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Abstract
Purpose In the past decade, augmented reality systems have
been expected to support surgical operations by making it
possible to view invisible objects that are inside or occluded
by the skull, hands, or organs. However, the properties of
biological tissues that are non-rigid and featureless require a
large number of distributed features to track the movement
of tissues in detail.
Methods With the goal of increasing the number of feature
points in organ tracking, we propose a feature detection using
multi-band and narrow-band imaging and a new band selec-
tion method. The depth of light penetration into an object
depends on the wavelength of light based on optical charac-
teristics.We applied typical feature detectors to detect feature
points using three selected bands in a human hand. To con-
sider surgical situations, we applied our method to a chicken
liver with a variety of light conditions.
Results Our experimental results revealed that the image of
each band exhibited a different distribution of feature points.
In addition, the total number of feature points determined
by the proposed method exceeded that of the R, G, and B
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images obtained using a normal camera. The results using a
chicken liver with various light sources and intensities also
show different distributions with each selected band.
Conclusions We have proposed a feature detection method
usingmulti-band and narrow-band imaging and a band selec-
tion method. The results of our experiments confirmed that
the proposed method increased the number of distributed
feature points. The proposed method was also effective for
different light conditions.

Keywords Multi-band imaging · Narrow-band imaging ·
Biological tissues · Feature detection · Augmented reality

Introduction

Dense feature detection of biological tissues is important
for augmented reality (AR) navigation systems, which are
expected to support surgical operations by making it possi-
ble to view invisible objects inside or occluded by the skull,
hands, or organs [1]. In general, human tissues are non-rigid
and deform during surgery, including the cerebrum, hands,
and internal organs. For example, the skin of a human hand
deforms during syndactyly surgery, and the skin displace-
ment is important information for augmenting images of the
arteries running along the fingers to avoid damaging them.

AR navigation systems require pairs of corresponding
points between two images to estimate the displacement of
the points’ three-dimensional (3D) positions. To deal with
local deformation of an object in the navigation, dense fea-
tures are required. The number and the spatial distribution
of feature points are both important because feature points
with similar positions are meaningless. The purpose of this
study is to develop a feature detection system to obtain dense
features from biological tissues.
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We focus on how the depth of light penetration depends
on wavelength. Short-band light is reflected or scattered on
the surface or a shallow area of the biological tissue, while
long-band light can penetrate more deeply. Therefore, each
light band reflects the structure at a different depth of the
tissue. To obtain more feature points from tissues, we take
advantage of the properties of the illumination related to light
bands. Narrow-band imaging (NBI) has been proposed for
visualizing abnormal tissue for clinical use [2]. However, to
the best of our knowledge, thismethod has never been applied
for feature detection.

In this study, we propose a novel feature detection system
with multi-band and NBI (multi-NBI) for biological tissues.
In particular, we developed an NBI system consisting of a
tunable filter and a high-sensitivity camera.We also designed
a method of band selection for efficient measurements. We
examinedboth the number and spatial distribution of detected
features with a human hand, which is one of the target bio-
logical tissues of AR navigation. In addition, the effects of
the types and intensities of light sources are also considered.

Related work

Conventional NBI uses the absorption peaks of hemoglobin
at light wavelength of 415 and 540nm. Sano et al. [2]
enhanced themicrostructures of the superficialmucosal layer
using NBI. However, this technique is designed to find a
tumor by visualizing the concentration of vessels; it is not
designed to detect feature points. On the other hand, NBI
can enhance a certain feature by limiting the wavelength
band.

The properties of illumination have been studied to obtain
surface and subsurface information about objects. Nayar et
al. [3] proposed a method that separates an image into global
and direct components. The global component of illumina-
tion is the light that passes through another medium, such
as subsurface scattering. The direct component is derived
directly from the light source and obtained by removing
the global component. In the method by Nayar et al., high-
frequency illumination patterns are projected onto a scene,
and then the two components are generated from the images.
Tanaka et al. [4] applied this method to a translucent object.
Thismethod yields sliced images of the areawithin the tissue.
However, it is difficult to apply this method to AR surgery
because it takes too much time to obtain the two components
by projecting high-frequency illumination patterns. In addi-
tion, more feature points from a scene are required, but sliced
images at each depth are not needed for our purpose.

Near-infrared (NIR) imaging is a beneficial tool for detect-
ing a foreign substance under skin. Hayakawa et al. [5] used
NIR light imaging to detect a foreign substance under skin.
Nishida et al. [6] improved the transillumination image of

blood vessels using multi-band light. In this study, we use
visible light instead of NIR, because short wavelengths can
enhance surface structure.

To detect features and track tissues, Elhawary and Popovic
[7] proposed a combination of the Speeded-Up Robust Fea-
tures (SURF) feature descriptor [8] and the Lucas–Kanade
tracking method [9]. This combination is robust for track-
ing heart motion in real time. Haouchine et al. [10] also
adapted this combination for liver tracking with a stereo
endoscope, but they did not focus on improving feature detec-
tion for biological tissues. In this study, we focus on feature
detection.

Feature detection using multi-band imaging
and NBI

Concepts

Using multi-NBI, it is possible to obtain more feature points
from different wavelength images. However, the results are
useless if the positions of the detected features are the same
between the band images. Therefore, it is important to obtain
different distributions of feature points from the band images.
In addition, the measurement should run efficiently for sur-
gical navigation, and the measurement time increases with
the number of band images.

Figure 1 illustrates the concept of the proposed system.
The particular narrow-band of the reflected light passes
through the filter and is captured using a high-sensitivity
camera. The filter and camera are controlled by a personal
computer. If each band image has a different distribution of
feature points, the total number of feature points essentially
increases.

Fig. 1 Concept of the proposed system. The colored points at the bot-
tom are examples of feature points from each band image
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Band selection

Because capturing all available band images requires too
much time, band selection is a key feature of the proposed
system for efficient processing. We accordingly introduced a
criterion to select several remarkable bands to detect feature
points.

We calculated the variation ratio Q(n,m) between two
bands n and m of images using the following equations:
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where In(x, y) is the pixel value of the coordinates (x, y) of
a band n image, P(x, y) is the variation of intensity between
two bands, Q(n,m) is the average of P(x, y), and w and h
are the image’s width and height, respectively. In this study,
we examined wavelengths in the range of 400–720nm.

In the case of large Q(n,m), the appearances of bands n
and m are significantly different, which indicates that these
bands exhibit different features. In this work, the difference
of bands to compare is fixed to a constant k. We accordingly
calculated Q(n, n + k) within the range of wavelengths. We
selected bands using the following conditional equations:

Q(n − k, n) < Q(n, n + k), (4)

Q(n + k, n + 2k) < Q(n, n + k). (5)

We selected three bands to compare the performance with
the R, G, and B images of a normal camera. We selected two
sets in which Q(n, n + k) is large and satisfies the above
conditions. If Q(n1, n1 + k) and Q(n2, n2 + k) are selected
as (n1 < n2), there are three different intensity regions: (a)
wavelengths of n1 or less, (b) between n1 + k and n2, and (c)
n2 + k and longer. Then, n1 from (a), n2 + 2k from (c), and
n1+n2+2k

2 from (b) were selected.
To detect feature points, we used the scale-invariant fea-

ture transform (SIFT) [11], which performs better than
SURF. SIFT is robust for image rotation, scale, and light
environments, and it has been used for feature detection,
tracking, and matching in many cases of image processing.
However, SIFT is associated with a high computational cost.
Features from Accelerated Segment Test (FAST) is another
representative feature detector, which detects corners in an
image [12]. For comparative evaluation of features, we tested
SIFT, SURF, and FAST.

lens

band changeable filter

Fig. 2 Our multi-band imaging and NBI system

Evaluation

System configuration

Figure 2 shows the implemented system based on the noted
requirements. We used a VariSpecTM liquid crystal tunable
filter (CRi) as a controllable narrow-band filter. This device
filters in increments of 10nm over a range of 400–720nm,
and a setting band with ±5nm is filtered. Due to the low
light intensity during filtering, we used an optiMOS camera
(QImaging) with a high-sensitivity image sensor, a resolu-
tion of 1920 × 1080 pixels, and a maximum frame rate of
100 fps. The camera and filter were controlled using a per-
sonal computer (Windows 7, 64bit, Intel Core i7-4790k at
4.00GHz, 16GB memory, and NVIDIA GeForce GTX 760
graphics card). We implemented the program to control the
camera and filter in C++, and OpenCV 2.4.9 was used to
detect features.Weused each feature detectorwith the default
threshold values in OpenCV.

Our prototype system ran at approximately 20 fps due to
the high resolution, and our light source was an LP-500U
white LED (FalconEyes). We used a human hand, which
is one of the target tissues of AR surgery and a biological
tissue that can be captured consistently under a variety of
conditions for a long time. We also demonstrate how this
procedure works with a chicken liver.

Feature point distribution

As a result of the band selection in Fig. 3, we computed
two sets, n1 = 450 and n2 = 590. Then, we obtained 450,
530, and 610nm as the selected bands. We defined k = 10
heuristically in Eqs. 4 and 5 and selected three bands.

Figure 4 shows examples of the images captured by our
imaging system and the spatial distribution of the feature
points with SIFT, SURF, and FAST. The image of the short
band in Fig. 4a shows surface wrinkles and spots. In contrast,
the image of the long band shows blood vessels, although
the image is textureless. Each channel of the normal camera
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n1 n2

Fig. 3 Results of the band selection. We excluded images with wave-
lengths below 430nm (gray area) from the band selection because this
wavelength range exhibited significant noise level due to the low light
intensity based on the light source’s spectral characteristics

image includes a much wider wavelength range compared
to the proposed narrow-band image. The wider band would
hide the features specific to a certain wavelength.

Figure 5 shows normal camera images and the spatial
distribution of the feature points. We used Point-Grey FL2-
08S2C-C (with 1032×776pixels and30 fps) to obtain normal
RGB images. We observed blood vessels with increasing
wavelength (from the B channel to the R channel), but
the changes were less pronounced than in the narrow-band
images.

The lower three rows of Fig. 4 show the spatial distribu-
tion of feature pointswith SIFT, SURF, and FAST. In general,
the numbers of feature points at 450nm in Fig. 4d1, e1, f1
are greater than those of the other band light images. As the
bands become wider, the number of feature points decreases
because it is difficult to obtain a clear image in strong scat-
tering at a long wavelength. In the case of normal camera
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Fig. 4 Example of narrow-band images. The top row shows examples,
while the lower three rows show the spatial distribution of the feature
points with SIFT, SURF, and FAST. The image of the short-wavelength
band (left) includes spatially high-frequency features, wrinkles, and

mottles. In the long-wavelength band, spatially low-frequency features,
blood vessels, and deep wrinkles appear (right). The feature points of
the short-wavelength band are denser than the feature points of the
long-wavelength band
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Fig. 5 Normal camera images (RGB channel). The top row shows each channel of images, and the lower three rows show the spatial distribution
of the feature points with SIFT, SURF, and FAST

images, the lower three rows from (d1) to (f3) of Fig. 5 show
that the numbers of feature points in theBchannel in Fig. 5d1,
e1, f1 are greater than those in the other channels.

To evaluate these feature point distributions, we applied a
hierarchical cluster analysis that assembles hierarchical clus-
ters based on the similarity of particular components. We
used the average and the deviation of all feature point coordi-
nates as input data. Figure 6 shows the result of the clustering
dendrogram with SIFT features, in which the height signi-
fies the distance between two clusters. A lower hierarchy
in the tree implies that the components of the cluster are
closer than those of a higher hierarchy. According to Fig. 6,
if we use the largest cluster (i.e., a tree height of 1000),
then there is a boundary between 580 and 600nm. When
we select the cluster at a tree height of 300, there are three
clusters, and our selected bands (450, 530, and 610nm) are
clustered separately. In addition, the analysis results of fea-
ture points detected with SURF and FASTwere similar to the
clustering result using SIFT, and the largest cluster bound-
ary was between 580 and 600nm. In the case of SURF, we

needed five clusters to separate the selected band into differ-
ent clusters. The similarity of clusters increased somewhat,
and there is another cluster with different distributions. In
the case of FAST, we needed three clusters to separate the
selected bands, which was the same as SIFT. Therefore, the
proposed method was also effective for different light con-
ditions.

Number of feature points

To verify the efficiency of feature detection with NBI, we
compared three types of images: narrow-band images from
our system, synthesized normal-band images, and images
obtained with a normal camera. The synthesized images
represented the weighted sum of multi-NBI in which the
weighting parameters were determined by referring to the
normal camera’s spectral sensitivity. To compare the number
of feature points in each type of image, we conducted two-
way analysis of variance with multiple comparisons using
the Holm–Bonferroni method. The first factor is the type of
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Fig. 6 Hierarchical cluster analysis dendrogram of a human hand with
SIFT feature points distribution

image noted above, and the second factor is the band. In this
comparison, the bands for NBI are 450nm (short), 530nm
(middle), and 610nm (long), which correspond to the blue,
green, and red channels of a normal camera, respectively.
Similar to the previous evaluation, we used a human hand
as a sample, and we captured 20 samples in various postures
from one person.

Figure 7 shows the results of multiple comparisons of dif-
ferent types of images. We observed significant differences
between the G and B images obtained with a normal cam-
era and those obtained with narrow-band images at 530 and
610nm, respectively. However, the comparison of the long
band gave a different result. This is because FAST is a cor-
ner detection method, but the long-band image is not a clear
image and has a small number of corners. The improvement
in the synthesized images is limited or in some cases nonex-
istent. In addition, we compared the sum of the feature points
in the R, G, and B images with the sum of feature points of
the multi-NBI images (450, 530, and 610nm) with SIFT, as
shown in Fig. 8. We found significant differences between
the sum of feature points in the images from the normal
camera and the multi-NBI images (p < 0.005). We can
accordingly conclude that the number of detected feature
points in the narrow-band images is greater than the feature
points detected by the normal camera, except for the shortest
band. Moreover, the sum of feature points using the narrow-

(a)

(b)

(c)

Fig. 7 Number of feature points of three different band images using
a normal camera, synthesized image, and the narrow-band images with
SIFT, SURF, and FAST

Fig. 8 The sum of feature points of a normal camera, synthesized
image, and the narrow-band images with SIFT

band data exceeded that of the normal camera. These results
showed that ourmethodwas effective in typical feature detec-
tors. A proper feature detector should be chosen according to
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the purpose of use. For example, since FAST mainly detects
corners, it is inappropriate for biological tissues, which have
uniform texture and few corners.

Application to another tissue and the effects of types
and intensities of light sources

Wenext analyzed how the proposedmethodworks for feature
detection using chicken liver tissue. We obtained a chicken
liver that was being sold for consumption, and we used it for
experiments ex vivo. Thus, there were no ethical issues.

We tested the proposed method in a variety of illumina-
tion conditions that might occur in surgical situations. For
this purpose, we used a PCS-UHX-AIR halogen light (Opti-
cal Garden) and the aforementioned white LED light as light
sources. We measured an object while changing three inten-
sity levels of each light source. For example, the intensity
of LED2 is stronger than that of LED1, and that of LED3 is
stronger than that of LED2. The exposure time was 20 ms.
Figure 9 shows the spectrum of each light source.

We captured chicken liver images in increments of 10nm
over a range of 400–720nm. Table 1 shows the result of
band selection with each light source intensity. The pixel
value changed with the types and intensities of light sources,
which is exploited by our method. Therefore, the selected
bands were different among the different light conditions.

Figure 10 shows the images with the selected bands listed
in Table 1. In this experiment, we analyzed the images with
SIFT only because the main focus is to analyze the effects of
the light source conditions. Figure 11 shows the SIFT feature
point distribution of Fig. 10 images. Overall, the distributions
of feature points varied visually from the short band to the
long band. However, similar to the “Feature Point Distribu-
tion” section, the distributions of feature points analyzed by
hierarchal clustering showed no division of the selected band
into different clusters when we cut it into five clusters. This
probably occurred because the short- and long-band images
have similar intensities and thus similar spatial distributions.

Discussion

We have confirmed that the proposed system makes it pos-
sible to detect a greater number of distributed feature points
from a human hand. However, the number of feature points
was not significantly different between the normal camera
and the proposed multi-NBI in short bands, as shown in
Fig. 7. This finding may be caused by the limited reflection
of light due to the absorption of short-band light in the tis-
sue.Moreover, multi-NBI could not detect the lesion because
the band it selected was not necessarily the band strongly
absorbed by hemoglobin. To enhance the lesion area, we
must select the absorption peaks of hemoglobin at 415 and

(a)

(b)

Fig. 9 Light source spectrum normalized by maximum value of each
light conditions. The maximum value of the vertical axis is one

Table 1 Band selection and clustering results for different intensity
levels for each light source

Short (nm) Middle (nm) Long (nm) Cluster

Halogen

1 510 540 570 8

2 510 530 560 11

3 470 540 610 8

LED

1 470 520 570 16

2 480 580 680 4

3 490 540 600 5

Halogen1 is weaker than Halogen2, and Halogen2 is weaker than Halo-
gen3. The same order applies to the LEDs. “Cluster” means the number
of clusters needed when dividing the three bands

540nm. However, we focused on obtaining different distri-
butions of feature points. Thus, it is not necessary to select
these bands.
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Fig. 10 Results of measuring chicken liver at different intensity levels for each light source. Short, middle, and long mean the selected band listed
in Table 1 for each condition

In order to apply the method to a case of AR surgery,
the tracking performance and robustness under deformation
must be verified. However, since our approach using the
multi-NBI images is theoretically independent of the feature
detector and tracking algorithm, our findings aremeaningful.
In the future, wewould like to apply themethod under the sit-
uations noted to verify its performance. In addition, this work
only focused on image processing and feature detection.
Application to AR surgery, however, requires an accurate
tracking algorithm for features detected by our method. For
example, Souza et al. [13] proposed a feature matching algo-

rithm for surgical images, which are the following steps of
our part. It would be possible to apply Souza’s method to the
feature points obtained by our multi-NBI method for track-
ing.

We used SIFT, SURF, and FAST for detecting feature
points. SIFT is associated with a high computational cost,
so we need to use a faster detector such as SURF or FAST
for testing in real time, and we must also consider paral-
lel processing using a GPU. In addition, SIFT is a feature
descriptor that is invariant of image rotation, image scaling,
and light illumination. SIFT is also robust to global bright-
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Fig. 11 Distributions of feature points with SIFT applied to Fig. 10 images

ness changes but not to local changes. On the other hand,
SIFT is not robust to deformation. Recently, Ling et al. [14]
proposed a local descriptor that is invariant to deformation
using geodesic-intensity histograms. In addition, Lobaton et
al. [15] proposed a local descriptor that is invariant to locally
bounded deformations using homology. In the future, wewill
evaluate the proposed method under deformation using tech-
niques such as these.

The results of the ex vivo experiment with a chicken
liver might be different from in vivo and in vitro results.
There is no blood flow in the case of an ex vivo experi-
ment. It was expected that the measurement with a particular
light band would make a difference because the peaks of
light absorption of hemoglobin in blood vessels are 415 and
540nm. Even in vitro results would show differences from in
vivo results. Therefore, investigating the differences between
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Table 2 Band selection and clustering results of intensity levels for
each light source with modified band selection

Short (nm) Middle (nm) Long (nm) Cluster

Halogen

1 510 610 710 4

2 540 620 700 7

3 470 510 550 12

LED

1 470 590 710 5

2 480 580 680 4

3 490 580 680 4

in vivo, in vitro, and ex vivo is one of topics for future
work.

The captured image depends on the light source’s prop-
erties, intensity levels, and the camera and lens parameters
(aperture stop, focus, shutter speed, and so on). Depending
on the type of light source, there is a band that does not emit
strong light, particularly a short band. Thus, if the exposure
time is short, it is impossible to obtain a clear image. This
problem has not been solved with contrast adjustment. If we
apply contrast adjustment, image noise is enhanced, and the
fine texture of the short band is lost. On the other hand, satura-
tion occurs if the exposure time is long or the light intensity
is strong in the case of the long band. Therefore, for each
band, it could be useful to set an appropriate exposure time
and system parameters.

As mentioned, we obtained worse hierarchical clustering
results for feature point distributions with a chicken liver
compared to a human hand. This was particularly apparent
for LED3, as shown in Fig. 10. The short- and long-band
images had similar intensities, and it was possible to detect
similar distributions of feature points. To deal with this prob-
lem, we added a constraint to the band selection method,
which chooses the bands n1 and n2 + 2k, for which images
have a large difference in intensity. This constraint guaran-
tees that the short- and long-band image intensities will be
different. Table 2 shows the band selection results with the
modified band selectionmethod. The results of thismodifica-
tion showed great improvement in the clustering analysis. In
addition, when we applied this constraint method to human
hand images, we obtained the same band selection result. We
thus concluded that the modified band selection method was
effective in terms of the distribution of feature points.

Conclusion

We have proposed a feature detection method using multi-
NBI and band selection. We implemented our system using a

variable band filter and a high-sensitivity camera. Our exper-
imental results using a human hand revealed differences in
terms of intensity and the spatial distribution of the fea-
ture points according to the band selection method. There
were more feature points in multi-NBI images than in nor-
mal camera images. This effect persisted in all bands with
the exception of the shortest band, and the total number
of feature points was also greater. We also found a differ-
ent appearance and distribution of feature points when we
applied the proposed method to a chicken liver with vari-
ous types and intensities of light sources. Based on these
results, we can conclude that the proposed multi-NBI feature
detection method with the intensity constraint increased the
number of feature points that have different spatial distribu-
tions. It will be valuable to test this methodology using other
biological tissues inside a body in future studies. Follow-up
work should include an evaluation of the proposed method
in terms of tracking performance under deformation by mea-
suring an organ in surgical situations.
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