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Abstract
The generation of ligands that both are tailored
to a given protein pocket and exhibit a range of
desired chemical properties is a major challenge
in structure-based drug design. Here, we propose
an in-silico approach for the de novo generation
of 3D ligand structures using the equivariant dif-
fusion model PILOT, combining pocket condi-
tioning with a large-scale pre-training and prop-
erty guidance. Its multi-objective trajectory-based
importance sampling strategy is designed to di-
rect the model towards molecules that not only
exhibit desired characteristics such as increased
binding affinity for a given protein pocket but also
maintains high synthetic accessibility. This en-
sures the practicality of sampled molecules, thus
maximizing their potential for the drug discovery
pipeline. PILOT significantly outperforms exist-
ing methods across various metrics on the com-
mon benchmark dataset CrossDocked2020. More-
over, we employ PILOT to generate novel ligands
for unseen protein pockets from the Kinodata-3D
dataset, which encompasses a substantial portion
of the human kinome. The generated structures
exhibit predicted IC50 values indicative of potent
biological activity, which highlights the potential
of PILOT as a powerful tool for structure-based
drug design.

1. Introduction
One of the innovative machine learning techniques increas-
ingly employed in structure-based drug discovery (SBDD)
is the application of generative diffusion models. Originally
utilized in fields like computer vision and natural language
processing, these models also excel in capturing the com-
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plex patterns of 3D molecular structures, particularly when
enhanced with features that reflect the symmetry and spe-
cific target-related characteristics of proteins (Green et al.,
2021; Luo et al., 2021; Ragoza et al., 2022; Liu et al., 2022;
Tan et al., 2022; Peng et al., 2022; Powers et al., 2023; Luo
et al., 2021; Peng et al., 2022; Guan et al., 2023; Schneuing
et al., 2023). The effectiveness of these models hinges on
training with detailed protein structures, which allows for
the generation of ligands that are not only structurally com-
patible but also specifically designed for interaction with
target proteins. However, 3D generative models often yield
ligands with sub-optimal drug-like qualities, characterized
by a high prevalence of fused rings and low synthetic ac-
cessibility (Xia et al., 2024; Schneuing et al., 2023; Guan
et al., 2023). While generated ligands fit well in a pro-
tein binding pocket, these methods lack a mechanism to
guide the generative process towards ligands with desired
chemical properties such as binding affinity, stability, or
bioavailability (Gómez-Bombarelli et al., 2018).

In this study, we introduce PILOT (Pocket-Informed Ligand
OpTimization) – an equivariant diffusion model designed
for de novo ligand generation with property guidance. We
employ importance sampling to replace less desirable in-
termediate samples with more favorable ones, thus re-
weighting trajectories during the generative process. This
strategy enables the use of any pre-trained, unconditioned
diffusion score model for sampling, which is then enhanced
by integrating the capabilities of a surrogate model, similar
to classifier guidance (Dhariwal & Nichol, 2021). However,
while classifier guidance may drive the sampling trajectory
to adversarial, out-of-distribution structures (Dhariwal &
Nichol, 2021), trajectory re-weighting ensures that samples
remain within distribution. Additionally, backpropagation
is not required. As a result, importance sampling is sig-
nificantly faster, especially for ligand-pocket complexes.
As trajectory re-weighting can be conducted in parallel for
multiple properties, we focus on three critical properties
for drug discovery: synthetic accessibility (SA), docking
scores and potency (IC50). Our findings demonstrate that
PILOT generates ligands that not only exhibit a significant
improvement in synthesizability and drug-likeness but also
achieve favorable docking scores.
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2. Methods
2.1. PILOT

In this study, we aim to generate novel molecules M de novo,
conditioned on a protein pocket P while addressing multiple
objectives c, such as synthetic accessibility, docking score,
and predicted half-maximal inhibitory concentration (IC50).
We adopt the EQGAT-diff model (Le et al., 2024) to imple-
ment pθ (M|P). For all implementation and model details
we refer to Le et al. (2024).

2.2. Importance Sampling for Property Guidance

To sample ligands from the distribution pθ (M|P,c), we uti-
lize Bayes’ theorem to decompose the probability density
into pθ (M|P,c) ∝ pδ (c|M,P)pθ (M|P). We further assume
that the multiple properties c = (c1,c2, . . . ,ck) are condition-
ally independent, leading to the factorization pδ (c|M,P) =
∏

k
l=1 pδl

(cl |M,P). To accurately predict these conditions,
we train pδ (c|M,P) as pδ (c|Mt ,P, t) along the forward nois-
ing diffusion trajectory, where Mt represents the state of the
ligand at time t. The rationale behind this training approach
is that denoising steps closer to the original data distribu-
tion retain a clearer signal of the input ligand, making them
highly informative. In contrast, steps closer to the prior
noise distribution, although less informative, can still pro-
vide valuable discriminative insights for pδ . This strategy
leverages the nuanced progression of information degrada-
tion during the diffusion process to efficiently guide the
generation of desired ligands without mode collapse. The
property model pδ is trained using the mean squared error
and cross-entropy loss for continuous and discrete prop-
erties, respectively. The importance weights wk for each
intermediate sample Mt,k are determined by performing a
softmax normalization across the set of (noisy) ligands, as
outlined in Algorithm 1.

3. Results and discussion
3.1. Multi-objective de novo generation using

importance sampling

In previous studies, utilizing 3D target-aware molecule gen-
eration led to a significant challenge: the poor synthetic ac-
cessibility (SA) of the generated molecules. These models
often produce molecules with complex, fused, and uncom-
mon ring systems, which are difficult to synthesize (Xia
et al., 2024; Guan et al., 2023; Schneuing et al., 2023). This
issue underscores the need for approaches that not only pro-
duce molecules with strong binding affinities but also ensure
that these molecules can be feasibly synthesized. To address
this, we propose a trajectory-based importance sampling
method that utilizes property-specific expert models. These
surrogate models must be able to predict the properties of

Algorithm 1 Importance sampling for property-guided lig-
and generation
Input: Pocket P, condition c, number of ligands K, τ tem-
perature, every importance step N, diffusion model pθ and
property models pδ .
Output: Generated ligands {Mi}K

i=1 conditioned on (P,c).
1: Sample K ligands from prior distribution MT ∼

N(0, I)×C(p̂c)
2: for t = T −1, . . . ,1 do ▷ Run reverse diffusion

trajectory
3: Sample Mt−1 ∼ pθ (Mt−1|Mt ,P)
4: if t mod N = 0 then ▷ Importance step
5: for k = 1, . . . ,K do
6: ck = pδ (ck|Mk,t−1,P) ▷ Property prediction
7: end for
8: Importance weight computation based on popu-

lation {(Mk,t−1,ck)}K
k=1, here maxc:

9: wk =
exp(ck/τ)

∑
K
j=1 exp(c j/τ)

10: Draw new population with replacement:
11: {Mk,t−1}K

k=1 ∼ Multinomial({Mk,t−1},{wk})
12: end if
13: end for
14: return {Mk,0}K

k=1

interest at any step of the diffusion trajectory, similar to
classifier-guidance (Dhariwal & Nichol, 2021).

As properties such as synthetic accessibility are determined
solely based on the ligand, whereas others, like docking
scores, depend on the interaction between the ligand and
the protein pocket, suitable property predictors pδi may be
defined as required. During the sampling process of a set
of K noisy ligands {M1,M2, . . . ,MK}, we apply importance
weights derived from pδ (c|M,P) to rank each noisy sam-
ple at its current position in the state space. This process
is inspired by the Sequential Monte Carlo (SMC) method
(Doucet et al., 2001; Del Moral et al., 2006). Since the
reverse diffusion trajectory is inherently stochastic, our goal
is to preferentially select those samples most likely to fol-
low a trajectory that results in ligands meeting the specified
conditions c, as schematically depicted in Fig. 1. To ac-
curately predict these conditions, we train pδ (c|M,P) as
pδ (c|Mt ,P, t) along the forward noising diffusion trajectory,
where Mt represents the state of the ligand at step t. A sim-
ilar replacement strategy has previously been applied by
Trippe et al. (2023) and Wu et al. (2023) in the context of
diffusion models for protein backbone modeling and motif
scaffolding.

The evaluation of the importance sampling approach is per-
formed for both single- and multi-objective optimization
scenarios, focusing on SA and docking score guidance. We
refer to guidance with an SA score model as SA-conditional
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Figure 1. Visualization of the importance sampling algorithm. The shape of the prior (left) and target (right) distribution, where ligands at
the target distribution are highlighted in two different regions based on a property function, which is synthetical accessibility in this case.
At t = T (left), noisy samples are drawn from the prior, and during the reverse trajectory, stochastic paths that lead to promising candidates
are selected and de-noised in state-space to converge to samples from the data distribution at t = 0 (right). Ligands in the green box refer
to molecules with high synthetic accessibility according to SA score, while molecules in the red box refer to rather inaccessible ones.

and using a docking-score model as docking-conditional.
When both objectives are considered, we refer to the model
as SA-docking-conditional. In each case, the unconditional
base model is augmented with the respective property model
during the sampling process. Table 2 shows the correlation
matrix of the CrossDocked2020 dataset. The SA scores
exhibit a negative correlation with ligand size, i.e. larger
molecules tend to be less synthetically accessible on aver-
age. Conversely, the positive correlation between SA scores
and QED suggests that molecules with higher QED are gen-
erally more synthetically accessible. Docking scores show
a strong negative correlation with both the number of rings
and the number of atoms. This implies that models driven
by docking scores tend to generate larger molecules with
more (fused) rings. However, such molecular characteristics
typically result in decreased SA scores and QED, present-
ing a trade-off between optimizing for docking affinity and
maintaining synthetic feasibility. By incorporating these
insights into our modeling approach, we aim to balance the
dual objectives of binding efficacy and synthetic accessibil-
ity, thereby enhancing the practical utility of the generated
molecules in drug discovery.

Table 1 shows that our model reproduces the observed cor-
relations of the dataset. When guiding the unconditional
model with the SA score, we notice a significant enhance-
ment not only in the SA score, which increases to 0.77,
but also improvements in QED and Lipinski’s rule of five
compliance. The mean docking scores remain consistent
with those of the unconditional model. However, there is
a notable reduction of docking performance in the top-10
ligands, consistent with the correlations observed in the
CrossDocked dataset. Conversely, applying docking-score
guidance exclusively results in diminished SA scores and
QED, while the docking scores themselves markedly in-

crease. This reflects the trade-offs involved in optimizing
for docking efficacy at the expense of synthetic accessibility
and drug-likeness. When applying both SA and docking-
score guidance, the model achieves comparably high values
for SA, QED, and Lipinski, while significantly improving
docking scores and outperforming TargetDiff by a large
margin across metrics.

To mitigate the adverse impact on SA scores and drug-
likeness typically associated with high docking scores of
larger moleules, we introduce a normalization strategy
where docking scores are adjusted by the square root of
the number of atoms per ligand. The results of this ad-
justed model, denoted as SA-docking-conditional (norm),
are presented in the final row of Table 1. Here, we ob-
serve a significant increase in docking scores compared to
the unconditional model, while the SA scores improve to
0.78, compared to 0.77 in the SA-conditional model. This
illustrates how our multi-objective optimization strategy bal-
ances different property demands. Such balanced outcomes
are critical for advancing the practical utility of generated
molecules in drug discovery, ensuring that they not only
bind effectively but are also feasible for synthesis.

Fig. 3 illustrates the evolution of the sample space across
the unconditional, SA-conditional, docking-conditional, and
SA-docking-conditional models. Each plot in this figure
includes a red rectangle that identifies the regions where
samples exceed the respective means of the test set, indicat-
ing improved property scores. The first row of Fig. 3 com-
pares the drug-likeness (QED) of sampled ligands with their
synthetic accessibility (SA) scores. The SA-conditional
model shows a notable shift with most of the sample mass
residing within the red rectangle. Thus, it successfully gen-
erates samples with notably higher SA scores compared
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Figure 2. Correlation matrix that includes the number of rings, number of atoms, docking scores, quantitative estimate of drug-likeness
(QED), and synthetic accessibility (SA) scores using the CrossDocked training set.

Table 1. Performance comparison among unconditional sampling, SA-conditional, docking-conditional, and SA-docking-conditional
sampling using the CrossDocked test set, which includes 100 targets. For each target, 100 ligands were sampled. We assessed the
performance based on several criteria: mean docking scores obtained from QVina2 re-docking, the top-10 mean docking scores per
target, drug-likeness (QED), synthetic accessibility score (SA), compliance with Lipinski’s Rule of Five (Lipinski), and mean diversity
(Diversity) across targets and ligands.

Model QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑
Training set -7.57±2.09 - 0.53±0.20 0.75±0.10 4.57±0.91 -
Test set -6.88±2.33 - 0.47±0.20 0.72±0.13 4.34±1.14 -
TargetDiff -7.32±2.47 -9.67±2.55 0.48±0.20 0.58±0.13 4.59±0.83 0.75±0.09

unconditional -7.33±2.19 -9.28±2.26 0.49±0.22 0.64±0.13 4.40±1.05 0.69±0.07

SA-conditional -7.32±2.25 -8.91±2.29 0.58±0.19 0.77±0.10 4.82±0.54 0.73±0.08

docking-conditional -9.17±2.48 -10.94±2.51 0.54±0.13 0.62±0.08 4.70±0.41 0.57±0.10

SA-docking-conditional -8.35±2.75 -10.36±2.62 0.58±0.17 0.72±0.12 4.88±0.44 0.68±0.09

SA-docking-conditional (norm) -7.92±2.44 -9.85±2.33 0.56±0.19 0.78±0.11 4.84±0.47 0.75±0.13
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Figure 3. Scatter plots with Gaussian kernel density estimation (KDE) were used to illustrate the evolution of QED, SA, and docking
scores for all sampled ligands across test targets for different sampling methods: unconditional, SA-conditional, docking-conditional, and
SA-docking-conditional sampling. Red rectangles within these plots highlight regions where sampled ligands demonstrate superior QED,
SA, and docking scores compared to the test set. Top: Relationship between QED and SA scores. Bottom Relationship between docking
scores and SA scores.

to both the unconditional model and the test set ligands,
while largely preserving docking scores. In contrast, the
docking-conditional model exhibits lower docking scores on
average at the expense of the SA scores. The SA-docking-
conditional model demonstrates a good balance, transition-
ing towards both high SA scores and low docking scores.
Remarkably, most of the sampled ligands from this model

not only fall within the red rectangle but also significantly
surpass the test set ligands in terms of docking scores with
equal SA scores as listed in Table 1, while the model with
normalization improves in both metrics.

Our findings demonstrate that using importance sampling
as a guidance mechanism in the diffusion model is a potent



Multi-Objective Guidance via Importance Sampling for Target-Aware Diffusion-based De Novo Ligand Generation

Table 2. Performance comparison among unconditional and pIC50-conditional sampling using the Kinodata-3D test set, which includes 10
targets. For each target, 100 ligands were sampled. We assessed the performance based on several criteria: mean docking scores obtained
from QVina2 re-docking, the top-10 mean docking scores per target, (predicted) pIC50, drug-likeness (QED), synthetic accessibility score
(SA), compliance with Lipinski’s Rule of Five (Lipinski), and mean diversity (Diversity) across targets and ligands.

Model Vina (All) ↓ Vina (Top-10%) ↓ pIC50↑ QED ↑ SA ↑ Lipinski ↑ Diversity ↑
Training set -9.20±1.13 - 7.05±1.28 0.49±0.16 0.75±0.07 4.73±0.52 -
Test set -8.78±1.13 - 6.41±1.56 0.61±0.14 0.79±0.05 4.96±0.22 -
unconditional -8.49±1.05 -9.79±0.87 6.28±0.68 0.63±0.14 0.75±0.13 4.95±0.25 0.65±0.06

pIC50-conditional -8.60±0.98 -9.75±0.86 7.65±0.78 0.62±0.16 0.67±0.09 4.94±0.28 0.57±0.06

strategy for steering the generation of molecules towards
desired regions of chemical space. The method effectively
modifies molecular properties to align with desired multi-
objective property profiles without the need for any addi-
tional backpropagation, albeit within the constraints of the
data distribution used for training.

3.2. Kinodata-3D

Kinodata-3D (Backenköhler et al., 2024) is an in silico
curated and processed collection of kinase complex cross-
docked data designed to facilitate the training of machine
learning models on structural protein-ligand complexes with
experimental binding affinity data. Despite the significant
advances in virtual screening and the widespread use of
docking as a tool for evaluating ligand efficacy, the corre-
lation between docking scores and experimental binding
affinities, e.g. measured by the half maximal inhibitory
concentration IC50, remains weak at best. Consequently,
reliance on docking scores as stand-ins for binding affini-
ties is potentially misleading. To address this challenge,
we apply our guidance mechanism to directly utilize exper-
imental binding affinities. We leverage the Kinodata-3D
dataset, annotated with experimental pIC50values, to train
PILOT on ligand-kinase complexes. Simultaneously, we
train a property model predicting pIC50, to guide the diffu-
sion model with the propose importance sampling towards
ligands that are more likely to be potent inhibitors. This
strategy aims to reduce the reliance on less accurate prox-
ies such as docking scores. We evaluate the models on a
hold-out test set comprising ten kinase targets that were not
included in either the training or validation datasets. The
performance of our pIC50-conditional model is summarized
in Table 2. The pIC50-conditional model shows a significant
improvement in predicted mean pIC50values of 7.65±0.78
compared to the test set ligands (6.41±1.56). At the same
time, it maintains robust performance metrics in terms of
docking scores and other critical properties such as QED,
SA-score, and compliance with Lipinski’s rule of five. Note,
that the current approach is limited since pIC50values are
inherently noisy, in particular when collected across various
data sources.(Landrum & Riniker, 2024) Thus, the predicted

binding affinities should be interpreted cautiously.

4. Conclusions
We have introduced PILOT, a novel equivariant diffusion-
based model tailored for de novo ligand generation condi-
tioned on protein pockets in three-dimensional space. Our
research demonstrates the superior performance of PILOT
compared to existing state-of-the-art models in this domain,
as evidenced by a comprehensive evaluation across a spec-
trum of metrics critical in medicinal chemistry and drug
design. We have proposed a trajectory-based importance
sampling strategy, which enables targeted steering of lig-
and generation towards desired chemical properties. This
technique guides the generation process towards ligands
with properties such as synthetic accessibility, drug-likeness,
docking scores and potency by using surrogate models. This
strategy represents a significant advancement in structure-
based drug discovery, offering researchers a powerful tool to
design molecules with tailored properties. The dependency
on the availability and quality of training data remain a criti-
cal challenge for deploying AI models like PILOT in drug
discovery pipelines. In the domain of structure-based drug
design, data can often be sparse, noisy, and of varying qual-
ity, which significantly impacts the learning and predictive
capabilities of ML models. While our method relies heavily
on surrogate models and proxies like the RDKit synthetic
accessibility (SA) scores to estimate the synthesizability of
generated ligands, these scores may not fully capture the
complexities and practical challenges of synthetic chemistry.
Addressing these challenges will require a concerted effort
to enhance data collection practices, improve data quality,
and expand the variety of data sources. Moving forward, we
see potential applications of PILOT in the drug discovery
pipeline by integrating this model with other AI-driven tools
and technologies, such as automated synthesis platforms
and high-throughput screening to accelerate drug design.
Furthermore, the scope of our model may be extended from
small molecule drugs to biologic therapeutics involving for
example peptides or antibodies.
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