yuan et al., 2017) to capacitative (Sonar et al.,
2018) and magnetic sensing (Tomo et al., 2018; Bhirangi
et al., 2021). Most work on continuously reasoning over
tactile data is directed towards policy learning (Guzey et al.,
2023a;b; Calandra et al., 2018), where small datasets and
confounding factors make it difficult to evaluate the efficacy
of architectures for CSP. In this work, we set up supervised
learning problems to investigate sequence-to-sequence mod-
els for two magnetic tactile sensors: ReSkin (Bhirangi et al.,
2021) and XELA (Tomo et al., 2018).

3. Background
3.1. Sequence-to-sequence Prediction

Consider a data-generating process described by the Hid-
den Markov Model in Figure 2. The observable processes
– sensor, S, and output, Y , represent two measurement de-
vices that capture the evolution of the unobserved latent
process, X . Generally, S is a noisy, low-cost device like
an accelerometer, and Y is a precise, expensive labeling
system like Motion Capture. The goal is to learn a model
that allows us to estimate Y using data sequences from S.

x1

s1 y1

x2 xk

sk yks2 y2

…

Figure 2. Hidden Markov Model for a two-sensor system. X is
a data-generating process. Sensor, S, and output, Y , are two
observable processes.

The CSP problem involves estimating the probability of the
t-th output observation, yt, given the history of input obser-
vations, s1:t. For the experiments listed in this paper, we
approximate this probability by a Gaussian with constant
standard deviation, ie. p(yt|s1, . . . st) = N (µθ(s1:t), σ

2I),
where σ is a constant, and parameterize µθ by a deep se-
quence model. Our goal is to find the maximum likeli-

hood estimator for this distribution – argminθ
∑

t ∥yt −
µθ(s1:t)∥2. Therefore, our models are trained to minimize
MSE loss over the length of the output sequence.

3.2. Deep State Space Models

Deep State Space Models (SSMs) build on simple state
space models for sequence-to-sequence modeling. In its
general form, a linear state space model may be written as,

x′(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t),

mapping a 1-D input sequence u(t) ∈ R to a 1-D output
sequence y(t) ∈ R through an implicit N-D latent state
sequence x(t) ∈ Rn. Concretely, deep SSMs seek to use
stacks of this simple model in a neural sequence modeling
architecture, where the parameters, A,B,C and D for each
layer can be learned via gradient descent.

SSMs have been proven to handle long-range dependen-
cies theoretically and empirically (Gu et al., 2021b) with
linear scaling in sequence length, but were computation-
ally prohibitive until Structured State Space Sequence Mod-
els (S4) (Gu et al., 2021a). S4 and related architectures
by Fu et al. (2022); Smith et al. (2022); Poli et al. (2023)
are based on a new parameterization that relies on time-
invariance of the SSM parameters to enable efficient com-
putation. Recently, Mamba (Gu & Dao, 2023) improved
on S4-based architectures by relaxing the time-invariance
constraint on SSM parameters, while maintaining compu-
tational efficiency. This allows Mamba to achieve high
performance on a range of benchmarks from audio and
genomics to language modeling, while maintaining linear
scaling in sequence length. In this paper, we benchmark the
performance of SSMs like S4 and Mamba on sensory CSP
tasks, and show that they consistently outperform LSTMs
and Transformers.

4. CSP-Bench: A Continuous Sequence
Prediction Benchmark

We address the scarcity of datasets with dense, continuous
labels for sequence-to-sequence prediction by collecting
three touch datasets with 1000 trajectories each and combin-
ing them with three IMU datasets from literature to create
CSP-Bench. For each dataset, we design tasks to predict
labeled sequences from single sensor data to avoid confound-
ing factors. We also include data from varied sources like
cameras and robot movements to facilitate future research
in multi-sensor integration and multimodal learning. The
detailed characteristics of these datasets are summarized in
Table 1, aiming to support diverse sensory data analysis.

3

HiSS: Hierarchical State Space Models

ReSkin Intrinsic Slip XELA Joystick Control Total Capture

RoNIN VECtor

ReSkin
Circuit

Skin

ReSkin Marker Writing

© 2022 MPL, ShanghaiTech Uni., China.

All rights reserved.

Figure 3. CSP-Bench is comprised of six datasets. Three datasets – ReSkin Marker Writing, ReSkin Intrinsic Slip and XELA Joystick
Control are tactile datasets collected in-house on two different robot setups as demonstrated above. Three other datasets – RoNIN (Herath
et al., 2020), VECtor (Gao et al., 2022) and TotalCapture (Trumble et al., 2017) are curated open-source datasets.

4.1. Touch Datasets

Our touch datasets are collected on two magnetic tactile sen-
sor designs: ReSkin (Bhirangi et al., 2021) and Xela (Tomo
et al., 2018). The ReSkin setup consists of a 6-DOF Kinova
JACO Gen1 robot with a 1-DOF RG2 OnRobot gripper as
shown in Figure 3. Both gripper surfaces are sensorized
with a 32 mm × 30 mm × 2 mm ReSkin sensor. Each sen-
sor has five 3-axis magnetometers which measure changes
in magnetic flux resulting from the deformation of the skin
on the gripper surface. Appendix A contains more details
on the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot fit-
ted with a 16-DOF Allegro hand by Wonik Robotics. Each
finger on the hand is sensorized with three 4x4 uSkin tactile
sensors and one curved uSkin tactile sensor from XELA
Robotics as shown in Figure 3. Sensor integration was pro-
vided by XELA robotics, which was designed specifically
for the Allegro Hand. While the underlying sensory mode is
the same for both ReSkin and Xela, they differ in spatial and
temporal resolution, physical layout, and magnetic source.

4.1.1. RESKIN: MARKER WRITING DATASET

We collect 1000 Kinova robot trajectories of randomized lin-
ear strokes across a paper. Initially, the marker is arbitrarily
placed between the gripper tips, and data collection begins
when the marker touches the paper. The robot then moves
linearly between 8-12 random points uniformly sampled
within a 10cm x 10cm workspace, pausing for a randomly
sampled delay of 1-4 seconds after each motion. Images of
sample trajectories can be found in Appendix C.

The goal of this sequential prediction problem is to use
tactile signal from the gripper to predict the velocity of
the end-effector in the plane of the table. Velocity labels
are easily obtained from robot kinematics, and serve as a

proxy for the velocity of the marker strokes against the
paper. What makes this problem challenging is that the
sensor picks up contact information from both, the relative
motion between the marker and the gripper, and the motion
of the marker against the paper. The model must learn to
disentangle these two motions to make accurate predictions.

4.1.2. RESKIN: INTRINSIC SLIP DATASET

We again use the Kinova setup to collect 1000 trajectories of
intrinsic slip – the gripper grasping and slipping along differ-
ent boxes clamped to a table. At the start of every episode,
we close the gripper at a random location and orientation on
the box and start recording data. We sample 8-12 random
locations and orientations within the workspace of the robot
along the length of the box, and then command the robot
to move along the box while slipping against it. We use 10
boxes of different sizes to collect this dataset to improve data
diversity in terms of contact dynamics. Example images
and dimensions are available in Appendix C.1.2.

The goal of the sequential prediction problem is to use the
sequence of tactile signals from the gripper tips to predict
the translational and rotational velocity of the end-effector
(again obtained from robot kinematics) in the plane of the
robot’s motion. In addition, the abrasive nature of the task
causes the skin to wear out over time. To account for this
wear, we change the gripper tips and skins after 25 trajecto-
ries on every box, improving data diversity as a result.

4.1.3. XELA: JOYSTICK CONTROL DATASET

For our final dataset, we record 1000 trajectories of data
from the Allegro hand interacting with the joystick as shown
in Figure 3. The hand/robot setup is teleoperated using
a VR-based system derived from HoloDex (Arunachalam
et al., 2023). Joystick interactions are logged synchronously

4

HiSS: Hierarchical State Space Models

Table 1. Summary of all the modalities present in CSP-Bench. Modalities used for training are italicized. In addition to the data used for
training models, we also release synchronized video and robot kinematics data to facilitate further research in CSP problems.

Dataset Modalities Model Inputs Model Outputs Size
(dim) (dim) (min)

Marker Writing ReSkin (100 Hz), 2 Cameras (30 Hz),
Robot (45 Hz)

ReSkin (30) End-effector
velocity (2)

420

Intrinsic Slip ReSkin (100 Hz), 3 Cameras (30 Hz),
Robot (45 Hz)

ReSkin (30) End-effector
velocity (3)

640

Joystick Control Xela (100 Hz), 2 Cameras (30 Hz), Robot
(50 Hz), Hand (300 Hz), Joystick (20 Hz)

Xela (552) Joystick State (3) 580

VECtor
(Gao et al., 2022)

IMU (200 Hz), 2 Cameras (30 Hz), RGBD
(30 Hz), Lidar (10 Hz), MoCap (120 Hz)

IMU (7) User velocity (3) 22

TotalCapture
(Trumble et al., 2017)

IMU (60 Hz), 8 Cameras (60 Hz),
MoCap (60 Hz)

IMU (39) Joint velocities (60) 45

RoNIN
(Herath et al., 2020)

IMU (200 Hz), 3D Tracking Phone (200
Hz)

IMU (7) User velocity (2) 600

with robot data, tactile sensing data, and the camera feed.
Specifically, this includes the full robot kinematics (7 DOF
Arm at 50 Hz + 16 DOF Hand at 300 Hz), XELA tactile
output (552 dim at 100 Hz), and 2 Realsense D435 cameras
(1080p at 30 Hz). Each trajectory consists of 25-40 seconds
of interaction with the joystick.

The goal of the sequential prediction problem is to use
tactile signal from the Xela-sensorized robot hand to predict
the state of the joystick, which is recorded synchronously
with all the other modalities. The extra challenge with this
dataset, in addition to the significantly higher dimensionality
of the observation space, is the noisier trajectories resulting
from human demos instead of a scripted policy.

4.2. Curated Public Datasets

In addition to the tactile datasets we release with this paper,
we also test our findings on data from other datasets, par-
ticularly ones using IMU sensor data (illustrated in Figure
3) – the RoNIN dataset (Herath et al., 2020) which con-
tains smartphone IMU data from 100 human subjects with
ground-truth 3D trajectories under natural human motions,
the VECtor dataset (Gao et al., 2022) – a SLAM dataset col-
lected across three different platforms, and the TotalCapture
dataset – a 3D human pose estimation dataset.

5. Hierarchical State-Space Models (HiSS)
In this work, we focus on continuous sequence-to-sequence
prediction problems for sensors i.e. problems that involve
mapping a sequence of sensory data to a sequence of outputs.

In the following sections, we describe our preprocessing
pipeline and HiSS – our approach to sequence-to-sequence
reasoning at different temporal scales.

5.1. Data Preparation and Sampling

Every sensor in the real world operates at a different fre-
quency, and data from different sensors is therefore collected
at different nominal frequencies. Generally, our sensor se-
quences come from an inexpensive, noisy sensor operating
at a higher frequency than an expensive, high precision de-
vice which gives us output sequences. To emulate this sce-
nario and standardize our experiments, all sensor sequences
are resampled at a frequency of 50Hz, and output sequences
are resampled at 5Hz for all the datasets under consider-
ation, unless specified otherwise. The specific choice of
these frequencies is dictated by the sampling frequencies
of sensors in the available data. Sequence length ranges (in
number of sensor sequence timesteps) for each task are vari-
able: 450-3000 for Marker Writing, 750-2150 for Intrinsic
Slip, 750-4250 for Joystick Control, 12000 for the RoNIN,
1900-9100 for VectorEnv and 1700-5600 for TotalCapture.

All the sensors considered in CSP-Bench are prone to drift;
therefore, in line with previous work (Bhirangi et al., 2021;
Guzey et al., 2023b; Herath et al., 2020), we estimate a
resting signal at the start of every sensor trajectory and de-
viations from this resting signal are passed to the model.
Since sensor drift can be causally data-dependent, the entire
sensory trajectory is passed to the model as input. Sensor
and output sequences are normalized based on data statis-
tics for their corresponding datasets, and details are listed

5

HiSS: Hierarchical State Space Models

…

deep SSM

y1 yn…

chunk 1

low-level SSM

high-level deep SSM

yny1

…s1 sk …

chunk n

…sm−k+1 sm

…

chunk 2

c1 cnc2

…sk+1 s2k

y2

…

…

low-level SSM low-level SSM

s1 sms2

st

ct

yt

Sensor state at time t

Chunk Feature at time t

Output state at time t

 Flat SSM Hierarchical SSM (HiSS)

Figure 4. (Left) Flat SSM directly maps a sensor sequence to an output sequence. (Right) HiSS divides an input sequence into chunks
which are processed into chunk features by a low-level SSM. A high-level SSM maps the resulting sequence to an output sequence.

in Appendix B. Additionally, we find that appending one-
step differences to every element in the sensor sequence
helps improve performance, in line with numerous prior
works (Chen et al., 2016; Holden et al., 2016).

5.2. Model Architecture

Here we describe Hierarchical State Space Models (HiSS) –
a simple hierarchical architecture that uses SSMs to explic-
itly reason over sequential data at two temporal resolutions,
as shown in Figure 4. The sensor sequence is first divided
into a set of equally-sized chunks of size k. Each chunk is
passed through a shared SSM, say S4, which we refer to
as the low-level SSM. The outputs of the low-level SSM
corresponding to the k-th element of each chunk are then
concatenated to form a rarified chunk feature sequence. Fi-
nally, this sequence is passed through a high-level sequence
model to generate the output sequence.

Why should HiSS work? Sequential sensory data is subject
to phenomena that occur at different natural frequencies. For
instance, an IMU device mounted on a quadrotor is subject
to high-frequency vibration noise and low-frequency drift
characteristic of MEMS devices (Koksal et al., 2018). With
HiSS, our goal is to create a neural architecture with explicit
structure to operate at different temporal scales. This will
allow the low-level model to learn effective, temporally
local representations, while enabling the high-level model
to focus on global predictions over a shorter sequence.

Computational Complexity HiSS builds on top of models
like S4 and Mamba which are linear in sequence length,
O(N). For non-overlapping chunks of size k each, the low-
level model operates on N/k chunks with each computation

being O(k). The high-level model in turn operates on a
sequence of length N/k resulting in a computation cost
O(N/k). The net cost is therefore, O(k ∗ (N/k)+N/k) =
O(N +N/k) = O(N). For the case of overlapping chunks,
in the most extreme case where we have an overlap of (k−1)
elements between chunks, we now have N chunks of size
k, each operated on by the low-level model. The high-level
model operates on the resulting chunk feature sequence of
length N . Therefore the computational complexity in this
case is O(Nk+N) = O(Nk), still significantly better than
transformers which have a complexity of O(N2).

5.3. Training details

We focus on sequence-to-sequence prediction tasks. All
our models are trained end-to-end to minimize MSE loss as
explained in Section 3.1. For all tactile datasets and VEC-
tor, we use an 80-20 train-validation split. For the RoNIN
dataset, we use the first four minutes of every trajectory
for our analysis, and use a validation set consisting of tra-
jectories from unseen subjects. For TotalCapture, we use
the train-validation split proposed by Trumble et al. (2017).
Hyperparameter sweep ranges for each of our models and
baselines, along with the resulting range of parameter counts
are listed in Appendix B. We maintain similar ranges of pa-
rameter counts across models for the same task.

6. Experiments and Results
In this section, we evaluate the performance of HiSS models
on CSP tasks and understand their strengths and limitations.
Unless otherwise specified, we use non-overlapping chunks
of size 10, and aim to answer the following questions:

6

HiSS: Hierarchical State Space Models

Table 2. Comparison of MSE prediction losses for baseline and HiSS models on CSP-Bench. Reported numbers are averaged over 5 seeds
for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, R: RoNIN, V: VECtor, JC: Joystick Control, TC: TotalCapture

Model type Model Architecture MW IS JC R V TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 2.3750 0.4600 1.0200 - 0.0432 -
LSTM 1.1685 0.3099 1.0740 0.0444 0.0353 0.1767
S4 1.3190 0.2617 0.9804 0.0382 0.0341 0.3483
Mamba 0.8830 0.1757 1.0640 0.0401 0.0319 0.3645
MEGA 0.8960 0.2105 0.9806 0.0370 0.0330 0.1944

High-level Low-level

Hierarchical

Transformer

Transformer 0.6680 0.2192 0.9112 0.0620 0.0372 0.3048
LSTM 0.9958 0.2527 0.9350 0.0421 0.0377 0.3197
S4 0.6205 0.1574 0.8980 0.0363 0.0374 0.3583
Mamba 1.0268 0.2022 0.9060 0.0472 0.0372 0.4560

(MEGA-chunk) MEGA 1.1270 0.2090 1.0450 0.0512 0.0403 0.1940

LSTM

Transformer 0.7620 0.9373 1.6090 0.3875 0.0302 0.2943
LSTM 0.8662 0.2837 1.0760 0.0436 0.0288 0.2522
S4 0.6370 0.1526 0.9080 0.0481 0.0322 0.3505
Mamba 0.7915 0.1925 1.0610 0.0442 0.0286 0.3638

S4

Transformer 0.7570 0.2898 0.9248 0.0439 0.0295 0.2452
LSTM 0.8590 0.1805 0.9520 0.0319 0.0293 0.2452
S4 0.6255 0.1551 0.9060 0.0265 0.0303 0.3438
Mamba 0.8257 0.1823 0.9200 0.0322 0.0294 0.4078

Mamba

Transformer 0.7020 0.3011 0.9553 0.0371 0.0293 0.2064
LSTM 0.7592 0.1746 0.9640 0.0346 0.0267 0.2428
S4 0.5663 0.1316 0.9010 0.0302 0.0298 0.2527
Mamba 0.7248 0.1678 0.9050 0.0325 0.0251 0.3762

HiSS improvement over best Flat +35.87% +25.10% +8.10% +30.74% +21.30% -37.36%

• How do SSMs compare with LSTMs and Transformers
on CSP-Bench?

• Can HiSS provide benefits over temporally flat models?

• How does chunk size affect the performance of HiSS?

• Is HiSS compatible with existing preprocessing tech-
niques like filtering?

• How does HiSS perform in low-data regimes?

Baselines: We use two categories of baselines: Flat and
Hierarchical. Flat models consist of LSTMs, Causal Trans-
formers, S4 and Mamba, in addition to MEGA (Ma et al.,
2022). Hierarchical baselines include variations of HiSS
models where the high-level and/or low-level SSMs are
replaced by causal transformers and LSTMs, and MEGA-
chunk (Ma et al., 2022), which is loosely classified as a
high-level transformer with a low-level MEGA model. Ta-

ble 2 presents a performance comparison on CSP-Bench for
each of these baselines and proposed HiSS models.

6.1. Performance of Flat models on CSP-Bench

At the outset, we see that SSMs – Mamba and S4, con-
sistently outperform the best-performing Transformer and
LSTM models by 10% and 14% median MSE respectively
across CSP-Bench tasks. The only anomaly is the TotalCap-
ture dataset where the LSTM outperforms all other models.
We analyze this later in Section 6.7.

6.2. Improving CSP Performance with HiSS

HiSS models perform better than the best-performing flat
models, SSM or otherwise, with a further improvement of
∼23% median MSE across tasks. Among hierarchical mod-
els, HiSS models continue to do as well as or better than the
others with a relative improvement of ∼ 9.8% median MSE.
Further, we make two key observations within models that

7

HiSS: Hierarchical State Space Models

Table 3. Performance comparison with (a) downsampled inputs, (b)
low pass filter on input sequences, and (c) fewer training samples

MW IS JC R V TC

Downsampled inputs
Trnsfrmr 2.41 0.33 .957 .116 .039 0.34
LSTM 1.92 0.27 .975 .094 .034 0.20
S4 2.22 0.29 .974 .081 .036 0.31
Mamba 1.96 0.26 .980 .077 .033 0.25
HiSS 0.57 0.13 .901 .027 .025 0.26

Low Pass Filtering
Trnsfrmr 1.79 0.31 1.01 - .034 0.38
LSTM 1.15 0.26 1.08 .038 .024 0.12
S4 1.19 0.22 0.94 .031 .022 0.25
Mamba 0.78 0.14 0.95 .030 .018 0.17
HiSS 0.55 0.11 0.87 .036 .020 0.13

Smaller Training Dataset
Fraction 0.3 0.3 0.3 0.3 0.5 0.5
Trnsfrmr 4.30 0.85 1.237 - .046 0.54
LSTM 1.83 0.54 1.313 .053 .039 0.39
S4 2.31 0.45 1.197 .043 .038 0.43
Mamba 1.74 0.37 1.195 .039 .036 0.48

HiSS 1.26 0.29 1.106 .034 .029 0.37

use a specific high-level architecture: (1) these models con-
sistently outperform corresponding flat models, indicating
that temporal hierarchies are effective at distilling informa-
tion from continuous sensory data; (2) the best models use
S4 as the low-level model, indicating that S4 is particularly
adept at capturing low-level temporal structure in the data.

These observations raise a natural question: What is happen-
ing under the hood? In the next four sections, we attempt to
better understand the working of HiSS.

6.3. Does HiSS Simply do Better Downsampling?

The first question we seek to answer is whether simply down-
sampling the sensor sequence to the same frequency as the
output would do just as well as HiSS. As we see in Table 3,
while some flat models with downsampled sensor sequences
indeed improve performance over flat models in Table 2,
they remain far behind HiSS models. This reinforces our
hypothesis that HiSS models distill more information from
the sensor sequence than naive downsampling.

One advantage of using hierarchical models is memory ef-
ficiency. They can significantly reduce computational load
for models like transformers which scale quadratically in the
length of the sequence. Using an SSM such as S4 or Mamba
as the low-level model can significantly reduce the compu-
tational load

(
O(N2) → O(N2/k2)

)
for k ≪ N , where

Table 4. Effect of chunk size on perfomance of HiSS models

Chunk
size MW IS JC R V TC

5 1.18 0.20 .933 .046 .033 0.32
10 0.57 0.13 .901 .027 .025 0.25
15 0.54 0.12 .899 .035 .026 0.24

k and n are chunk size and sequence length respectively.
Table 2 shows that such a model consistently improves per-
formance over a flat causal Transformer across tasks.

6.4. Effect of Chunk Size on Performance

Having established the effectiveness of HiSS relative to
conventional sequence modeling architectures, we seek to
investigate the effect of a key parameter – the chunk size
– on the performance of HiSS models. Downsampling the
sensor sequences at the output frequency, as presented in
Section 6.3 essentially corresponds to using a chunk size of
1. The rest of the analysis presented so far uses a chunk size
of 10, corresponding to the largest non-overlapping chunks
that cover the entire sensory sequence given sensor and
output sequence frequencies of 50 Hz and 5 Hz respectively.
In this section, we conduct two additional experiments with
chunk sizes of 5 and 15 and present the results in Table 4.
We see that while performance improves drastically as the
chunk size increases, it plateaus once the chunk size reaches
the ratio of the sensor and output frequencies (10 in our
case). This behavior can be explained by the fact that chunk
sizes smaller than this ratio result in the model never seeing
parts of the sensor sequence, while chunk sizes larger than
this ratio result in an overlap between chunks.

6.5. Effect of Sensory Preprocessing on Performance

A common approach to preprocessing noisy sensor data is
to design low-pass filters to process the signal before it’s
passed through the model. To analyze the compatibility of
HiSS models with such existing preprocessing techniques,
we separately apply order 5 Butterworth filters with 3 dif-
ferent cut-off frequencies to the sensor sequence and report
model corresponding to the best cut-off frequency in Table
3. We make two key observations: (1) with the exception
of the HiSS model for RoNIN, low pass filtering improves
performance across the board; (2) HiSS models still perform
comparably with or better than flat models.

With respect to (1), we see that the best-performing HiSS
model from Table 2 continues to outperform the best flat
model using filtered data, implying that the low-pass filter
may have filtered useful information could have been used
to improve task performance. This points to an important

8

HiSS: Hierarchical State Space Models

pitfall of handcrafted preprocessing techniques – they can
often filter out information that could have been exploited
by a sufficiently potent model. Consequently, the ability
of HiSS models to require little to no preprocessing of the
input sequence bolsters their credentials to serve as general
purpose models for CSP data.

6.6. How Does HiSS Perform on Smaller Datasets?

The lack of a comprehensive benchmark for continuous
sequence prediction so far speaks to the difficulty of col-
lecting large, labeled datasets of sensory data. Therefore,
performance in low-data regimes could be critical to wider
applicability of different sequence modeling architectures.
To benchmark this performance, we compare the perfor-
mance of flat as well as HiSS models on subsets of the train-
ing data. While TotalCapture and VECtor are substantially
smaller than the other datasets (see Table 1), we include
them in this analysis while using a larger fraction of training
data than other datasets. Results are presented in Table 3.
We only present the best performing HiSS model here for
conciseness. The full table can be found in Appendix D.

We see that on smaller fractions of the training dataset,
HiSS outperforms flat baselines on every task in CSP-Bench.
This indicates an important property of HiSS models – data
efficiency. Low-level models operate identically on all of
the chunks in the data, allowing them to learn more effective
representations from small datasets than flat models.

6.7. Failure on TotalCapture

The most visible failure case for the performance of both
flat SSMs as well as HiSS models is on the TotalCapture
dataset, where the flat LSTM significantly outperforms all
other models. We hypothesize that the high dimensionality
of the input and output spaces prevents SSMs from learn-
ing sufficiently expressive representations that can filter out
high frequency data. This is also evidenced by the higher
performance of LSTM low-level models across hierarchical
architectures for this dataset, which correlates with the cor-
respondingly higher effectiveness of the flat LSTM over flat
SSMs. Further evidence of the inability of SSMs to filter out
noise can be found in Section 6.5, where the performance
of HiSS models nearly matches the LSTM when the input
sequence is passed through a lowpass filter. This indicates
that the HiSS model struggles to learn the filtering behavior
from data here, unlike other datasets where performance
remains fairly consistent with and without the lowpass filter.

7. Conclusion and Limitations
We present CSP-Bench, the first publicly available bench-
mark for Continuous Sequence Prediction, and show that
SSMs do better than LSTMs and Transformers on CSP tasks.

Then, we propose HiSS, a hierarchical sequence modeling
architecture that is more performative, data efficient and
minimizes preprocessing needs for CSP problems. How-
ever, sequence-to-sequence prediction from sensory data
continues to be an open, relatively underexplored problem,
and our work indicates significant room for improvement.
Moreover, while SSMs show significant promise for CSP
tasks, they are relatively new architectures whose strengths
and weaknesses are far from being well-understood. Section
6.7 explains some of the challenges of SSMs, and as a result,
HiSS, on high-dimensional prediction problems with small
datasets of noisy sensor data. In terms of ease of training,
current HiSS models introduce an additional hyperparame-
ter of chunk size. While we provide a preliminary analysis
of the effect of chunk size in Section 6.4, optimizing chunk
size is an exciting future direction. Finally, CSP-Bench
is large, but the number of sensors that can benefit from
learned models is larger. We are committed to supporting
CSP-Bench and adding more, larger datasets in the future.

Acknowledgements
NYU authors are supported by grants from Honda, and
ONR award numbers N00014-21-1-2404 and N00014-21-
1-2758. LP is supported by the Packard Fellowship. We also
thank Aadhithya Iyer, Gaoyue Zhou, Irmak Guzey, Ulyana
Piterbarg, Vani Sundaram and all other members of GRAIL,
NYU for their valuable help and feedback throughout this
project.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Amini, N., Sarrafzadeh, M., Vahdatpour, A., and Xu, W.

Accelerometer-based on-body sensor localization for
health and medical monitoring applications. Pervasive
and mobile computing, 7(6):746–760, 2011.

Arunachalam, S. P., Güzey, I., Chintala, S., and Pinto, L.
Holo-dex: Teaching dexterity with immersive mixed real-
ity. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5962–5969. IEEE, 2023.

Bhirangi, R., Hellebrekers, T., Majidi, C., and Gupta, A.
Reskin: versatile, replaceable, lasting tactile skins. arXiv
preprint arXiv:2111.00071, 2021.

Bhirangi, R., DeFranco, A., Adkins, J., Majidi, C., Gupta,
A., Hellebrekers, T., and Kumar, V. All the feels: A

9

HiSS: Hierarchical State Space Models

dexterous hand with large-area tactile sensing. IEEE
Robotics and Automation Letters, 2023.

Calandra, R., Owens, A., Jayaraman, D., Lin, J., Yuan, W.,
Malik, J., Adelson, E. H., and Levine, S. More than
a feeling: Learning to grasp and regrasp using vision
and touch. IEEE Robotics and Automation Letters, 3(4):
3300–3307, 2018.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S.,
Hartnett, A., Wang, D., Carr, P., Lucey, S., Ramanan, D.,
et al. Argoverse: 3d tracking and forecasting with rich
maps. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8748–8757,
2019.

Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T.,
Tröster, G., Millán, J. d. R., and Roggen, D. The op-
portunity challenge: A benchmark database for on-body
sensor-based activity recognition. Pattern Recognition
Letters, 34(15):2033–2042, 2013.

Chen, C., Zhao, P., Lu, C. X., Wang, W., Markham, A., and
Trigoni, N. Oxiod: The dataset for deep inertial odometry.
arXiv preprint arXiv:1809.07491, 2018.

Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., and Liu,
Y. Deep learning for sensor-based human activity recog-
nition: Overview, challenges, and opportunities. ACM
Computing Surveys (CSUR), 54(4):1–40, 2021.

Chen, T.-E., Yang, S.-I., Ho, L.-T., Tsai, K.-H., Chen, Y.-H.,
Chang, Y.-F., Lai, Y.-H., Wang, S.-S., Tsao, Y., and Wu,
C.-C. S1 and s2 heart sound recognition using deep neural
networks. IEEE Transactions on Biomedical Engineering,
64(2):372–380, 2016.

Daum, F. Nonlinear filters: beyond the kalman filter. IEEE
Aerospace and Electronic Systems Magazine, 20(8):57–
69, 2005.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Funabashi, S., Yan, G., Geier, A., Schmitz, A., Ogata, T.,
and Sugano, S. Morphology-specific convolutional neu-
ral networks for tactile object recognition with a multi-
fingered hand. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 57–63. IEEE, 2019.

Gao, L., Liang, Y., Yang, J., Wu, S., Wang, C., Chen, J., and
Kneip, L. Vector: A versatile event-centric benchmark
for multi-sensor slam. IEEE Robotics and Automation
Letters, 7(3):8217–8224, 2022.

Gardiol, N. H. Hierarchical memory-based reinforcement
learning. In Neural Information Processing Systems
(NIPS), volume 13, pp. 1047–1053. MIT Press, 2000.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A.,
Lawrence, W., Moore, R. C., Plakal, M., and Ritter, M.
Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp.
776–780. IEEE, 2017.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! audio
generation with state-space models. In International Con-
ference on Machine Learning, pp. 7616–7633. PMLR,
2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:
572–585, 2021b.

Guzey, I., Dai, Y., Evans, B., Chintala, S., and Pinto, L.
See to touch: Learning tactile dexterity through visual
incentives. arXiv preprint arXiv:2309.12300, 2023a.

Guzey, I., Evans, B., Chintala, S., and Pinto, L. Dex-
terity from touch: Self-supervised pre-training of tac-
tile representations with robotic play. arXiv preprint
arXiv:2303.12076, 2023b.

Hasani, R., Lechner, M., Amini, A., Liebenwein, L., Ray,
A., Tschaikowski, M., Teschl, G., and Rus, D. Closed-
form continuous-time neural networks. Nature Machine
Intelligence, 4(11):992–1003, 2022.

10

HiSS: Hierarchical State Space Models

Herath, S., Yan, H., and Furukawa, Y. Ronin: Robust neural
inertial navigation in the wild: Benchmark, evaluations, &
new methods. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3146–3152. IEEE,
2020.

Holden, D., Saito, J., and Komura, T. A deep learning
framework for character motion synthesis and editing.
ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

Koksal, N., Jalalmaab, M., and Fidan, B. Adaptive linear
quadratic attitude tracking control of a quadrotor uav
based on imu sensor data fusion. Sensors, 19(1):46, 2018.

Kong, B., Zhan, Y., Shin, M., Denny, T., and Zhang, S. Rec-
ognizing end-diastole and end-systole frames via deep
temporal regression network. In Medical Image Comput-
ing and Computer-Assisted Intervention-MICCAI 2016:
19th International Conference, Athens, Greece, Octo-
ber 17-21, 2016, Proceedings, Part III 19, pp. 264–272.
Springer, 2016.

Kuchaiev, O. and Ginsburg, B. Factorization tricks for lstm
networks. arXiv preprint arXiv:1703.10722, 2017.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29,
2016.

Lambeta, M., Chou, P.-W., Tian, S., Yang, B., Maloon,
B., Most, V. R., Stroud, D., Santos, R., Byagowi, A.,
Kammerer, G., et al. Digit: A novel design for a low-cost
compact high-resolution tactile sensor with application
to in-hand manipulation. IEEE Robotics and Automation
Letters, 5(3):3838–3845, 2020.

Liu, W., Caruso, D., Ilg, E., Dong, J., Mourikis, A., Dani-
ilidis, K., Kumar, V., Engel, J., Valada, A., and As-
four, T. Tlio: Tight learned inertial odometry. IEEE
Robotics and Automation Letters, PP:1–1, 07 2020a. doi:
10.1109/LRA.2020.3007421.

Liu, W., Caruso, D., Ilg, E., Dong, J., Mourikis, A. I., Dani-
ilidis, K., Kumar, V., and Engel, J. Tlio: Tight learned
inertial odometry. IEEE Robotics and Automation Letters,
5(4):5653–5660, 2020b.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P. 1
year, 1000 km: The oxford robotcar dataset. The Interna-
tional Journal of Robotics Research, 36(1):3–15, 2017.

Mathieu, J. L., Koch, S., and Callaway, D. S. State esti-
mation and control of electric loads to manage real-time
energy imbalance. IEEE Transactions on power systems,
28(1):430–440, 2012.

Micucci, D., Mobilio, M., and Napoletano, P. Unimib shar:
A dataset for human activity recognition using acceler-
ation data from smartphones. Applied Sciences, 7(10):
1101, 2017.

Moody, G. B. and Mark, R. G. The impact of the mit-bih
arrhythmia database. IEEE engineering in medicine and
biology magazine, 20(3):45–50, 2001.

Morrill, J., Salvi, C., Kidger, P., and Foster, J. Neural rough
differential equations for long time series. In Interna-
tional Conference on Machine Learning, pp. 7829–7838.
PMLR, 2021.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. In International Conference
on Machine Learning, pp. 26670–26698. PMLR, 2023.

Pinto, L., Gandhi, D., Han, Y., Park, Y.-L., and Gupta, A.
The curious robot: Learning visual representations via
physical interactions. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14, pp. 3–18.
Springer, 2016.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Rusch, T. K., Mishra, S., Erichson, N. B., and Mahoney,
M. W. Long expressive memory for sequence modeling.
arXiv preprint arXiv:2110.04744, 2021.

Schütze, M., Campisano, A., Colas, H., Schilling, W., and
Vanrolleghem, P. A. Real time control of urban wastew-
ater systems—where do we stand today? Journal of
hydrology, 299(3-4):335–348, 2004.

Simon, D. Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons, 2006.

Smith, J. T., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. arXiv
preprint arXiv:2208.04933, 2022.

Sonar, H. A., Yuen, M. C., Kramer-Bottiglio, R., and Paik,
J. An any-resolution pressure localization scheme using
a soft capacitive sensor skin. In 2018 IEEE International
Conference on Soft Robotics (RoboSoft), pp. 170–175.
IEEE, 2018.

11

HiSS: Hierarchical State Space Models

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn,
D., Barnes, M., Keane, J., and Nenadic, G. Machine
learning methods for wind turbine condition monitoring:
A review. Renewable energy, 133:620–635, 2019.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Pat-
naik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B.,
et al. Scalability in perception for autonomous driving:
Waymo open dataset. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 2446–2454, 2020.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Thu, N. T. H. and Han, D. S. Hihar: A hierarchical hy-
brid deep learning architecture for wearable sensor-based
human activity recognition. IEEE Access, 9:145271–
145281, 2021.

Tomo, T. P., Regoli, M., Schmitz, A., Natale, L., Kristanto,
H., Somlor, S., Jamone, L., Metta, G., and Sugano, S. A
new silicone structure for uskin—a soft, distributed, digi-
tal 3-axis skin sensor and its integration on the humanoid
robot icub. IEEE Robotics and Automation Letters, 3(3):
2584–2591, 2018.

Trumble, M., Gilbert, A., Malleson, C., Hilton, A., and
Collomosse, J. Total capture: 3d human pose estimation
fusing video and inertial sensors. In Proceedings of 28th
British Machine Vision Conference, pp. 1–13, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D.,
Lunze, F. I., Samek, W., and Schaeffter, T. Ptb-xl, a large
publicly available electrocardiography dataset. Scientific
data, 7(1):154, 2020.

Warden, P. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Welch, G., Bishop, G., et al. An introduction to the kalman
filter. 1995.

Yan, H., Shan, Q., and Furukawa, Y. Ridi: Robust imu
double integration. In Proceedings of the European con-
ference on computer vision (ECCV), pp. 621–636, 2018.

You, J., Wang, Y., Pal, A., Eksombatchai, P., Rosenburg,
C., and Leskovec, J. Hierarchical temporal convolutional
networks for dynamic recommender systems. In The
world wide web conference, pp. 2236–2246, 2019.

Yuan, W., Dong, S., and Adelson, E. H. Gelsight: High-
resolution robot tactile sensors for estimating geometry
and force. Sensors, 17(12):2762, 2017.

12

HiSS: Hierarchical State Space Models

A. ReSkin fabrication details
ReSkin measures the changes in magnetic flux in its X, Y and Z coordinate system, based on the change in relative distance
between the embedded magnetic microparticles in an elastomer matrix and a nearby magnetometer. The use of magnetic
microparticles enables freedom in regard to the shape and dimensions of the molded skin. In our use case here, we use a
skin of thickness 2mm. This section further details the complete fabrication process involved in the sensorized gripper tips
we use for the ReSkin setup described in Section 4.1. Figure 5 illustrates different components of the sensorized gripper.

A.1. Circuitry

Data from the ReSkin sensors is streamed to a computer via USB. The two sensors are connected to an I2C MUX which in
turn is connected to an Adafruit QT Py microcontroller as described in Bhirangi et al. (2021). See Figure 5.

Figure 5. Circuitry

A.2. OnRobot Gripper Tips

The skins are affixed to the 3D-printed gripper tips using silicone adhesive, as shown in Figure 6. The dimensions of the tips
are 32 mm ×30 mm ×2 mm. The same tips also house the flex-PCB boards, which measure the change in magnetic flux in
all 3 axes.

Figure 6. Gripper Tips with ReSkin

B. Model architectures and Training
B.1. Flat Architectures

For each of the flat sequence models presented in this work, the input sequence is first embedded into a hidden state sequence
by a linear layer. This hidden state is then passed to the respective sequence model. The outputs of the sequence model (the
hidden states for LSTM, S4 and Mamba) are then mapped to the desired output space

B.2. Hierarchical architectures

The hierarchical models are obtained by simply stacking two flat models together. The input sequence is first divided into
equal sized chunks as described in Section 5.2. Each chunk is passed through the low-level sequence model and the outputs
corresponding to the last timestep of each chunk are concatenated to form the chunk feature sequence. This sequence is
passed through a high-level sequence model to obtain the output sequence

13

HiSS: Hierarchical State Space Models

B.3. Hyperparameters

All models are trained for 600 epochs at a constant learning rate of 1e-3. Learning rate schedulers were not found to improve
performance by noticeable amounts. Table 5 contains the ranges of hyperparameters used for training the flat models
presented in the paper. We do not sweep over all of these hyperparameters for each task. A subset of these parameters
is chosen for each task depending on the input and output dimensionality of the task and the best-performing models are
reported. The exact hyperparameters for each experiment can be found on the Github repository. For any given task, we
ensure that sweeps over all model classes consist of models that have the same order of magnitude of learnable parameters.

LSTM Transformer S4 Mamba

Input size
16, 32, 64, 128, 256

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

LSTM hidden size
256, 512, 1024

No. of heads
2,4

No. of layers
2

No. of layers
4,6

No. of layers
4, 6

No. of layers
4, 6

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Table 5. Hyperparameters for flat architectures

For the hierarchical models, we use a smaller subset of the parameters listed in Table 5 to sweep over the high level models.
Parameter ranges swept over for low-level models are listed in Table 6. The exact hyperparameters for each experiment can
be found on the Github repository.

LSTM S4 Mamba

Input size
16, 32, 64

Model dim
16,32,64,128, 256

Model dim
16, 32, 64, 128, 256

LSTM hidden size
16,32,64,128,256

No. of layers
1

No. of layers
4, 6

No. of layers
3,4

Table 6. Hyperparameters for low-level models used in hierarchical architectures

These hyperparameter sweeps result in a range of models with different numbers of parameters. Table 7 lists the range of
parameters resulting from the sweeps, and Table 8 contains the number of parameters in the best-performing models.

14

HiSS: Hierarchical State Space Models

Table 7. Range of parameters swept over for baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R V TC

Flat

Transformer 0.4 - 9.5 0.4 - 9.5 0.7 - 10.6 - 0.0 - 0.6 -
LSTM 3.4 - 13.7 0.9 - 3.7 3.7 - 14.2 0.8 - 3.3 0.0 - 0.2 3.5 - 13.8
S4 0.8 - 4.0 0.8 - 4.0 1.4 - 5.1 0.3 - 1.2 0.0 - 0.4 0.9 - 4.1
Mamba 0.5 - 10.2 1.8 - 10.2 0.8 - 11.3 0.5 - 2.6 0.0 - 0.7 0.5 - 10.3

High-level Low-level

Hierarchical

Transformer

Transformer 1.2 - 4.8 3.6 - 12.0 1.5 - 5.4 2.5 - 12.0 0.1 - 0.8 1.2 - 4.9
LSTM 0.9 - 2.8 3.3 - 9.9 1.0 - 2.9 0.4 - 1.2 0.1 - 0.6 0.9 - 2.8
S4 1.1 - 3.6 3.6 - 10.8 1.4 - 4.2 0.7 - 2.0 0.1 - 0.8 1.1 - 3.7
Mamba 1.2 - 4.2 3.7 - 11.4 1.4 - 4.8 0.4 - 2.6 0.1 - 0.7 1.2 - 4.3

LSTM

Transformer 0.7 - 3.3 1.3 - 5.9 0.9 - 3.9 1.0 - 5.9 0.1 - 0.4 0.7 - 3.4
LSTM 0.3 - 1.3 1.0 - 3.9 0.4 - 1.5 1.0 - 3.9 0.1 - 0.3 0.3 - 1.4
S4 0.5 - 2.2 1.3 - 4.7 0.8 - 2.8 1.3 - 4.7 0.1 - 0.4 0.6 - 2.3
Mamba 0.6 - 2.8 1.4 - 5.3 0.9 - 3.3 0.9 - 5.3 0.1 - 0.4 0.6 - 2.8

S4

Transformer 0.7 - 3.6 1.2 - 6.5 1.0 - 4.2 0.9 - 6.5 0.0 - 0.6 0.7 - 3.7
LSTM 0.4 - 1.6 0.9 - 4.4 0.4 - 1.7 0.5 - 1.6 0.0 - 0.4 0.4 - 1.6
S4 0.6 - 2.5 1.2 - 5.3 0.8 - 3.0 0.8 - 2.4 0.1 - 0.6 0.6 - 2.5
Mamba 0.6 - 3.0 1.3 - 5.9 0.9 - 3.6 0.5 - 3.0 0.1 - 0.5 0.7 - 3.1

Mamba

Transformer 0.9 - 5.1 0.9 - 5.1 1.2 - 5.6 0.6 - 5.1 0.0 - 0.9 0.9 - 5.1
LSTM 0.6 - 3.0 0.6 - 3.0 0.6 - 3.2 0.6 - 3.0 0.0 - 0.7 0.6 - 3.1
S4 0.8 - 3.9 0.9 - 3.9 1.0 - 4.5 0.9 - 3.9 0.1 - 0.9 0.8 - 4.0
Mamba 0.8 - 4.5 1.0 - 4.5 1.1 - 5.0 0.5 - 4.5 0.1 - 0.8 0.9 - 4.5

15

HiSS: Hierarchical State Space Models

Table 8. Parameter count for best-performing baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R V TC

Flat

Transformer 6.3 0.6 2.9 - 0.4 -
LSTM 13.7 3.7 14.2 0.9 0.2 13.8
S4 4.0 4.0 5.1 0.8 0.4 0.9
Mamba 10.2 2.6 7.9 0.7 0.7 0.5

High-level Low-level

Hierarchical

Transformer

Transformer 1.2 3.6 1.5 4.0 0.2 2.5
LSTM 0.9 3.6 2.9 0.6 0.4 2.5
S4 3.6 4.4 2.2 1.5 0.5 2.1
Mamba 2.9 3.7 3.1 0.4 0.7 2.9

LSTM

Transformer 0.7 3.7 1.7 1.0 0.2 0.9
LSTM 1.3 1.3 0.5 1.1 0.1 0.6
S4 2.2 2.1 2.3 1.3 0.2 1.6
Mamba 2.7 4.0 1.5 1.0 0.3 2.2

S4

Transformer 0.9 1.2 1.9 1.0 0.3 2.9
LSTM 1.3 3.1 1.3 1.6 0.3 1.6
S4 2.5 4.0 2.1 0.8 0.3 2.5
Mamba 3.0 5.9 3.2 0.5 0.4 0.8

Mamba

Transformer 2.4 2.2 1.2 2.7 0.2 2.2
LSTM 0.8 2.2 2.3 1.9 0.1 3.0
S4 3.0 3.0 3.2 1.7 0.2 3.1
Mamba 4.5 2.5 3.3 0.8 0.6 2.1

16

HiSS: Hierarchical State Space Models

C. Experimental Setup and Data Collection details

Figure 7. Marker Writing Frames (Top): The gripper tips hold the marker and bring it in contact with the paper before the sequence starts.
The arm maneuvers the marker to execute eight strokes on the paper. Instrinsic Slip Frames (Middle): The gripper tips hold the box to
start the sequence, and slip through the robot workspace with different orientations. Joystick Control Frames (Bottom): After the sequence
begins, the hand holds the joystick, controlling its movement through various positions.

C.1. ReSkin: Onrobot Gripper on a Kinova JACO Arm

C.1.1. MARKER WRITING

For this experiment, we first grasp the marker with 300 N force in an arbitrary position and bring it in contact with the paper.
We then start recording data and command the robot to move sequentially to 8-12 randomly sampled locations within a
10× 10 cm2 plane workspace, making linear strikes on the paper. Figure 7 illustrates a sample sequence from this dataset.
We note that during the strikes, the grasped marker undergoes orientation drifts at times, which adds to the complexity
in signal. We record a total of 1000 trajectories of 15-30 seconds each, comprising of 2 different colored markers. The
prediction task here is to predict the strike velocity (δx/δt, δy/δt), given the tactile signals thus reconstructing the overall
trajectory.

C.1.2. INTRINSIC SLIP

In Section 4.1.2, we outlined our methodology for collecting data through a total of 1000 trajectories. This involved using
10 distinct boxes and 4 sets of skins for 25 trajectories per combined pair. We first sample a random location and orientation
within the task workspace. Next, we close the gripper with a random force sampled in the range of 50-75 N and then start
recording data. With the gripper grasping the box, we uniformly sample 8-12 locations sequentially, thus slipping through
the robot workspace. Figure 7 illustrates a sample sequence from this dataset. The workspace is the upper region of the box,
which is a space of dimensions Box Length x Tip Size(3cm), shown in Figure 9. We clamp the wrist rotation
limits at [-π/4, π/4], making the overall local sampling bounds of the gripper tip position (center of tip), Y:[0, box length],
Z:[0, tip size], θ:[-π/4, π/4].

17

HiSS: Hierarchical State Space Models

Figure 8. Boxes in the Dataset

Bhirangi et al. (2021) characterize the ability of ReSkin sensor models generalize to skins outside the training distribution, but
these experiments are limited to single-frame, static data. Here, we collect an analogous dataset for the sequence-to-sequence
prediction problem. To avoid confounding effects, the evaluations provided in this paper are based on a random partitioning
of this dataset. However, we collect and publish an additional 100 trajectories on an unseen box and an unseen set of skins
to test the generalizability of trained models.

The dimensions of all boxes used in this experiment are detailed below. See Table 9 and Figure 8.

In this experiment, in addition to predicting the linear velocities of the end-effector, we also predict the angular velocities at
the wrist/the end-effector rotation (δx/δt, δy/δt, δθ/δt).

C.2. Xela: Allegro Hand on a Franka Emika Panda Arm

C.2.1. JOYSTICK CONTROL

For the final tactile dataset, we teleoperate an Allegro Hand with Xela sensors mounted on a Franka arm to interact with an
Extreme3D Pro Joystick shown in Figure 10, which streams data comprising of 6 rotation axes (X, Y, Rz, Throttle, Hat0X,
Hat0Y) and 12 buttons (Trigger, 2 Thumb Buttons, 2 Top Buttons, 1 Pinkie Button and 6 Base Buttons). Unlike the prior
datasets, which originated out of random yet scripted policies, this dataset has an added complexity from the unstructured
human interactive control. Figure 7 illustrates a sample sequence from this dataset. Due to the arm workspace and the finger
size constraints, we focus on 3 axes - X, Y and Z-twist for our prediction task. Given the readings from the Xela sensors, we

18

HiSS: Hierarchical State Space Models

Figure 9. End-effector Workspace on the Box, & Local Co-ordinate System

Box Number Dimensions (L x H x W cm)
1 20 x 12 x 4
2 16.5 x 8.5 x 3
3 14 x 9 x 5
4 17 x 13 x 4.5
5 15 x 10 x 4.5
6 16.5 x 13 x 6
7 17 x 10 x 5.5
8 18 x 19.5 x 5.5
9 17 x 11 x 3.5
10 12 x 8 x 6.5

11 (unseen) 23 x 16 x 5

Table 9. Dimensions of Boxes in the Dataset

predict the joystick’s states of interest.

Figure 10. Extreme3D Pro Joystick & Co-ordinate System

19

HiSS: Hierarchical State Space Models

D. Results and Ablations
D.1. Standard deviations for reported results

The results presented in Table 2 are averaged over 5 random seeds each. Table 10 presents the standard deviations over
seeds for each of the tasks and models.

Table 10. Comparison of standard deviation in MSE over 5 seeds for baseline and HiSS models on CSP-Bench.

Model type Model Architecture MW IS JC R V TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 0.0805 0.0161 0.0544 - 0.0004 -
LSTM 0.0540 0.0184 0.0006 0.0074 0.0014 0.0039
S4 0.0634 0.0159 0.0188 0.0049 0.0012 0.0172
Mamba 0.0224 0.0111 0.1060 0.0040 0.0011 0.0064

High-level Low-level

Hierarchical

Transformer

Transformer 0.0438 0.0164 0.0250 0.0057 0.0013 0.0159
LSTM 0.0429 0.0250 0.0420 0.0039 0.0016 0.0114
S4 0.0215 0.0084 0.0188 0.0021 0.0028 0.0416
Mamba 0.0617 0.0145 0.0180 0.0054 0.0015 0.0202

LSTM

Transformer 0.0359 0.0120 0.0721 0.1826 0.0017 0.0257
LSTM 0.0310 0.0093 0.0244 0.0022 0.0012 0.0121
S4 0.0405 0.0069 0.0295 0.0022 0.0014 0.0038
Mamba 0.1174 0.0179 0.0199 0.0049 0.0014 0.0143

S4

Transformer 0.0545 0.0273 0.0172 0.0031 0.0015 0.0030
LSTM 0.0511 0.0099 0.0255 0.0012 0.0014 0.0069
S4 0.0274 0.0076 0.0238 0.0009 0.0008 0.0179
Mamba 0.0357 0.0044 0.0136 0.0024 0.0012 0.0151

Mamba

Transformer 0.0499 0.0154 0.0500 0.0050 0.0007 0.0077
LSTM - 0.0142 0.0131 0.0030 0.0013 0.0171
S4 0.0453 0.0066 0.0347 0.0019 0.0016 0.0088
Mamba 0.0542 0.0042 0.0313 0.0022 0.0010 0.0156

D.2. Sensor Data Preprocessing with Filtering

In this section, we provide more detailed tables for the experiments in Sections 6.5. Table 11 contains results from separately
applying order 3 Butterworth filters to the input sequences with cutoff frequencies of 0.75Hz, 2.5Hz and 7.5Hz. For each
setting, we pick the set of models corresponding to the cutoff frequency with the best performance, and report average
performance over 3 seeds.

D.3. Smaller Datasets

In this section, we provide more detailed tables for the experiments in Sections 6.6. Table 12 contains results from
subsampling the training datasets – 30% of the dataset for MW, IS, JC and RoNIN, and 50% of the dataset for VECtor and
TotalCapture. We see that HiSS consistently outperforms flat models across tasks in CSP-Bench when training on fractions
of the training dataset, indicating the sample efficiency of HiSS models.

20

HiSS: Hierarchical State Space Models

Table 11. Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when passing the input sequences through a
low-pass filter. Reported numbers are averaged over 5 seeds for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC:
Joystick Control, TC: TotalCapture

Model type Model Architecture MW BS JC RoNIN VECtor TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 1.7940 0.3096 1.0080 - 0.0346 0.3845
LSTM 1.1498 0.2596 1.0770 0.0382 0.0242 0.1234
S4 1.1885 0.2209 0.9449 0.0305 0.0228 0.2467
Mamba 0.7823 0.1367 0.9459 0.0297 0.0188 0.1661

High-level Low-level

Hierarchical

Transformer
LSTM 1.0052 0.1883 0.9074 0.0532 0.0284 0.2314
S4 0.6703 0.1249 0.8652 0.0434 0.0260 0.2908
Mamba 0.8912 0.1251 0.8731 0.0435 0.0243 0.3118

LSTM
LSTM 0.8063 0.2434 1.0500 0.0430 0.0272 0.1754
S4 0.6462 0.1477 0.9885 0.0419 0.0288 0.1968
Mamba 0.7515 0.1657 1.0080 0.0420 0.0234 0.1755

S4
LSTM 0.8525 0.1390 0.9269 0.0306 0.0272 0.1905
S4 0.6667 0.1221 0.9296 0.0377 0.0222 0.2284
Mamba 0.7825 0.1180 0.8898 0.0396 0.0207 0.2527

Mamba
LSTM 0.8143 0.1308 0.9660 0.0369 0.0255 0.1594
S4 0.5535 0.1074 0.8665 0.0362 0.0272 0.1301
Mamba 1.5657 0.1057 0.8765 0.0367 0.0212 0.1466

Table 12. Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when using a fraction of the training dataset.
Reported numbers are averaged over 5 seeds for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC: Joystick Control,
TC: TotalCapture

Model type Model Architecture MW IS JC RoNIN VECtor TC
(cm/s) (m/s) (m/s) (m/s)

(Fraction) 0.3 0.3 0.3 0.3 0.5 0.5

Flat

Transformer 4.2975 0.8509 1.2370 - 0.0460 0.5430
LSTM 1.8322 0.5376 1.3130 0.0533 0.0390 0.3855
S4 2.3070 0.4450 1.1970 0.0431 0.0379 0.4338
Mamba 1.7443 0.3677 1.1950 0.0394 0.0358 0.4838

High-level Low-level

Hierarchical

S4
LSTM 1.5417 0.3428 1.2350 0.0387 0.0331 0.3982
S4 1.5460 0.2931 1.1260 0.0346 0.0337 0.3992
Mamba 2.3302 0.3760 1.1060 0.0412 0.0326 0.4913

Mamba
LSTM 1.5810 0.3478 1.2410 0.0362 0.0309 0.3530
S4 1.2600 0.2883 1.1370 0.0378 0.0333 0.3675
Mamba 1.7508 0.3688 1.1140 0.0383 0.0286 0.4320

21

HiSS: Hierarchical State Space Models

E. TotalCapture Preprocessing
This dataset provides readings from 12 IMU sensors and the ground truth poses of 21 joints obtained from the Vicon motion
capture system. To standardize the data within a consistent coordinate system, we transformed all IMU sensor readings from
their native IMU frames to the Vicon frame. Our task is to predict the velocities of the 21 joints given the IMU acceleration
data in the Vicon reference frame.

To convert IMU acceleration data into the Vicon frame, we utilize the calibration results
provided in the files named <subject id> <sequence name> calib imu ref.txt and
<sequence name> Xsens AuxFields.sensors. The acceleration of each IMU sensor in the Vicon frame
is calculated as follows:

avicon = Rvicon
inertialR

inertial
imu aimu, (1)

where Rinertial
imu is the rotation matrix converted from the IMU local orientation quaternion (w, x, y, z) provided in the

<sequence name> Xsens AuxFields.sensors files. This quaternion represents the IMU’s orientation in the
inertial reference frame.

Furthermore, Rvicon
inertial is obtained by converting the quaternion information (<imu name> x y z w) available in the

<subject id> <sequence name> calib imu ref.txt files, which encapsulates the transformation from the
inertial frame to the Vicon global frame.

22

