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ABSTRACT

Diffusion models are recent generative models that have shown great success in
image generation with the state-of-the-art performance. However, only a few re-
searches have been conducted for image manipulation with diffusion models. Here,
we present a novel DiffusionCLIP which performs text-driven image manipulation
with diffusion models using Contrastive Language–Image Pre-training (CLIP) loss.
Our method has a performance comparable to that of the modern GAN-based
image processing methods for in and out-of-domain image processing tasks, with
the advantage of almost perfect inversion even without additional encoders or
optimization. Furthermore, our method can be easily used for various novel ap-
plications, enabling image translation from an unseen domain to another unseen
domain or stroke-conditioned image generation in an unseen domain, etc. Finally,
we present a novel multiple attribute control with DiffusionCLIP by combining
multiple fine-tuned diffusion models.

Figure 1: Examples of text-guided image manipulation using DiffusionCLIP.

1 INTRODUCTION

Diffusion models such as denoising diffusion probabilistic models (DDPM) (Ho et al., 2020; Sohl-
Dickstein et al., 2015) and score-based generative models (Song & Ermon, 2019; Song et al., 2020b)
have shown great success in image generation (Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020a;b; Jolicoeur-Martineau et al., 2020; Dhariwal & Nichol, 2021). The latest works (Song et al.,
2020b; Dhariwal & Nichol, 2021) have demonstrated comparable or even superior image sampling
performance compared with the current state-of-the-art generative adversarial networks (GANs)
(Goodfellow et al., 2014), with additional advantages of great mode coverage and stable training.

Recently, a few studies (Choi et al., 2021; Meng et al., 2021) have been carried out for image
manipulation with diffusion models, such as local editing (Meng et al., 2021) and the image translation
from unseen domain to the trained domain (Choi et al., 2021). However, it is not clear how these
methods can be extended for more general image manipulation applications, such as attribute
manipulation (e.g. facial expression change), the image translation from trained domain to multiple
unseen domains (e.g. human photo to sketch/Pixar character), etc.
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Image manipulation methods for such general tasks have been mainly investigated using GAN (Zhu
et al., 2017; Isola et al., 2017; Chen et al., 2018; Goetschalckx et al., 2019; Shen et al., 2020; Bau et al.,
2020; Patashnik et al., 2021; Gal et al., 2021). Moreover, the combination of GAN inversion (Zhu
et al., 2016; Brock et al., 2016) with contrastive language-image pre-training (CLIP) models (Radford
et al., 2021) has recently achieved in- and out-of-domain manipulation of images given simple text
prompts without extra manual labors (Patashnik et al., 2021; Gal et al., 2021). Unfortunately, due to
difficulty of perfect GAN inversion rooted in limited model capacity and optimization difficulty, the
use of the GAN inversion for latent extaction and further image manipulation is still limited.

To address this, here we propose a novel DiffusionCLIP - a CLIP-based text-guide image manipulation
method for diffusion models. DiffuionCLIP leverages the sampling and inversion processes based on
denoising diffusion implicit models (DDIM) sampling (Song et al., 2020a) and its reversal, which
not only accelerate the manipulation but also enable nearly perfect inversion. Accordingly, we can
reduce the gap of the scope of applications between diffusion models and GANs. For example,
DiffusonCLIP can performs manipulation of images both in trained domain and to unseen domain
successfully as Fig. 1(a). We can even translate the image from unseen domain into another unseen
domain as illustrated in Fig. 1(b), or generates images in an unseen domain from the strokes as shown
Fig. 1(c). Furthermore, by simply combining the noise predicted from several fine-tuned models,
multiple attributes can be changed simultaneously through only one sampling process as shown in
Fig. 1(d).

Through extensive experiments, we demonstrate that our models show comparable manipulation
performance to GAN-based manipulation, having comparative advantage of nearly perfect inversion
without additional encoder or optimization.

2 RELATED WORKS

2.1 DIFFUSION MODELS

Diffusion probabilistic models are latent variable models that are composed of two processes: the
forward process and the reverse process. The forward process is a Markov chain where noise is
gradually added to the data when sequentially sampling the latent variables xt for t = 1, · · · , T .
Each step in the forward process is a Gaussian transition q(xt | xt−1) := N (xt;

√
1− βtxt−1, βtI)

where β0, . . . , βT is a fixed or learned variance schedule. Then the latent variable xt can be expressed
as:

xt =
√
αtx0 + (1− αt)w, w ∼ N (0, I) (1)

where αt :=
∏t
s=1 (1− βs). The reverse process q(xt−1 | xt) is parametrized by another Gaussian

transition pθ(xt−1 | xt) := N (xt−1;µθ(xt, t), σθ(xt, t)I), where µθ(xt, t) can be decomposed
into the linear combination of xt and a noise approximation model εθ(xt, t). Under these parametriza-
tion, the reverse process can be trained by solving the following optimization problem:

min
θ
L(θ) := min

θ
Ex0∼q(x0),w∼N (0,I)),t||w − εθ(xt, t)||22. (2)

After training εθ(x, t), the data is sampled using following sampling rule.:

xt =
1√

1− βt

(
xt −

βt√
1− αt

εθ(xt, t)

)
+ σtz, where z ∼ N (0, I) (3)

It was found that the sampling process of DDPM corresponds to that of the score-based generative
models (Song & Ermon, 2019; Song et al., 2020b) if the score function can be represented as a
rescaled version of εθ(xt, t) as follows:

∇xt
log pθ(xt) = − 1√

1− αt
εθ(xt, t) . (4)

Specifically, Song et al. (Song & Ermon, 2019; Song et al., 2020b) proposed an alternative non-
Markovian noising process that has the same forward marginals as DDPM and corresponding
sampling process as follows:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1 − σ2

t εθ(xt, t) + σ2
t z (5)

2



Under review as a conference paper at ICLR 2022

where fθ(xt, t) is a the prediction of x0 at t given xt and εθ(xt, t):

fθ(xt, t) :=
xt −

√
1− αtεθ(xt, t)√

αt
. (6)

This sampling allows to use different reverse samplers by changing the variance of the reverse noise
σt. Especially, by setting this noise to 0, which is a DDIM sampling process (Song et al., 2020a), the
sampling process become deterministic, enabling to convert latent variables into the data consistently
and to sample with fewer steps. In fact, DDIM can be considered as a Euler method to solve ODE by
rewriting (5) as follows:

xt−1 − xt =
√
αt−1

[
(
√

1/αt −
√

1/αt−1)xt + (
√

1/αt−1 − 1−
√

1/αt − 1)εθ(xt, t)
]

(7)

2.2 CLIP GUIDANCE FOR TEXT-DRIVEN IMAGE MANIPULATION

CLIP (Radford et al., 2021) was proposed to efficiently learn visual concepts from natural language
supervision. Specifically, CLIP pre-trains an image encoder and a text encoder to predict which
images were paired with which texts in the dataset. Accordingly, it can be applied to any visual
classification benchmark by simply providing the names of the visual categories to be recognized.

As the source of guidance for our target manipulation, we use a pre-trained CLIP model. In order to
effectively extract knowledge from CLIP, two different losses are proposed in (Patashnik et al., 2021;
Gal et al., 2021): a global target loss, and a local directional loss. The global CLIP loss (Patashnik
et al., 2021) tries to to minimize the cosine distance in CLIP space between the generated images and
a given target text as follows:

Lglobal(xgen, ttar) = DCLIP(xgen, ttar) (8)

where ttar is the description in text of some target control, xgen denotes the generated image, andDCLIP
returns the cosine distance in CLIP-space between them. On the other hand, the local directional loss
(Gal et al., 2021) is designed in order to alleviate the issues of global CLIP loss such as low diversity
and susceptibility to adversarial solutions. The local directional CLIP loss induces the direction
between the encoded vectors of the reference and generated images to be aligned with the direction
between the encoded vectors of a pair of reference and target texts in CLIP space as follows:

Ldirection (xgen, ttar;xref, tref) := 1− 〈∆I,∆T 〉
‖∆I‖‖∆T‖

(9)

where

∆T = ET (ttar)− ET (tref), ∆I = EI(xtar)− EI(xref)

where EI and ET are CLIP’s image and text encoders, respectively, and tref,xref are the source
domain text and image, respectively. The manipulated images guided by the directional CLIP
loss is known robust to mode-collapse issues because by aligning the direction between the image
representations with the direction between the reference text and the target text, distinct images
should be generated. Also, it is more robust to adversarial attacks because the perturbation will be
different depending on images (Radford et al., 2021).

3 DIFFUSIONCLIP

The overall flow of DiffusionCLIP for image manipulation is shown in Fig. 2. Here, the input image
x0 is first converted to the latent xl via forward diffusion. Then, guided by the CLIP loss, the
diffusion model is fine-tuned, and the updated sample is generated from the fine-tune diffusion model.
In terms of diffusion model fine-tuning, one could modify the latent or the diffusion model. In this
work, we found that direct model fine-tuning is more effective, as will be shown later in experiments.

To fine-tune the diffusion model εθ, we use the following objective composed of CLIP loss and the
identity loss:

Ldirection (x̂0(θ), ttar;x0, tref) + Lid(x0, x̂0(θ)) (10)
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Figure 2: Overview of DiffusionCLIP. The input image is first converted to the latent via diffusion.
Then, guided by directional CLIP loss, the diffusion model is fine-tuned, and the updated sample is
generated from the fine-tuned diffusion model.

Figure 3: Fine-tuning the general diffusion models with the shared architecture.

where x0 is the original image, x̂0(θ) is the manipulated image with the optimized parameter θ, tref
is the reference text, ttar is the target text to manipulate.

Here, CLIP loss is the key component to supervise the optimization for the target control. Of two
types of two types of CLIP losses as discussed above, we employ directional CLIP loss as a guidance
owing to the appealing properties as mentioned in Section 2.2. For the text prompt, directional CLIP
loss requires a reference text tref and a target text ttar while training. For example, in case of changing
the expression of given face image into angry expression, we can use ‘face’ as a reference text and
‘angry face’ as a target text. In this paper, we often use the concise word to refer each text prompt
(e.g. ‘tanned face’ to ‘tanned’ ). The identity loss Lid is employed to prevent from the unwanted
changes and preserve the identity of the object. We generally use `1 loss as identity loss, and in case
of the human face image manipulation, face identity loss proposed in (Deng et al., 2019) is added:

Lid(x0, x̂0(θ)) = λL1‖x0 − x̂0(θ)‖+ λfaceLface(x0, x̂0(θ)) (11)

where Lface is the face identity loss (Deng et al., 2019). and λL1 > 0 and λface > 0 are weight
parameters for each loss. The necessity of identity losses depends on the types of the control.
For some controls, the preservation of pixel similarity and the human identity are significant (e.g.
expression, hair color) while others prefer the severe shape and color changes (e.g. Artworks, the
species of Animal).

Existing diffusion models (Ho et al., 2020; Song et al., 2020a; Dhariwal & Nichol, 2021) adopt
the shared Unet architecture for all t, by inserting the information of t using sinusoidal position
embedding as used in the Transformer (Vaswani et al., 2017). With this shared architecture, the
gradient flow during DiffusionCLIP training can be represented as Fig. 3, which is a similar process
of training recursive neural network (Rumelhart et al., 1985).

3.1 INVERSION AND GENERATIVE PROCESS

As DDPM sampling process is stochastic, the samples generated from the same latent will be different
every time. This will hinder optimization by confusing the changes from the stochastic of the process
or our optimization. Even if the sampling process is the deterministic, the forward process of DDPM,
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where the image is noised randomly with different noise scale, is also stochastic, so the reconstruction
of the original image is not guaranteed. To fully leverage the image synthesis performance of diffusion
models with the purpose of image manipulation, we there require the deterministic process both in
forward and reverse direction with pretrained diffusion models for the successful image manipulation.

Accordingly, we adopt DDIM deterministic generative process of (Song et al., 2020a) and ODE
approximation of its reverse process as inversion process. The authors in (Dhariwal & Nichol, 2021)
founded that through these inversion and generative process, nearly perfect reconstruction can be
achieved with enough number of iterations. Specifically, the inversion process is represented as

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1εθ(xt, t) (12)

and the generative process from the obtained latent becomes

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1εθ(xt, t) (13)

where fθ is defined in (6).

To accelerate training, we found that the image is not required to be inverted until the last steps T , so
we invert the image into t0 ∈ [0, T ], which we call ‘return step’. We can further accelerate training
by using smaller steps of the inversion and generative process, denoted as Sinv and Sgen, respectively,
both in [0, t0]. We tried to find the optimal t0, Sinv and Sgen satisfying both of good quality of image
manipulation and the fast training. We discovered that when T is set to 1000 as common choice (Ho
et al., 2020; Song et al., 2020a; Dhariwal & Nichol, 2021), we can set t0 in [300, 600], and choose
Sinv and Sgen to 40, 6, respectively. Although this may give imperfect reconstruction, the identity of
the object that is required for training is preserved sufficiently. We show the results of hyperparameter
studies for Sinv, Sgen and t0 in Section 4.3. With these settings, the fine-tuning is finished in 1 ∼ 8
minuites on NVIDIA Quardro RTX 6000.

Figure 4: Novel applications of DiffusionCLIP.

3.2 NOVEL MANIPULATION APPLICATIONS

The fine-tuned models through DiffusionCLIP can be leveraged to carry out the several novel
applications. With existing works, users often need the combination of multiple models, tricky
task-specific loss designs or dataset preparation with large manual effort. On the other hand, our
method is free of such effort and enables applications in a natural way with the original pretrained and
fine-tuned models by DiffusionCLIP. The specific applications of our DiffusionCLIP are as follows.

Image translation into unseen domains First, we can translate the images from one domain into
another domain without seeing any images in both domains during the training of the models. This
application may be useful if it is hard to collect enough images to train with in both domains. Our
insight to solve this tough problem is to bridge between two other domains by inserting the diffusion
models trained on the dataset that is relatively easy to be collected. The researches in (Choi et al.,
2021; Meng et al., 2021) found that with pretrained diffusion models, images trained from unseen
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domain can be translated into the images in the trained domain. By combining this method with
DiffsuionCLIP where the images in trained domain can be translated into the unseen domain, we can
now translate the images from unseen domain to another unseen domain. Two representative image
translation, storke-based image generation in the unseen domain and portrait to Pixar characters
are described in Fig. 4(a)(b). In detail, the images in the source unseen domain (e.g. a stroke or
portrait) are first perturbed through the stochastic forward process of DDPM until enough time steps
when the domain-related component are blurred but the identity or semantics of object is preserved.
Next, the images in the trained domain (e.g. a photo of human face) is sampled with the original
pretrained model εθ. Then, the images are converted to the latent which can be reconstructed through
the ODE inversion process. Finally, the images in the target unseen domain (e.g. Gogh painting,
Pixar character) are generated through the generative process with the fine-tuned models εθ̂.

Figure 5: Comparison of the manipulation methods for a variety of text prompt. We use DDPM
models pretrained on CelebA-HQ 256 × 256 for DiffusonCLIP. We follow the official codes of
StyleCLIP and StyleGAN-NADA that use StyleGAN-ADA pretrained on FFHQ 1024× 1024.

Multiple attribute change by noise combination. We discover that by combining the noise pre-
dicted from multiple (say, M ) fine-tuned models during the sampling, multiple attributes can be
changed through only one sampling process without new training. As described in Fig. 4(c), we first
invert the image using normal image manipulation with the original pretrained diffusion model and
use the multiple diffusion models fine-tuned for the different controls. In specific, we can use the
following sampling rule.

xt−1 =
√
αt−1

M∑
i=1

γifθi(xt, t) +
√

1− αt−1
M∑
i=1

γiεθi(xt, t) (14)

where γi is the time dependent weights of the model satisfying
∑M
i=1 γi = 1 , which can be used for

controlling the degree of each change. We found that several main changes take place at different
steps depending on the types of controls. Therefore, by applying different weights of the models at
different step, we can change multiple attributes more successfully.

4 EXPERIMENTAL RESULTS

For all manipulation results by DiffusionCLIP, we use 256× 256 size of images. We used the models
pretrained on CelebA-HQ (Karras et al., 2017), AFHQ-Dog (Choi et al., 2020), LSUN-Bedroom,
LSUN-Church (Yu et al., 2015) datasets for manipulating images of human faces, dogs, churches and
bedrooms, respectively. For Celeba-HQ, LSUN-Church and LSUN-bedroom models, we used the
pretrained models in (Meng et al., 2021) and for AFHQ-Dog, we used models in (Choi et al., 2021).

For all experiments of DiffusionCLIP, we use Adam optmizer with an initial learning rate of 1e-6
which is increased linearly by 1.2 per 50 iterations normally. We set the weights of `1 loss and
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the face identity loss to 0.3 and 0.1 if used. We precomputed the latents of 50 real images of size
256× 256 through the inversion process and use them for fine-tuning the models.

As mentioned in Section 3.1, we set t0 in [300, 600] when total timestep T is 1000 and we set Sinv
and Sgen to 40 and 6, respectively, for training; and Sgen = 40, Sinv = 40 for the test time.

4.1 COMPARISON WITH OTHER CLIP-GUIDED MANIPULATION METHODS

For the comparison of DiffusionCLIP with other methods, we use the state-of-the-art CLIP guided
text manipulation methods, StyleCLIP (Patashnik et al., 2021) and StyleGAN-NADA (Gal et al.,
2021) where the manual labors for the target control is not required as ours. In StyleCLIP, the
latent of the pretrained StyleGAN is manipulated using the CLIP models with 3 approaches: latent
optimization, latent mapper, and global directions. Of those models, we use latent optimization and
global directions for the comparison. In StyleGAN-NADA, the pretrained StyleGAN is fine-tuned
guided by CLIP loss. We use the official pretrained models trained on 1024× 1024 images in FFHQ
(Karras et al., 2019) for both models. For GAN inversion of two methods, e4e (Tov et al., 2021),

Figure 6: More results of manipulation using DiffusionCLIP where the original pretrained models are
trained on CelebA-HQ, AFHQ-Dog, LSUN-Bedroom and LSUN-Church, respectively. The results
demonstrate various text-guided manipulation over the trained domains.
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and Restyle (Alaluf et al., 2021) with pSp (Richardson et al., 2021) inversion methods are used for
StyleCLIP and StyleGAN-NADA, respectively, as in the original papers.

In the second column of Fig. 5, we can see that the inversion method used in StyleCLIP and
StyleGAN-NADA fails to reconstruct the original images from the inverted latent, implying the
significant practical limitations. On the contrary, our method inverts the image almost perfectly
into the latent without any encoder or additional optimization. From the inversion, we can see that
DiffusonCLIP is comparable to the existing methods for in-domain manipulation, and to StyleGAN-
NADA for out-of-domain manipulation.

4.2 MORE RESULTS OF DIFFUSIONCLIP

In-domain and out-of-domain mage manipulations on various datasets. We show more exam-
ples of image manipulations by DiffusionCLIP using the diffusion models trained on three more
dataset: CelebA-HQ, AFHQ-Dog, LSUN-Bedroom, LSUN-Church. The results in Fig. 6 demonstrate
that the reconstruction is nearly flawless and images can be flexibly manipulated beyond the boundary
of the trained domains.

Figure 7: Examples of the novel applications of fine-tuned models using DiffusionCLIP.

Image translation into unseen domains. With the fine-tuned diffusion models using Diffusion-
CLIP, we can even translate the images in one unseen domain to another unseen domain. Here, we are
not required to collect the images in the source and target domains or introduce external models. In
Figs. 7(a)(b), we show the image translation results from the portrait artworks and animation images
to other unseen domains, Pixar characters, paintings by Gogh and Neanderthal men. Next, we show
the successful image generation in the unseen domains from the stroke which is the rough image
painting with several color blocks. These applications will be useful when the enough images for
both source and target domains are hard to be collected.

Multiple attribute change by noise combination. Finally, as shown in Fig. 7(c), we can change
multiple attributes in one sampling. We show the multiple manipulations of hair style, makeup and
Super Saiyan are conducted successfully.

4.3 ABLATION STUDY

Dependency on hyperparameters. We show the results of the reconstruction performance depend-
ing on Sinv, Sgen in Fig. 8(a) when t0 = 600. Even with Sinv = 6, we can see that the reconstuction
seems to preserve identity well and it can be used for training. However, there are minute artifacts.
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Figure 8: Comparison with respect to various hyperparameters.

Figure 9: Comparison between fine-tuning and latent optimization.

When Sinv = 40, the result of Sgen = 6 looks excellent but lose some high frequency details, but
it’s not the degree of ruining the training. When Sgen = 40, the reconstruction seems excellent
as we cannot differentiate the reconstruction with the result when Sgen = 200 and the original
images. Therefore, we just use (Sinv = 40, Sgen = 6) for the training and (Sinv = 40,Sgen = 40)
in the inference time. We also show two results of manipulation by changing t0 while fixing other
parameters. In case of skin color changes, 300 is enough. However, in case of the changes with
severe shape changes such as the Pixar requires stepping back more as t0 = 500 or t0 = 700 to change.
Accordingly, we set different t0 depending on the attributes.

Comparison between Latent Optimization and Model Fine-tuning Instead of fine-tuning the
diffusion model, one may consider latent manipulation. In Fig. 9, we display a series of the real
image manipulation given the text prompt by our fine-tuning method and latent optimization. We can
see that the manipulation results via latent optimization method failed to manipulate the images to
the unseen domain. This may be because the manipulation using latent optimization is restricted by
the learned distribution of the pretrained model. On the other hand, the proposed model fine-tuning
method shows superior manipulation performance.

5 CONCLUSION

In this paper, we proposed DiffusionCLIP, a method of text-guided image manipulation method using
the pretrained diffusion models and CLIP loss. Thanks to the near perfect inversion property, Diffu-
sionCLIP has shown the excellent performance for both in-domain and out-of-domain manipulation
by fine-tuning diffusion models. We also presented several novel applications of using fine-tuned
diffusion models.
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