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ABSTRACT

Existing advanced video frame interpolation (VFI) methods struggle to learn accu-
rate per-pixel motion or target-level motion. The reasons lie in that pixel-level mo-
tion estimation allows for infinite possibilities, making it challenging to guarantee
fitting accuracy and global motion consistency, especially for rigid objects. Con-
versely, target-level motion consistency from the same moving target also breaks
down when the assumption of object rigidity no longer holds. Therefore, a hier-
archical motion learn scheme is imperative to promote the accuracy and stability
of motion prediction. Specifically, we marry the target-level motion to the pixel-
level motion to form the hierarchical motion estimation. It elaborately introduces
specific semantics priors from open-world knowledge models such as the Recog-
nize Anything Model (RAM), Grounding DIDO, and the High-Quality Segment
Anything Model (HQ-SAM) to facilitate the latent target-level motion learning.
In particular, a hybrid contextual feature extraction module (HCE) is employed
to aggregate both pixel-wise and semantic representations, followed by the hier-
archical motion and feature interactive refinement module (HIR) to simulate the
current motion patterns. When integrating these adaptions to existing SOTA VFI
methods, more consistent motion estimation and interpolation are predicted. Ex-
tensive experiments show that advanced VFI networks plugged with our adaptions
can achieve more superior performances on various benchmark datasets.

1 INTRODUCTION

Video frame interpolation (VFI) aims to increase the frame rate of videos by synthesizing interme-
diate frames between two consecutive input frames. As a classical problem in video processing, this
task has contributed to various applications, including slow-motion generation (Huang et al.|(2022));
Liu et al.| (2024))), movie production (Siyao et al. (2021)), video compression (Wu et al.|(2018))), efc.

Based on the granularity of motion learning, the existing technologies can be roughly divided into
pixel-level and target-level technologies. The former typically predicts pixel-level motion between
two consecutive input frames (See Figure[T](a)), which is used to synthesize the intermediate frames
by warping input frames (Liu et al.|(2024)). However, pixel-level motion estimation presents infinite
possibilities, which arises great difficulties for accurate motion simulation and interpolation. Though
advanced techniques like global attention representation (Zhang et al.| (2023); Lu et al.| (2022)), are
employed to refine motion estimation, the correspondence ambiguity cannot be eradicated.

Target-level technologies introduce semantic priors for efficient motion estimation (Sevilla-Lara
et al.| (2016); Hur & Roth| (2016)). Specifically, these traditional methods divide the scene into
different semantic categories, and then learn the individual motion representation. However, these
methods are primarily suited for rigid motion, while the deformation or pixel-wise motion is not
supported (See deformed ball and people with non-rigid metions in Figure [1| (b)). In addition,
limited by the predefined classes, it is incapable of recognizing novel categories in the open-world.

To simulate the motion of anything in complex scenes, we explicitly introduces specific semantic
priors and propose a novel hierarchical motion learning strategy for VFI. This approach seamlessly
marries the target-level motion to the pixel-level motion, enhancing the accuracy and stability of
motion prediction. Specifically, we elaborately introduce specific semantic priors from open-world
knowledge models to facilitate latent target-level motion estimation. We first utilize Recognize Any-
thing Model (RAM) (Zhang et al.|(2024)) to tag each object in each image. Based on tagged text,
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Figure 1: Different schemes for VFI. (a) Pixel-level approach: they extract pixel-level feature to
predict per-pixel motion between two input frames Iy and [; for intermediate frame interpolation
I;. (b) Target-level approach: they extract Target-level feature to predict the entire object motion for
VFI. (c) Our approach: We effectively aggregate pixel-level and target-level features to derive
hybrid discriminative feature, enabling hierarchical motion estimation to simulate the current
motion patterns.

Grounding DIDO (Liu et al.| (2023))) is employed to detect the corresponding objects and generate
their bounding boxes. the generated bounding boxes are then used as prompts for High-Quality
Segment Anything Model (HQ-SAM) (Ke et al.| (2024)) to obtain specific semantic masks. Fur-
thermore, we leverage these semantic masks as priors to enhance context extraction and motion
optimization via two novel adaptations. 1) A hybrid contextual feature extraction module (HCE),
which comprises of a spatial hybrid contextual feature extraction block (HCE-S) and a temporal hy-
brid contextual feature extraction block (HCE-T), to aggregate spatial and temporal pixel-wise and
semantic representations, respectively. 2) A hierarchical motion and feature interactive refinement
module (HIR), comprising a long-range hierarchical motion interactive refinement block (HIR-L)
and a short-range hierarchical interactive refinement block (HIR-S), progressively simulate the mo-
tion patterns between latent intermediate frame and input frames in coarse-to-fine manner. These
adaptations can be easily integrated into SOTA VFI methods. Experimental results demonstrate
that SOTA methods incorporating our adaptations produce motion consistent results with minimal
additional cost.

Our main contributions can be summarized as follows: 1) To the best of our knowledge, we are the
first to explicitly leverage semantic information to achieve motion estimation for VFI using deep
learning. 2) We propose a hybrid contextual feature extraction (HCE) to aggregate pixel-wise and
semantic representation, and a hierarchical motion and feature interactive refinement module (HIR)
to simulate the current motion patterns. 3) We conduct comprehensive validation of the effectiveness
of our plug-and-play adaptions across a range of SOTA methods.

2 RELATED WORK

Video Frame Interpolation. The advanced VFI methods can broadly be categorized into motion-
free (Kalluri et al.| (2023))) and motion-based (Hu et al.| (2024)) approaches, depending on whether
they incorporate cues such as optical flow. Motion-free: This sort of method relies on phase pre-
diction (Meyer et al.|(2018))), kernel generation (Lee et al.|(2020); (Cheng & Chen| (2021)) or spatio-
temporal encoder-decoder (Choi et al.| (2020); Zhang et al.|(2020)) to directly produce intermediate
frames. However, they lacks explicit motion modeling constraints, leading to undesirable artifacts
in the interpolated results. Motion-based: Motion-based methods typically predict intermediate
optical flows between two consecutive frames, and then leverage estimated optical flows to prop-
agate pixels/features for intermediate frame generation (Liu et al.| (2017); Jiang et al, (2018)); Xu
et al.[ (2019); Jin et al.| (2023); |Park et al.| (2023); [Liu et al.| (2024)). To make VFI algorithms ro-
bust to various complex scenarios. Niklaus et al. extract per-pixel context information from the
input frames as auxiliary information to compromise inaccuracies of optical flows (Niklaus & Liu
(2018))). Bao et al. introduce depth information to explicitly detect occlusions, reasoning that closer
pixels should be preferably synthesized in the intermediate frame (Bao et al.|(2019)). Unfortunately,
this sort of method focuses more on motion estimation at the pixel level, and struggles to determine
the correspondences between the input frames in complex scenarios due to the lack of semantic
information. Recent work has attempted to adopt SAM prior (Kirillov et al.| (2023)) to explore cor-
responding areas in adjacent frames for better motion estimation (Han et al.| (2023)). Nevertheless,
they fall short in fully and explicitly utilizing semantic information, as SAM fails to identify their
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(a) Overview of our framework

(b) Architecture of HCE-S/HCE-T

Figure 2: The overall framework (a) and model architecture (b). Our framework consists of
pixel-level baseline network (i.e., motion estimation module and synthesis module), pre-trained
open-world models, and our plug-in module. The former extracts pixel-level feature F;, and F}
to predict coarse motions fto and fﬂ and intermediate frame ft based on two input frames I and
1, the latter two are integrated to aggregate spatial and temporal hybrid contextual features H, and
H,, progressively estimating long-range motions f{ and f! and short-range motions f/} and f}
along with a latent intermediate feature F}*, utilizing Fy, and F; and generated SAM masks M, and
M;.

semantic classes. In this paper, we combine a pipeline that automatically tailors specific SAM masks
from input frames, then these masks are used to extract target-level features and aggregate hybrid
contextual feature for robust hierarchical motion estimation and frame interpolation.

3 METHODOLOGY

3.1 THEORETICAL ANALYSIS

As shown in Figure [2| (a), given two consecutive frames I and I, pixel-level video frame inter-
polation (VFI) aims to predict bidirectional pixel-level motions fiy and f;; via a shared motion
estimation module (ME). These motions are used to synthesize the intermediate frame I; via syn-
thesis module (Syn). The whole process is defined as:

fio=ME(Iy,I,t), fu=ME,1o,1—t), I, =Syn(W(lo, fw) W, fr)), (1)

where W (-) denotes backward warping (Liu et al.| (2017)). By observing Eq. I} motion estima-
tion (Hu et al.|(2024)) is the most critical step in the well-established paradigms of VFI networks
(Note that Syn functions as a post-processing module and is not a key focus of this paper). To analyze
motion estimation comprehensively, from a probabilistic point of view, taking motion estimation in
one direction as an example, the process can be expressed as:

. p(TolOpFol o, Op(L T, fro t
fio = argmax p(fio|lo, I1,t) = 2l)polt)plfullo, Oipth|, fio ),
fro p<IO’Ilat)

where fto is the most likely estimated motion, and p( f;o|lo, I1,t) is the posterior distribution of the
motion. we omit unrelated terms and take the logarithm to simplify the multiplication terms:

fro = argfmax{ log p(frol 1o, t) +log p(I1| 1o, fro,t) }-
t0

2

3)
context interactivity
Similarly, motion estimation in the other direction can be expressed as:
fu = argfmax{ logp(full1,1 —t)+logp(Io|l1, fr1,1 — 1) } @
Jt1

context interactivity
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Figure 3: Different schemes for semantic mask generation. (a) SAM approach: Though SAM/HQ-
SAM have shown strong capabilities in segmenting Anything, the masks generated by SAM do not
specify the semantic classes and contain redundant semantic information (See the third and fourth
rows). (b) Our approach: We leverage open-world knowledge models such as Recognize Anything
Model (RAM), Grounding DIDO (DIDO) and High-Quality Segment Anything Model (HQ-SAM)
to generate specific masks, where each pixel is basically assigned to a mask.

The context terms from Eq andprovide an alternative information source (I and [;) for motion
guidance ( fto and ftl), respectively. However, pixel-wise contextual features extracted by existing
methods (Niklaus & Liu|(2018); Bao et al.|(2019)) are limited to local spatial or temporal cues. In
contrast, we introduce semantic priors to capture spatio-temporal local and global hybrid features
as contextual information. Since intermediate frame I; is unavailable, the interactivity terms from
Eq|3|and |4| highlight the interactive relationship between warped intermediate features (W (Iy, f:o),
W (11, f+1)) and flow (fi0, f+1), maintaining their consistency in a joint optimization manner (Kong
et al.| (2022)); [L1 et al.| (2023)). Unfortunately, existing methods struggle to guarantee fitting accu-
racy and global motion consistency since they overlook the target-level information. Unlike them,
we introduce semantic priors that marry target-level motion to the pixel-level motion, achieving
hierarchical motion and feature interactive refinement for current motion patterns modeling.

3.2 OVERVIEW

Given a pixel-level baseline network (e.g., IFRNet (Kong et al.| (2022))) developed for VFI with
target-level information, we extend it to robust motion estimation and interpolation by incorporating
hierarchical information from pre-trained open-world models and our plug-in module. Specifically,
as shown in Figure [2[a), given two consecutive frames Iy and I, pixel-level baseline network typ-
1cally employs a motion estimation module and a synthesis module to predict per-pixel motion ftO
and ffl as well as interpolated frame If Our plug-in module utilizes SAM masks My and M;
from open-world models to aggregate spatial and temporal pixel-wise and semantic representations,
forming hybrid contextual feature Hy and H; via spatial and temporal hybrid contextual feature
extraction module (HCE-S and HCE-T). These features are then fed into the long-term and short-
term hierarchical motion and feature interactive refinement module (HIR-L and HIR-S) to predict
hierarchical motions f/3 and f} and latent intermediate feature F}".

3.3 SAM MASKS GENERATION

The powerful capabilities of SAM have showcased its versatility across various computer vision
(CV) tasks (Kalluri et al.| (2023); Ke et al.[(2024))). In the VFI task, the key challenge lies in accu-
rately identifying corresponding regions between input frames to improve motion estimation. Nat-
urally, introducing semantic information enhances traditional pixel-level VFI methods by providing
higher target-level representations. However, unlike semantic segmentation, as shown in Figure
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(a), the masks generated by SAM do not specify semantic classes. Additionally, a pixel may belong
to multiple different generated SAM masks (See the third and fourth rows). As a result, during
training, the model struggles to simultaneously select aligned semantic information across two input
frames, Moreover, they utilize redundant semantic information.

To overcome the limitation of SAM for VFI, we propose an extended SAM-based pipeline that
generates specific semantic masks, ensuring that each pixel is basically assigned to a mask. As il-
lustrated in Figure 3] (b), we begin with Recognize Anything Model (RAM) (Zhang et al. (2024)),
which tags each object in the image. Based on tagged text, Grounding DIDO (Liu et al.[ (2023))
is introduced to detect the corresponding objects and generate their bounding boxes. these bound-
ing boxes then serve as prompts for High-Quality Segment Anything Model (HQ-SAM) (Ke et al.
(2024)) to produce specific semantic masks. To further ensure that temporal consistency and accu-
racy of specific semantic masks across frames, we implement the following refinement guidelines
for the final tag files: 1) Discard any undetectable or irrelevant words from two tag files correspond-
ing to two input frames. 2) Create a common tag file by taking the intersection of the two tag files,
ensuring that each visible object across two input frames is associated with a corresponding seman-
tic mask. 3) If the area of intersection between two generated masks exceeds 10% of the area of the
smaller mask, we remove the word from the common tag file corresponding to the smaller mask,
ensuring that each pixel is basically assigned to a mask (Note that we create a new mask to cover the
remaining pixels, which are not be assigned to any mask, such as untagged classes in the tag file).

3.4 OUR PLUG-IN MODULE

Our plug-in module is composed of two components: spatial and temporal hybrid contextual fea-
ture extraction modules (HCE-S and HCE-T), long-range and short-range hierarchical motion and
feature interactive refinement modules (HIR-L and HIR-S). As analyzed in Sec[3.1] the former ag-
gregates spatio-temporal local and global hybrid features as contextual information, the latter lever-
ages these contexts to progressively simulate accurate motion patterns via two-stage hierarchical
interactive learning.

HCE-S and HCE-T. HCE is designed to obtain high-quality discriminative features as contextual
information for motion estimation and refinement. Previous methods (Kong et al.| (2022); [Li et al.
(2023)) independently extract features F and F} from a weight-sharing convolutional network, but
they struggle to capture global spatial context and overlook their temporal mutual dependencies. In
this paper, as shown in Figure [2] (a), we utilize generated SAM masks to index target-level features,
which combine pixel-level features to model global spatial and temporal mutual relationship:

Spatial global model: H; = CS(Fy, My), H; =CS(Fy, M), 5)
Temporal global model: H, = CT(H§, H{, My, M1), Hy,=CT(H;,Hj, My, M),

where C'S(+) and CT(-) correspond to HCE-S and HCE-T modules, respectively. M, and M;
represent the corresponding SAM masks. H{ and H7 are the spatial global hybrid contextual fea-
tures. Hy and H; denote the spatio-temporal global hybrid contextual features. More specifically,
as shown in Figure [2| (b), taking C'S(-) to obtain H as an example (Note that the mechanism of
CS(-) and CT(-) is the same, only their inputs are different), the input feature Fy from the encoder
is separately fed into two branches, one branch maintains pixel-level local features Fp, while the
other sequentially indexes the corresponding target-level global features T¢* using generated SAM
masks My (Mg = {M§ | i = 1,2,...,n}, where n is the number of SAM masks), followed by
global pooling and copy operations:

Target-level global contexts : T¢** = Copy(Pool(Id(Fy, M}))), (6)
where Id(-) denotes index operation. Pool(-) and C'opy(-) refer to average pooling and copy opera-
tions within the index regions, respectively. To further enhance feature selection and aggregation, we

employ spatial attention to compute the similarities between Fy and 7 to extract useful information
Uy, followed by merging pixel-level features F{, to obtain the final hybrid contexts Hj:

Selection: Uy = Sigmoid(Conv(PConv(Fy))) ® 1§,
Aggregation: H; = PConv(Fy, Up),

where Conv(-) and PConv(-) represent a convolutional layer and a convolutional layer with PReLU
activation, respectively. ® denotes the element-wise multiplication.

)
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interactive refinement. Specifically, we perform Figure 4: The architecture of HIR-L.
long-range (LR) target-level motion (Mo) and

feature (Fe) interactive modeling, using HIR-L to estimate coarse intermediate motions and fea-
ture. Following this, short-range (SR) pixel-level motion and feature interactive modeling is used
to further predict fine intermediate motions and feature via HIR-S. This two-stage coarse-to-fine hi-
erarchical motion scheme progressively simulates more accurate intermediate motions and feature.
The whole process is expressed as:

LR target Mo and Fe: F, f* = IL(Hy, Hy, Mo, My), FP, i = IL(H,, Hy, My, My).
Latent intermediate Mo: fio =t - flt, fu = (1—1)- fl.
Latent intermediate Fe: F" = Fuse(W (EL, fio), W(FI, fo)). (8)
SR pixel Mo and Fe: f! Fi = IS(F! Fl), [k EL = IS(F! Fl),
Interactive learning: F", f, fi = Inter(EL, L, fh. f1).
where IL(-) and I'S(-) refer to HIR-L and HIR-S. F{' and F" are enhanced Hy and Hj, f§; and
fh are bidirectional LR motions between two input frames. f;o and f;; are linear approximations

of the bidirectional latent intermediate motions. Fuse(-) denotes fusion operation. Fth is latent

intermediate feature. F}, and F. are enhanced latent intermediate features. ff% and f! are enhanced
latent intermediate flows. Inter(-) denotes interactive refinement block (Kong et al.|(2022))). More
specifically, as shown in Figureél taking I L(-) to obtain F{* and f% as an example (Note that the
mechanism of IL(-) and I.5(-) is the same, only their inputs are different), based on key-value pairs
((K{, V§) and (K3, V{) from Hy and H; indexed by it" My and M; , we computer the attention
map between them. With the global correlation matrix A**, we simultaneously compute the global
feature and the long-range motion from each indexed area by aggregating 1) the value V; of H; and
2) the value V3 of the 2D coordinates grid G, respectively. the whole process is expressed as:
A" = Softmax b ) Vit =A™V, Gy =A"VS,

Ry = A5 VM), S = (G~ G M),

(©))

Note that generated SAM masks segment the inputs into different semantic layers, allowing us to
specify target region (S = S; + Sa+, ..., +S,,) for more effective long-range motion estimation.
Moreover, the computational cost O(S? + S5+, ..., +52) < O(S?) is significantly reduced as the
key matching and value retrieval are implemented as a matrix inner-product.

4 EXPERIMENTS

4.1 BENCHMARKS.

We evaluate our framework on various benchmarks containing diverse motion scenes for a com-
prehensive comparison. Structural Similarity Index (SSIM) (Wang et al|(2004)) and Peak Signal-
to-Noise Ratio (PSNR) are used as evaluation metrics. The benchmarks statistics are summarized
below:
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Figure 5: Comparison of convergence curves for different methods integrated with our module (Note
that the loss value is sampled every 5 epochs).

Table 1: Comparison of interpolation methods on different datasets and metrics.

(PSNR/SSIM) are highlighted in bold.

Best values

Method Type Vimeo90K SNU-FILM FLOPs
Pixel-level Easy Medium Hard Extreme (T)
RIFE (Huang et al.|(2022)) CNN 35.40/0.9777  40.14/0.9908 35.74/0.9790 30.11/0.9331 24.81/0.8535  0.16
RIFE_Ours 35.37/0.9779  40.10/0.9907 35.80/0.9791 30.24/0.9346 25.02/0.8573 0.18
IFRNet (Zhang et al.|(2023)) CNN 35.52/0.9783  40.04/0.9905 35.84/0.9791 30.38/0.9355 25.09/0.8583 0.21
IFRNet_Ours 35.68/0.9789  39.97/0.9905 35.92/0.9794 30.48/0.9363 25.16/0.8599  0.23
AMT (Li et al.|(2023)) CNN 36.21/0.9832  40.01/0.9912  36.08/0.9805 30.68/0.9381 25.37/0.8640  0.66
AMT Ours 36.24/0.9836  40.01/0.9917 36.10/0.9808 30.71/0.9384 25.45/0.8646  0.69
EMA (Zhang et al.|(2023)) Transformer 35.87/0.9792  40.04/0.9907 35.82/0.9791 30.29/0.9346  25.11/0.8585 0.38
EMA _Ours S 35.96/0.9796  40.05/0.9908 35.93/0.9794 30.37/0.9350 25.17/0.8599  0.48

PSNR: 26.29
RIFE

PSNR:29.29
RIFE_Ours

Overlayed

PSNR: SNR:

PSNR: PSNR:
30.27  30.55 30.79 31.05
EMA EMA_Ours

Figure 6: Visual comparisons of different VFI methods on SNU-FILM (Extreme) dataset (Note that
due to space constraints, we only display a limited generated SAM masks).

Vimeo90K (Xue et al.|(2019)). This dataset contains over 60,000 triplets with the image resolution
of 448x256. A total of 51,312 triplets are cropped into patches of 224 x 224 pixels for training, while
3,782 triplets are reserved for testing.

~
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SNU-FILM (Choi et al.| (2020)). This testset includes 1,240 triplets of videos of resolution up to
1280x%720, which is very challenging for large motions and occlusions scenarios. It is divided into
four categories: Easy, Medium, Hard, and Extreme.

4.2 IMPLEMENTATION DETAILS

We integrate pre-trained open-world models and our plug-in module into SOTA methods, and train
the entire model through Charbonnier loss (Charbonnier et al.| (1994)) in an end-to-end manner.
Specifically, we implement each model using the AdamW optimizer (Loshchilov & Hutter| (2017))
through four RTX 4090 GPUs. The Vimeo90K trainset (Xue et al.| (2019)) is used to train each
model for 300 epochs, with a batch size of 24 and a patch size of 224x224. The learning rate is
initially set to 1x10~% and gradually decays to 1x10~° following a cosine attenuation schedule.

4.3 COMPARISONS WITH THE SOTAS

We integrate the generated SAM masks and our plug-in module into representative SOTA methods,
including RIFE (Huang et al.| (2022)), [IFRNet (Kong et al.|(2022))), EMA-VFI (Zhang et al.|(2023))
and AMT (Li et al.|(2023)) for a comprehensive comparison. The computation cost of each method
is measured on a 1280 x 720 resolution. To ensure a fair comparison, we retrain SOTA methods us-
ing their respective source codes, adhering to the same training strategy outlined in implementation
details to train their corresponding plug-in framework.

Quantitative Comparison. Training: To validate the effectiveness of our strategies, we conduct a
quantitative analysis during training. Figure[5|presents comparisons of convergence curves for vari-
ous methods integrated with our module. The observed trends align with our theoretical analysis in
Sec[3.1} demonstrating that introducing target-level information for hierarchical motion estimation
can enhance convergence limits. Testing: As shown in Table (IJ), when faced with simple scenarios
on Vimeo90K and SNU-FILM datasets, SOTA pixel-level methods achieve results comparable to
ours. However, our plug-in model significantly outperforms these methods in challenging scenar-
ios through hierarchical motion estimation. Specifically, our model surpasses advanced CNN-based
pixel-level methods, including RIFE (Huang et al.|(2022))), IFRNet (Kong et al.|(2022)) and AMT (Li
et al.| (2023)), by clear margins of 0.21dB, 0.07dB and 0.08dB, respectively, on the Extreme subsets
of SNU-FILM dataset. This superiority arises from the inherent limitations of CNN-based pixel-
level methods, which struggle with infinite possibilities in motion estimation, making accurate mo-
tion simulation and interpolation highly challenging. Moreover, their limited receptive fields hinder
the ability to capture large motions effectively. Additional, Transformer-based pixel-level method
EMA (Zhang et al.|(2023)) employs window-based attention for motion estimation in VFI. but it still
suffer from a limited receptive field in dealing with large motions between corresponding targets,
resulting in a performance that is xxxdB below ours. All these results highlight the effectiveness of
our SAM masks and plug-in module in VFIL.

Qualitative Comparison. The qualitative results of SOTA methods and our corresponding plug-in
methods with their PSNR values on pixel-level and target-level are shown in Figure[6] It is apparent
that previous VFI methods struggle to produce sharp edges of moving objects, particularly in scenar-
ios involving large and complex motions (See the moving adult and girl). Even transformer-based
method EMA (Zhang et al.| (2023))) encounters similar challenges ( See a group of moving chil-
dren). The underlying issue is their inability to distinguish and match target motion between input
frames. In contrast, our approach comprehensively incorporates semantic information, allowing for
motion estimation and interpolation specific to corresponding regions. As a result, our model accu-
rately synthesizes content at motion boundaries and generates credible textures with fewer artifacts
(Please refer to the supplementary materials for more visualization results).

4.4 ABLATION STUDY

This section provides comprehensive ablation studies to evaluate the impact of each component,
using RIFE (Huang et al.[(2022)) as the baseline. For fair comparison, all models are trained on the
Vimeo90K dataset with image patches sized 224 x 224, for a total of 100 epochs.

Effects of HCE. We conducted additional experiments to validate the effectiveness of our proposed
HCE across various variations. Quantitative results are shown in Table[2{a), the baseline only utilizes
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Table 2: Ablation experiments of our framework on SNU-FILM (Extreme) (Choi et al.| (2020))
dataset. We report the PSNR/SSIM values of these variants, and the best result is shown in bold.

Case HIR-L HIR-S Extreme

C HCE-S  HCE-T Ext
e xtreme Bascline x X 24.66/0.8514

Baseline X X 24.80/0.8544

HIR; (Target) v X 24.80/0.8532
HCE, v/ X 24.85/0.8546 HIR; (Pixel) X v/ 24.88/0.8557
HCE, X v 24.87/0.8549 HIR3 (Pixel+Traget) v v 24.88/0.8551
Ours v/ v 24.93/0.8563 Ours (Target+Pixel) v/ v/ 24.93/0.8563

(a) Effects of HCE. (b) Effects of HIR.

contexts from the encoder to predict hierarchical motion estimation for VFI. Building on this, HCE;
and HCE, incrementally introduce spatial and temporal hybrid contextual feature extraction blocks
(HCE-S and HCE-T), resulting in gains of 0.05dB and 0.07dB, respectively. This demonstrates that
our HCE can effectively capture local and global contextual information. By integrating these two
blocks for VFI, we achieve an even better performance improvement of 0.13dB.

Effects of HIR. To verify the important of our HIR in motion estimation, we perform an ablation
study comparing pixel-level and target-level motion estimation strategies. As shown in Table [2[b),
compared to the baseline, introducing target-level and pixel-level motion estimation strategies sig-
nificantly improves performance by 0.014dB and 0.22dB, respectively. However, rearranging the
sequence of motion estimations did not affect the outcome. In fact, implementing a coarse-to-fine
motion estimation from the target-level to the pixel-level yields even better results.

Effects of SAM Masks. We extend our abla-
tion experiments to assess the impact of masks . )
in testing. As illustrated in Table 3] by training ~ 1able 3: Effects of SAM Masks in testing.

our model with generated masks and setting these

masks to all zeros during testing, the model es- Case SAM mask Extreme
sentially performs global region motion estima- Train  Test

tion, yielding improved performance. Introducing Baseline X X 24.66/0.8514
the mask focuses the model on specific semantic Case - X 24.89/0.8556
regions, allowing more precise motion estimation Ours v v 24.93/0.8563
with reduced computational cost (See analysis in

Sec[3.4).

5 CONCLUSION

This paper explicitly introduces semantic priors for video frame interpolation, effectively bringing
target-level motion to pixel-level motion to enhance the accuracy and stability of motion prediction
via hierarchical learning. Specifically, we utilize open-world knowledge models, such as recog-
nize Anything Model (RAM), Grounding DIDO, and the High-Quality Segment Anything Model
(HQ-SAM), to generate specific semantic masks. Additional, we propose a hybrid contextual fea-
ture extraction module (HCE) to aggregate both pixel-wise and semantic representation, alongside
the hierarchical motion and feature interactive refinement module (HIR) to simulate current mo-
tion patterns. Extensive experiments demonstrate that our method plugged with these two modules
surpasses SOTA methods on various benchmark datasets.

5.1 DISCUSSION AND LIMITATIONS.

Firstly, while SAM masks effectively distinguish different targets for motion estimation, they lacks
insight into motion trajectories. Future work could explore leveraging a large language model to pre-
cisely detail each target’s motion state. Secondly, our pipeline generates specific semantic masks but
struggles to differentiate between instances due to their motions. The recent release of SAM2 (Ravi
et al. (2024)) may provide a solution by replacing HQ-SAM. Thirdly, although hierarchical mo-
tion estimation is robust to video interpolate frame, our performance is somewhat influenced by the
accuracy of SAM masks, and would greatly benefit from more advanced open-world recognition,
detection and segmentation models.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

As shown in Figure [7} the proposed interactive refinement block Inter(-) utilizes warped features

(EJ. and FI) and intermediate flows (f/, and f}) for joint optimization. For IFRNet (Kong et al.
(2022)) and AMT [Li et al.| (2023), the final predicted results are latent intermediate flows ( ft’}) and
fI) and latent intermediate feature £} for compensation:

Interactive learning: F*, fi fh = Inter(EL, FL, f1 f1). (10
For RIFE (Huang et al.|(2022)) and EMA (Zhang et al.|(2023)), the final predicted results are latent

intermediate flows (f/, and f}) and mask m/ for compensation:

Interactive learning: m?}, fi fi = Inter(EL, FL, f1, f1). (11)

11



Under review as a conference paper at ICLR 2025

- =
|54 > > = > = > = > i > >
—I 8 S~ a8~ a8~ a5 g8 P55 —
S o o ® o & o @ | o 3 o o

Figure 7: The architecture of interactive refinement block.

A.2 Loss FUNCTION

We retrain SOTA methods using their respective source codes, and only utilize Charbonnier
loss (Charbonnier et al.|(1994)) p(x) = (2% + ez)a (e = 1073) to optimize each model, denoted by:

Lasectine = p(It — I), (12)

where I; denotes predicted result from the baseline. I; denotes ground-truth intermediate frame. For
our model, in addition to supervising the final result, we also supervise the result I; generated by
our plug-in module, and the whole loss can be expressed as:

Lours = p(ft — It) + 0]. * p(jt — It>

T h h (13)
Iy =m} « W (Io, flo) + (1= mp) « W(Iy, fl1).

A.3 SAM MASKS

To further ensure that temporal consistency and accuracy of specific semantic masks across frames,
we implement the following refinement guidelines for the final tag files: 1) Discard any undetectable
or irrelevant words from two tag files corresponding to two input frames. 2) Create a common tag
file by taking the intersection of the two tag files, ensuring that each visible object across two input
frames is associated with a corresponding semantic mask. 3) If the area of intersection between
two generated masks exceeds 10% of the area of the smaller mask, we remove the word from the
common tag file corresponding to the smaller mask, ensuring that each pixel is basically assigned to
a mask (Note that we create a new mask to cover the remaining pixels, which are not be assigned to
any mask, such as untagged classes in the tag file). More SAM masks v1sua11zat10ns are shown:

Figure 8: SAM masks visualization.
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Figure 9: SAM masks visualization.

A.4 MORE VISUAL RESULTS

In this section, we show more results of all visualizations from our plug-in network and the baseline.
As shown in Figure[I0} Figure[IT]and Figure[I2] Our models can recover the right textures with more
realistic detail with clear boundary.

T T A
.

M} RIFE_Ours

Figure 10: visual comparisons of RIFE and RIFE_Ours .

A.5 CODE AND DEMO

We provide the completion process of our IFRNet (Kong et al.| (2022))) with plug-in module in the
code file, And we also provide a demo of comparison, demonstrating that our method produces more
details and textures via hierarchical learning.

13



Under review as a conference paper at ICLR 2025

Overlayed

n
I
-|
IR
“
ug
“

IFRNet_Ours

Figure 11: visual comparisons of IFRNet and IFRNet_Ours .
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Figure 12: visual comparisons of EMA and EMA Ours .
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