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ABSTRACT

The recent success of Vision Transformers is shaking the long dominance of Con-
volutional Neural Networks (CNNs) in image recognition for a decade. Specifi-
cally, in terms of robustness on out-of-distribution samples, recent research finds
that Transformers are inherently more robust than CNNs, regardless of different
training setups. Moreover, it is believed that such superiority of Transformers
should largely be credited to their self-attention-like architectures per se. In this
paper, we question that belief by closely examining the design of Transformers.
Our findings lead to three highly effective architecture designs for boosting ro-
bustness, yet simple enough to be implemented in several lines of code, namely
a) patchifying input images, b) enlarging kernel size, and c) reducing activation
layers and normalization layers. Bringing these components together, we are able
to build pure CNN architectures without any attention-like operations that are as
robust as, or even more robust than, Transformers. We hope this work can help the
community better understand the design of robust neural architectures. The code
is publicly available at https://github.com/UCSC-VLAA/RobustCNN.

1 INTRODUCTION

The success of deep learning in computer vision is largely driven by Convolutional Neural Networks
(CNNs). Starting from the milestone work AlexNet (Krizhevsky et al., 2012), CNNs keep pushing
the frontier of computer vision (Simonyan & Zisserman, 2015; He et al., 2016; Tan & Le, 2019).
Interestingly, the recently emerged Vision Transformer (ViT) (Dosovitskiy et al., 2020) challenges
the leading position of CNNs. ViT offers a completely different roadmap—by applying the pure
self-attention-based architecture to sequences of image patches, ViTs are able to attain competitive
performance on a wide range of visual benchmarks compared to CNNs.

The recent studies on out-of-distribution robustness (Bai et al., 2021; Zhang et al., 2022; Paul &
Chen, 2022) further heat up the debate between CNNs and Transformers. Unlike the standard vi-
sual benchmarks where both models are closely matched, Transformers are much more robust than
CNNs when testing out of the box. Moreover, Bai et al. (2021) argue that, rather than being benefited
by the advanced training recipe provided in (Touvron et al., 2021a), such strong out-of-distribution
robustness comes inherently with the Transformer’s self-attention-like architecture. For example,
simply “upgrading” a pure CNN to a hybrid architecture (i.e., with both CNN blocks and Trans-
former blocks) can effectively improve out-of-distribution robustness (Bai et al., 2021).

Though it is generally believed that the architecture difference is the key factor that leads to the
robustness gap between Transformers and CNNs, existing works fail to answer which architectural
elements in Transformer should be attributed to such stronger robustness. The most relevant analysis
is provided in (Bai et al., 2021; Shao et al., 2021)—both works point out that Transformer blocks,
where self-attention operation is the pivot unit, are critical for robustness. Nonetheless, given a)
the Transformer block itself is already a compound design, and b) Transformer also contains many
other layers (e.g., patch embedding layer), the relationship between robustness and Transformer’s
architectural elements remains confounding. In this work, we take a closer look at the architecture
design of Transformers. More importantly, we aim to explore, with the help of the architectural
elements from Transformers, whether CNNs can be robust learners as well.

Our diagnose delivers three key messages for improving out-of-distribution robustness, from the per-
spective of neural architecture design. Firstly, patchifying images into non-overlapped patches can
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Figure 1: Comparison of out-of-distribution robustness among ResNet, DeiT, and our enhanced
ResNet (dubbed Robust-ResNet). Though DeiT-S largely outperforms the vanilla ResNet, it per-
forms worse than Robust-ResNet on these robustness benchmarks.

substantially contribute to out-of-distribution robustness; more interestingly, regarding the choice of
patch size, we find the larger the better. Secondly, despite applying small convolutional kernels is
a popular design recipe, we observe adopting a much larger convolutional kernel size (e.g., from
3× 3 to 7× 7, or even to 11× 11) is necessary for securing model robustness on out-of-distribution
samples. Lastly, as inspired by the recent work (Liu et al., 2022), we note aggressively reducing
the number of normalization layers and activation functions is beneficial for out-of-distribution ro-
bustness; meanwhile, as a byproduct, the training speed could be accelerated by up to ∼23%, due to
fewer normalization layers being used (Gitman & Ginsburg, 2017; Brock et al., 2021).

Our experiments verify that all these three architectural elements consistently and effectively im-
prove out-of-distribution robustness on a set of CNN architectures. The largest improvement is
reported by integrating all of them into CNNs’ architecture design—as shown in Fig. 1, without ap-
plying any self-attention-like components, our enhanced ResNet (dubbed Robust-ResNet) is able to
outperform a similar-scale Transformer, DeiT-S, by 2.4% on Stylized-ImageNet (16.2% vs. 18.6%),
0.5% on ImageNet-C (42.8% vs. 42.3%), 4.0% on ImageNet-R (41.9% vs. 45.9%) and 3.9% on
ImageNet-Sketch (29.1% vs. 33.0%). We hope this work can help the community better understand
the underlying principle of designing robust neural architectures.

2 RELATED WORKS

Vision Transformers. Transformers (Vaswani et al., 2017), which apply self-attention to enable
global interactions between input elements, underpins the success of building foundation models in
natural language processing (Devlin et al., 2019; Yang et al., 2019; Dai et al., 2019; Radford et al.,
2018; 2019; Brown et al., 2020; Bommasani et al., 2021). Recently, Dosovitskiy et al. (Dosovitskiy
et al., 2020) show Transformer attains competitive performance on the challenging ImageNet clas-
sification task. Later works keep pushing the potential of Transformer on a variety of visual tasks,
in both supervised learning (Touvron et al., 2021a; Yuan et al., 2021; Liu et al., 2021; Wang et al.,
2021; Yuan et al., 2021; Zhai et al., 2021; Touvron et al., 2021b; Xue et al., 2021) and self-supervised
learning (Caron et al., 2021; Chen et al., 2021; Bao et al., 2022; Zhou et al., 2022; Xie et al., 2021;
He et al., 2022), showing a seemly inevitable trend on replacing CNNs in computer vision.

CNNs striking back. There is a recent surge in works that aim at retaking the position of CNNs
as the favored architecture. Wightman et al. (Wightman et al., 2021) demonstrate that, with the ad-
vanced training setup, the canonical ResNet-50 is able to boost its performance by 4% on ImageNet.
In addition, prior works show modernizing CNNs’ architecture design is essential—by either sim-
ply adopting Transformer’s patchify layer (Trockman & Kolter, 2022) or aggressively bringing in
every possible component from Transformer (Liu et al., 2022), CNNs are able to attain competitive
performance w.r.t. Transformers across a range of visual benchmarks.

Our work is closely related to ConvNeXt (Liu et al., 2022), while shifting the study focus from stan-
dard accuracy to robustness. Moreover, rather than specifically offering a unique neural architecture
as in (Liu et al., 2022), this paper aims to provide a set of useful architectural elements that allows
CNNs to be able to match, or even outperform, Transformers when measuring robustness.

Out-of-distribution robustness. Dealing with data from shifted distributions is a commonly en-
countered problem when deploying models in the real world. To simulate such challenges, sev-
eral out-of-distribution benchmarks have been established, including measuring model performance

2



Published as a conference paper at ICLR 2023

Table 1: Comparison of various baseline models. We replace the ResNet Bottleneck block with four
different stronger building blocks, and keep the computational cost of baseline models on par with
DeiT counterparts. We observe a significant gain in terms of clean image accuracy, but our CNN
baseline models are still less robust than DeiT.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5

on images with common corruptions (Hendrycks & Dietterich, 2018) or with various renditions
(Hendrycks et al., 2021). Recently, a set of works (Bai et al., 2021; Zhang et al., 2022; Paul & Chen,
2022) find that Transformers are inherently much more robust than CNNs on out-of-distribution
samples. Our work is a direct follow-up of Bai et al. (2021), whereas we stand on the opposite
side—we show CNNs can in turn outperform Transformers in out-of-distribution robustness.

3 SETTINGS

Following the setup in Bai et al. (2021), in this paper, the robustness is thoroughly compared between
CNNs and Transformers using ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020).

CNN Block Instantiations. We consider four different block instantiations, as shown in Fig. 2.
The first block is Depth-wise ResNet Bottleneck block (Xie et al., 2017), in which the 3×3 vanilla
convolution layer is replaced with a 3×3 depth-wise convolution layer. The second block is the
Inverted Depth-wise ResNet Bottleneck block, in which the hidden dimension is four times the
input dimension (Sandler et al., 2018). The third block is based on the second block, with the depth-
wise convolution layer moved up in position as in ConvNeXT (Liu et al., 2022). Similarly, based on
the second block, the fourth block moves down the position of the depthwise convolution layer. We
replace the bottleneck building block in the original ResNet architecture with these four blocks, and
refer to the resulting models as ResNet-DW, ResNet-Inverted-DW, ResNet-Up-Inverted-DW, and
ResNet-Down-Inverted-DW, respectively.
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Figure 2: Architectures of four different instantiations of CNN block.

Computational Cost. In this work, we use FLOPs to measure model size. Here we note that
directly replacing the ResNet bottleneck block with the above four instantiated blocks will signif-
icantly reduce the total FLOPs of the model, due to the usage of the depth-wise convolution. To
mitigate the computational cost loss and to increase model performance, following the spirit of
ResNeXT (Xie et al., 2017), we change the channel setting of each stage from (64, 128, 256, 512) to
(96, 192, 384, 768). We then tune the block number in stage 3 to keep the total FLOPs of baseline
models roughly the same as DeiT-S. The final FLOPs of our baseline models are shown in Tab. 1.
Unless otherwise stated, all models considered in this work are of a similar scale as DeiT-S.
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Robustness Benchmarks. In this work, we extensively evaluate the model performance on out-of-
distribution robustness using the following benchmarks: 1) Stylized-ImageNet(Geirhos et al., 2018),
which contains synthesized images with shape-texture conflicting cues; 2) ImageNet-C(Hendrycks
& Dietterich, 2018), with various common image corruptions; 3) ImageNet-R (Hendrycks et al.,
2021), which contains natural renditions of ImageNet object classes with different textures and local
image statistics; 4) ImageNet-Sketch (Wang et al., 2019), which includes sketch images of the same
ImageNet classes collected online.

Training Recipe. CNNs may achieve better robustness by simply tuning the training recipe (Bai
et al., 2021; Wightman et al., 2021). Therefore, in this work, we deliberately apply the standard 300-
epoch DeiT training recipe (Touvron et al., 2021a) for all models unless otherwise mentioned, so
that the performance difference between models can only be attributed to the architecture difference.

Baseline Results. The results are shown in Tab. 1. For simplicity, we use “IN”, “S-IN”, “IN-
C”, “IN-R”, and “IN-SK” as abbreviations for “ImageNet”, “Stylized-ImageNet”, “ImageNet-C”,
“ImageNet-R”, and “ImageNet-Sketch”. Same as the conclusion from (Bai et al., 2021), we can
observe that DeiT-S shows much stronger robustness generalization than ResNet50. Moreover, we
note that, even by equipping with stronger depth-wise convolution layers, the ResNet architecture is
only able to achieve comparable accuracy on clean images while remaining significantly less robust
than its DeiT counterpart. This finding indicates that the key to the impressive robustness of Vision
Transformer lies in its architecture design.

4 COMPONENT DIAGNOSIS

In this section, we present three effective architectural designs that draw inspiration from Trans-
formers, but work surprisingly well on CNNs as well. These designs are as follows: 1) patchifying
input images (Sec. 4.1), b) enlarging the kernel size (Sec. 4.2), and finally, 3) reducing the number
of activation layers and normalization layers (Sec. 4.3).

4.1 PATCHIFY STEM

A CNN or a Transformer typically down-samples the input image at the beginning of the network
to obtain a proper feature map size. A standard ResNet architecture achieves this by using a 7×7
convolution layer with stride 2, followed by a 3×3 max pooling with stride 2, resulting in a 4×
resolution reduction. On the other hand, ViT adopts a much more aggressive down-sampling strategy
by partitioning the input image into p×p non-overlapping patches and projects each patch with a
linear layer. In practice, this is implemented by a convolution layer with kernel size p and stride p,
where p is typically set to 16. Here the layers preceding the typical ResNet block or the self-attention
block in ViT are referred to as the stem. While previous works have investigated the importance of
stem setup in CNNs (Trockman & Kolter, 2022) and Transformers (Xiao et al., 2021), none have
examined this module from the perspective of robustness.

To investigate this further, we replace the ResNet-style stem in the baseline models with the ViT-
style patchify stem. Specifically, we use a convolution layer with kernel size p and stride p, where p
varies from 4 to 16. We keep the total stride of the model fixed, so that a 224×224 input image will
always lead to a 7×7 feature map before the final global pooling layer. In particular, the original
ResNet sets stride=2 for the first block in stages 2, 3, and 4. We set stride=1 for the first block in
stage 2 when employing the 8×8 patchify stem, and set stride=1 for the first block in stages 2 and
3 when employing the 16×16 patchify stem. To ensure a fair comparison, we add extra blocks in
stage 3 to maintain similar FLOPs as before.

In Tab. 2, we observe that increasing the patch size of the ViT-style patchify stem leads to increased
performance on robustness benchmarks, albeit potentially at the cost of clean accuracy. Specifically,
for all baseline models, when the patch size is set to 8, the performance on all robustness benchmarks
is boosted by at least 0.6%. When the patch size is increased to 16, the performance on all robustness
benchmarks is boosted by at least 1.2%, with the most significant improvement being 6.6% on
Stylized-ImageNet. With these results, we can conclude that this simple patchify operation largely
contributes to the strong robustness of ViT as observed in (Bai et al., 2021), and meanwhile, can
play a vital role in closing the robustness gap between CNNs and Transformers.
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Table 2: The performance of different baseline models equipped with ViT-style patchify stem. “PX”
refers to the model having a ViT-style patchify stem with the patch size set to X. The block number
in stage 3 is increased when the patch size is larger. With a larger patch size, the models attain better
robustness but worse clean accuracy.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ P4 4.6G 79.6 11.4 51.2 40.5 28.3
+ P8 4.6G 79.9 12.7 47.6 42.5 30.1

+ P16 4.6G 78.5 17.0 44.3 44.8 32.0

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ P4 4.5G 80.2 11.2 48.8 41.5 29.8
+ P8 4.6G 79.8 14.8 45.4 44.0 31.8

+ P16 4.6G 77.9 17.2 42.5 44.9 32.4

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ P4 4.5G 80.0 13.5 48.9 42.3 30.7
+ P8 4.7G 79.8 15.7 46.3 44.0 31.4

+ P16 4.5G 77.9 17.0 43.9 44.6 32.0

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ P4 4.4G 79.8 12.4 48.6 41.8 29.4
+ P8 4.5G 79.6 15.2 46.2 43.5 30.7

+ P16 4.6G 78.0 16.2 43.8 43.8 30.6

We also conduct experiments with more advanced patchify stems. Surprisingly, while these stems
improve the corresponding clean image accuracy, we find that they contribute little to out-of-
distribution robustness. Further details can be found in Appendix A.2. This observation suggests
that clean accuracy and out-of-distribution robustness do not always exhibit a positive correlation.
In other words, designs that enhance clean accuracy may not necessarily result in better robust-
ness. highlighting the importance of exploring methods that can improve robustness in addition to
enhancing clean accuracy.

4.2 LARGE KERNEL SIZE

One critical property that distinguishes the self-attention operation from the classic convolution op-
eration is its ability to operate on the entire input image or feature map, resulting in a global receptive
field. The importance of capturing long-range dependencies has been demonstrated for CNNs even
before the advent of Vision Transformer. A notable example is Non-local Neural Network, which
has been shown to be highly effective for both static and sequential image recognition, even when
equipped with only one non-local block (Wang et al., 2018). However, the most commonly used ap-
proach in CNN is still to stack multiple 3×3 convolution layers to gradually increase the receptive
field of the network as it goes deeper.

In this section, we aim to mimic the behavior of the self-attention block, by increasing the kernel
size of the depth-wise convolution layer. We experiment with various kernel sizes, including 5, 7, 9,
11, and 13, and evaluate their performance on different robustness benchmarks, are shown in Fig. 3.
Our findings suggest that larger kernel sizes generally lead to better clean accuracy and stronger
robustness. Nevertheless, we also observe that the performance gain gradually saturates when the
kernel size becomes too large.

It is noteworthy that using (standard) convolutions with larger kernels will result in a significant
increase in computation. For example, if we directly change the kernel size in ResNet50 from 3
to 5, the total FLOPs of the resulting model would be 7.4G, which is considerably larger than its
Transformer counterpart. However, with the usage of depth-wise convolution layer, increasing the
kernel size from 3 to 13 typically only increases the FLOPs by 0.3G, which is relatively small
compared to the FLOPs of DeiT-S (4.6G). The only exceptional case here is ResNet-Inverted-DW:
due to the large channel dimension in its Inverted Bottleneck design, increasing the kernel size from
3 to 13 results in a total increase of 1.4G FLOPs, making it an unfair comparison to some extent.
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Figure 3: Robustness evaluation of model with varying kernel size. Different colors and shapes
denote different models.

Table 3: The performance of models with differently removed activation layers. We use ✓ to denote
keeping an activation layer and ✗ to denote removing an activation layer.

Architecture FLOPs ReLU IN ↑ S-IN ↑ IN-C ↓ IN-R ↑ IN-SK ↑
1st 2nd 3rd

ResNet50 4.1G ✓ ✓ ✓ 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G ✓ ✓ ✓ 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G

✓ ✓ ✓ 79.7 10.6 50.1 41.3 29.1
✓ ✗ ✗ 74.8 8.3 58.6 37.1 24.5
✗ ✓ ✗ 73.2 8.6 60.5 36.2 23.3
✗ ✗ ✓ 79.4 11.7 50.5 42.8 29.8

ResNet-Inverted-DW 4.6G

✓ ✓ ✓ 80.0 10.8 47.7 41.9 29.4
✓ ✗ ✗ 80.7 12.3 46.4 45.3 31.9
✗ ✓ ✗ 80.3 11.2 48.5 44.0 30.9
✗ ✗ ✓ 72.5 9.7 59.5 37.5 24.7

ResNet-Up-Inverted-DW 4.7G

✓ ✓ ✓ 79.7 12.9 47.9 42.9 30.8
✓ ✗ ✗ 67.8 9.4 65.0 33.0 19.7
✗ ✓ ✗ 80.1 13.0 47.3 44.2 30.0
✗ ✗ ✓ 68.7 8.9 64.4 33.4 20.2

ResNet-Down-Inverted-DW 4.5G

✓ ✓ ✓ 79.6 12.1 49.0 42.5 29.5
✓ ✗ ✗ 80.7 13.0 46.6 45.9 32.8
✗ ✓ ✗ 70.1 9.9 63.3 35.2 21.8
✗ ✗ ✓ 68.8 8.3 65.1 33.7 21.9

As a side note, the extra computational cost incurred by a large kernel size can be mitigated by
employing a patchify stem with a large patch size. As a result, our final models will still be on the
same scale as DeiT-S. For models with multiple proposed designs, please refer to Sec. 5.

4.3 REDUCING ACTIVATION AND NORMALIZATION LAYERS

In comparison to a ResNet block, a typical Vision Transformer block has fewer activation and nor-
malization layers (Dosovitskiy et al., 2020; Liu et al., 2021). This architecture design choice has
also been found to be effective in improving the performance of ConvNeXT (Liu et al., 2022). In-
spired by this, we adopt the idea of reducing the number of activation and normalization layers in
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Table 4: The performance of models with differently removed activation and normalization layer.
Note that the results are obtained with the best choice of only one activation layer in a block based
on the results of Tab. 3. We use ✓ to denote keeping a normalization layer and ✗ to denote removing
a normalization layer. It is observed that the highlighted architectural design choices consistently
lead to improved robustness upon the baselines.

Architecture FLOPs BN IN ↑ S-IN ↑ IN-C ↓ IN-R ↑ IN-SK ↑
1st 2nd 3rd

ResNet50 4.1G ✓ ✓ ✓ 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G ✓ ✓ ✓ 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G

✓ ✓ ✓ 79.7 10.6 50.1 41.3 29.1
✓ ✗ ✗ 79.4 11.6 49.3 43.3 29.9
✗ ✓ ✗ 79.5 10.6 49.5 43.1 29.3
✗ ✗ ✓ 79.3 11.1 50.7 42.5 30.2

ResNet-Inverted-DW 4.6G

✓ ✓ ✓ 80.0 10.8 47.7 41.9 29.4
✓ ✗ ✗ 80.4 12.9 47.0 45.8 32.4
✗ ✓ ✗ 80.0 11.2 49.3 44.1 31.2
✗ ✗ ✓ 80.1 13.0 46.8 44.3 30.8

ResNet-Up-Inverted-DW 4.7G

✓ ✓ ✓ 79.7 12.9 47.9 42.9 30.8
✓ ✗ ✗ 80.5 14.3 45.0 47.2 33.1
✗ ✓ ✗ 80.4 12.9 47.0 45.8 32.4
✗ ✗ ✓ 80.1 13.0 46.8 44.3 30.8

ResNet-Down-Inverted-DW 4.5G

✓ ✓ ✓ 79.6 12.1 49.0 42.5 29.5
✓ ✗ ✗ 80.5 13.6 46.4 45.9 33.3
✗ ✓ ✗ 80.7 13.1 46.1 45.5 31.7
✗ ✗ ✓ 80.8 12.7 46.5 46.1 33.1
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Figure 4: The optimal position of normalization and activation layers for different block architec-
tures.

all our four block instantiations for exploring its effects on robustness generalization. Specifically,
a ResNet block typically contains one normalization layer and one activation layer following each
convolution layer, resulting in a total of three normalization and activation layers in one block. In
our implementation, we remove two normalization layers and activation layers from each block,
resulting in only one normalization layer and activation layer.

We conduct experiments with different combinations of removing activation and normalization lay-
ers and empirically find that the best results are achieved by leaving only one activation layer after
the convolution layer where the channel dimension expands (i.e., the number of output channels is
larger than that of the input channels) and leaving one normalization layer after the first convolution
layer. The optimal configuration is visualized in Fig. 4. The results of the models with differently re-
moved layers are shown in Tab. 3 and Tab. 4. For example, for ResNet-Up-Inverted-DW, we observe
considerable improvements of 1.4% on Stylized-ImageNet (14.3% vs. 12.9%), 2.9% on ImageNet-C
(45.0% vs. 47.9%), 4.3% on ImageNet-R (47.2% vs. 42.9%), and 2.3% on ImageNet-Sketch (33.1%
vs. 30.8%). Moreover, reducing the number of normalization layers results in lower GPU memory
usage and faster training (Gitman & Ginsburg, 2017; Brock et al., 2021), with up to a 23% speed-up
achieved by simply removing a few normalization layers.
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Table 5: The performance of different baseline models equipped with ViT-style patchify stem, large
kernel size, and fewer activation and normalization layers. The model with the suffix “PX” refers
to that it has a ViT-style patchify stem with patch size set to X. “KX” refers to that the model uses
blocks with a depth-wise convolution layer with kernel size X. “NormXActY” refers to that the
model has only one normalization layer after the Xth convolution layer and one activation layer
after the Yth convolution layer in the block.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ P16 + K11 + Norm1Act3 4.5G 79.4 18.6 42.3 45.9 33.0

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ P16 + K7 + Norm1Act1 4.6G 79.0 19.5 42.1 45.9 32.8

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ P16 + K11 + Norm1Act2 4.4G 79.2 20.2 40.9 48.7 35.2

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ P16 + K11 + Norm1Act1 4.6G 79.9 19.3 41.6 46.0 32.8

Table 6: The robustness generalization of different models when DeiT-S serves as the teacher model.
The results of DeiT-S here are included for reference; it is trained by the default recipe without
knowledge distillation.

Student Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.5 10.2 50.8 40.9 28.9
Robust-ResNet-DW 4.5G 79.3 20.1 41.2 46.5 33.2

ResNet-Inverted-DW 4.6G 80.1 11.0 47.9 42.4 30.4
Robust-ResNet-Inverted-DW 4.6G 79.1 19.4 42.4 45.9 33.0

ResNet-UpInvertedDW 4.7G 79.9 14.1 48.4 43.6 31.0
Robust-ResNet-Up-Inverted-DW 4.4G 79.3 19.6 41.1 49.3 35.4

ResNet-DownInvertedDW 4.5G 79.7 12.3 48.5 42.3 30.4
Robust-ResNet-Down-Inverted-DW 4.6G 79.9 18.9 41.0 46.4 33.5

5 COMPONENTS COMBINATION

In this section, we explore the impact of combining all the proposed components on the model’s
performance. Specifically, we adopt a 16×16 patchify stem and an 11×11 kernel size, along with
the corresponding optimal position for placing the normalization and activation layer for all ar-
chitectures. An exception here is ResNet-Inverted-DW, for which we use 7×7 kernel size, as we
empirically found that using a too-large kernel size (e.g., 11×11) can lead to unstable training

As shown in Tab. 5, and Tab. 9, Tab. 10, Tab. 11 in Appendix A.3, we can see these simple de-
signs not only work well when individually applied to ResNet, but work even better when used
together. Moreover, by employing all three designs, ResNet now outperforms DeiT on all four out-
of-distribution benchmarks. These results confirm the effectiveness of our proposed architecture
designs and suggest that a pure CNN without any self-attention-like block can achieve robustness as
good as ViT.

6 KNOWLEDGE DISTILLATION

Knowledge Distillation is a technique used for training a weaker student model with lower capac-
ity by transferring the knowledge of a stronger teacher model. Typically, the student model can
achieve similar or even better performance than the teacher model through knowledge distillation.

8
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However, applying knowledge distillation directly to let ResNet-50 (the student model) learn from
DeiT-S (the teacher model) has been found to be less effective in enhancing robustness as shown
in (Bai et al., 2021). Surprisingly, when the model roles are switched, the student model DeiT-S
remarkably outperforms the teacher model ResNet-50 on a range of robustness benchmarks, leading
to the conclusion that the key to achieving good robustness of DeiT lies in its architecture, which
therefore cannot be transferred to ResNet through knowledge distillation.

To investigate this further, we repeat these experiments with models that combine all three proposed
architectural designs as the student models and with DeiT-S as the teacher model. As shown in
Tab. 6, we observe that with the help of our proposed architectural elements from ViT, our resulting
Robust-ResNet family now can consistently perform better than DeiT on out-of-distribution sam-
ples. In contrast, the baseline models, despite achieving good performance on clean ImageNet, are
not as robust as the teacher model DeiT-S.

7 LARGER MODELS

To demonstrate the effectiveness of our proposed models on larger scales, we conduct experiments to
match the total FLOPs of DeiT-Base. Specifically, we increase the base channel dimensions to (128,
256, 512, and 1024) and add over 20 blocks in stage 3 of the network, while using the ConvNeXT-
B recipe for training (Liu et al., 2022) 1. We compare the performance of the adjusted models to
DeiT-B, as shown in Tab. 7. Our results indicate that our proposed Robust-ResNet family performs
favorably against DeiT-B even on larger scales, suggesting that our method has great potential for
scaling up models.

Table 7: Comparing the robustness of Robust-ResNet and DeiT at a larger scale.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet-200 15.1G 81.7 13.8 42.2 45.1 34.5
DeiT-B 17.6G 81.8 19.6 37.9 44.7 32.0

Robust-ResNet-DW-B 17.2G 80.5 19.2 38.8 46.6 34.2
Robust-ResNet-Inverted-DW-B 17.1G 81.6 22.1 35.5 50.2 36.7

Robust-ResNet-Up-Inverted-DW-B 17.1G 81.9 23.1 35.1 50.5 37.1
Robust-ResNet-Down-Inverted-DW-B 17.3G 81.3 22.2 35.6 49.7 37.8

8 CONCLUSION

The recent study by (Bai et al., 2021) claims that Transformers outperform CNNs on out-of-
distribution samples, with the self-attention-like architectures being the main contributing factor.
In contrast, this paper examines the Transformer architecture more closely and identifies several
beneficial designs beyond the self-attention block. By incorporating these designs into ResNet,
we have developed a CNN architecture that can match or even surpass the robustness of a Vision
Transformer model of comparable size. We hope our findings prompt researchers to reevaluate
the robustness comparison between Transformers and CNNs, and inspire further investigations into
developing more resilient architecture designs.
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A APPENDIX

A.1 TRAINING RECIPE DETAILS

We follow the standard 300-epoch DeiT training recipe (Touvron et al., 2021a) in this work. Specif-
ically, we train all models using AdamW optimizer (Loshchilov & Hutter, 2019). We set the initial
base learning rate to 5e-4, and apply the cosine learning rate scheduler to decrease it. Besides
weight decay, we additionally adopt six data augmentation & regularization strategies (i.e., Ran-
dAug (Cubuk et al., 2020), MixUp (Zhang et al., 2018), CutMix (Yun et al., 2019), Random Erasing
(Zhong et al., 2020), Stochastic Depth (Huang et al., 2016), and Repeated Augmentation (Hoffer
et al., 2020)) to regularize training.

A.2 MORE STEM EXPERIMENTS

Recent studies suggest replacing the ViT-style patchify stem with a small number of stacked 2-stride
3×3 convolution layers can greatly ease optimization and thus boost the clean accuracy (Graham
et al., 2021; Xiao et al., 2021). To verify its effectiveness on robustness benchmarks, we have also
implemented the convolution stem for ViT-S in (Xiao et al., 2021), with a stack of 4 3×3 convolution
layers with stride 2. The results are presented in Tab. 8. Surprisingly, though the use of convolutional
stem does attain higher clean accuracy, it appears to be not as helpful as ViT-style patchify stem on
out-of-distribution robustness.
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Table 8: The performance of different baseline models equipped with ViT-style patchify stem and
convolution stem. “PX” refers to that the model has a ViT-style patchify stem with patch size set to
X; “C” refers to that it has a convolutional stem.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ P16 4.6G 78.5 17.0 44.3 44.8 32.0
+ C 4.5G 79.6 16.2 48.4 43.0 30.2

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ P16 4.6G 78.1 17.4 42.9 44.7 32.4
+ C 4.6G 79.9 16.9 46.2 43.2 31.2

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ P16 4.5G 77.9 17.0 43.9 44.6 32.0
+ C 4.5G 79.1 16.6 48.4 43.2 30.3

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ P16 4.6G 78.0 16.2 43.8 43.8 30.6
+ C 4.6G 79.3 16.4 49.0 42.4 29.2

Table 9: The performance of different baseline models equipped with ViT-style patchify stem and
large kernel size. The models with the suffix “PX” refers to that it has a ViT-style patchify stem with
patch size set to X. “KX” refers to that the model uses blocks with a depth-wise convolution layer
with kernel size X.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ P16 + K11 4.5G 79.0 18.8 42.5 45.2 32.4

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ P16 + K7 4.6G 79.2 19.8 41.1 46.4 33.7

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ P16 + K11 4.4G 78.0 17.2 43.7 47.1 31.2

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ P16 + K11 4.6G 78.1 18.9 43.7 42.9 29.6

A.3 MORE COMPONENTS COMBINATION EXPERIMENTS

Here we show more results of combining different components proposed in this paper in Tab. 9,
Tab. 10, and Tab. 11.

A.4 MORE COMPARISON WITH OTHER MODELS

Besides DeiT, here we also evaluate our proposed Robust-ResNet against two state-of-the-art mod-
els, ConvNeXt (Liu et al., 2022) and Swin-Transformer (Liu et al., 2021), in terms of out-of-
distribution robustness. As shown in Tab. 12, all four of our models perform similarly to, or better
than ConvNeXt or Swin-Transformer in all out-of-distribution tests.

A.5 REPEATING EXPERIMENTS

To demonstrate the statistical significance of the robustness improvements achieved by our proposed
components, we conduct three runs with different random seeds and report the mean and standard
deviation in Tab. 13. We observe only small variations across the three runs, which confirms the
consistent and reliable performance gains achieved by our proposed models.
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Table 10: The performance of different baseline models equipped with ViT-style patchify stem and
fewer activation and normalization layers. The model with the suffix “PX” refers to that it has a ViT-
style patchify stem with patch size set to X. “NormXActY” refers to that the model has only one
normalization layer after the Xth convolution layer and one activation layer after the Yth convolution
layer in the block.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ P16 + Norm1Act3 4.6G 78.7 16.2 43.0 46.3 33.1

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ P16 + Norm1Act1 4.6G 79.3 17.5 41.7 46.1 32.9

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ P16 + Norm1Act2 4.5G 79.1 18.6 41.5 48.0 33.8

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ P16 + Norm1Act1 4.6G 79.7 18.0 40.7 47.1 33.4

Table 11: The performance of different baseline models equipped with large kernel size and fewer
activation and normalization layers. “KX” refers to that the model uses blocks with a depth-wise
convolution layer with kernel size X. “NormXActY” refers to the model has only one normalization
layer after the Xth convolution layer and one activation layer after the Yth convolution layer in the
block.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
+ K11 + Norm1Act3 5.0G 80.4 13.3 45.2 43.9 30.8

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
+ K7 + Norm1Act1 5.0G 80.8 13.1 46.7 45.7 32.1

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
+ K11 + Norm1Act2 4.9G 81.4 15.8 42.9 48.3 33.8

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
+ K11 + Norm1Act1 4.6G 81.3 14.2 43.6 46.1 32.8

Table 12: Robustness comparison against two state-of-the-art models, ConvNeXT and Swin-
Transformer.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ConvNeXt-T 4.5G 82.1 18.9 41.6 47.2 33.9
Swin-T 4.5G 81.4 15.5 48.4 41.3 29.3

Robust-ResNet-DW 4.5G 79.4 18.6 42.3 45.9 33.0
Robust-ResNet-Inverted-DW 4.6G 79.0 19.5 42.1 45.9 32.8

Robust-ResNet-Up-Inverted-DW 4.4G 79.2 20.2 40.9 48.7 35.2
Robust-ResNet-Down-Inverted-DW 4.6G 79.9 19.3 41.6 46.0 32.8

A.6 IMAGENET-A EVALUATION

The ImageNet-A dataset comprises a set of natural adversarial samples that have a considerable
negative impact on the performance of machine learning models. In Tab. 14, we compare the per-
formance of our Robust-ResNet models and DeiT on the ImageNet-A dataset. Notably, while the
Robust-ResNet models do not perform as well as DeiT with an input resolution of 224, increasing
the input resolution (e.g., to 320) significantly narrows the gap between Robust-ResNet and DeiT
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Table 13: The results of repeating experiments three times with different random seeds. It can be
observed that all Robust-ResNet variants bring statistically stable robustness improvement.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

ResNet-DW 4.8G 79.7 10.6 50.1 41.3 29.1
Robust-ResNet-DW 4.5G 79.3±0.1 19.2±0.6 41.7±0.6 46.0±0.1 32.6±0.3

ResNet-Inverted-DW 4.6G 80.0 10.8 47.7 41.9 29.4
Robust-ResNet-Inverted-DW 4.6G 79.2±0.2 19.8±0.6 41.9±0.2 45.8±0.1 32.6±0.1

ResNet-Up-Inverted-DW 4.7G 79.7 12.9 47.9 42.9 30.8
Robust-ResNet-Up-Inverted-DW 4.4G 79.3±0.1 19.6±0.4 41.2±0.4 48.7±0.1 35.0±0.1

ResNet-Down-Inverted-DW 4.5G 79.6 12.1 49.0 42.5 29.5
Robust-ResNet-Down-Inverted-DW 4.6G 79.7±0.1 19.5±0.2 41.8±0.2 46.0±0.1 33.0±0.1

Table 14: Robustness comparison on ImageNet-A.

Model Resolution
224 320

ResNet50 7.0 15.5
DeiT-S 19.9 23.6

Robust-ResNet-DW 12.3 19.9
Robust-ResNet-Inverted-DW 11.8 22.3

Robust-ResNet-Up-Inverted-DW 12.5 19.0
Robust-ResNet-Down-Inverted-DW 14.0 21.2

on ImageNet-A. We conjecture this is because objects of interest in ImageNet-A tend to be smaller
than in standard ImageNet.

A.7 STRUCTURAL RE-PARAMETERIZATION

A line of recent works promotes the idea of a training-time multi-branch but inference-time plain
model architecture via structural re-parameterization (Ding et al., 2021; 2022a;b). RepLKNet (Ding
et al., 2022b), in particular, has shown that re-parameterization using small kernels can alleviate
the optimization issue associated with large-kernel convolution layers, without incurring additional
inference costs. Given that the Robust-ResNet models also use large kernels, here we experiment
with the idea of structural re-parameterization and leverage a training-time multi-branch block ar-
chitecture to further enhance model performance. The block architectures are detailed in Fig. 5. The
results of two different model scales, shown in Tab. 15 and Tab. 16, demonstrate generally improved
performance with this re-parameterization approach. One exception may be Robust-ResNet-Up-
Inverted-DW, which occasionally exhibits slightly worse robustness with re-parameterization. No-
tably, with the re-parameterization technique, we are able to train the Robust-ResNet-Inverted-DW
model using a kernel size of 11.
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Figure 5: Architectures of four robust CNN block instantiations with structural reparameterization.

Table 15: The performance of Robust-ResNet models trained with structural re-parameterization
technique at the scale of DeiT-S.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet50 4.1G 78.4 9.9 51.2 39.2 27.7
DeiT-S 4.6G 79.8 16.2 42.8 41.9 29.1

Robust-ResNet-DW 4.5G 79.4 18.6 42.3 45.9 33.0
+ Re-param 4.5G 79.6 19.0 41.1 47.8 34.2

Robust-ResNet-Inverted-DW 4.6G 79.0 19.5 42.1 45.9 32.8
+ Re-param 4.6G 79.2 20.1 42.0 47.2 34.4

Robust-ResNet-Up-Inverted-DW 4.4G 79.2 20.2 40.9 48.7 35.2
+ Re-param 4.4G 79.4 18.5 41.4 48.7 34.6

Robust-ResNet-Down-Inverted-DW 4.6G 79.9 19.3 41.6 46.0 32.8
+ Re-param 4.6G 80.7 21.2 38.1 49.0 34.9

Table 16: The performance of Robust-ResNet models trained with structural re-parameterization
technique at the scale of DeiT-B.

Architecture FLOPs IN (↑) S-IN (↑) IN-C (↓) IN-R (↑) IN-SK (↑)

ResNet-200 15.1G 81.7 13.8 42.2 45.1 34.5
DeiT-B 17.6G 81.8 19.6 37.9 44.7 32.0

Robust-ResNet-DW-B 17.2G 80.5 19.2 38.8 46.6 34.2
+ Re-param 17.2G 80.8 20.1 38.6 47.5 35.4

Robust-ResNet-Inverted-DW-B 17.1G 81.6 22.1 35.5 50.2 36.7
+ Re-param 17.1G 82.1 23.1 35.4 50.7 37.4

Robust-ResNet-Up-Inverted-DW-B 17.1G 81.9 23.1 35.1 50.5 37.1
+ Re-param 17.1G 82.2 22.9 34.5 50.6 37.8

Robust-ResNet-Down-Inverted-DW-B 17.3G 81.3 22.2 35.6 49.7 37.8
+ Re-param 17.3G 81.6 22.0 34.9 51.1 38.1
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