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Abstract

Recent advancements in reinforcement learning
from human feedback have shown that utilizing
fine-grained token-level reward models can sub-
stantially enhance the performance of Proximal
Policy Optimization (PPO) in aligning large lan-
guage models. However, it is challenging to lever-
age such token-level reward as guidance for Di-
rect Preference Optimization (DPO), since DPO
is formulated as a sequence-level bandit prob-
lem. To address this challenge, this work decom-
poses the sequence-level PPO into a sequence of
token-level proximal policy optimization prob-
lems and then frames the problem of token-level
PPO with token-level reward guidance, from
which closed-form optimal token-level policy and
the corresponding token-level reward can be de-
rived. Using the obtained reward and Bradley-
Terry model, this work establishes a framework
of computable loss functions with token-level re-
ward guidance for DPO, and proposes a practical
reward guidance based on the induced DPO re-
ward. This formulation enables different tokens
to exhibit varying degrees of deviation from ref-
erence policy based on their respective rewards.
Experiment results demonstrate that our method
achieves substantial performance improvements
over DPO, with win rate gains of up to 7.5 points
on MT-Bench, 6.2 points on AlpacaEval 2, and
4.3 points on Arena-Hard. Code is available at
https://github.com/dvlab-research/TGDPO.
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1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
has become a crucial technique for aligning Large Lan-
guage models (LLMs) with human preferences and inten-
tions (Ouyang et al., 2022; Ziegler et al., 2020). This ap-
proach has demonstrated significant success in recent LLMs
advancements (OpenAI et al., 2024; Team et al., 2024a;
Grattafiori et al., 2024; Team et al., 2024b). In typical RLHF
workflows, a reward model is first trained using human feed-
back, and then the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017) is employed to fine-tune
the policy model. Typically, in these methods, a sequence-
level reward is assigned to the last token of a sequence.
However, this approach faces challenges, such as the sparse
reward problem (i.e., delayed feedback), which leads to in-
stability and sample inefficiency in PPO training (Choshen
et al., 2020). This issue is particularly pronounced in LLM
training, where responses are often lengthy and generated
at the token level (Yang et al., 2023). Recent research has
suggested that leveraging dense token-level reward models
(Yang et al., 2023; Yin et al., 2025; Zhong et al., 2024) can
help alleviate these issues, improving PPO’s performance
in aligning LLMs with human preferences.

Recent developments in RLHF have centered around cre-
ating simpler and more efficient algorithms that eliminate
the need for a separate reward model. A notable approach
in this direction is Direct Preference Optimization (DPO)
(Rafailov et al., 2023). DPO reparameterizes the reward
function in RLHF by directly using preference data to opti-
mize the policy model, bypassing the traditionally required
step of training a separate reward model. This reparameter-
ization streamlines the alignment process, making DPO a
popular algorithm for LLM alignment. While dense token-
level reward guidance has been proved beneficial for PPO
(Yang et al., 2023; Yin et al., 2025; Zhong et al., 2024),
its extension to DPO is nontrivial, as DPO is formulated
as a sequence-level bandit problem. In this context, the
reward is expressed through the policy being optimized, and
integrating token-level reward guidance into this framework
presents a significant challenge, especially in eliminating
the partition function from the loss function.

To fill this gap, we decompose the sequence-level proximal
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policy optimization into a sequence of token-level proximal
policy optimization problems and modify them to incorpo-
rate token-level reward guidance. We derive a closed-form
optimal token-level policy and the corresponding token-
level reward for the modified problem. Based on the ob-
tained reward and Bradley-Terry model, especially a new
theoretical result for eliminating partition function, we pro-
pose a preference optimization algorithm framework with
token-level reward guidance for DPO, which we refer to as
TGDPO. Additionally, we introduce a practical token-level
reward guidance based on the induced DPO reward.

Extensive experiments are conducted on three instruction
following benchmarks: AlpacaEval 2 (Li et al., 2023), MT-
Bench (Zheng et al., 2023), and Arena-Hard (Li et al., 2024).
TGDPO consistently outperforms existing preference opti-
mization algorithms, achieving improvements of up to 7.5
points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3
points on Arena-Hard compared to the best baseline method.
We further demonstrate and analyze the unique advantages
of TGDPO. We empirically show that TGDPO achieves sat-
isfactory policies upon loss convergence, which is not com-
monly observed in conventional preference optimization
methods. TGDPO also enables control over convergence
speed and is robust to variations in token-level rewards.
These properties significantly enhance the efficiency and
practicality of the algorithm. Our key contributions are
outlined below:

• We decompose the sequence-level PPO into a sequence
of token-level proximal policy optimization problems
via the upper-bounding approach and derive a closed-
form optimal token-level policy for the modified prob-
lem, with which the corresponding reward can be rep-
resented along with the token-level reward guidance.

• With the obtained reward, the Bradley-Terry model,
and a new result for eliminating the partition function,
we propose TGDPO, a preference optimization algo-
rithm framework with token-level reward guidance for
DPO. We further introduce a practical token-level re-
ward guidance based on the induced DPO reward.

• Extensive experiments demonstrate that our TGDPO
improves win rates by up to 7.5 points on MT-Bench,
6.2 points on AlpacaEval 2, and 4.3 points on Arena-
Hard compared to the best baseline.

2. Related Work
Reinforcement Learning from Human Feedback. Rein-
forcement learning from human feedback (RLHF) has been
extensively applied for aligning LLMs with human prefer-
ences and values (Ouyang et al., 2022; Ziegler et al., 2020).
The standard RLHF pipeline typically consists of two stages:
reward modeling and policy optimization through reinforce-

ment learning. Proximal Policy Optimization (PPO) with
on-policy sampling (Schulman et al., 2017) is commonly
used for this purpose. However, challenges in effective re-
ward modeling and tuning the PPO algorithm to achieve
optimal performance have motivated alternative approaches
that bypass the reward modeling step and focus on directly
optimizing the policy. The direct preference optimization
(DPO) algorithm (Rafailov et al., 2023) is a representative
one. DPO explicitly represents the reward function with the
optimal policy of the proximal policy optimization problem,
thereby avoiding the need for a separate reward model and
fine-tuning LLMs directly with human preference. DPO has
proven to be both lightweight and stable, showing strong
performance in a range of applications (Ivison et al., 2024;
Tian et al., 2024; Miao et al., 2024). Several variants of
DPO have since been proposed, improving its performance.
For instance, R-DPO (Park et al., 2024) addresses DPO’s
tendency to exploit token length, while SimPO (Meng et al.,
2024) aims to better align the objective with the decoding
formula and eliminate the need for a reference model. KTO
(Ethayarajh et al., 2024) focuses on optimizing preferences
using non-pairwise data. These preference optimization
techniques, however, operate at the sequence level and do
not shape the reward function of DPO from the token level.
In contrast, our approach aims to leverage token-level re-
wards to guide preference optimization and better align
LLMs. A recent work TDPO (Zeng et al., 2024) tries to
provide a token-level understanding of DPO. It explains
DPO using token-level Markov decision process and pro-
poses to incorporate forward KL divergence to the DPO
objective. However, like DPO, TDPO still does not consider
token-level reward guidance. Our TGDPO, on the other
hand, explicitly incorporates token-level reward signals into
the preference optimization framework.

RLHF with Dense Token-Level Reward. Text generation
of LLMs can be modeled as a Markov decision process.
Sequence-level PPO treats the entire sequence as an ac-
tion and assigns a reward at the sequence’s end (Schulman
et al., 2017), which results in sparse feedback at the token
level. This sparsity hinders the model’s ability to differ-
entiate between preferred and dispreferred tokens within a
sequence, leading to training instability (Snell et al., 2023;
Xia et al., 2024). To mitigate this issue, several techniques
have been developed to generate dense token-level rewards,
including learning from fine-grained human feedback (Wu
et al., 2023), fine-grained AI feedback (Ouyang et al., 2024),
and grounding preferences at the token or segment level
(Yang et al., 2023; Yin et al., 2025; Zhong et al., 2024).
PPO leveraging such fine-grained reward models has shown
significant performance improvements. However, extend-
ing token-level guidance to DPO is a challenge, as DPO’s
reward function is explicitly expressed through the policy
being optimized. Incorporating token-level reward guidance
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into the DPO framework requires overcoming substantial
difficulties, especially in eliminating the partition function
from the loss function, which remains an open problem.
More discussions on closely related work are presented in
Appendix C.

3. Preliminary
Given a human preference dataset D = {(x, yw, yl)}, where
x is a prompt, yw and yl are preferred and dispreferred
responses respectively, in RLHF a sequence-level reward
model rϕ(x, y) is first trained with the preference dataset
for assigning higher reward to preferred response and lower
reward to dispreferred one. With the trained reward model,
sequence-level Proximal Policy Optimization (PPO) solves
the following problem to fine-tune LLMs:

max
πθ

Ex∼D,y∼πθ(·|x) [rϕ(x, y)]− βDKL[πθ(·|x)||πref(·|x)]

= max
πθ

Ex∼D,y∼πθ(·|x)

[
rϕ(x, y)− β log

πθ(y|x)
πref(y|x)

]
,

(1)

where DKL[·] is the KL-divergence of two probability distri-
butions, πθ is the language model policy, πref is the reference
policy, and the positive parameter β controls the deviation
of πθ from πref. Equation (1) can be considered as assigning
the reward to a sequence and is referred to as the sequence-
level PPO problem in this work. It has the issue of sparse
reward (delayed feedback) that challenges traditional deep
reinforcement learning (Andrychowicz et al., 2017). To alle-
viate the issue, sequence-level PPO with token-level reward
guidance is developed to fine-tune LLMs in a fine-grained
fashion with dense token-wise rewards (Yang et al., 2023;
Yin et al., 2025; Zhong et al., 2024).

Sequence-Level PPO with Token-Level Reward Guid-
ance. Text generation of an LLM can be modeled as a
Markov Decision Process (MDP). Let st be the context for
generating the token at time step t ≥ 0, the generated token
is denoted as at ∼ πθ(·|st). For a prompt x of the LLM,
s0 = x and st = [x, a<t], where a<t = [a0, . . . , at−1] are
the previously generated tokens. The generated full text-
sequence with T tokens is denoted as a = [a0, . . . , aT−1].
A token-level reward, for convenience it is also denoted by
rϕ(st, at), is learned so that the reward sequence is dense
and can guide the selection of token at any time step, which
is called token-level reward guidance (Yang et al., 2023; Yin
et al., 2025). Typically, the problem of sequence-level prox-
imal policy optimization with token-level reward guidance
is (Yin et al., 2025):

max
πθ

Ex∼D,y∼
∏T−1

t=0 πθ(at|st)

[
T−1∑
t=0

rϕ(st, at)−

β log
πθ(y|x)
πref(y|x)

]
,

(2)

where x is a prompt, st and at are the state and action
defined previously, y = [a0, . . . , aT−1] is the response
generated by πθ from the given prompt x. Classically,
the sequence-level reward function rϕ(x, y) can be set as
rϕ(x, y) =

∑T−1
t=0 rϕ(st, at) (Yang et al., 2023).

Direct Preference Optimization. Direct preference opti-
mization (Rafailov et al., 2023) bypasses learning a reward
model and aligns directly an LLM to human preference.
DPO (Rafailov et al., 2023) expresses the sequence-level
reward function explicitly with the optimal policy of Equa-
tion (1) as:

rϕ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (3)

where Z(x) is the partition function and β is a positive
constant. By adopting the Bradley-Terry preference model
(Bradley & Terry, 1952)

Pr(yw ≻ yl|x) =
exp (rϕ(x, yw))

exp (rϕ(x, yw)) + exp (rϕ(x, yl))
(4)

for specifying human preference distribution, DPO obtains
the following loss function:

LDPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

−β log
πθ(yl|x)
πref(yl|x)

)]
, (5)

which is obtained by substituting Equation (3) into Equa-
tion (4), where σ is the sigmoid function. DPO minimizes
Equation (5) with respect to the policy πθ to directly fine-
tune the LLM with the preference dataset at the sequence
level.

4. Methodology
Direct preference optimization expresses the reward func-
tion explicitly with the optimal policy of the sequence-level
proximal policy optimization problem. However, incorpo-
rating existing token-level rewards explicitly into DPO to
guide fine-tuning is an unresolved problem. To derive a form
of DPO with token-level reward guidance, this section first
gives the problem of token-level PPO in Section 4.1 from
the sequence-level PPO in Equation (2). The token-level
PPO problem is further modified to incorporate token-level
reward guidance in Section 4.2, the closed-form optimal
policy is derived, and the corresponding token-level reward
with guidance is obtained. Then with the Bradley-Terry
model, we propose the direct preference optimization with
token-level reward guidance in Section 4.3.

4.1. Token-Level PPO

Note that y = [a0, . . . , aT−1] is the response generated by
πθ from the given prompt x. Using the notations of state
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and action in Section 3, we can get

πθ(y|x) = πθ([a0, . . . , aT−1]|x) =
T−1∏
t=0

πθ(at|st);

πref(y|x) = πref([a0, . . . , aT−1]|x) =
T−1∏
t=0

πref(at|st).

Thus, the objective function in Equation (2) can be decom-
posed into the token level as:

T−1∑
t=0

rϕ(st, at)− β log
πθ(y|x)
πref(y|x)

=

T−1∑
t=0

(
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

)
.

(6)

Moreover, according to the MDP for language model (Sec-
tion 3), y ∼

∏T−1
t=0 πθ(at|st) in Equation (2) is equivalent

to y ∼ πθ(·|x), which is further equivalent to s0 = x ∼ D,
at ∼ πθ(·|st), t = 0, 1, . . . , T − 1. Then by Equation (6),
the problem of sequence-level PPO with token-level reward
guidance in Equation (2) becomes

max
πθ

Ex∼D,y∼πθ(·|x)

[
T−1∑
t=0

(rϕ(st, at)− β log
πθ(at|st)
πref(at|st)

)

]

= max
πθ

Es0∼D,at∼πθ(·|st),t=0,1,...,T−1

[
T−1∑
t=0

(rϕ(st, at)

−β log
πθ(at|st)
πref(at|st)

)

]
. (7)

Based on Equation (7), we can show that:

Theorem 4.1. The maximum value of the sequence-level
proximal policy optimization in Equation (2) is upper
bounded by the summation from t = 0, 1, . . . , T − 1 of
the maximum value of the problem:

max
πθ

Est∼Dt,at∼πθ(·|st)

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]
(8)

where st ∼ Dt denotes that s0 = x ∼ D and ap ∼ πθ(·|sp),
p = 0, 1, . . . , t− 1.

The proof of Theorem 4.1 is given in Appendix A.1.

Equation (8) is the problem of token-level PPO at time step
t, which optimizes the policy for action at given the state st.
Theorem 4.1 suggests that, the sequence-level proximal pol-
icy optimization in Equation (2) can be upper-bounded with
a sequence of token-level PPOs in Equation (8). However, it

is not easy to solve the problem since st ∼ Dt is dependent
on the policy πθ to be optimized (see Equation (1) for a
comparison, where the distribution D is independent of the
policy πθ to be optimized).

4.2. Modified Token-Level PPO with Reward Guidance
and Optimal Policy

Given win and lose responses yw = (aw0 , . . . , a
w
Tw−1) and

yl = (al0, . . . , a
l
Tl−1), Rafailov et al. (2024) expressed the

per-instance loss of DPO (Rafailov et al., 2023) in the token-
level as:

Pr(yw ≻ yl)

= σ

(
Tw−1∑
t=0

β log
πθ(a

w
t |swt )

πref(awt |swt )
−

Tl−1∑
t=0

β log
πθ(a

l
t|slt)

πref(alt|slt)

)
.

Assuming access to a token-level reward r̂(st, at), since the
token-level reward r̂(st, at) may imply whether the action
at is preferred or dispreferred in the state st, this work aims
to replace β in the above equation with βf(r̂(st, at)), a
function of the token-level reward r̂(st, at), to guide the
DPO.

Following DPO (Rafailov et al., 2023), we derive this form
of loss function from the token-level proximal policy opti-
mization in Equation (8) by incorporating the token-level
reward guidance f(r̂(st, at)). First, similar to (Zeng et al.,
2024; Yang et al., 2024), we relax st ∼ Dt to st ∼ D and
make Equation (8) solvable as

max
πθ

Est∼D,at∼πθ(·|st)

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]
.

(9)

Next, we manage to incorporate token-level reward guidance
f(r̂(st, at)) into this formulation, and represent the ground-
truth unknown reward function rϕ(st, at) with the optimal
policy of this equation. The obtained ground-truth reward
rϕ(st, at) is subsequently leveraged to construct our DPO’s
loss function under the Bradley-Terry preference model.

Directly replacing β in Equation (9) with βf(r̂(st, at))
might not make the problem easy to solve. To address this
issue, by noting that β is a positive constant, Equation (9) is
equivalent to

max
πθ

Est∼D,at∼πθ(·|st)

[
rϕ(st, at)

β
− log

πθ(at|st)
πref(at|st)

]
.

(10)

Then, we make the following Assumption 4.2 for incorpo-
rating token-level reward guidance f(r̂(st, at)) explicitly
into Equation (10).

Assumption 4.2. Suppose we have an existing reward
model r̂(·), which can generate a dense token-level reward
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sequence r̂(st, at), t = 0, 1, . . . , T − 1. Moreover, suppose
f(u) is a positive univariate function of u.

It was shown in Rafailov et al. (2024) under the defini-
tion of equivalent state-action reward class and invariant re-
parameterization that, DPO implicitly learns a token-level
reward r̂(st, at) of the form β log πθ(at|st)

πref(at|st) , and the total

reward r̂(x, y) =
∑T−1

t=0 r̂(st, at). Hence Assumption 4.2
is feasible.

Modified Token-Level PPO. With Assumption 4.2, we
propose to adopt the token-level reward r̂(st, at) to guide
token-level PPO. First, the parameter β in Equation (10)
is replaced with βf(r̂(st, at)) and we obtain the modified
problem of token-level PPO with token-level reward guid-
ance as follows:

max
πθ

Est∼D,at∼πθ(·|st)

[
rϕ(st, at)

βf(r̂(st, at))
− log

πθ(at|st)
πref(at|st)

]
,

(11)

where f(r̂(st, at)) with the token-level reward r̂(st, at) is
adopted to modify the ground-truth unknown reward func-
tion rϕ(st, at).

Thus similar to (Rafailov et al., 2023), the optimal policy for
the action at at time step t of the modified token-level prox-
imal policy optimization in Equation (11) can be derived as
the following Theorem 4.3.

Theorem 4.3. The optimal policy πθt(at|st) for the action
at at time step t of the modified token-level proximal policy
optimization in Equation (11) is

πθt(at|st) =
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
Z(st)

,

where Z(st) = Eat∼πref(·|st)

[
exp

(
rϕ(st,at)

βf(r̂(st,at))

)]
is the

partition function, and st ∼ D does not depend on πθt .
Moreover, the ground-truth unknown token-level reward can
be represented with the optimal policy πθt(at|st) as:

rϕ(st, at)

f(r̂(st, at))
= β log

πθt(at|st)
πref(at|st)

+ β logZ(st). (12)

The proof of Theorem 4.3 is provided in Appendix A.2.

Modified Token-Level Reward. By Equation (12), we
have the token-level reward function

rϕ(st, at) =βf(r̂(st, at)) log
πθt(at|st)
πref(at|st)

+

βf(r̂(st, at)) logZ(st), (13)

where f(r̂(st, at)) satisfies Assumption 4.2, β is a constant,
st ∼ D does not depend on πθt , t = 0, 1, . . . , T − 1.

Without loss of generality, suppose that trajectories gen-
erated by LLMs are bounded by a finite number of time
steps, or tokens. Then, since LLMs are over-parameterized,
we may assume without loss of generality that, there exists
θ such that πθ(at|st) = πθt(at|st), t = 0, 1, . . . , T − 1.
Thus, with the notations of the prompt x and the generated
sequence y, Equation (13) can be rewritten in the form

rϕ([x, y
<t], yt) =βf(r̂([x, y<t], yt)) log

πθ(y
t|[x, y<t])

πref(yt|[x, y<t])

+ βf(r̂([x, y<t], yt)) logZ([x, y<t])
(14)

for all time-step t, where the last term with the partition
function does not depend on πθ, according to Theorem 4.3.

4.3. Direct Preference Optimization with Token-Level
Reward Guidance

For the proximal policy optimization with token-level re-
ward guidance in Equation (11), Section 4.2 has represented
the ground-truth unknown token-level reward rϕ(st, at) ex-
plicitly in Equation (14). Subsequently, the total reward
rϕ(x, y) for the prompt x and its response y can be ex-
pressed as:

rϕ(x, y) =

T∑
t=0

βf(r̂([x, y<t], yt)) log
πθ(y

t|[x, y<t])

πref(yt|[x, y<t])

+

T∑
t=0

βf(r̂([x, y<t], yt)) logZ([x, y<t]),

(15)

where the last term with the partition function does not
depend on πθ.

Next, we derive the loss function with token-level reward
guidance for direct preference optimization, as we set the
target at the beginning of Section 4.2. Given a human prefer-
ence dataset D = {(x, yw, yl)}, where x is a prompt, yw and
yl are preferred and dispreferred responses respectively, we
adopt the reward function in Equation (15) and the Bradley-
Terry preference model in Equation (4) for specifying hu-
man preference. To this aim, we choose different shaping
functions fw(·) and fl(·) for win and lose responses respec-
tively, both of them satisfy the condition in Assumption 4.2.
Then by substituting Equation (15) into Equation (4), we
can get the per-instance loss detailed as follows.

Bradley-Terry Model with Token-Level Reward Guid-
ance. From Equation (15), for convenience we let

φ(πθ, f, r̂;x, yw, yl)

=

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

5



TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct Preference Optimization

−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

; (16)

δ(f, r̂;x, yw, yl)

=

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) logZ([x, y<t

w ])

−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) logZ([x, y<t

l ]),

where Tw and Tl are the lengths of the responses yw and
yl respectively. Then, the Bradley-Terry preference model
with token-level reward guidance is

Pr(yw ≻ yl|x)
= σ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) .

(17)

The proof of Equation (17) is given in Appendix A.3.

The above function is not computable since it contains parti-
tion functions in δ(f, r̂;x, yw, yl). Notably, preference opti-
mization aims to maximize the preference function in Equa-
tion (17) with respect to πθ, and δ(f, r̂;x, yw, yl) does not
depend on the policy πθ, we can eliminate δ(f, r̂;x, yw, yl)
from Equation (17) based on the following Theorem 4.4.

Theorem 4.4. The preference function in Equation (17)
has the same maxima and the same ascent directions as
the function σ (φ(πθ, f, r̂;x, yw, yl)). Moreover, for two
policies πθ1 and πθ2 ,

σ (φ(πθ1 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl))

> σ (φ(πθ2 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl))
(18)

if and only if

σ (φ(πθ1 , f, r̂;x, yw, yl))

> σ (φ(πθ2 , f, r̂;x, yw, yl)) .
(19)

The proof of Theorem 4.4 is given in Appendix A.4. Theo-
rem 4.4 is due to that, the sigmoid function is strictly increas-
ing and it does not change the order of values. Hence Theo-
rem 4.4 suggests that, maximizing σ (φ(πθ, f, r̂;x, yw, yl))
with respect to πθ is equivalent to maximizing the preference
function in Equation (17) with respect to πθ. Furthermore,
the equivalence between Equation (18) and Equation (19)
demonstrates that, for any two policies πθ1 and πθ2 , cancel-
ing the term δ(f, r̂;x, yw, yl) from Equation (18) does not
affect the preference order of the responses yw and yl.

Loss Function. Since we only care about the optimal policy
of Equation (17), by Theorem 4.4 we may redefine the

preference function as σ (φ(πθ, f, r̂;x, yw, yl)), i.e.,

Pr(yw ≻ yl|x) ≜ σ (φ(πθ, f, r̂;x, yw, yl))

= σ

(
Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)
,

which specifies the per-instance human preference and is
computable. Furthermore, analogous to Equation (5), we
formulate the loss function for enhancing DPO by harness-
ing token-level reward guidance as follows:

LTGDPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
Tw−1∑
t=0

β · fw(r̂([x, y<t
w ], ytw)) · log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−

Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)]
.

(20)

The loss function LTGDPO(πθ) in Equation (20) provides a
framework of direct preference optimization, by leverag-
ing f(r̂(st, at)) to shape the optimization of the policy on
the tokens of win and lose responses. Specifically, with
an appropriate choice of f(·), this framework can recover
several known direct preference optimization methods. For
example, if we take fw ≡ fl ≡ 1, then Equation (20) is the
loss function of DPO (Rafailov et al., 2023) (for others, see
Appendix C.2). Nonetheless, the aim of this framework is to
use token-level reward r̂(st, at) to shape the loss function
in Equation (20) directly. In the following, we provide a
practical example.

Practical Method. For convenience, we adopt the induced
DPO reward (Rafailov et al., 2023) for the token-level re-
ward r̂(st, at). Suppose πθ̂ is an optimal policy of the loss
function of DPO in Equation (5), Rafailov et al. (2024)
showed in Theorem 1 that DPO learns implicitly a token-
level reward of the form

r̂([x, y<t], yt) = β log
πθ̂(y

t|[x, y<t])

πref(yt|[x, y<t])
.

Hence for Equation (20), we simply set

fw(r̂([x, y
<t
w ], ytw)) = 1 + α r̂([x, y<t

w ], ytw);

fl(r̂([x, y
<t
l ], ytl )) = 1− α r̂([x, y<t

l ], ytl ),
(21)

where α is a positive constant. Obviously, this setting meets
Assumption 4.2 if α is small enough.

Motivation of the Practical Method. Observing the loss
function LTGDPO(πθ) in Equation (20), below is the motiva-
tion for setting f(r̂([x, y<t], yt)) as in Equation (21):
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• For a token ytw in win-response, if r̂([x, y<t
w ], ytw) > 0,

then it is identified as a preferred token, implying that
the state-action should be reinforced, and then it is
assigned a larger weight 1 + αr̂([x, y<t

w ], ytw). In this
way, the gradient of our loss function LTGDPO(πθ) at
this state-action is

β(1 + αr̂([x, y<t
w ], ytw))∇πθ

log
πθ(y

t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

,

which is scaled up by 1+αr̂([x, y<t
w ], ytw). As a result,

optimizing our loss function LTGDPO(πθ) encourages
the policy to assign a higher probability to this action.

• Similarly, the token ytw satisfying r̂([x, y<t
w ], ytw) < 0

is identified as a dispreferred token, although it is in
the preferred response yw. Then by assigning weight
1 + αr̂([x, y<t

w ], ytw) < 1, optimizing our loss func-
tion LTGDPO(πθ) would progressively assign a lower
probability to this action.

• For a token ytl in lose-response, if r̂([x, y<t
l ], ytl ) < 0,

then it is considered as a dispreferred token. Thus since
the weight 1 − αr̂([x, y<t

l ], ytl )) > 1, optimizing the
loss function LTGDPO(πθ) would assign an even lower
probability to this action.

• The token ytl satisfying r̂([x, y<t
l ], ytl ) > 0 is consid-

ered as a preferred token, although it is in the dispre-
ferred response yl. In this case 1−αr̂([x, y<t

l ], ytl )) <
1, then optimizing the loss function LTGDPO(πθ) would
progressively assign a higher probability to this action.

The above analysis indicates that our direct preference op-
timization with token-level reward guidance performs in
the token-level granularity, and exhibits varying degrees of
deviation from the reference policy based on their respective
rewards. This property inherently empowers our approach
to discover satisfactory policies, leading to better policies
than existing approaches. This property should be attributed
to the modified token-level PPO with reward guidance in
Section 4.2, and the derived loss function LTGDPO(πθ) for
direct preference optimization in Equation (20) with the
setting of f(r̂([x, y<t], yt)) in Equation (21).

5. Experiments
In this section, we first outline our experiment settings in
Section 5.1. Then we show the main experiment results in
Section 5.2. Lastly, we provide an empirical analysis of the
unique properties of our TGDPO in Section 5.3.

5.1. Experiment Settings

Models and Training Settings. We conduct experiments
on three models: Llama3-8B-Instruct (Grattafiori et al.,

2024), Llama3.2-3B-Instruct, and Gemma2-2B-it (Team
et al., 2024b). Following (Meng et al., 2024), we use
prompts from the UltraFeedback dataset (Cui et al., 2024)
and let each model generate 5 responses with a temperature
of 0.8. These responses are then ranked using the ArmoRM
model (Wang et al., 2024). The highest and lowest-ranked
responses are selected as the chosen and rejected samples,
respectively. For Llama3-8B-Instruct, we further utilize
the PairRM model (Jiang et al., 2023) to annotate response
scores, thereby evaluating the robustness of algorithms in
handling varying quality of sample annotations. Hyperpa-
rameter settings are presented in Appendix D.1.

Evaluation Benchmarks. We primarily evaluate trained
models’ performance using three widely recognized
open-ended instruction-following benchmarks: MT-Bench
(Zheng et al., 2023), Arena-Hard (Li et al., 2024), and Al-
pacaEval 2 (Li et al., 2023), which assess models’ response
quality across diverse queries. For MT-Bench, we report the
MT-Bench score and win rate against GPT-4. For Arena-
Hard, we report the win rate against GPT-4-0314. For Al-
pacaEval 2, we report the win rate against GPT-4 Turbo.
Further details are discussed in Appendix D.2.

Baseline Methods. We compare our TGDPO with two state-
of-the-art preference optimization methods: DPO (Rafailov
et al., 2023) and SimPO (Meng et al., 2024). We also include
the pre-trained Instruct model as a baseline.

5.2. Main Results

The experiment results on AlpacaEval 2 (Li et al., 2023),
Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al.,
2023) are summarized in Table 1. Our TGDPO consistently
outperforms baseline methods across these benchmarks. No-
tably, on AlpacaEval 2, it achieves a win rate increase of
up to 6.2 over the best baseline, while on MT-Bench, the
win rate improves by up to 7.5. For the challenging Arena-
Hard benchmark, our method demonstrates stable superior
performance, with a win rate enhancement of up to 4.3 com-
pared to the best baseline. These consistent performance
improvements underscore the effectiveness of our approach.
More experiment results and comparisons are presented in
Appendix B.

5.3. Analysis

In this section, we present an empirical analysis of the
unique properties of our TGDPO in comparison to con-
ventional preference optimization approaches. The analysis
is conducted under the Llama3-8B-Instruct PairRM setting.

TGDPO Leads to Satisfactory Results upon Loss Conver-
gence. A well-known challenge in preference optimization
algorithms is the misalignment between loss minimization
and model performance (Guo et al., 2024). Specifically, min-
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Table 1. Experiment results on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023) benchmarks.

Method
Llama3-8B-Instruct PairRM Llama3-8B-Instruct ArmoRM

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

Win Rate (%) Win Rate (%) Score Win Rate(%) Win Rate (%) Win Rate (%) Score Win Rate(%)

SFT 30.6 21.4 7.9 27.5 30.6 21.4 7.9 27.5

DPO 41.7 30.4 8.0 37.5 40.8 36.2 8.2 46.3
SimPO 39.8 28.7 7.8 32.5 37.0 28.1 7.8 42.5

TGDPO 43.9 34.3 8.0 41.9 42.5 40.5 7.9 45.0

Method
Llama3.2-3B-Instruct ArmoRM Gemma2-2B-it ArmoRM

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

Win Rate (%) Win Rate (%) Score Win Rate (%) Win Rate (%) Win Rate (%) Score Win Rate (%)

SFT 23.8 17.1 7.0 16.3 32.8 20.1 7.9 37.5

DPO 29.6 23.2 7.9 29.4 40.8 26.4 8.0 43.1
SimPO 26.2 22.6 7.4 15.7 34.8 21.1 7.8 40.0

TGDPO 35.8 25.4 8.1 36.9 43.0 30.7 8.1 46.9
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Figure 1. Training loss curve for DPO and our TGDPO with dif-
ferent values of α. Changing the value of α leads to different
convergence speeds for our method.

imizing the loss for many preference optimization methods
often results in degenerate policies. This issue necessitates
extensive hyperparameter tuning to identify a sweet spot be-
tween the initialization and convergence points, significantly
limiting the practicality and efficiency of these algorithms.
As shown in Figure 1, the optimal hyperparameters for DPO
barely reduce its loss. In contrast, we empirically find that
TGDPO enables convergence in much fewer steps than con-
ventional preference optimization algorithms. In Figure 1,
TGDPO demonstrates consistent and stable loss reduction
toward convergence. We assume it is because TGDPO’s
token-level reward inherently distinguishes preferred and
dispreferred tokens.

Furthermore, in Table 2, we compare benchmark perfor-
mances by training each method using their default con-
figurations and training them until loss convergence. The

Table 2. Analysis of preference optimization methods’ perfor-
mance upon training loss convergence.

Method AlpacaEval 2 Arena-Hard

Win Rate (%) Win Rate (%)

SFT 30.6 21.4
DPO 41.7 30.4

SimPO 39.8 28.7

DPO w/ convergence 30.7 17.9
SimPO w/ convergence 4.6 2.4
TGDPO w/ convergence 43.9 34.3

Table 3. Analysis of our TGDPO’s performance upon training loss
convergence with different convergence speeds.

Method AlpacaEval 2 Arena-Hard

Win Rate (%) Win Rate (%)

SFT 30.6 21.4

TGDPO w/ α = 0.5 43.9 34.3
TGDPO w/ α = 1.0 42.5 33.9
TGDPO w/ α = 2.0 43.3 34.3

results reveal that both DPO and SimPO suffer substantial
performance degradation upon convergence, with SimPO’s
win rates dropping to single digits. Conversely, TGDPO
maintains exceptional performance at the convergence point.
These findings highlight the necessity of extensive hyper-
parameter searches for traditional preference optimization
algorithms, whereas TGDPO simplifies the process, signifi-
cantly improving efficiency and usability.

TGDPO Enables Control Over Convergence Speed.
TGDPO offers the flexibility to control the speed of con-
vergence by adjusting the value of α in Equation (20). A

8
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Table 4. Analysis of our TGDPO’s robustness using different
token-level rewards r̂(st, at).

Method AlpacaEval 2 Arena-Hard

Win Rate (%) Win Rate (%)

SFT 30.6 21.4
DPO w/ β = 0.1 34.8 26.7

DPO w/ β = 0.01 41.7 30.4

TGDPO w/ β = 0.1 for r̂(st, at) 42.8 34.3
TGDPO w/ β = 0.01 for r̂(st, at) 43.9 34.3

larger α provides stronger token-level guidance, resulting
in faster convergence, while a smaller α aligns the algo-
rithm more closely with conventional DPO behavior. As
illustrated in Figure 1, increasing α leads to a more rapid
loss reduction compared to lower values of α. Addition-
ally, in Table 3, we compare benchmark performances at
the respective convergence points for different values of α.
Specifically, we evaluate checkpoints at step 50 for α = 2.0,
step 60 for α = 1.0, and epoch 1 for α = 0.5. The results
demonstrate comparable performance across all configura-
tions, especially for the challenging Arena-Hard benchmark.
This desirable property of TGDPO allows for early stopping
once the loss converges, significantly reducing computa-
tional costs without compromising performance.

TGDPO is Robust to Variations in Token-Level Rewards
r̂(st, at). To make TGDPO practical, we propose using
token-level rewards derived from pre-trained DPO models
as a convenient implementation. A key question arises: how
sensitive is TGDPO to the quality of the token-level rewards
r̂(st, at) defined in Equation (20)? To investigate this, we
analyze the behavior of TGDPO using token-level rewards
obtained from two DPO models trained with different β val-
ues: β = 0.1 and β = 0.01. The benchmark performances
of these models, along with TGDPO’s performance using
their respective rewards, are presented in Table 4. As ex-
pected, DPO with β = 0.01 significantly outperforms DPO
with β = 0.1. However, when the token-level rewards from
these models are used in TGDPO, the resulting performance
is nearly identical. This finding highlights TGDPO’s ro-
bustness to variations in the quality of token-level rewards,
making it less dependent on the specific characteristics of
the pre-trained DPO model. Such robustness further en-
hances TGDPO’s practicality and reliability.

6. Conclusion
This paper enhances DPO by incorporating token-level
reward guidance, which is achieved by decomposing
sequence-level proximal policy optimization into a series
of token-level proximal policy optimization problems. We
formulate the problem of token-level proximal policy opti-
mization with token-level reward guidance. The problem

admits a closed-form optimal token-level policy with which
the corresponding token-level reward can be represented.
Using the obtained token-level reward and Bradley-Terry
model, we propose TGDPO, a sequence-level DPO algo-
rithm framework with token-level reward guidance. More-
over, we introduce a practical token-level reward guidance.
Extensive experiments on MT-Bench, AlpacaEval 2, and
Arena-Hard demonstrate TGDPO’s superiorities.

Impact Statement
This paper enhances DPO by incorporating token-level re-
ward guidance. This integration significantly boosts DPO’s
performance. Although the current evaluation concentrates
on helpfulness, we believe our method would also benefit
other important aspects of LLM alignment, such as safety,
honesty, and fairness.
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A. Mathematical Derivations
A.1. Proof of Theorem 4.1

Theorem A.1. The maximum value of the sequence-level proximal policy optimization in Equation (2) is upper bounded by
the summation from t = 0, 1, . . . , T − 1 of the maximum value of the problem:

max
πθ

Est∼Dt,at∼πθ(·|st)

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]
,

where st ∼ Dt denotes that s0 = x ∼ D and ap ∼ πθ(·|sp), p = 0, 1, . . . , t− 1.

Proof. According to Section 4.1, y ∼
∏T−1

t=0 πθ(at|st) in Equation (2) is equivalent to y ∼ πθ(·|x), which is further
equivalent to s0 = x ∼ D, ap ∼ πθ(·|sp), p = 0, 1, . . . , T − 1. Thus for the sequence-level proximal policy optimization in
Equation (2),

max
πθ

Ex∼D,y∼
∏T−1

t=0 πθ(at|st)

[
T−1∑
t=0

rϕ(st, at)− β log
πθ(y|x)
πref(y|x)

]

= max
πθ

Es0∼D,ap∼πθ(·|sp),p=0,1,...,T−1

[
T−1∑
t=0

rϕ(st, at)− β log
πθ(y|x)
πref(y|x)

]

= max
πθ

Es0∼D,ap∼πθ(·|sp),p=0,1,...,T−1

[
T−1∑
t=0

rϕ(st, at)−
T−1∑
t=0

β log
πθ(at|st)
πref(at|st)

]
(by Equation (6))

= max
πθ

Es0∼D,ap∼πθ(·|sp),p=0,1,...,T−1

[
T−1∑
t=0

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]]

= max
πθ

T−1∑
t=0

Es0∼D,ap∼πθ(·|sp),p=0,1,...,T−1

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]

≤
T−1∑
t=0

max
πθ

Es0∼D,ap∼πθ(·|sp),p=0,1,...,T−1

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]

=

T−1∑
t=0

max
πθ

Est∼Dt,at∼πθ(·|st)

[
rϕ(st, at)− β log

πθ(at|st)
πref(at|st)

]
,

where st ∼ Dt denotes that s0 = x ∼ D and ap ∼ πθ(·|sp), p = 0, 1, . . . , t− 1. This completes the proof.

A.2. Proof of Theorem 4.3

Theorem A.2. The optimal policy for the action at at time step t of the modified token-level proximal policy optimization in
Equation (11) is:

πθt(at|st) =
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
Z(st)

, (22)

where Z(st) = Eat∼πref(·|st)

[
exp

(
rϕ(st,at)

βf(r̂(st,at))

)]
is the partition function and st ∼ D does not depend on πθt . Moreover,

the token-level reward under the optimal policy is given by

rϕ(st, at)

f(r̂(st, at))
= β log

πθt(at|st)
πref(at|st)

+ β logZ(st). (23)

Proof. In Equation (11), the modified token-level proximal policy optimization is:

max
πθ

Est∼D,at∼πθ(·|st)

[
rϕ(st, at)

βf(r̂(st, at))
− log

πθ(at|st)
πref(at|st)

]
12
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= max
πθ

Est∼D,at∼πθ(·|st)

log
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
πθ(at|st)


= max

πθ

Est∼D,at∼πθ(·|st)

log
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
Z(st)πθ(at|st)

+ logZ(st)


= max

πθ

Est∼D,at∼πθ(·|st)

log
 1

Z(st)
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
πθ(at|st)

+ logZ(st)


= max

πθ

Est∼D

Eat∼πθ(·|st)

log
 1

Z(st)
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
πθ(at|st)

+ logZ(st)


= max

πθ

Est∼D

[
−DKL

[
πθ(at|st)||

1

Z(st)
πref(at|st) exp

(
rϕ(st, at)

βf(r̂(st, at))

)]
+ logZ(st)

]
(24)

where the partition function Z(st) = Eat∼πref(·|st)

[
exp

(
rϕ(st,at)

βf(r̂(st,at))

)]
is independent of πθ. Then we can define

πθt(at|st) =
πref(at|st) exp

(
rϕ(st,at)

βf(r̂(st,at))

)
Z(st)

,

which is a valid probability distribution of action at. Furthermore in Equation (24), since Z(st) is independent of πθ, the
optimal policy for the action at at time step t of the modified token-level proximal policy optimization in Equation (11) can
be in the form of Equation (22).

By reorganizing Equation (22), we can get the token-level reward in Equation (23). This completes the proof.

A.3. Proof of Bradley-Terry Model with Token-Level Reward Guidance in Equation (17)

Let

φ(πθ, f, r̂;x, yw, yl) =

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

;

(25)

δ(f, r̂;x, yw, yl) =

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) logZ([x, y<t

w ])−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) logZ([x, y<t

l ]). (26)

By Equation (15) and the choices of fw and fl in Section 4.3,

rϕ(x, yw)

=

Tw−1∑
t=0

rϕ([x, y
<t
w ], ytw)

=

Tw−1∑
t=0

[
βfw(r̂([x, y

<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

+ βfw(r̂([x, y
<t
w ], ytw)) logZ([x, y<t

w ]

]

=

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

+

Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) logZ([x, y<t

w ].

13
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Similarly,
rϕ(x, yl)

=

Tl−1∑
t=0

rϕ([x, y
<t
l ], ytl )

=

Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

+

Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) logZ([x, y<t

l ].

In the above two equations, Tw and Tl are the lengths of yw and yl respectively. Thus using the notations in Equations (25)
and (26) we get

rϕ(x, yw)− rϕ(x, yl) = φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl).

Then the Bradley-Terry model with the token-level reward guidance is

Pr(yw ≻ yl|x)

=
exp (rϕ(x, yw))

exp (rϕ(x, yw)) + exp (rϕ(x, yl))

=
1

1 + exp (rϕ(x, yl)− rϕ(x, yw))

= σ(rϕ(x, yw)− rϕ(x, yl))

= σ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) .

(27)

A.4. Proof of Theorem 4.4

Pr(yw ≻ yl|x) = σ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) , (28)

in which δ(f, r̂;x, yw, yl) does not depend on the policy πθ to be optimized, but only on f, r̂, x, yw, yl and the partition
function Z(st) (also does not depend on πθ, please see Theorem 4.3 in the main text). Since σ(t) is the sigmoid function
which is a strictly increasing function of t, we have:

Theorem A.3. The function in Equation (28) has the same maxima and the same ascent directions as the function
σ (φ(πθ, f, r̂;x, yw, yl)). Moreover, for two policies πθ1 and πθ2 ,

σ (φ(πθ1 , f, r̂;x, yw, yl)) > σ (φ(πθ2 , f, r̂;x, yw, yl)) (29)

if and only if
σ (φ(πθ1 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl))

> σ (φ(πθ2 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) .
(30)

Proof. Note that, δ(f, r̂;x, yw, yl) is not dependent on the policy πθ, and for the sigmoid function σ(t), it holds that
σ′(t) > 0 for all t. Then, by the definition, d is an ascent direction of the function (28) if and only if

dT∇πθ
σ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) > 0,

which is equivalent to

dTσ′ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl))∇πθ
φ(πθ, f, r̂;x, yw, yl) > 0

⇐⇒ dT∇πθ
φ(πθ, f, r̂;x, yw, yl) > 0

⇐⇒ dTσ′ (φ(πθ, f, r̂;x, yw, yl))∇πθ
φ(πθ, f, r̂;x, yw, yl) > 0

⇐⇒ dT∇πθ
σ (φ(πθ, f, r̂;x, yw, yl)) > 0.

14
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Hence the function (28) has the same ascent directions as the function σ (φ(πθ, f, r̂;x, yw, yl)). Similarly,

∇πθ
σ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) = 0

⇐⇒ σ′ (φ(πθ, f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl))∇πθ
φ(πθ, f, r̂;x, yw, yl) = 0

⇐⇒ ∇πθ
φ(πθ, f, r̂;x, yw, yl) = 0

⇐⇒ σ′ (φ(πθ, f, r̂;x, yw, yl))∇πθ
φ(πθ, f, r̂;x, yw, yl) = 0

⇐⇒ ∇πθ
σ (φ(πθ, f, r̂;x, yw, yl)) = 0.

Thus, the function in Equation (28) has the same maxima and the same ascent directions as the function
σ (φ(πθ, f, r̂;x, yw, yl)).

Next, since σ(t) is strictly increasing, for inequality Equation (29) we have

σ (φ(πθ1 , f, r̂;x, yw, yl)) > σ (φ(πθ2 , f, r̂;x, yw, yl))

⇐⇒ φ(πθ1 , f, r̂;x, yw, yl) > φ(πθ2 , f, r̂;x, yw, yl)

⇐⇒ φ(πθ1 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl) > φ(πθ2 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)

⇐⇒ σ (φ(πθ1 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) > σ (φ(πθ2 , f, r̂;x, yw, yl) + δ(f, r̂;x, yw, yl)) .

For easy understanding of Theorem A.3, we simplify in the sequel all notations independent of πθ to be optimized, then the
Bradley-Terry preference model in Equation (28) is Pr(yw ≻ yl|x) = σ(φ(πθ) + δ), and Theorem A.3 is exactly as:

Theorem A.4. For the policy πθ, the function σ(φ(πθ) + δ) has the same maxima and ascent directions as the function
σ(φ(πθ)), here σ(t) is the sigmoid function.

Proof. Note that the sigmoid function σ(t) is strictly increasing, meaning that for any real numbers a and b, a ≥ b if and
only if σ(a) ≥ σ(b). Thus, if π∗

θ is a maximal solution of σ(φ(πθ) + δ), then by the definition, there exists a neighborhood
N of π∗

θ such that ∀πθ ∈ N , σ(φ(π∗
θ) + δ) ≥ σ(φ(πθ) + δ). So φ(π∗

θ) + δ ≥ φ(πθ) + δ, and φ(π∗
θ) ≥ φ(πθ). This leads

to σ(φ(π∗
θ)) ≥ σ(φ(πθ)), meaning that π∗

θ is also a maximal solution of σ(φ(πθ)). The converse can be proved similarly.

Next, d is an ascent direction of the function σ(φ(πθ) + δ) if and only if

dT∇πθ
σ(φ(πθ) + δ) = σ′(φ(πθ) + δ)dT∇πθ

φ(πθ) > 0,

which is equivalent to
dT∇πθ

φ(πθ) > 0

⇐⇒ σ′(φ(πθ))d
T∇πθ

φ(πθ) > 0

⇐⇒ dTσ′(φ(πθ))∇πθ
φ(πθ) > 0

⇐⇒ dT∇πθ
σ(φ(πθ)) > 0.

Hence the function σ(φ(πθ) + δ) has the same ascent directions as the function σ(φ(πθ)) w.r.t. πθ.

Further, the sigmoid function is strictly increasing, it does not change the order of values.

B. More Experiment Results
B.1. Additional Baseline Comparison

Below we supplement the result of TDPO (Zeng et al., 2024) as an additional baseline for the experiment in Table 1 of the
main paper. The additional result is demonstrated in Table 5. It can be seen that the performance of TDPO is very close
to that of DPO. Our TGDPO, on the other hand, outperforms DPO by a large margin. Our TGDPO aims to leverage an
existing token-level reward to guide DPO training at the token level. Whereas, TDPO (Zeng et al., 2024) aims to enhance
the regulation of KL-divergence by incorporating a forward KL-divergence for each token to the DPO objective. It is not
guided by a token-level reward.
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Table 5. Experiment results on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023) benchmarks.

Method
Llama3-8B-Instruct PairRM Llama3-8B-Instruct ArmoRM

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

Win Rate (%) Win Rate (%) Score Win Rate(%) Win Rate (%) Win Rate (%) Score Win Rate(%)

SFT 30.6 21.4 7.9 27.5 30.6 21.4 7.9 27.5

DPO 41.7 30.4 8.0 37.5 40.8 36.2 8.2 46.3
TDPO 40.7 30.2 8.0 39.0 41.3 36.7 8.0 42.5
SimPO 39.8 28.7 7.8 32.5 37.0 28.1 7.8 42.5

TGDPO 43.9 34.3 8.0 41.9 42.5 40.5 7.9 45.0

Method
Llama3.2-3B-Instruct ArmoRM Gemma2-2B-it ArmoRM

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

Win Rate (%) Win Rate (%) Score Win Rate (%) Win Rate (%) Win Rate (%) Score Win Rate (%)

SFT 23.8 17.1 7.0 16.3 32.8 20.1 7.9 37.5

DPO 29.6 23.2 7.9 29.4 40.8 26.4 8.0 43.1
TDPO 30.3 23.1 7.8 30.0 41.5 27.0 8.0 40.0
SimPO 26.2 22.6 7.4 15.7 34.8 21.1 7.8 40.0

TGDPO 35.8 25.4 8.1 36.9 43.0 30.7 8.1 46.9

Table 6. Experiment results on SFT models on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al.,
2023) benchmarks.

Method
Llama3-8B-SFT-Mixture Ultrafeedback

AlpacaEval 2 Arena-Hard MT-Bench

Win Rate (%) Win Rate (%) Score Win Rate(%)

SFT 5.0 6.2 7.6 16.3

DPO 9.9 10.2 7.8 19.5
TDPO 11.0 11.7 7.5 15.7
SimPO 16.4 21.4 7.8 27.5

TGDPO w/ DPO’s token reward 12.8 13.8 7.7 20.0
TGDPO w/ SimPO’s token reward 26.9 25.3 7.6 31.9

B.2. Experiment on SFT Models

In this section, we conduct experiments starting from SFT models. Specifically, we use the open-source SFT model
Llama3-8B-SFT-Mixture from OpenRLHF (Hu et al., 2024). Llama3-8B-SFT-Mixture is trained using diverse, high-quality,
open-source datasets by SFT and has not been trained by RLHF. Following (Meng et al., 2024), we conduct preference
optimization on the UltraFeedback dataset (Cui et al., 2024) using the SFT model as the starting point.

The experiment results on SFT models on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng
et al., 2023) are shown in Table 6. Our TGDPO can leverage the token-level rewards from DPO or SimPO and outperforms
them correspondingly. Specifically, TGDPO using SimPO’s token-level reward achieves much better performance than all
baseline methods. It achieves win rate gains of 10.5 on AlpacaEval 2, 4.4 on MT-Bench, and 3.9 on Arena-Hard compared
to best-performing baselines.

C. More Discussions on Closely Related Work
Our work proposes a framework for incorporating existing token-level rewards explicitly into the loss function of DPO,
to guide optimizing policy at a fine-grained level. This is a challenging task since DPO’s reward function is explicitly
expressed through the policy being optimized. Especially, a key theoretical challenge in deriving the computable loss
function in Equation (20) is the elimination of the partition functions, which is addressed in Theorem 4.4 or Theorem A.3 or
Theorem A.4.
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C.1. Closely Related Work

Table 7. Per-instance losses of closely related direct optimization methods.

Method Per-Instance Loss

TDPO (Zeng et al., 2024) σ(u(x, yw, yl)− δ(x, yw, yl)),

where u(x, yw, yl) = β log πθ(yw|x)
πref(yw|x) − β log πθ(yl|x)

πref(yl|x) ,

δ(x, yw, yl)) = βDSeqKL(x, yl;πref||πθ)− βDSeqKL(x, yw;πref||πθ).

Yang et al. (2024) σ
(
CEt∼Cat({γt})

[
log

πθ(a
w
t |swt )

πref(aw
t |swt ) − log

πθ(a
l
t|s

l
t)

πref(al
t|slt)

])
D2PO (Shao et al., 2025) σ

(∑Tw

t=0 γ
tβ log

πθ(y
t
w|x,y<t

w )

πref(yt
w|x,y<t

w )
−
∑Tl

t=0 γ
tβ log

πθ(y
t
l |x,y

<t
l )

πref(yt
l |x,y

<t
l )

)
TGDPO (ours) σ

(∑Tw−1
t=0 βfw(r̂([x, y

<t
w ], ytw)) log

πθ(y
t
w|[x,y<t

w ])

πref(yt
w|[x,y<t

w ])
−
∑Tl−1

t=0 βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x,y

<t
l ])

πref(yt
l |[x,y

<t
l ])

)

Several direct preference optimization methods also perform in a token-level manner. We derive our modified token-level
reward beginning from Equation (9), which is similar to those in Zeng et al. (2024) and Yang et al. (2024). However, the
obtained final per-instance losses are different. These per-instance losses are listed in Table 7 for comparisons. From the
table, it is obvious that our TGDPO explicitly incorporates existing token-level rewards into the per-instance loss for guiding
DPO. While, TDPO (Zeng et al., 2024) constrains each token with forward KL-divergence, and fine-tunes pre-trained LLMs
from the token level to enhance the regulation of KL-divergence. Additionally, Yang et al. (2024) and D2PO (Shao et al.,
2025) focus on earlier tokens of sequential generation for their tasks, by posing temporal decay parameters.

Moreover, in the derivation of our TGDPO, the partition function Z(·) is not dependent on the policy to be optimized, and it
can be eliminated from the loss function by using our developed Theorem 4.4 or Theorem A.3 or Theorem A.4, which are
new and powerful. While, in TDPO (Zeng et al., 2024) the partition function is kept in their loss function and is changed to
the forward KL-divergence. Yang et al. (2024) managed to eliminate the partition function from their loss function using the
lower bounding approach. The method in D2PO (Shao et al., 2025) does not involve a partition function, since it is derived
from the KL-constrained RL objective under the maximum entropy RL setting.

C.2. Recovering Several Direct Preference Optimization Methods

In Section 4.2, we mentioned that the loss function LTGDPO(πθ) in Equation (20) provides a framework of direct preference
optimization with token-level reward guidance. With an appropriate choice of f(·), this framework can recover several
known direct preference optimization methods. For example, if we take fw ≡ fl ≡ 1, then Equation (20) is the loss function
of DPO (Rafailov et al., 2023). In the following, we give some other examples. It must be noted that these known
preference optimization methods have their respective motivations. We only want to demonstrate that our proposed
framework is reasonable by recovering them here.

Note that, our per-instance loss of LTGDPO(πθ) is

LTGDPO P(πθ) = σ

(
Tw−1∑
t=0

βfw(r̂([x, y
<t
w ], ytw)) log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

βfl(r̂([x, y
<t
l ], ytl )) log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)
.

1. Recovering the per-instance loss of SimPO (Meng et al., 2024): By setting fw(r̂([x, y
<t
w ], ytw)) = 1

|yw| and
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fl(r̂([x, y
<t
l ], ytl )) =

1
|yw| , we get

LTGDPO P(πθ) = σ

(
Tw−1∑
t=0

β

|yw|
log

πθ(y
t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

β

|yl|
log

πθ(y
t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)

= σ

(
β

|yw|

Tw−1∑
t=0

log
πθ(y

t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

− β

|yl|

Tl−1∑
t=0

log
πθ(y

t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)

= σ

(
β

|yw|
log

πθ(yw|x)
πref(yw|x)

− β

|yl|
log

πθ(yl|x)
πref(yl|x)

)
= σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x) +

(
β

|yl|
log πref(yl|x)−

β

|yw|
log πref(yw|x)

))
.

Furthermore, by Theorem 4.4 or Theorem A.3 or Theorem A.4, introducing a constant into the above function does not
change where the function is maximized. Hence we get

LTGDPO P(πθ) = σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)
,

which is exactly the per-instance loss of SimPO.

2. Recovering the per-instance loss of R-DPO (Park et al., 2024): By setting fw(r̂([x, y<t
w ], ytw)) = fl(r̂([x, y

<t
l ], ytl )) ≡ 1,

we get

LTGDPO P(πθ) = σ

(
Tw−1∑
t=0

β log
πθ(y

t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

β log
πθ(y

t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)

= σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
.

Furthermore, since α|yw| − α|yl| does not depend on the policy πθ, by Theorem 4.4 or Theorem A.3 or Theorem A.4,
introducing it into the above function does not change where the function is maximized. Hence we get

LTGDPO P(πθ) = σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

+ (α|yw| − α|yl|)
)
.

which is exactly the per-instance loss of R-DPO.

3. Recovering the per-instance loss of D2PO (Shao et al., 2025): By setting fw(r̂([x, y
<t
w ], ytw)) = fl(r̂([x, y

<t
l ], ytl )) =

γt, we immediately get

LTGDPO P(πθ) = σ

(
Tw−1∑
t=0

βγt log
πθ(y

t
w|[x, y<t

w ])

πref(ytw|[x, y<t
w ])

−
Tl−1∑
t=0

βγt log
πθ(y

t
l |[x, y<t

l ])

πref(ytl |[x, y
<t
l ])

)
,

which is exactly the per-instance loss of D2PO.

D. Implementation Details
D.1. Hyperparameter Settings

Following (Meng et al., 2024), we use a consistent batch size of 128 and train all methods for 1 epoch in all settings. The
AdamW optimizer (Loshchilov & Hutter, 2019) is used. The max sequence length is set to be 2048 and a cosine learning
rate schedule with 10% warm-up steps is used. The hyperparameters for each method are grid-searched and are shown in
Table 8 for DPO, Table 9 for SimPO, Table 10 for our TGDPO correspondingly. TDPO in Appendix B.1 uses the same
hyperparameters as DPO with an additional KL-penalty scale of 0.01. The training is conducted using 8 A100 GPUs.
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Table 8. The hyperparameters of DPO for each training setting.
Setting β learning rate

Llama3-8B-Instruct PairRM 0.01 7e-7
Llama3-8B-Instruct ArmoRM 0.01 7e-7
Llama3.2-3B-Instruct ArmoRM 0.1 7e-7
Gemma2-2B-it ArmoRM 0.1 5e-7
Llama3-8B-SFT-Mixture Ultrafeedback 0.1 5e-7

Table 9. The hyperparameters of SimPO for each training setting.
Setting β γ learning rate

Llama3-8B-Instruct PairRM 2.5 1.4 1e-6
Llama3-8B-Instruct ArmoRM 10 3.0 1e-6
Llama3.2-3B-Instruct ArmoRM 10 3.0 1e-6
Gemma2-2B-it ArmoRM 20 2.0 5e-7
Llama3-8B-SFT-Mixture Ultrafeedback 2.5 0.5 5e-7

Table 10. The hyperparameters of TGDPO for each training setting.
Setting β for r̂(st, at) γ for r̂(st, at) β α learning rate

Llama3-8B-Instruct PairRM 0.01 - 0.1 0.5 7e-7
Llama3-8B-Instruct ArmoRM 0.01 - 0.1 0.2 7e-7
Llama3.2-3B-Instruct ArmoRM 0.1 - 0.1 2.0 7e-7
Gemma2-2B-it ArmoRM 0.1 - 0.1 0.5 5e-7
Llama3-8B-SFT-Mixture Ultrafeedback w/ DPO’s token reward 0.1 - 0.1 0.2 7e-7
Llama3-8B-SFT-Mixture Ultrafeedback w/ SimPO’s token reward 2.5 0.5 0.01 1.2 7e-7

D.2. Benchmark Details

Following (Meng et al., 2024), we use a decoding temperature of 0.9 for the Llama models and a decoding temperature
of 0.5 for the Gemma models for AlpacaEval 2. For Arena-Hard, we use the default greedy decoding for all models. We
use the latest GPT-4o-2024-11-20 as the judge model for AlpacaEval 2 and Arena-Hard. We follow the official default
configurations on MT-Bench.
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