

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SNAP: TESTING THE EFFECTS OF CAPTURE CONDITIONS ON FUNDAMENTAL VISION TASKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Generalization of deep-learning-based (DL) computer vision algorithms to various image perturbations is hard to establish and remains an active area of research. The majority of past analyses focused on the images already captured, whereas effects of the image formation pipeline and environment are less studied. In this paper, we address this issue by analyzing the impact of capture conditions, such as camera parameters and lighting, on DL model performance on 3 vision tasks—image classification, object detection, and visual question answering (VQA). To this end, we assess capture bias in common vision datasets and create a new dataset, SNAP (for Shutter speed, ISO seNsitivity, and APerture), consisting of images of objects taken under controlled lighting conditions and with densely sampled camera settings. We then evaluate a large number of DL vision models and show the effects of capture conditions on each selected vision task. Lastly, we conduct an experiment to establish a human baseline for the VQA task. Our results show that computer vision datasets are significantly biased, the models trained on this data do not reach human accuracy even on the well-exposed images, and are susceptible to both major exposure changes and minute variations of camera settings.

1 INTRODUCTION

Data is one of the pillars of modern deep-learning-based (DL) computer vision as training and evaluation of models rely on large image datasets. Generalization beyond training data is highly desirable but difficult to determine for current DL models Nagarajan & Kolter (2019); Dziugaite et al. (2020); Zhang et al. (2021); Chatterjee & Zielinski (2022). Several factors contribute to this, including DL model opacity combined with lack of established DL theory Goldblum et al. (2020); He & Tao (2020); Suh & Cheng (2024) and the growing volume of training data Qin et al. (2024). Past research on DL generalization focused on measuring and mitigating data biases and sensitivity of DL models to input perturbations, such as adversarial examples Wei et al. (2024), image distortions Hendrycks & Dietterich (2019), viewing angles Barbu et al. (2019), incongruous context Hendrycks et al. (2021), etc. So far, most analyses focused on images already captured but not the image formation process, which has many variables that depend on the sensor, its settings, and environment properties. If any of these elements are altered, images of the same scene may appear very differently. However, the effects of these changes on vision algorithms have not been systematically examined.

In this paper, we focus on the effects of capture conditions, i.e. camera parameters and lighting, on 3 fundamental visual tasks—image classification, object detection, and visual question answering (VQA). To do so, we 1) analyze capture bias in the existing vision datasets; 2) gather a new dataset, SNAP, where capture bias is minimized by dense sampling of camera parameters under controlled lighting conditions; 3) estimate the effects of capture settings on vision tasks by testing a representative set of models on SNAP; 4) associate model performance with the properties of the training data and models themselves; and 5) conduct a human study to establish a human baseline for common vision tasks under different capture conditions.

2 RELATED WORKS

Dataset biases. Most vision datasets are biased, which affects the representations and generalization ability of the trained algorithms. Classification datasets, in particular, are found to be biased in terms

of object classes, sizes, backgrounds, and viewpoints Ponce et al. (2006); Torralba & Efros (2011); Herranz et al. (2016); Tommasi et al. (2017); Azulay & Weiss (2018); Tsotsos & Luo (2021); Zeng et al. (2024); Liu & He (2025). To our knowledge, only a few works considered sensor parameter bias (referred to as *capture bias* in Tommasi et al. (2017)) in computer vision data. These include studies of consumer photos Wueller & Fageth (2008; 2018), analyses of VOC2007 Everingham et al. (2010) and COCO Lin et al. (2014) metadata in Tsotsos et al. (2019), and common Exif tags for YFCC100M Thomee et al. (2016) reported in Zheng et al. (2023).

Effect of image degradations on algorithms. Numerous studies investigated the effects of artificial image degradations on the performance of classical and DL vision and vision-language algorithms. To facilitate this, widely used datasets have been modified with artificial corruptions and perturbations, starting with ImageNet-C Hendrycks & Dietterich (2019), followed by MNIST-C Mu & Gilmer (2019), as well as Pascal-C, COCO-C, and Cityscapes-C Michaelis et al. (2019). Some of the common distortions considered in prior works are blur Dodge & Karam (2016; 2017); Grm et al. (2017); Roy et al. (2018); Che et al. (2019); Hendrycks & Dietterich (2019); Chen et al. (2023a); Yamada & Otani (2022), various types of noise Le Meur (2011); Dodge & Karam (2016); Liu et al. (2016a); Niu et al. (2016); Rodner et al. (2016); Tow et al. (2016); Rodner et al. (2016); Dodge & Karam (2017); Grm et al. (2017); Roy et al. (2018); Geirhos et al. (2018); Hendrycks & Dietterich (2019); Chen et al. (2023a); Yamada & Otani (2022), digital artifacts Le Meur (2011); Dodge & Karam (2016); Zheng et al. (2016); Roy et al. (2018); Che et al. (2019); Hendrycks & Dietterich (2019); Chen et al. (2023a); Yamada & Otani (2022), changes in brightness Tow et al. (2016); Grm et al. (2017); Hendrycks & Dietterich (2019), contrast Dodge & Karam (2016); Grm et al. (2017); Geirhos et al. (2018); Che et al. (2019); Hendrycks & Dietterich (2019), color Rodner et al. (2016); Geirhos et al. (2018), etc.

While blur, noise, and other distortions may also be caused by changing camera settings Tow et al. (2016); Roy et al. (2018); Bielova et al. (2019); Che et al. (2019), only a few studies considered the effects of natural capture conditions. One of the early tests Andreopoulos & Tsotsos (2011) demonstrated performance fluctuations of classical vision algorithms on 4 scenes acquired with different shutter and gain settings under 3 illumination conditions. In Wu & Tsotsos (2017), classical and DL object detectors were tested on the set of 5 objects taken with 64 camera configurations and 7 lighting levels. Another study evaluated DL object detectors on subsets of COCO corresponding to different camera settings and showed performance variations on bins with different number of training samples Tsotsos et al. (2019). Most recently, the authors of Baek et al. (2024) collected a new dataset, ImageNet-ES by displaying 2000 images from the original ImageNet on the TV screen and photographing each across 64 camera parameter sets with and without external lighting. The dataset was used to show sensitivity of models to these changes and benefits of diversifying training data w.r.t. capture conditions.

Effect of image degradations on human vision. Several studies compared human and machine performance on various types of image degradations and tasks (e.g., fine-grained image classification Dodge & Karam (2017), saliency Che et al. (2019), and object recognition Geirhos et al. (2018); Shen et al. (2025)). Performance of both humans and CNNs was shown to be affected but to a different extent. Human performance declined significantly only for the highest distortion levels Geirhos et al. (2018); Shen et al. (2025). And while some deep networks outperformed humans on undistorted images (e.g., on fine-grained dog breed classification Dodge & Karam (2017)) they degraded faster under distortions Geirhos et al. (2018); Shen et al. (2025). Both humans and CNNs were relatively robust to minor color-related distortions Geirhos et al. (2018).

This paper expands previous work both in depth and scope: 1) we analyze Exif data of 13 common vision datasets, particularly focusing on those used for training and evaluation of models for object detection and classification and foundation vision models, 2) collect a dataset of 100 real scenes with over 700 densely sampled camera parameter combinations under 2 controlled illumination conditions, 3) test 52 models on classification, detection, and VQA tasks and collect data from 43 human subjects for the latter task, and 4) systematically analyze performance of algorithms w.r.t. capture conditions, compare it to humans, and link it to biases in the training data.

3 METHODOLOGY

This session discusses the paradigm, procedure, metrics, and models for probing DL vision models across capture conditions. Section 3.1 shows significant capture bias in common vision datasets

that motivates the balanced design of the SNAP dataset. We will add the clarification that even if CV does not reach > 1 , there is still noticeable fluctuation of accuracy even in the well-exposed range for all models described in Section 3.2. Section 3.3 lists the models and evaluation metrics. Lastly, Section 3.4 is dedicated to the experiment conducted on a subset of SNAP to establish a human baseline for vision tasks under varying capture conditions.

3.1 ANALYSIS OF CAPTURE BIAS IN COMMON VISION DATASETS

We analyzed capture bias in over 1B images from the following popular datasets for training image classifiers, object detectors, and foundation models: VOC2007 Everingham et al. (2010), ImageNet Deng et al. (2009), SBU Ordonez et al. (2011), COCO Lin et al. (2014), YFCC15M Thomee et al. (2016), CC3M Sharma et al. (2018), ImageNet21K Ridnik et al. (2021), CC12M Changpinyo et al. (2021), WIT Srinivasan et al. (2021), LAION400M Schuhmann et al. (2021), OpenImages v7 Benenson & Ferrari (2022), COYO Byeon et al. (2022), and Wukong Gu et al. (2022).

Table 1 shows a summary of the datasets and metadata availability. Overall, metadata in the datasets is distributed highly unevenly; datasets originating from the Common Crawl generally contain much fewer images with metadata (1-6%) than datasets from curated resources, such as Flickr and Wikipedia (30-60%).

We extracted Exif information from images belonging to these datasets. We used the Flickr API to gather metadata for datasets with images from Flickr. For the rest, we downloaded the images and extracted Exif tags using the ExifTool Harvey (2016). Because many recent datasets distribute only image URLs, not all images could be downloaded and analyzed due to broken links.

We focus on the basic camera settings (aperture, shutter speed, and ISO) and program mode (auto or manual) because other tags, such as lighting, focal distance, white balance, etc., are absent for most images. Overall, we found significant biases across all datasets. The distribution of camera settings is very long-tailed with distinct peaks at several F-number (2.8, 4, 5.6, 8), ISO (100, 200, 400), and shutter speed (1/125, 1/60, 1/30) values (see Fig. A.4). Since 50-80% of all images were taken with auto settings (Fig. A.1), we can infer that most of them are well-exposed. We can also group images with similar exposure by computing exposure values (EV) from camera parameters, as will be explained in Section 3.2. Distribution of the EVs across datasets shown in Fig. 1 indicates that most images were taken in well-lit indoor and outdoor spaces. Finally, there is a significant chronological bias in vision data (Fig. A.2); for instance, the bulk of images in ImageNet and COCO are from a decade ago and may no longer be representative of modern sensors and objects.

3.2 SNAP DATASET WITH BALANCED CAPTURE CONDITIONS

To systematically investigate the effects of capture conditions, we collected a novel dataset, SNAP (for Shutter speed, ISO seNsitivity, and APerture). It contains photos of multiple scenes taken under controlled lighting conditions and balanced across camera parameters. We designed SNAP for evaluating the models on 3 vision tasks: image classification, object detection, and visual question answering (VQA). This section describes SNAP’s design, collection procedure, and properties.

Table 1: Availability of images and metadata in the common vision datasets. “w/ Exif”—all 3 tags of interest (shutter speed, F-number, and ISO) are in metadata.

Dataset	Year	# images	# downloaded	# w/ Exif
VOC2007 Everingham et al. (2010)	2007	10.0K	10.0K (100%)	3.0K (29.7%)
ImageNet Deng et al. (2009)	2009	1.6M	1.6M (100%)	59.7K (3.8%)
SBU Ordonez et al. (2011)	2011	1.0M	749.3K (74.9%)	492.3K (49.2%)
COCO Lin et al. (2014)	2014	164.0K	164.0K (100%)	68.6K (41.8%)
OpenImages v7 Benenson & Ferrari (2022)	2016	1.9M	1.9M (100%)	1.1K (0.1%)
YFCC15M Thomee et al. (2016)	2016	15.4M	13.0M (84.6%)	9.5M (61.6%)
CC3M Sharma et al. (2018)	2018	3.3M	2.3M (70.0%)	105.1K (3.2%)
ImageNet21K Ridnik et al. (2021)	2021	13.2M	13.2M (100%)	797.0K (6.1%)
CC12M Changpinyo et al. (2021)	2021	12.4M	8.1M (64.9%)	280.5K (2.3%)
WIT Srinivasan et al. (2021)	2021	26.5M	25.9M (97.8%)	12.1M (45.7%)
LAION400M Schuhmann et al. (2021)	2021	413.6M	304.4M (73.6%)	5.8M (1.4%)
Wukong Gu et al. (2022)	2022	101.4M	96.0M (95.0%)	125.2K (0.1%)
COYO Byeon et al. (2022)	2022	747.0M	512.9M (68.7%)	15.3M (2.1%)
Total	-	1.3B	980.1M (73.3%)	44.7M (3.3%)

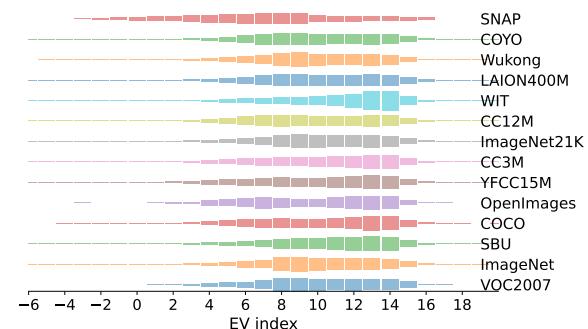


Figure 1: Normalized distribution of camera settings grouped by EV index for each dataset. Plots are arranged chronologically from bottom to top. Our SNAP dataset introduced in Section 3.2 is shown for reference.

162
163

3.2.1 DATA COLLECTION AND PROPERTIES

164

Capture setup. Fig. 2 shows our data collection setup: a camera tethered to a laptop and placed on a tripod in front of a table covered with gray non-reflective cloth. Both the camera and the table are inside a blacked-out room where the only sources of light are 2 LED panels on either side of the table. To ensure consistent illumination, we use Yocto-Light-V3 lux meter Yoctopuce. All images are taken with Canon EOS Rebel T7 DSLR camera and saved as 1920×1280 JPEG files.

165

On the camera side, we modify the shutter speed, F-Number, and ISO at 1-stop intervals within the available range of settings (see Table 2). We use two illumination conditions, 1000 and 10 lux, roughly corresponding to an overcast day and twilight, respectively. Use of both high and low illumination allows expanding the range of usable camera settings. For example, under the low lighting conditions images can be taken with longer exposure times and higher ISO values. Other camera settings are fixed: flash is not used, focal length is set at 35 mm, and white balance is configured manually and fixed for each illumination condition.

166

Object categories. Dense sampling of camera parameters is time-consuming to collect. Thus to make the data suitable for all three vision tasks, we chose object categories present in both ImageNet and COCO—the most common datasets for training image classification and object detection/VQA models, respectively. SNAP contains the following 10 object categories that provide sufficient visual variety and physically fit within our setup: backpack, tie, water bottle, cup, laptop, mouse, remote, keyboard, cell phone, and comic book. Using only inanimate objects avoids motion artifacts during long exposure times and maintains layout constant throughout the capture. As our goal was to investigate the effects of camera settings, we minimized other effects: objects were photographed in canonical object poses (as models are sensitive to poses Barbu et al. (2019) and against a neutral background (to prevent shortcuts Geirhos et al. (2020)).

167

In all images, there are 2 to 5 objects of the same class but with different appearance (e.g. a scene with 5 different water bottles in Fig. 2). Having multiple objects in the scene adds minor occlusions, shadows, and clutter that in turn makes object detection and VQA tasks more realistic. Since all objects are of the same category, multi-label errors (common in the ImageNet Stock & Cisse (2018); Tsipras et al. (2020); Beyer et al. (2020)) are avoided.

168

Capture procedure. For each scene and lighting condition, we first take one image with a camera’s auto setting, then switch the camera to manual mode and use the gPhoto2 library to capture images over all possible combinations of F-number, shutter speed, and ISO sampled at 1-stop intervals. Photos with more than 95% black (0) or white (255) pixels are discarded. One iteration through camera parameters for one lighting condition takes 40–60 minutes.

169

Data composition and properties. We capture 10 scenes with 2–5 objects from each object category (shown in Fig. B.1. There are a total of 37,558 images in the dataset, uniformly distributed across sensor settings. However, many combinations of shutter speed, aperture, and ISO lead to the same exposure, i.e., the same amount of light reaching the sensor (see examples in Fig. B.2). This is known as exposure equivalence (Präkel, 2009, p.29). To identify such settings, we compute exposure value (EV) for each triplet using a standard formula Ray et al. (2000). Because exposure depends also on the lighting conditions, we group together settings with the same EV and lux values. We then re-index EV bins so that best exposure settings (i.e. closest to camera auto mode) receive a value of 0, over-exposed bins receive positive indices, and under-exposed are assigned negative ones. We refer to these indices as EV offset. For example, an EV offset of -1 means that the image is one stop underexposed, i.e., received half the light needed for the best exposure (see Fig. B.3).

Figure 2: Data collection setup consists of a Canon EOS Rebel T7 camera on the tripod, a table covered with non-reflective cloth backdrop, and LED lights on either side.

Table 2: Canon EOS Rebel T7 camera settings used for data collection.

Camera parameters	Values
Shutter speed (s)	1/4000, 1/2000, 1/1000, 1/500, 1/250, 1/125, 1/60, 1/30, 1/15, 1/8, 1/4, 0.5, 1, 2, 4, 8, 15, 30
ISO	100, 200, 400, 800, 1600, 3200, 6400
F-Number	5.6, 8, 11, 16, 22

216 3.2.2 ANNOTATIONS AND VLM PROMPTS
217218 All images in SNAP are provided with Exif information, object class label, bounding boxes, and
219 segmentation masks. To test VLMs on image classification and object detection, we generated
220 question-answer pairs from the annotations. Because selected VLMs lack object detection abilities,
221 we use counting (subitization) as a proxy since it requires localization. Due to the prompt sensitivity
222 of VLMs Li et al. (2024), each question has open-ended (OE) and multi-choice (MC) variants:223 **Open-ended**224 **Q1.** Objects of what class are in the image? Answer with the name of the class.225 **Q2.** How many objects are in the image? Answer with one number.226 **Multiple choice** (answer options shuffled for each image)227 **Q3.** Objects of what class are in the image? Select one of the following options: 10 classes + other228 **Q4.** How many objects are in the image? Select one of the following options: A) 2; B) 3; C) 4; D) 5230 3.3 MODELS AND METRICS FOR FUNDAMENTAL VISION TASKS
231232 We tested baseline and SOTA models, including 23 image classifiers, 16 object detectors, and 13
233 vision-language models (VLMs), on image classification, object detection, and visual question
234 answering (VQA) tasks, respectively (see Appendix D). We selected only open-source VLMs to be
235 able to analyze their performance w.r.t. their training data and vision backbones. All selected models
236 were tested on SNAP with default parameters, as well as pre- and post-processing routines where
237 applicable. All experiments were performed on a cluster of 4 NVIDIA GeForce GTX 1080 Ti. The
238 following metrics are used for evaluation:239

- **Top-1 (%)**—a standard top-1 accuracy metric for image classification;
- **Localization-Recall-Precision (LRP)** metric Oksuz et al. (2021; 2018) for object detection. Unlike
240 commonly used average precision (AP), LRP decouples classification and localization performance
241 of the models. We report on the optimal LRP (oLRP), as well as localization accuracy (oLRP Loc),
242 false positives (oLRP FP), and false negatives (oLRP FN).
- **Soft and hard accuracy** for the VQA task. Soft accuracy is % of answers that partially match the
243 ground truth. Hard accuracy rewards answers that are both factually correct and faithful. Following
244 Huang et al. (2025), the answer is considered a factual error if it refers to something not present
245 in the image and a faithfulness error if the answer does not adhere to the required format. See
246 Appendix E for details.
- **Parameter sensitivity (PS)** measures sensitivity of the metrics to camera parameters on all tasks.
247 As discussed in Section 3.2, SNAP contains many images of the same scenes that look nearly the
248 same but are taken with different camera settings under different lighting levels (Fig. B.2). To
249 evaluate whether these barely perceptible changes affect model performance, we do the following:
250 1) we group the images of the same scene with the same EV offset; 2) to measure fluctuations in
251 models’ results within each set, we compute coefficient of variation (CV), defined as the ratio of
252 the std to mean ($CV = \frac{\sigma}{\mu}$) of the metric; 3) we compute PS as the percentage of sets with $CV > 1$.

257 3.4 HUMAN EXPERIMENT
258259 To establish a human baseline under varying capture conditions, we use the VQA task described in
260 Section 3.2.2 because it includes image classification (Q5), counting as a proxy for object detection
261 (Q3), and allows direct comparisons to VLMs. We tested 43 human subjects on a subset of 8600
262 images from SNAP, evenly distributed w.r.t. object categories and capture conditions. The experiment
263 was run in-person in the blacked-out room because online platforms (e.g. Amazon Turk) do not
264 provide means to control lighting, display calibration, and presentation times, which are crucial for
265 our study. During the experiment, the subjects viewed the images sequentially on the computer screen
266 and for each answered either the categorization or counting questions listed in Section 3.2.2. Since we
267 intended to compare human answers to outputs of the predominantly feedforward DL vision models,
268 the study was designed such that feedback processing in the brain was minimized. To achieve this,
269 stimuli were shown very briefly (200 ms) and were immediately followed by the noise mask (200
ms), as in the past studies Geirhos et al. (2018). See Appendix C for full details.

4 EXPERIMENT RESULTS

4.1 IMAGE CLASSIFICATION

Most models do not generalize to SNAP despite its simplicity and similarity to ImageNet. As shown in Fig. 3, only 2 models (CLIP ViT-L/14@336px, DFN CLIP ViT-L/14) reach mean top-1 accuracy on SNAP comparable to their performance on ImageNet, while others show a significant decrease in accuracy ranging from 10 to 50%.

Fig. F.1b and Fig. F.1a show plots of top-1 accuracy on SNAP relative to the model and training data size, respectively. Scaling both models and training data improves the results; all models with performance above 80% top-1 accuracy on SNAP have at least 200M parameters and are trained on 400M images or more.

The effects of the architecture and training are less pronounced. While 4 out of top-5 models are Transformers, some CNN-based models achieve competitive results (see Fig. 3). For example, supervised training of vanilla ViT L/16 and VGG-16 on ImageNet results in similar performance and so does CLIP-pretraining of ViT and ConvNeXt on comparable amounts of data.

Models trained or fine-tuned on ImageNet struggle with some categories in SNAP. For instance, most models misclassify cups and laptops as mugs and notebooks, respectively, due to inconsistent labeling in ImageNet. Hence, in evaluation, we accept both answers as correct. Most models also underperform on phones, which is the consequence of the chronological bias pointed out earlier in Section 3.1. Because most images in ImageNet were taken prior to 2009, it is dominated by photos of outdated phone designs. Only the zero-shot CLIP-pretrained models (not finetuned on ImageNet) were able to classify modern phones in SNAP correctly.

Models reach peak top-1 accuracy on well-exposed images but perform significantly worse on under- and over-exposed images. This performance on well-exposed images or surpass their ImageNet results on the similarity of the objects and scenes. under-exposed images. This performance on over-exposed images is lower than on the over-exposed images.

Again, the larger models (regardless of the architecture) trained on more data achieve higher peak accuracy on well-exposed images and are less affected even by the most extreme exposures. For

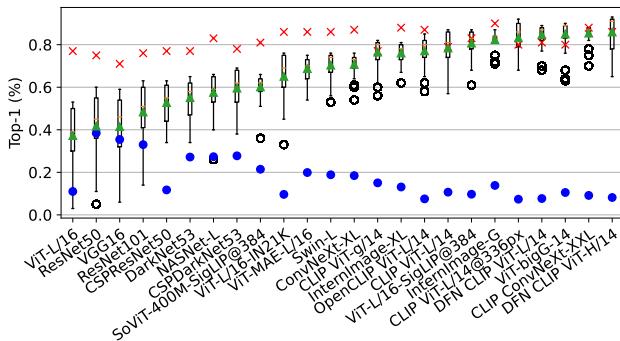


Figure 3: Box plots show range and mean top-1 accuracy values for all models evaluated on SNAP. Blue circles show parameter sensitivity (PS) and red crosses mark top-1 accuracy on ImageNet. Black circles represent outliers.

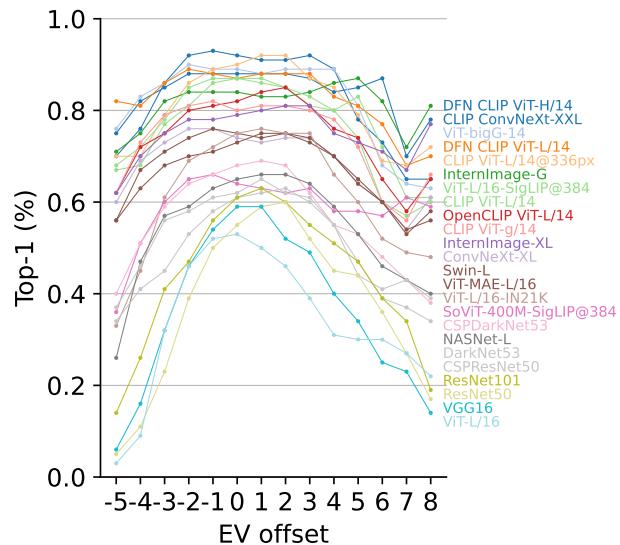


Figure 4: Image classification top-1 (%) across exposure levels in SNAP. Each dot represents mean accuracy across all images in the corresponding EV offset bin.

significantly worse on under- and over-exposed images. Exposure, i.e. the combined effect of camera settings and illumination, affect all models (see Fig. 4). The models reach their peak performance on well-exposed images (EV offset between -2 and 2). 8 out of top-10 models match or surpass their ImageNet results on this subset of SNAP, which is expected given the intentional similarity of the objects and scenes. At the same time, all models perform worse on over- and under-exposed images. This performance drop is not symmetric; accuracy on the under-exposed images is lower than on the over-exposed images.

324 instance, CLIP-pretrained ConvNeXt-XXL reaches over 70% accuracy on nearly all-black (EV offset
325 -5) and all-white (EV offset 8) images. Notably, this model is trained on the 2B subset of LAION
326 with minimal data augmentations (only random cropping and erasing). This agrees with our analysis
327 in Appendix A that shows the higher diversity of manual settings and exposures in LAION.

328 **All models are susceptible to image perturbations caused by slight variations of camera parameters.** This is evident from high parameter sensitivity (PS) w.r.t. top-1 accuracy that reaches over
329 20% some models (Fig. 4). Even the top-5 performing models inconsistently classify nearly 10%
330 of the scenes that look essentially the same. Even when CV does not reach > 1 , the accuracy of all
331 models fluctuates even in the well-exposed range.

332 4.2 OBJECT DETECTION

333 **Many models perform well overall, but**
334 **SNAP is simpler than most object**
335 **detection datasets.** Fig. 5 shows the results
336 of testing object detection models on the
337 SNAP dataset. For this experiment, we also
338 computed the mean AP scores of the
339 models to compare against the COCO
340 benchmark results. The mean AP of the
341 models is approx. 15-20% higher on SNAP
342 (Fig. F.2). This can be explained by the
343 relative simplicity of SNAP: the scenes are not
344 cluttered, objects appear large against plain
345 background, and there is little occlusion
346 or cropping (see Fig. B.1). In comparison,
347 the scenes in COCO are busy, filled with
348 multiple small objects, many of which are
349 occluded or cropped.

350 The majority of existing object detection models
351 are pre-trained on ImageNet and COCO, there-
352 fore the effects of scaling data cannot be ex-
353 plored fully. There is some evidence of pos-
354 itive correlation between model scale and per-
355 formance. For instance, the top model DETA
356 Swin-L is trained on the Object365 dataset Shao
357 et al. (2019) with 600K images and 10M bound-
358 ing boxes in addition to COCO. At the same
359 time, RT-DETR is trained only on COCO and
360 performs on par.

361 **Effects of exposure on object detection are**
362 **more pronounced than on image classifi-**
363 **cation.** Similar to image classifiers, the overall per-
364 formance (oLRP) of object detectors degrades
365 on under- and over-exposed images, as illus-
366 trated in Fig. 6. In this case, however, the drop-
367 off towards either extreme is more pronounced
368 and is apparent even in the well-exposed range
369 for all models. There is also asymmetry in the
370 oLRP scores, but the trend is reversed—unlike
371 image classifiers, the object detection models
372 perform worse on the over-exposed images.

373 Exposure affects both localization and classification, but to a different extent. Localization (oLRP
374 Loc) and false positive (oLRP FP) errors increase for under- and over-exposed images, but remain
375 relatively low for all models (see Fig. F.3a and Fig. F.3b). Misclassifications (oLRP FN) are the
376 largest contributor to the overall oLRP score. They mirror the pattern of top-1 accuracy on the
377 image classification task: errors are fairly low for well-exposed images but rise quickly toward larger
EV-offsets in both directions (as shown in Fig. F.3c). The majority of object detectors use ImageNet

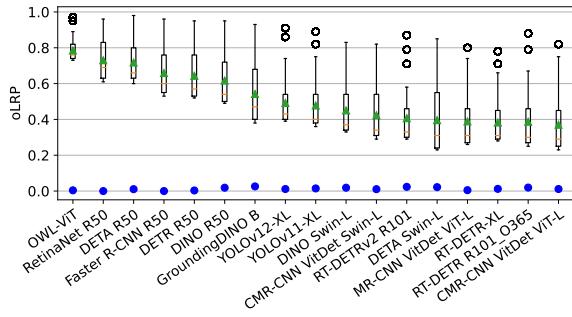


Figure 5: Box plots show range and mean oLRP values for all object detection models evaluated on SNAP. Blue circles show parameter sensitivity (PS) w.r.t. oLRP. Black circles represent outliers.

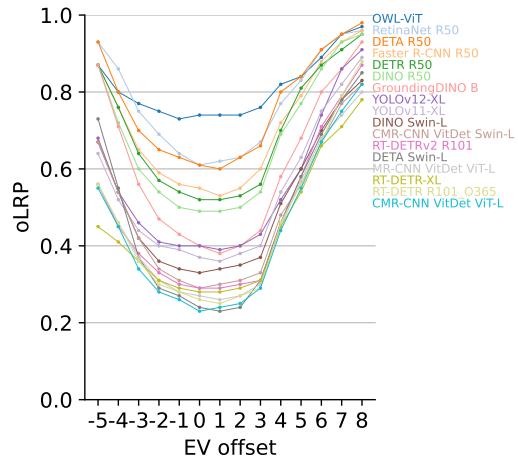


Figure 6: Object detection at different exposure levels in SNAP. Each point is a mean oLRP of the model predictions on a given EV offset. Model labels are sorted by oLRP from worst to best)

7

378 pre-trained backbones (typically, variants of ResNet or ViT) and are further trained only on COCO
 379 for the object detection task. Therefore, misclassification errors are likely an artifact of ImageNet
 380 pre-training. Several exceptions from this trend lend further support to this conclusion. Three models
 381 (DETA Swin-L, DINO Swin-L, and Grounding DINO) with consistently low oLRP Loc and oLRP FP
 382 scores across all EV offsets are all trained on ImageNet21K and O365. Similarly, OWL-ViT, which
 383 uses a large CLIP ViT backbone and is trained on O365 Shao et al. (2019) and VG Krishna et al.
 384 (2017) for detection, has a flatter curve (albeit at a higher error), reminiscent of CLIP ViTs in Fig. 4.

385 **Most of the fluctuations on images with similar exposure come from misclassifications (FN
 386 errors), whereas localization is less affected.** While the overall sensitivity of the oLRP scores for
 387 all models is low, localization and classification performance is still affected. For nearly all models,
 388 SP is highest for the oLRP FN component, reaching nearly 20% for some.

390 4.3 VISUAL QUESTION ANSWERING

391 **VLMs are comparable to humans in average
 392 accuracy across all questions.** We first assess
 393 the average performance of the tested VLMs
 394 against the human subjects by aggregating accuracy
 395 across all images and questions. Computing
 396 the accuracy scores for VLMs is a challenge.
 397 In many cases, matching the answer of the
 398 models with the ground truth may inflate the scores
 399 because not all models follow the prompt well.
 400 We used a combination of simple regular expressions
 401 and manual clean-up to bring all model
 402 answers to the same format (see Appendix E).

403 Soft and hard accuracy scores in Fig. 7 show
 404 percentage of partially correct and correct answers
 405 are due to not following the prompt. Although the questions explicitly ask to answer with a single
 406 number or multi-choice option (see Section 3.2.2), many VLMs instead return multiple categories of
 407 objects or generate a long explanation.

408 We used model answer length exceeding average
 409 expected answer (10-15 characters for most
 410 questions) as a proxy for these types of mis-
 411 takes and ability of the models to follow the
 412 prompt (see Fig. 8). For example, PaliGemma,
 413 VILA, and DeepSeekVL-7B almost never deviate
 414 from the answer format, as do human sub-
 415 jects, whereas all InternVL models and Qwen2-
 416 VL-2B produce lengthy responses, unprompted
 417 chain of thought explanations, hallucinate non-
 418 existing answer options, and even switch be-
 419 tween languages. Overall, there is a trend to-
 420 wards fewer hallucinations in models with larger
 421 LLM component. For instance, Qwen2-VL-7B
 422 hallucinates substantially less compared to its 2B-parameter version. Similarly, InternVL2-8B is not
 423 as prone to hallucinations as 4B and 2B models from the same family.

424 Discounting partially correct answers, 4 models reach or surpass the average accuracy of human
 425 subjects (66%): Qwen2-VL-7B-Instruct (77%), DeepSeek-VL-7B-chat (74%), VILA1.5-7b (68%),
 426 and DeepSeek-VL-1.3B-chat (66%). All three use the largest vision models trained on the most data.
 427 DeepSeek and VILA use ViT-L-16-SigLIP-384 trained on 100B image pairs from the proprietary
 428 Webli dataset Chen et al. (2023b), whereas Qwen2-VL uses DFN5B-CLIP-ViT-H-14 vision encoder,
 429 which ranked first on the image classification task in Section 4.1. An interesting exception is
 430 PaliGemma: on one hand, its hallucination rate is near zero, on the other, its vision backbone, a shape
 431 optimized SigLIP ViT (SoViT-400M-SigLIP) pre-trained on Webli, is weaker than others. On SNAP,
 it achieves only 60% top-1 accuracy vs. 81% of the SigLIP-ViT variant used by DeepSeek and VILA.

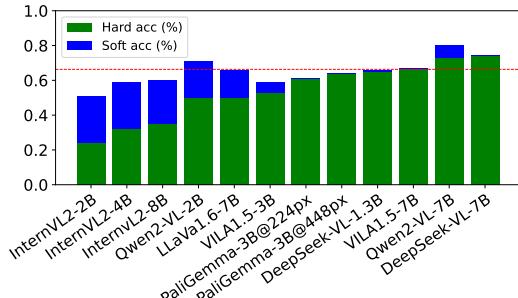


Figure 7: Mean hard accuracy (green) and soft accuracy (blue) on all questions for models and human subject accuracy (red line).

432 Soft and hard accuracy scores in Fig. 7 show
 433 percentage of partially correct and correct answers
 434 are due to not following the prompt. Although the questions explicitly ask to answer with a single
 435 number or multi-choice option (see Section 3.2.2), many VLMs instead return multiple categories of
 436 objects or generate a long explanation.

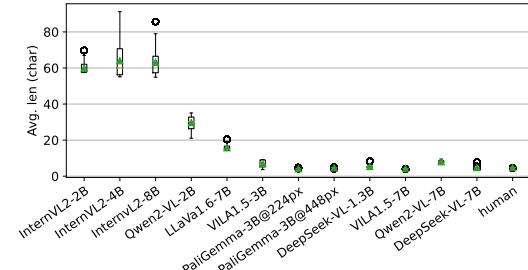


Figure 8: Mean length of responses (number of characters) across all questions. Longer answers indicate presence of faithfulness errors.

437 The median length of responses for most models is around 10-15 characters, while for human subjects
 438 it is around 5 characters. This suggests that models are more likely to generate long answers than humans.
 439 The box plot shows that InternVL2-2B, InternVL2-4B, and InternVL2-8B have significantly higher median
 440 lengths of responses compared to other models. This is consistent with the observation that these models
 441 produce lengthy responses, unprompted chain of thought explanations, hallucinate non-existing
 442 answer options, and even switch between languages. Overall, there is a trend towards fewer
 443 hallucinations in models with larger LLM component. For instance, Qwen2-VL-7B hallucinates
 444 substantially less compared to its 2B-parameter version. Similarly, InternVL2-8B is not as prone to
 445 hallucinations as 4B and 2B models from the same family.

VLMs are less affected by under-exposed images than humans but do not reach human peak performance on well-exposed images. We also looked at the performance of the models at different exposure levels. As in other tasks, performance of the models reaches its peak on the well-exposed images and drops off outside of that range. Despite lower overall results, human subjects reached a peak mean accuracy of 89% across all questions on well-exposed images (EV offset of 1), whereas the top-3 VLMs mentioned above were at 80%, 78% and 77%, respectively. Only on the MC categorization question, 4 top VLMs outperformed peak human accuracy (98.3%) on well-exposed images. The low average performance of the human subjects is mainly due to sharp drop-off on under-exposed images (EV offset < -3). These images appear mostly black so the performance of the human subjects reduces to chance. On open-ended questions, many subjects explicitly indicated not being able to answer. While some models do that too (e.g. PaliGemma responded "unanswerable" in such cases), they are not consistent. On the over-exposed images, however, the human subjects maintained high level of performance surpassing nearly all VLMs. Exposure affects the rate of VLM hallucinations as well, whereas the human responses remain the same throughout. Most models tend to produce longer answers outside the well-exposed range, except Qwen models that do the opposite.

All VLMs are sensitive to camera parameter variations on all questions but performance changes are unpredictable. Likely due to the interactions between the vision and language components, each model had different performance trends that varied significantly depending on the question type (categorization and counting) and options (multi-choice or open-ended), as shown in Fig. F.5. For example, the strongest overall model DeepSeek-VL-7B is very consistent on MC categorization (Q5), but reaches 10-20% PS on other questions. The second best model Qwen2-VL-7B has the lowest overall PS on OE categorization (Q3) compared to other models, while its PS on other questions is relatively high (15-20%).

5 CONCLUSIONS

We conducted a systematic study to determine the sensitivity of DL vision algorithms to capture bias, i.e. changes in both camera parameters and illumination. We first identified a significant bias in the training data—even datasets with millions of images are highly imbalanced in terms of camera settings. We then constructed a novel dataset SNAP with more uniform capture conditions. This dataset was used to test a number of models and human subjects on common vision tasks. Three main conclusions can be made from this study. First, despite the intentional simplicity of SNAP, most models did not match their performance on other benchmarks and few surpassed humans. This gap persisted even for the largest models trained on billion-scale data. Second, both models and humans were sensitive to deviations of exposure, but in different ways. This discrepancy and the fact that most models did not reach human performance even under optimal conditions again points to the generalization issues. In addition, pre-trained image classification backbones propagate their capture biases on downstream tasks. Third, all models were sensitive minute variations in camera settings on all tasks. This is especially concerning for practical applications, where precise control of camera or illumination conditions is not possible.

Limitations. The time-consuming process of gathering real-world data did not allow testing other aspects of capture bias, such as effects of sensor type. We used Canon DSLR for capture since it has a wide range of parameters and is a very common camera make in the vision datasets. Mobile phones and webcams are less represented and are more difficult to control but may be more relevant for practical applications. Furthermore, sensor settings were sampled at 1-stop intervals, rather than 1/2 or 1/3 stops, and with only 2 lighting conditions because otherwise capture would take prohibitively long (multiple hours per scene).

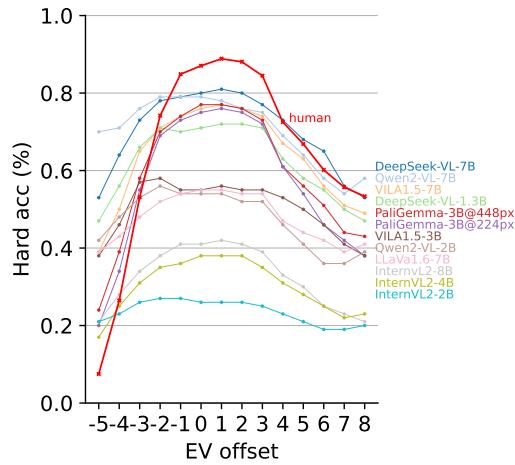


Figure 9: Mean hard accuracy on all questions and exposures in SNAP for VLMs and humans.

components, each model had different performance on different question type (categorization and counting) and this is shown in Fig. F.5. For example, the strongest overall model is the one that performs best on OE categorization (Q5), but reaches 10-20% PS on other questions. The model that performs best on OE counting (Q6) has the lowest overall PS on OE categorization (Q5). The PS on other questions is relatively high (15-20%).

486 REFERENCES
487

488 Alexander Andreopoulos and John K Tsotsos. On sensor bias in experimental methods for comparing
489 interest-point, saliency, and recognition algorithms. *TPAMI*, 34(1):110–126, 2011.

490 Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small
491 image transformations? *arXiv:1805.12177*, 2018.

492

493 Eunsu Baek, Keondo Park, Jiyoon Kim, and Hyung-Sin Kim. Unexplored faces of robustness and
494 out-of-distribution: Covariate shifts in environment and sensor domains. In *CVPR*, 2024.

495 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
496 Tenenbaum, and Boris Katz. ObjectNet: A large-scale bias-controlled dataset for pushing the
497 limits of object recognition models. In *NeurIPS*, 2019.

498

499 Rodrigo Benenson and Vittorio Ferrari. From colouring-in to pointillism: revisiting semantic
500 segmentation supervision. *arXiv:2210.14142*, 2022.

501

502 Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
503 we done with ImageNet? *arXiv:2006.07159*, 2020.

504

505 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
506 Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
507 PaliGemma: A versatile 3B VLM for transfer. *arXiv:2407.07726*, 2024.

508

509 Oleksandra Bielova, Ronny Hansch, Andreas Ley, and Olaf Hellwich. A digital image processing
510 pipeline for modelling of realistic noise in synthetic images. In *CVPRW*, 2019.

511

512 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Optimal speed and
513 accuracy of object detection. *arXiv:2004.10934*, 2020.

514

515 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
516 Kim. COYO-700M: Image-text pair dataset. [https://github.com/kakaobrain/
517 coyo-dataset](https://github.com/kakaobrain/coyo-dataset), 2022.

518

519 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
520 Zagoruyko. End-to-end object detection with Transformers. In *ECCV*, 2020.

521

522 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing
523 web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

524

525 Satrajit Chatterjee and Piotr Zielinski. On the generalization mystery in deep learning.
526 *arXiv:2203.10036*, 2022.

527

528 Zhaohui Che, Ali Borji, Guangtao Zhai, Xiongkuo Min, Guodong Guo, and Patrick Le Callet.
529 GazeGAN: A generative adversarial saliency model based on invariance analysis of human gaze
530 during scene free viewing. *arXiv:1905.06803*, 2019.

531

532 Shuo Chen, Jindong Gu, Zhen Han, Yunpu Ma, Philip Torr, and Volker Tresp. Benchmarking
533 robustness of adaptation methods on pre-trained vision-language models. In *NeurIPS*, 2023a.

534

535 Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
536 Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. PaLI: A jointly-scaled multilingual
537 language-image model. In *ICLR*, 2023b.

538

539 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
540 Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
541 contrastive language-image learning. In *CVPR*, 2023.

542

543 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
544 hierarchical image database. In *CVPR*, 2009.

545

546 Samuel Dodge and Lina Karam. Understanding how image quality affects deep neural networks. In
547 *QoMEX*, 2016.

540 Samuel Dodge and Lina Karam. A study and comparison of human and deep learning recognition
 541 performance under visual distortions. In *ICCCN*, 2017.

542

543 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 544 In *ICLR*, 2021.

545 Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero,
 546 Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy. In search of robust measures of generalization.
 547 In *NeurIPS*, 2020.

548

549 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
 550 Pascal Visual Object Classes (VOC) Challenge. *IJCV*, 88:303–338, 2010.

551 Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander T Toshev, and Vaishaal
 552 Shankar. Data filtering networks. In *ICLR*, 2024.

553

554 Ali Farhadi and Joseph Redmon. Yolov3: An incremental improvement. *arXiv:1804.02767*, 2018.

555

556 Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A
 557 Wichmann. Generalisation in humans and deep neural networks. In *NeurIPS*, 2018.

558

559 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
 560 Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine
 Intelligence*, 2(11):665–673, 2020.

561

562 Ross Girshick. Fast R-CNN. In *ICCV*, 2015.

563

564 Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, and Tom Goldstein. Truth or
 565 backpropaganda? an empirical investigation of deep learning theory. In *ICLR*, 2020.

566

567 Klemen Grm, Vitomir Štruc, Anais Artiges, Matthieu Caron, and Hazım K Ekenel. Strengths
 568 and weaknesses of deep learning models for face recognition against image degradations. *IET
 Biometrics*, 7(1):81–89, 2017.

569

570 Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang, Lewei Yao, Runhui
 571 Huang, Wei Zhang, Xin Jiang, et al. Wukong: A 100 million large-scale Chinese cross-modal
 572 pre-training benchmark. In *NeurIPS*, 2022.

573

574 Phil Harvey. ExifTool. <https://exiftool.org/>, 2016.

575

576 Fengxiang He and Dacheng Tao. Recent advances in deep learning theory. *arXiv:2012.10931*, 2020.

577

578 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 579 recognition. In *CVPR*, 2016.

580

581 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 582 autoencoders are scalable vision learners. In *CVPR*, 2022.

583

584 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 585 corruptions and perturbations. In *ICLR*, 2019.

586

587 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 588 examples. In *CVPR*, 2021.

589

590 Luis Herranz, Shuqiang Jiang, and Xiangyang Li. Scene recognition with CNNs: Objects, scales and
 591 dataset bias. In *CVPR*, 2016.

592

593 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 594 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 595 language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on
 596 Information Systems*, 43(2):1–55, 2025.

597

598 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 599 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual Genome: Connecting language
 600 and vision using crowdsourced dense image annotations. *IJCV*, 123:32–73, 2017.

594 Olivier Le Meur. Robustness and repeatability of saliency models subjected to visual degradations.
 595 In *ICIP*, 2011.

596

597 Wangyue Li, Liangzhi Li, Tong Xiang, Xiao Liu, Wei Deng, and Noa Garcia. Can multiple-choice
 598 questions really be useful in detecting the abilities of llms? In *LREC-COLING*, 2024.

599

600 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
 601 backbones for object detection. In *ECCV*, 2022.

602

603 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. VILA: On
 604 pre-training for visual language models. In *CVPR*, 2024.

605

606 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 607 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In *ECCV*, 2014.

608

609 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 610 tuning. In *CVPR*, 2024a.

611

612 Li Liu, Paul Fieguth, Xiaogang Wang, Matti Pietikäinen, and Dewen Hu. Evaluation of LBP and
 613 deep texture descriptors with a new robustness benchmark. In *ECCV*, 2016a.

614

615 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
 616 Jianwei Yang, Hang Su, et al. Grounding DINO: Marrying DINO with grounded pre-training for
 617 open-set object detection. In *ECCV*, 2024b.

618

619 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
 620 Alexander C Berg. SSD: Single shot multibox detector. In *ECCV*, 2016b.

621

622 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 623 Swin Transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, 2021.

624

625 Zhuang Liu and Kaiming He. A decade's battle on dataset bias: Are we there yet? In *ICLR*, 2025.

626

627 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 628 A convnet for the 2020s. In *CVPR*, 2022.

629

630 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 631 Zhuoshu Li, Hao Yang, et al. DeepSeek-VL: Towards real-world vision-language understanding.
 632 *arXiv:2403.05525*, 2024.

633

634 Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexander S Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection:
 635 Autonomous driving when winter is coming. *arXiv:1907.07484*, 2019.

636

637 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
 638 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
 639 open-vocabulary object detection. In *ECCV*, 2022.

640

641 Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision.
 642 *arXiv:1906.02337*, 2019.

643

644 Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain generalization
 645 in deep learning. In *NeurIPS*, 2019.

646

647 Yuzhen Niu, Lingling Ke, and Wenzhong Guo. Evaluation of visual saliency analysis algorithms in
 648 noisy images. *Machine Vision and Applications*, 27(6):915–927, 2016.

649

650 Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan Kalkan. Localization recall precision (LRP):
 651 A new performance metric for object detection. In *ECCV*, 2018.

652

653 Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. One metric to measure them
 654 all: Localisation recall precision (LRP) for evaluating visual detection tasks. *TPAMI*, 44(12):
 655 9446–9463, 2021.

648 Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2Text: Describing images using 1 million
 649 captioned photographs. In *NeurIPS*, 2011.

650

651 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and Philipp Krähenbühl. NMS strikes back.
 652 *arXiv:2212.06137*, 2022.

653

654 Jonathan Peirce, Jeremy R Gray, Sol Simpson, Michael MacAskill, Richard Höchenberger, Hiroyuki
 655 Sogo, Erik Kastman, and Jonas Kristoffer Lindeløv. PsychoPy2: Experiments in behavior made
 656 easy. *Behavior Research Methods*, 51:195–203, 2019.

657

658 Jean Ponce, Tamara L Berg, Mark Everingham, David A Forsyth, Martial Hebert, Svetlana Lazebnik,
 659 Marcin Marszalek, Cordelia Schmid, Bryan C Russell, Antonio Torralba, C Williams, and A Zis-
 660 sserman. Dataset issues in object recognition. In *Toward Category-level Object Recognition*, pp.
 29–48. 2006.

661

662 David Präkel. *Basics Photography 07: Exposure*. AVA Publishing, 2009.

663

664 Ziheng Qin, Zhaopan Xu, Yukun Zhou, Zangwei Zheng, Zebang Cheng, Hao Tang, Lei Shang, Baigui
 665 Sun, Xiaojiang Peng, Radu Timofte, et al. Dataset growth. In *ECCV*, 2024.

666

667 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 668 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 669 models from natural language supervision. In *ICML*, 2021.

670

671 Sidney F Ray et al. Camera exposure determination. In Ralph Jacobson, Sidney Ray, Geoffrey G.
 672 Attridge, and Norman Axford (eds.), *The Manual of Photography*, pp. 310–318. Routledge, 2000.

673

674 Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. ImageNet-21K pretraining for
 675 the masses. *arXiv:2104.10972*, 2021.

676

677 Erik Rodner, Marcel Simon, Robert B Fisher, and Joachim Denzler. Fine-grained recognition in the
 678 noisy wild: Sensitivity analysis of convolutional neural networks approaches. *arXiv:1610.06756*,
 679 2016.

680

681 Prasun Roy, Subhankar Ghosh, Saumik Bhattacharya, and Umapada Pal. Effects of degradations on
 682 deep neural network architectures. *arXiv:1807.10108*, 2018.

683

684 Christoph Schuhmann, Robert Kaczmarczyk, Aran Komatsuzaki, Aarush Katta, Richard Vencu,
 685 Romain Beaumont, Jenia Jitsev, Theo Coombes, and Clayton Mullis. LAION-400M: Open dataset
 686 of CLIP-filtered 400 million image-text pairs. In *NeurIPS*, 2021.

687

688 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 689 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *CVPR*, 2019.

690

691 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual Captions: A cleaned,
 692 hypernymed, image alt-text dataset for automatic image captioning. In *ACL*, 2018.

693

694 Huakun Shen, Boyue Caroline Hu, Krzysztof Czarnecki, Lina Marsso, and Marsha Chechik. Assess-
 695 ing visually-continuous corruption robustness of neural networks relative to human performance.
 696 In *WACV*, 2025.

697

698 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 699 recognition. In *ICLR*, 2015.

700

701 Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork. WIT:
 702 Wikipedia-based image text dataset for multimodal multilingual machine learning. In *SIGIR*, 2021.

703

704 Pierre Stock and Moustapha Cisse. Convnets and ImageNet beyond accuracy: Understanding
 705 mistakes and uncovering biases. In *ECCV*, 2018.

706

707 Namjoon Suh and Guang Cheng. A survey on statistical theory of deep learning: Approximation,
 708 training dynamics, and generative models. *Annual Review of Statistics and Its Application*, 12,
 709 2024.

702 Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
 703 Damian Borth, and Li-Jia Li. YFCC100M: The new data in multimedia research. *Communications*
 704 *of the ACM*, 59(2):64–73, 2016.

705 Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. A deeper look at dataset bias.
 706 In *Domain Adaptation in Computer Vision Applications*, pp. 37–55. 2017.

708 Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In *CVPR*, 2011.

709 Adam W Tow, Sareh Shirazi, Jürgen Leitner, Niko Sünderhauf, Michael Milford, and Ben Upcroft. A
 710 robustness analysis of deep q networks. *Australasian Conference on Robotics and Automation*,
 711 2016.

712 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
 713 ImageNet to image classification: Contextualizing progress on benchmarks. In *ICML*, 2020.

714 John Tsotsos, Iuliia Kotseruba, Alexander Andreopoulos, and Yulong Wu. Why does data-driven
 715 beat theory-driven computer vision? In *ICCVW*, 2019.

716 John K Tsotsos and Jun Luo. Probing the effect of selection bias on generalization: A thought
 717 experiment. *arXiv:2105.09934*, 2021.

718 Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau
 719 Yeh. CSPNet: A new backbone that can enhance learning capability of CNN. In *CVPRW*, 2020.

720 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 721 Jialin Wang, Wenbin Ge, et al. QwenV2-VL: Enhancing vision-language model’s perception of
 722 the world at any resolution. *arXiv:2409.12191*, 2024a.

723 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
 724 Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large
 725 language models via mixed preference optimization. *arXiv:2411.10442*, 2024b.

726 Wenhui Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu,
 727 Lewei Lu, Hongsheng Li, et al. InternImage: Exploring large-scale vision foundation models with
 728 deformable convolutions. In *CVPR*, 2023.

729 Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin’ichi Satoh, Luc
 730 Van Gool, and Zheng Wang. Physical adversarial attack meets computer vision: A decade survey.
 731 *TPAMI*, 46(12):9797–9817, 2024.

732 Yulong Wu and John Tsotsos. Active control of camera parameters for object detection algorithms.
 733 *arXiv:1705.05685*, 2017.

734 Dietmar Wueller and Reiner Fageth. Statistic analysis of millions of digital photos. In *Digital
 735 Photography IV*, volume 6817, pp. 68170L. International Society for Optics and Photonics, 2008.

736 Dietmar Wueller and Reiner Fageth. Statistic analysis of millions of digital photos 2017. *Electronic
 737 Imaging*, 2018(5):1–4, 2018.

738 Yutaro Yamada and Mayu Otani. Does robustness on ImageNet transfer to downstream tasks? In
 739 *CVPR*, 2022.

740 Yoctopuce. Yocto-Light-V3 product page. <https://www.yoctopuce.com/EN/products/usb-environmental-sensors/yocto-light-v3>. Accessed April 5, 2024.

741 Boya Zeng, Yida Yin, and Zhuang Liu. Understanding bias in large-scale visual datasets. In *NeurIPS*,
 742 2024.

743 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 744 image pre-training. In *ICCV*, 2023.

745 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 746 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 747 2021.

756 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
757 Shum. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In
758 *ICLR*, 2023.

759

760 Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and
761 Jie Chen. DETRs beat YOLOs on real-time object detection. In *CVPR*, 2024.

762 Chenhao Zheng, Ayush Shrivastava, and Andrew Owens. Exif as language: Learning cross-modal
763 associations between images and camera metadata. In *CVPR*, 2023.

764

765 Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
766 neural networks via stability training. In *CVPR*, 2016.

767 Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
768 for scalable image recognition. In *CVPR*, 2018.

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A COMPUTER VISION DATASET PROPERTIES

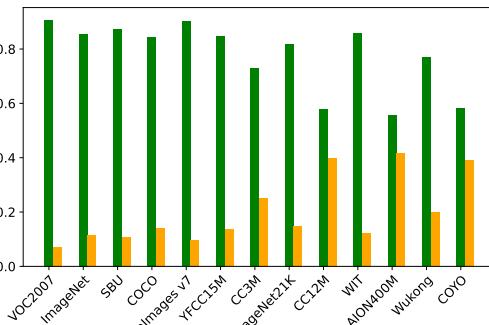


Figure A.1: Distribution of images in the datasets taken with auto (green bars) or manual (orange bars) camera settings.

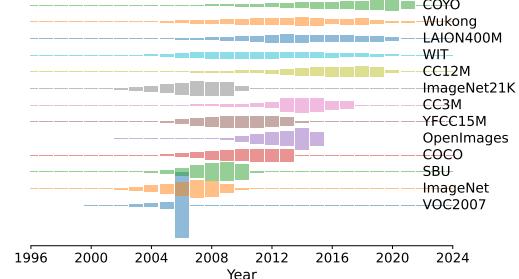


Figure A.2: Distribution of images in the datasets by year the images were taken. Each bar plot corresponds to a single dataset. Plots are arranged in chronological order from bottom to top.

In this section we provide additional details on the properties of the common computer vision dataset. For this analysis we selected 13 common datasets that are used to train models for image classification, object detection, and fundamental vision models. The largest amount of data for our analysis comes from the latter category, namely datasets that contain image-text pairs collected from the Internet. We excluded several datasets, such as Object365 Shao et al. (2019) and VisualGenome Krishna et al. (2017), because all image metadata was stripped and sources for the images (e.g., URL links or Flickr ids) were not provided.

Fig. A.1 shows the distribution of images taken with automatic and manual camera settings. To identify mode, we check *ExposureMode* tags in image Exif data. The auto mode category includes various settings and presets that either fully or partially automate exposure. The most common tag values include: ‘Auto’, ‘Auto exposure’, ‘Aperture-priority AE’, ‘Auto bracket’, ‘Creative (Slow speed)’, ‘Shutter speed priority AE’, ‘Landscape’, ‘Portrait’, ‘Action (High speed)’, ‘Normal program’, etc. Tag values corresponding to the manual mode are: ‘Manual’ and ‘Manual exposure’. Overall, auto exposure was used to take 72% of all photos (with Exif data) in all datasets we analyzed and 26% of data was captured in manual mode.

We also looked at the distribution of values of 3 camera parameter values in the datasets. Fig. A.4 shows an example from the ImageNet, which is characteristic of the other datasets as all of them are very long-tailed and have distinct peaks at 1-stop intervals in all 3 settings.

Figure A.3: Examples of chronological bias in ImageNet: images labeled as “phone” are on the left and “iPod” on the right.

Lastly, many models trained or fine-tuned on ImageNet had a much lower performance on the phone class (<30% top-1 accuracy). Even one of the top models CLIP ConvNeXt-XXL reached only 53% accuracy on this class. All models frequently misclassified phones as iPods. This issue likely stems from the chronological bias of ImageNet, where most images were taken more than a decade ago. Fig. A.3 shows examples from the *phone* and *iPod* synsets. Images for the *phone* synset are dominated by flip-phones and keyboard phones, whereas *iPod* class often features iPhones that look similar to the modern phone designs.

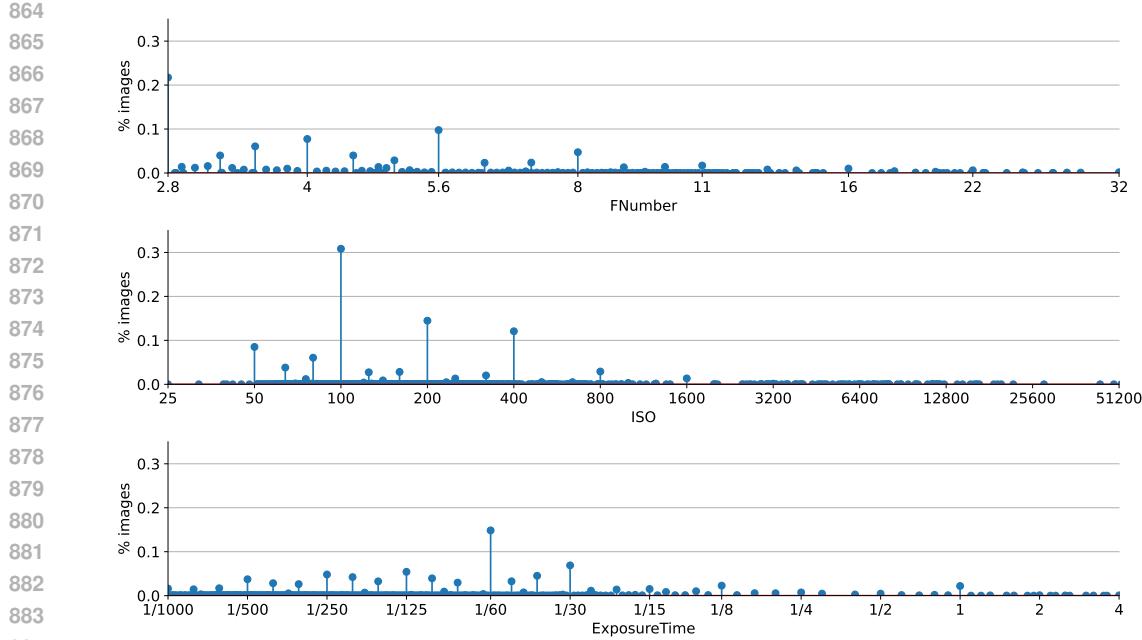


Figure A.4: Normalized distribution of camera parameter settings (F-Number, ISO, and exposure time) in the ImageNet dataset. Horizontal axis is plotted on a log-scale. The observed peaks at 1-stop intervals and very long-tailed distribution is representative of all datasets we tested.

B SNAP DATASET PROPERTIES

Here, we provide additional details and qualitative samples from the proposed SNAP dataset. Figure Fig. B.1 shows a general overview of the 100 unique scenes (10 for each of the 10 objects) captured in the dataset. Each of the scenes was photographed with the full range of Canon EOS Rebel T7 camera parameters (listed in Table 2) under 2 illumination conditions.

Due to exposure equivalence, many photos of the same scene look very similar, despite being taken with different camera parameters and under different level of lighting. This is illustrated in Fig. B.2. To find sets of images with the same camera settings, we estimate exposure value (EV) index from camera parameters using a standard formula from Ray et al. (2000): $EV = \log_2\left(\frac{F\text{-Number}^2}{\text{ExposureTime}}\right) - \log_2\left(\frac{\text{ISO}}{100}\right)$. These EV values were used to produce plots in Fig. 1.

Exposure depends also on the illumination level, which is not reflected in this formula. Therefore, images with the same EV value but taken in different lighting conditions will look different. To bin together images that have the same exposure, regardless of illumination, we introduce EV offset (similar to exposure compensation). For each illumination condition, we find EV index that is the closest to the auto settings and assign EV offset of 0 to that bin. We compute the other EV offsets from EV relative to the 0 bin. For the 1000 lux condition we use EV of 11 as a starting point EV of 5 for the 10 lux. Now, all images with EV offset of 0 are well-exposed and those with negative or positive EV offsets are under- or over-exposed, respectively. Because camera settings in SNAP were sampled at 1-stop intervals, increase/decrease by 1 EV offset means doubling/halving of the amount of light reaching the sensor. An illustration of images with different EV offsets is provided in Fig. B.3.

C HUMAN EXPERIMENT

To establish a human baseline for the categorization and subitization task under different capture conditions, we tested 43 subjects (25 M, 17 F, 1 did not specify), ranging in age from 20 to 67 years old (Mean=30.2, SD=10.5), on a subset of images from the SNAP dataset. Subjects were recruited through the university mailing list and posters on the bulletin boards on campus. The study posed

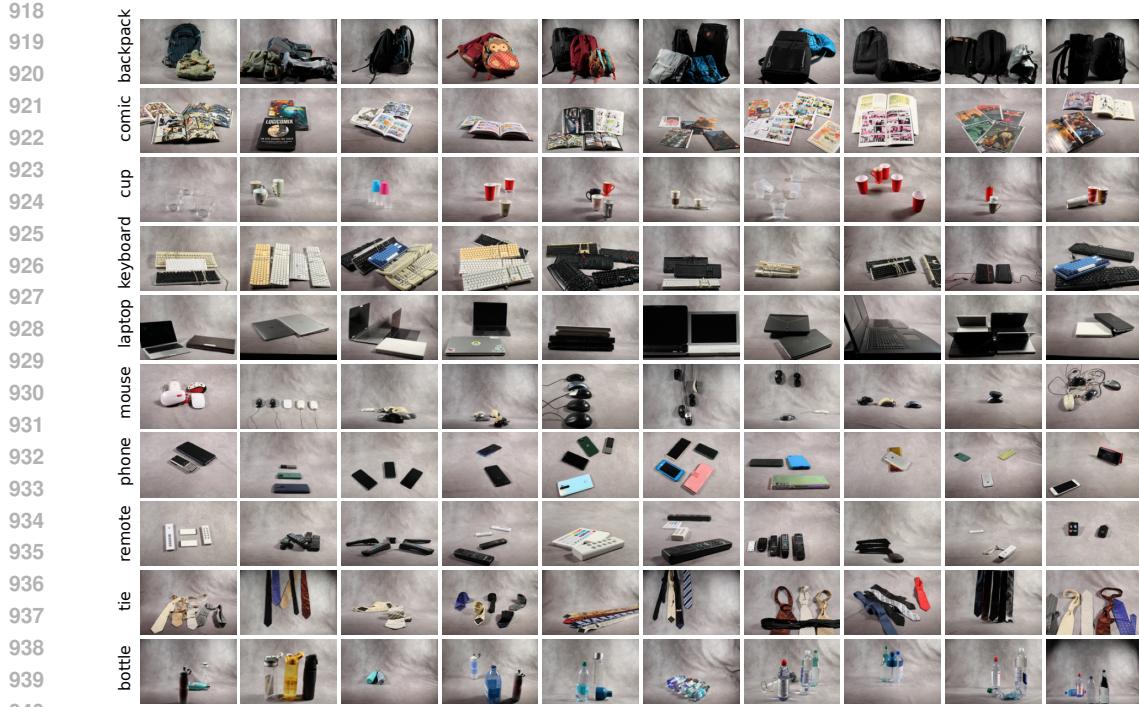


Figure B.1: Overview of the SNAP dataset. For each of the 10 object categories, we capture 10 scenes with different number of objects in different configurations. Each of these scenes is captured with the full range of camera parameters under 2 illumination conditions.

Figure B.2: An illustration of the exposure equivalence. All photos are taken with the same exposure but this is achieved with 4 different camera parameters (listed in the top-right corner) and under different illumination conditions.

minimal risk to participants and received ethics approval from the IRB (certificate # e2025-053). All subjects signed consent forms and were compensated 20CAD for their participation in the experiment, which took approximately 30 minutes.

Because our dataset consists of images with different levels of exposure, controlling display calibration and lighting conditions is crucial as it can affect what the subjects see on the screen. Thus, we conducted the in the dark room in our lab. Subjects sat 60 cm away from the calibrated 22" LCD monitor and viewed images (shown at 960×640 px resolution) on the screen. All subjects had normal or corrected-to-normal vision.

We tested the subjects on the same set of questions as the VLMs. Recalling Section 3.2.2, there were 4 questions in total: subitization (how many objects are in the image?) and categorization (what class of objects are in the image?), each with 2 versions—multiple-choice (MC) and open-ended (OE).

Subjects were randomly assigned one of two groups: group 1 answered MC subitization and OE categorization questions, group 2 answered OE subitization and MC categorization questions. This was done to prevent priming effects, i.e. subjects that had answered the MC categorization question did not answer the OE version of the same question as they would be familiar with the available options.

Figure B.3: Illustration of the EV offsets corresponding to different exposure levels. Bin with the “optimal” exposure (closest to the auto settings) is assigned an EV offset of 0 and the remaining bins are indexed relative to it. Negative and positive EV offsets correspond to under-exposed and over-exposed images, respectively.

Each subject performed 200 trials, 100 for each question, split into blocks of 50. Since we have 100 unique scenes in the SNAP dataset, each scene was seen twice. To minimize the chance of subjects recognizing previously seen images, we sampled pairs of images at least 4 stops apart. Furthermore, both the order of blocks and order of trials within each block were randomized. At the start of each block, the question appeared on the screen and remained the same for all images in the block. No feedback was given to the participants during the experiment. The same questions and answer options for MC questions were used in the experiment and to test VLMs to allow direct comparisons.

Each trial proceeded as follows: 1) fixation cross was shown for 1s; 2) image appeared for 200 ms followed by a white mask for 200 ms; 3) a question prompt appeared: for open-ended question, a text box was provided where the subject could enter the answer using the keyboard; for multiple choice questions, options were shown on the screen to be selected via mouse; 4) after answering the question, subjects pressed space to continue to the next trial. The experiment was not timed and only the answers were recorded. We used PsychoPy Peirce et al. (2019) to control the experiment.

A practice session consisting of 20 trials (10 for each question) was conducted prior to the experiment to familiarize the subjects with the procedure. This session was not recorded and used images from a separate set with different object categories (tv, umbrella, spoon, orange, banana, sports ball, potted plant).

The subjects performed a total of 8600 trials with unique images from SNAP, evenly distributed w.r.t. to object categories and capture conditions.

D MODELS

Below we list baseline and SOTA models, including 23 image classifiers (Table D.1), 16 object detectors (Table D.2), and 13 vision-language models (Table D.3), for image classification, object detection, and visual question answering (VQA) tasks, respectively.

E EVALUATING VLMs

Although the expected answer for all of our questions is one word or one digit, computing accuracy for VLMs is challenging because many of them do not follow the prompt correctly. Simple matching of the keywords over-inflates accuracy because it registers a hit when the prompt is returned as part of the answer or when models consider each option in order for chain of reasoning. We manually cleaned the data to bring answers of all models to the common form. Specifically, we converted all all spelled-out numeric answers to integer format (e.g. “three” → 3) and used regular expressions to remove common answer patterns (e.g. “The objects in this image are”). These simple operations

1026
 1027 Table D.1: Image classification models used for experiments. Model name is how the model is
 1028 referred to in the text and figures. In addition, we provide the original model id and URL.
 1029

Model name	Model id, URL
ViT-L/16-SigLIP@384 Zhai et al. (2023)	ViT-L-16-SigLIP-384
SoViT-400M-SigLIP@384 Zhai et al. (2023)	siglip-so400m-patch14-384
OpenCLIP ViT-L/14 Cherti et al. (2023)	vit_large_patch14_clip_224.laion2b_ft_in1k
DFN CLIP ViT-H/14 Fang et al. (2024)	ViT-H-14-quickgelu_dfn5b
DFN CLIP ViT-L/14 Fang et al. (2024)	ViT-L-14-quickgelu_dfn2b
ViT-MAE-L/16 He et al. (2022)	vit_large_patch16_mae
CLIP ConvNeXt-XXL Liu et al. (2022)	convnext_xxlarge_clip_laion2b_soup_ft_in1k
ConvNeXt-XL Liu et al. (2022)	convnext_xlarge.fb_in22k_ft_in1k
ViT-bigG-14 Radford et al. (2021)	ViT-bigG-14_laion2b_s39b_b160k
CLIP ViT-L/14@336px Radford et al. (2021)	clip-vit-large-patch14-336
CLIP ViT-L/14 Radford et al. (2021)	clip-vit-large-patch14
CLIP ViT-g/14 Radford et al. (2021)	ViT-g-14_laion2b_s12b_b42k
ViT-L/16-IN21K Dosovitskiy (2021)	vit_large_patch16_224_augreg_in21k_ft_in1k
ViT-L/16 Dosovitskiy (2021)	vit_large_patch16-224
Swin-L Liu et al. (2021)	swin_large_patch4_window7_224.ms_in22k_ft_in1k
CSPResNet50 Wang et al. (2020)	cspresnet50
CSPDarkNet53 Bochkovskiy et al. (2020)	cspdarknet53.ra_in1k
NASNet-L Zoph et al. (2018)	nasnetalarge.tf_in1k
DarkNet53 Farhadi & Redmon (2018)	darknet53.c2ns_in1k
ResNet101 He et al. (2016)	resnet101.tv_in1k
ResNet50 He et al. (2016)	resnet50.tv_in1k
VGG16 Simonyan & Zisserman (2015)	vgg16.tv_in1k
InternImage-G Wang et al. (2023)	internimage_g_22kto1k_512

1049
 1050 Table D.2: Object detectors used for experiments. Model name is how the model is referred to in the
 1051 text and figures. In addition, we provide the original model id and URL.
 1052

Model name	Model id, URL
YOLOv11-XL	yolo11x
GroundingDINO B Liu et al. (2024b)	grounding-dino-base
RT-DETR R101_O365 Zhao et al. (2024)	rtdetr_r101vd_coco_o365
RT-DETR-XL Zhao et al. (2024)	rtdetr-x
RT-DETRv2 R101 Zhao et al. (2024)	rtdetr_v2_r101vd
DINO Swin-L Zhang et al. (2023)	dino-swin-l
DINO R50 Zhang et al. (2023)	dino-r50
OWL-ViT Minderer et al. (2022)	owlvit-large-patch14
MR-CNN VitDet ViT-L Li et al. (2022)	mask_rcnn_vitdet_l
CMR-CNN VitDet Swin-L Li et al. (2022)	cascade_mask_rcnn_swin_l
CMR-CNN VitDet ViT-L Li et al. (2022)	cascade_mask_rcnn_vitdet_l
DETA Swin-L Ouyang-Zhang et al. (2022)	data-swin-large
DETA R50 Ouyang-Zhang et al. (2022)	data-resnet-50
DETR R50 Carion et al. (2020)	detr-resnet-50
RetinaNet R50 Liu et al. (2016b)	RetinaNet_ResNet50_FPN
Faster R-CNN R50 Girshick (2015)	FasterRCNN_ResNet50_FPN
YOLOv12-XL	yolo12x

1068
 1069 Table D.3: VLMs used for experiments. Model name is how the model is referred to in the text and
 1070 figures. In addition, we provide the original model id and URL.
 1071

Model name	Model id, URL
Owen2-VL-7B Wang et al. (2024a)	Qwen2-VL-7B-Instruct
Qwen2-VL-2B Wang et al. (2024a)	Qwen2-VL-2B-Instruct
LLaVa1.6-7B Liu et al. (2024a)	llava-v1.6-vicuna-7b
VILA1.5-3B Lin et al. (2024)	VILA1.5-3b
VILA1.5-7B Lin et al. (2024)	VILA1.5-7b
InternVL2-2B Wang et al. (2024b)	InternVL2-2B
InternVL2-4B Wang et al. (2024b)	InternVL2-4B
InternVL2-8B Wang et al. (2024b)	InternVL2-8B
PaliGemma-3B@448px Beyer et al. (2024)	paligemma-3b-mix-448
PaliGemma-3B@224px Beyer et al. (2024)	paligemma-3b-mix-224
DeepSeek-VL-1.3B Lu et al. (2024)	DeepSeek-VL-1.3B-chat
DeepSeek-VL-7B Lu et al. (2024)	DeepSeek-VL-7B-chat

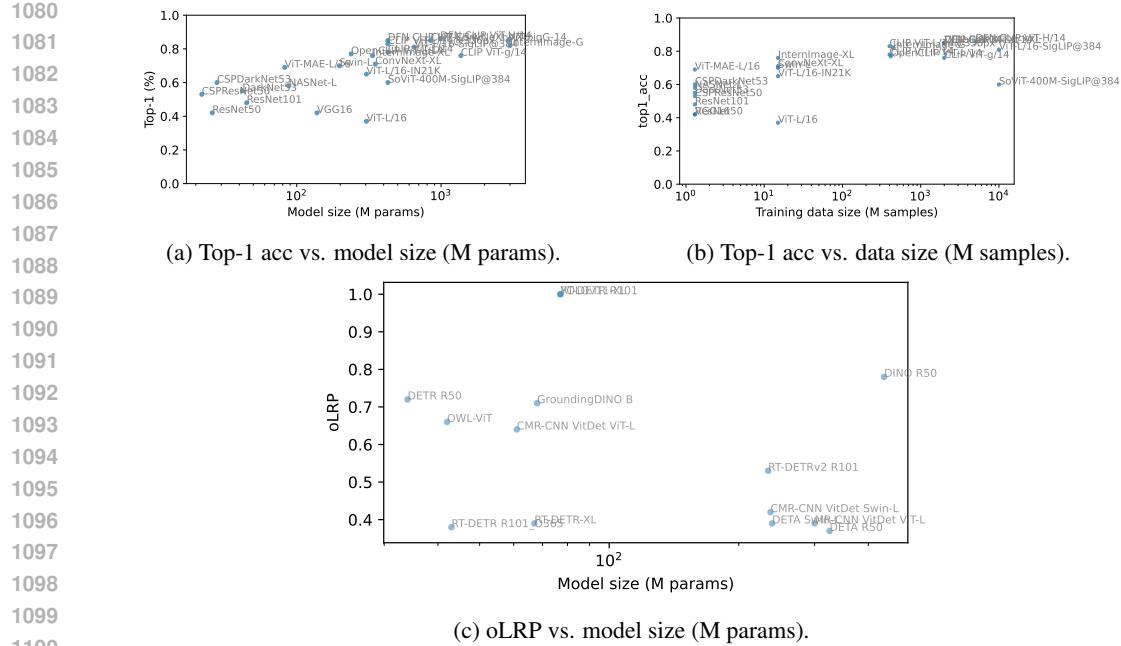


Figure F.1: Performance of image classification and object detection models on SNAP relative to their size and training data.

cleaned up nearly 80% of the data. We examined the remaining 20% and extracted the answers by hand.

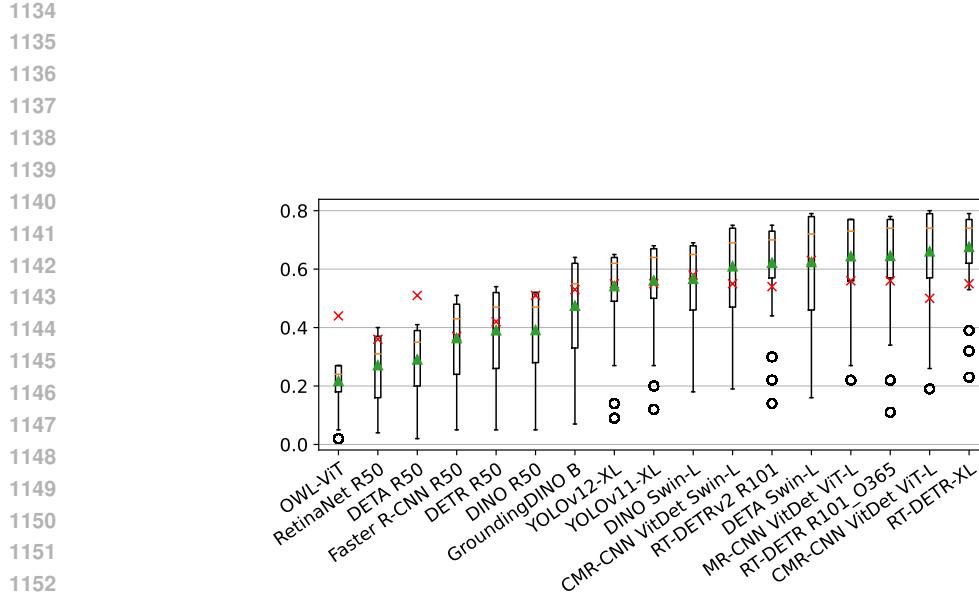
We then estimated factual errors as mismatch between the answers and the ground truth. It should be noted that this approach still likely inflates model accuracy. In many cases, the models output extra information, not relevant to the prompt. For example, when answering the open-ended categorization question, which requires just the category of the object, some models also mention the count of objects (e.g. they answer the question “Objects of what class are in the image?” with “three cups” instead of simply “cup”). For these answers, we only checked that the question in the query was answered (e.g. objects were correctly identified as cups) but not whether the additional unprompted information was correct (e.g. there could be fewer or more cups in the image).

To estimate faithfulness, we made the following checks: 1) the length of the answer (in characters) is equal or shorter than average length of the ground truth for that question (e.g. for counting questions, we expect at most 4 characters because all valid answers are numbers between 2 and 5); 2) the answer option exists (e.g. answer “E) 10” would be invalid for the multi-choice counting question because the only options are A), B), C), and D)).

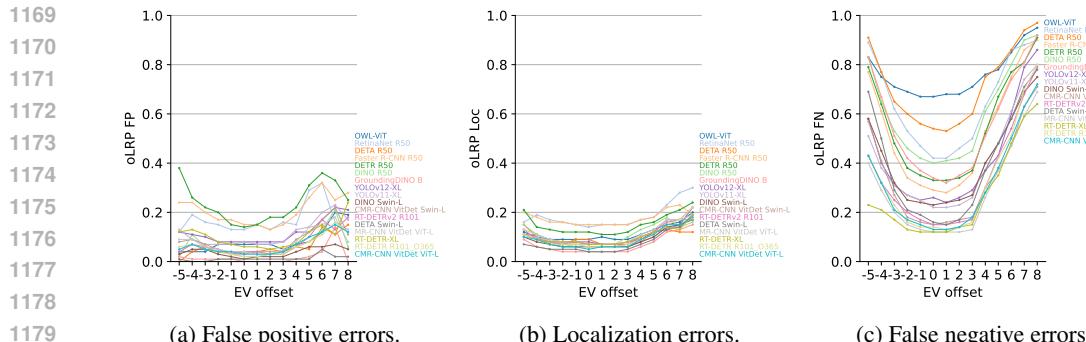
Hard accuracy score for each image-question pair is assigned 1 if answer is both faithful and factual according to criteria listed above and 0 otherwise.

F ADDITIONAL EXPERIMENT RESULTS

In this section we provide additional experimental results. Fig. F.1 contains plots that show positive correlation between performance of image classification and object detection models on SNAP and scale of the data/models. In Fig. F.2 we show that object detectors achieve better standard AP metric on SNAP than on COCO likely due to relatively simple design of SNAP, which lacks significant clutter and occlusions. Additional results for object detection task in Fig. F.3 shows a larger contribution of false negatives relative to false positives and localization errors. Because FN errors mimic patterns observed in image classification task, we speculate that the likely cause of this is the influence of image classification backbones. Lastly, Fig. F.4 shows hard accuracy of VLMs across exposures w.r.t. to human baseline and Fig. F.5 shows parameter sensitivity for each question in VQA task.



1154 Figure F.2: Box plots show range and mean AP@[0.5:0.95] values for all object detection models
1155 evaluated on SNAP. Red crosses mark AP@[0.5:0.95] of the models on COCO. Black circles represent
1156 outliers.



1181 Figure F.3: Classification and localization errors for all exposure bins in SNAP. Each point represents
1182 a mean of the respective error for the given EV offset.

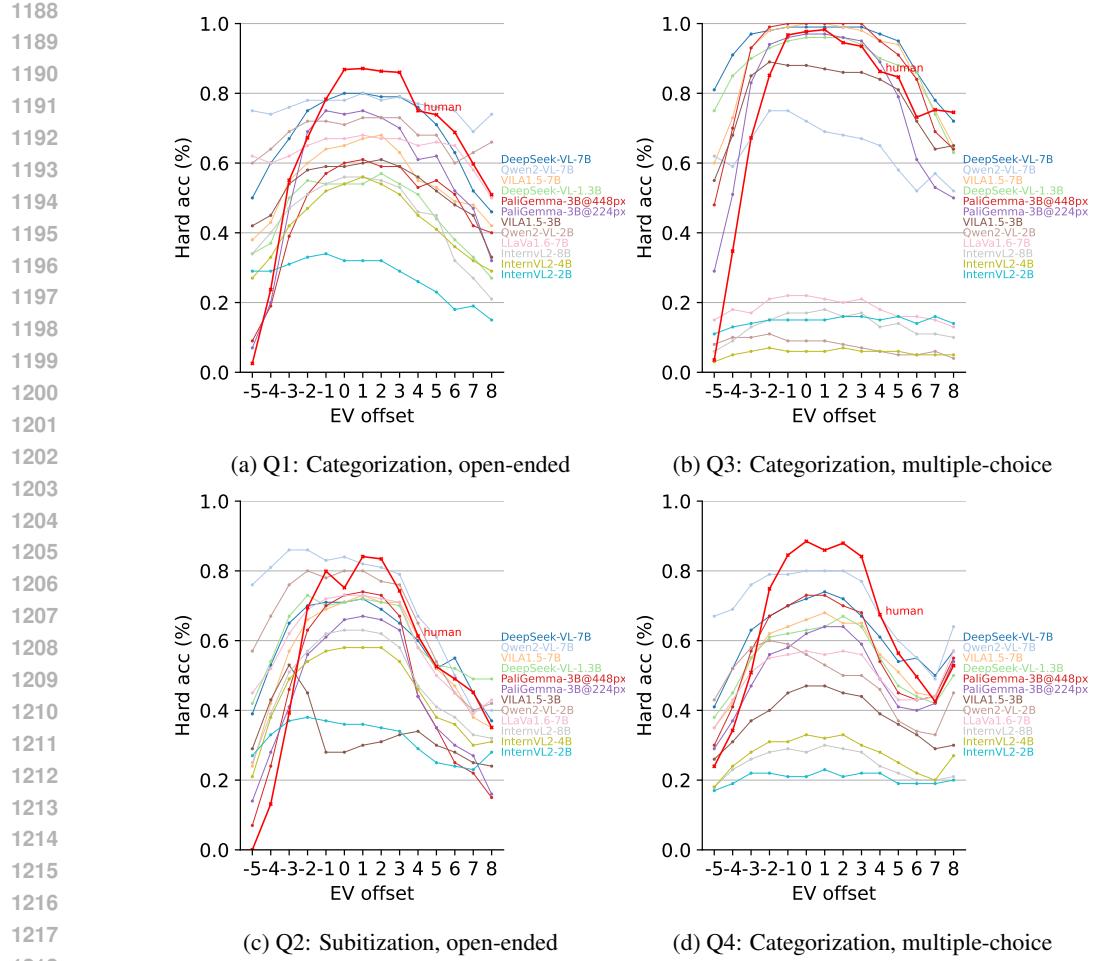


Figure F.4: Mean hard accuracy of VLMs across EV offsets for each VQA question.

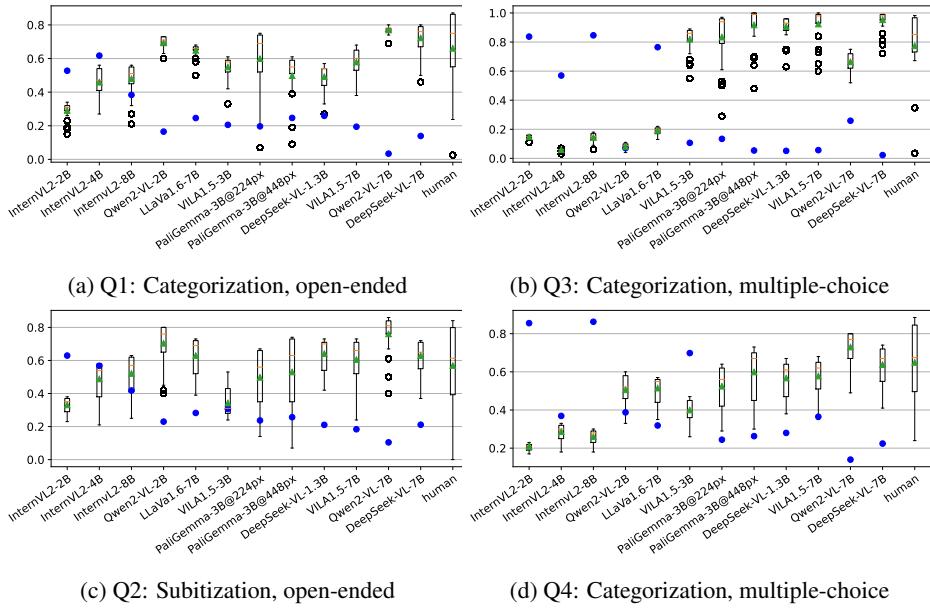


Figure F.5: Box plots showing the range of hard accuracy of VLMs on each question. Parameter sensitivity (PS) is marked with blue circles. Black circles represent outliers.