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Abstract

Multimodal numerical reasoning, the ability to reason
with and integrate information across multiple modalities,
has become an increasingly important area of research in
both natural language processing (NLP) and computer vi-
sion (CV) domains. Multimodal numerical reasoning is de-
signed to extract information from multiple input modali-
ties, such as text, image, etc., and merge them into a com-
prehensive conclusion. In this survey, we review and pro-
vide an overview of the recent advancements in multimodal
numerical reasoning, including datasets,evaluation metrics
and methods. In particular, we focus on the emerging capa-
bilities of large language models (LLMs) in out-of-the-box
tasks of arithmetic, common sense, and symbolic reason-
ing.While we conducted experiments on GPT-3.5 turbo’s
mathematical information extraction for a single modality
limited by the openness of model functions.we also outline
some of the remaining limitations and future research direc-
tions in this field, including the need for more comprehen-
sive benchmarks and the development of models that can
reason with more complex and diverse modalities.

1. Introduction
Multimodal reasoning [2] is a fascinating area of re-

search that combines different modalities, such as language,
vision, and numerical data, to perform complex reason-
ing tasks. The ability to reason across multiple modali-
ties is a hallmark of human intelligence, and as such, it
has become a critical area of research in artificial intelli-
gence.Recent advances in natural language processing have
enabled the development of cutting-edge language models
[13] with impressive capabilities in reasoning over textual
data. To address this challenge, a surge of numerical and
arithmetic reasoning datasets have been proposed in recent
years to benchmark the capabilities of deep learning mod-
els.Multimodal numerical reasoning [8, 54] is particularly
challenging, where the integration of quantitative data with
other modalities can greatly enhance the reasoning process.
The recent advancements in multimodal numerical reason-

Figure 1. The main components of the content of the multimodal
numerical reasoning dataset are displayed. The top is the form of
the geometric data set, and the bottom is the form of the scientific
visual questioning reasoning data set.

ing using LLMs hold great promise for a wide range of ap-
plications.

In recent years, there has been a surge of interest in
multimodal numerical reasoning due to advances in deep
learning and the availability of large multimodal datasets.
This has led to the development of new models and tech-
niques for multimodal numerical reasoning.In particular,
LLMs emerge abilities in some arithmetic, general knowl-
edge, and symbolic reasoning tasks [57].Some large inte-
grated models with visual modules [59, 67] can understand
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text and images together to solve problems, identify rela-
tionships between visual elements in a graph, and even per-
form complex arithmetic calculations. This makes them
particularly well-suited for multimodal numerical reason-
ing tasks, which often involve combining information from
different sources to make inferences and solve problems.
However, there are also challenges associated with using
LLMs for multimodal numerical reasoning. For example,
they may struggle with certain types of reasoning tasks that
require more abstract or symbolic reasoning. Additionally,
the complexity of LLMs can make them difficult to inter-
pret and diagnose when errors occur.The solution of geo-
metric problems [7, 54] in multimodal numerical reasoning
is representative, and various neural network methods for
numerical reasoning have been effectively applied to solve
this complex task. In addition, researchers are gradually
exploring multimodal datasets and pre-training methods in-
volving specific domain knowledge for scientific question-
answering [34] in other STEM fields, such as chemistry and
physics.

Mathematical reasoning ability is an important reflection
of Numerical reasoning ability to some extent.In this sur-
vey paper,we review the progress of deep learning in the ar-
eas of numerical and mathematical reasoning.Specifically,
we analyze various datasets and evaluation metrics in Sec-
tion 2, and summarize the different methods used in multi-
modal numerical reasoning in a timeline, integrate the limi-
tations they involve, and present the latest models and tech-
niques for multimodal numerical and mathematical reason-
ing.In addition, we designed corresponding prompts to test
part of the data in the GeoQA [7] and Lı̄LA [38] datasets
on GPT series models such as GPT3.5, hugginggpt [53],
etc. Through further comparison with the existing bench-
marks, we found that the models has insufficient arithmetic
and geometric theorem reasoning ability for geometrically
related mathematical problems expressed in single or multi-
ple mode. According to this, we put forward some possible
development directions in the future.

2. Datasets,Tasks and Evaluations
In this section, we present a collection of recent datasets

on multimodal numerical reasoning, ranging from geomet-
ric problem-solving to general numerical reasoning ques-
tions, covering fields such as natural science, social science
and so on.We have summarized the specific information of
the datasets in Table 1.The tasks of multimodal numerical
reasoning are mainly divided into scientific visual reason-
ing question answering and geometric problem solving. We
will explain and categorize the collected datasets into the
two tasks mentioned above.The evaluation metrics also vary
depending on the characteristics of different datasets and
their corresponding solutions. Therefore, we summarized
the commonly used evaluation metrics on these datasets.

2.1. Geometric problem datasets

Due to its data characteristics and strong correlation be-
tween text and graphics, geometry problem can serve as
one of the benchmarks for multimodal numerical reason-
ing. Although automatic geometric problem solving has
been a long-standing benchmark in the AI field, there are
few suitable datasets available due to the complexity and
diversity of the information contained in geometric prob-
lems.The format of a typical geometry dataset is shown in
Figure 1.

Early on, there were small-scale datasets that relied
heavily on manual annotation to assist geometric problem-
solving models [52] and GEOS [51] is a dataset of SAT
plane geometry questions with 186 questions. Based on
GEOS, the GEOS+ [47] add some more entities, functions
and predicates with 1406 questions.Then the Geometry3K
[33] was proposed, which not only increased the quantity
of data but also enriched the geometric problem types in
terms of geometric shapes and variable operators. In the
same time, a larger and more diverse dataset, GeoQA [7],
included clear annotations of the problem-solving process.
It improved the universality and interpretability of multi-
modal numerical reasoning. Later on, Cao [3] annotate
2,518 geometric problems with richer types and greater dif-
ficulty to form an augmented benchmark dataset GeoQA+,
containing 7,528 questions totally. UniGeo [6], based on
the calculation problems in GeoQA, collected and supple-
mented 9,543 geometric proving problems, defined 37 rea-
son proof explanations, multiple operators and geometry el-
ements, using concise annotations to analyze the proof pro-
cess. As an expansion of Geometry3K, PGDP5K [65] have
more complex layouts such as multiple classes of primitives
and complicated primitive relations. Newly, [66] build a
new largescale GPS dataset called PGPS9K labeled both
fine-grained diagram annotation and interpretable solution
program. It is the largest and the most complete annotation
dataset for GPS up to now.

2.2. Scientific visual reasoning question answering

Visual Question Answering (VQA) [1]is one of the most
widely studied visual language tasks, and most visual rea-
soning tasks are formulated as VQA tasks, aiming to evalu-
ate the specific reasoning abilities of visual language mod-
els. Many works have been done to study and summa-
rize it [15]. If the image in visual question answering has
numerical relationships or requires numerical calculations
combined with text explicitly or implicitly, we can also in-
clude it in the benchmark of multimodal numerical reason-
ing. Currently, visual question answering datasets related
to multimodal numerical reasoning are all included datasets
with broader domains, and there is no separate visual ques-
tion answering dataset specifically for numerical reasoning.
The general format of scientific question answering and rea-
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#Q #I Grades Subject Evaluation Metric Data Composition An In

GEOS 186 186 6-10 Math(geometry) Acc,Pre,Rec,F1 t,d,c,a é Ë
GEOS++ 1406 1406 6-10 Math(geometry) Pre,Rec,F1,NMI t,d,c,a é Ë
Geometry3K 3002 2342 6-12 Math(geometry) Acc t,d,c,l,a é Ë
GeoQA 4998 4998 6-12 Math(geometry) Acc t, d, c, a, e, pt, k, p Ë é
GeoQA+ 7528 7528 6-12 Math(geometry) Acc t, d, c, k, a, e, p Ë é
Unigeo 9543 9543 6-12 Math(geometry) Acc-top1,10 t, d, c, a, e, pt, k, p Ë é
PGDP5K 5000 5000 6-12 Math(geometry) Pre,Rec,F1 t,d,c,l,a é Ë
PGPS9K 9022 4000 6-12 Math(geometry) Acc t,d,c,l,p Ë Ë

Nuts&Bolts 4941 1019 10-12 Physics Jaccard Similarity,F1 t,d,l,a Ë Ë
IconQA 107439 96817 Pre-K-3 Math Acc t,d,c,a é é
ScienceQA 21208 10332 1-12 Na, So, La Acc/BLEU/ROUGE t,d,c,a,e Ë é

Table 1. Datasets concerning multimodal numerical reasoning. #Q: number of questions, #I: number of images, Data Composition: the
main components of data (t: question text, d: diagram, c: choices, l: logic form(translate text or diagram into formatted text), a: answer,
e: solving explanation, pt: problem type, k: knowledge points, p: annotated programs), An: annotation (annotate the problem-solving
process with standardized language), In: interpretation (interpret the charts and text into formal language). In ScienceQA, Na, So, La
means Natural, Social, Language Science, respectively.

soning datasets is shown in Figure 2.
The ScienceQA [34] proposed in has more diverse do-

mains with corresponding lectures and explanations, cov-
ering 3 subjects, 26 topics, 127 categories, and 379 skills,
including physics, chemistry, geography, measurement, and
other fields involving simple or complex numerical reason-
ing skills. It is designed to study the understanding of chain
of thought (CoT) under different modal information. In ad-
dition, there is a dataset called IconQA [37], which focuses
on the inference and understanding of abstract graphs with
rich semantics. The questions involve 13 skills, and several
skills such as geometry, algebra, measurement, and proba-
bility require the model to have some numerical reasoning
ability. Besides, Nuts&Bolts [48] is a dataset of physics
questions taken from three popular pre-university physics
textbooks with 4941 questions and annotated ground truth
logical forms for most data. But this dataset is not open
source.

2.3. Evaluations

Since most of the datasets are in the form of multiple-
choice questions, most datasets adopt answer accuracy as
the evaluation metric, such as GeoQA [7], GeoQA+ [3],Ge-
ometry3K [33], It is worth noting that in the case where
Inter-GPS [33] fails to output the numerical value of the
problem objective within the allowed steps, it will randomly
select one from the four candidates. UniGeo [6] follows Is-
arStep [29] and adopts top-1 accuracy and top-10 accuracy
to evaluate proofs. PGPS9K [66] evaluates performance
based on the accuracy of geometric solvers at two levels:
numerical answer and solution program. At each level,
there are three evaluation patterns: completion, choice, and
top-3.

Furthermore, GeoS++ [47] utilizes two commonly used
machine translation evaluation metrics: METEOR [11] and
MAXSIM [4], and incorporates the evaluation scores as
features. While METEOR computes n-gram overlaps with
precision and recall control, MAXSIM performs bipartite
graph matching and maps each word in one axiom to at
most one word in the other. Additionally, they employ
Rouge-S [30] as a text summarization metric. On the other
hand, PGDP5K [65] has made more nuanced distinctions in
their evaluation metrics. For geometric primitive extraction,
there are two types of evaluations: parsing position evalua-
tion for the Hough transform approach, and mask evaluation
designed for the instance segmentation approach. Regard-
ing relation parsing, they divide a multivariate relation into
multiple binary relations, and evaluate the precision, recall,
and F1 of binary relation terms. The results are evaluated
on four indicators based on the F1 score.

For scientific visual reasoning question answering
datasets, Nuts&Bolts [48] use Jaccard similarity [27]and
F1 score. In ScienceQA [34], they use accuracy metrics
for multi-class classification problem with multiple options.
For generated lectures and explanations, they use automatic
metrics Bleu [39],Rouge [30],Sentence-bert [46], and hu-
man scores. In IconQA [37], the metric of Top-5 accuracy
is used to evaluate.

3. Deep Learning Models for Multimodal Nu-
merical Reasoning

Here we review earlier work on deep learning methods
associated with numerical or mathematical reasoning.
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3.1. Exploring reasoning ability

As early as the 2000s, machine learning and mathemati-
cal reasoning were explored by researchers. Stefan Schultz
was the first to use machine learning to standardize the
search process [50]. By the 2010s, the rapid development
of big data and computer hardware makes solvers related to
numerical reasoning play a role in education, finance, med-
ical and other fields. The end-to-end deep learning model
has been successfully applied to multimodal mathematical
reasoning tasks [22, 54].

Multimodal reasoning tasks are modeled as visual ques-
tion answering(VQA) tasks. Multimodal reasoning and fu-
sion are the core components of current VQA models. A
simple network architecture is used to deal with images
of linear algebraic equations and a natural language prob-
lem based on variables in the equation. This system pro-
vides a foundation for visual understanding, recognition of
numbers, variables, operators, and conceptual understand-
ing of coefficients, constants, and variables, as well as in-
cluding higher levels of comprehension. Mathematical rea-
soning is formalized as a sequence generation task using
common encoders, as well as decoders, which handle the
representation and interaction of images, questions, and an-
swers.Visual encoding is typically performed using CNN,
ResNet, or Faster-RCNN, while text representation is ob-
tained using GPU or LSTM. Multimodal fusion models,
such as BAN [24], FiLM [41], and DAFA [16], are em-
ployed to learn a joint representation from different modal-
ities.

3.2. Neural networks for numerical reasoning

Similar to early versions of these simple network archi-
tectures, these models have many limitations. They lack
interpretability and are still insufficient for reasoning and
fusing multimodal clues. Furthermore, in multi-modal rea-
soning tasks modeled as VQA, abstract diagrams, such as
IconQA [37], which contain more semantic information re-
lated to different visual reasoning skills than natural images
do in real-world scenes. Such datasets and their baseline
models, such as Patch-TRM [37], have demonstrated su-
perior performance on reasoning tasks related to numeri-
cal skills. By utilizing large-scale corpora and the Trans-
former model [9, 12, 25, 32], pre-trained language models
have shown great potential in solving various mathematical
problems.

However, these pre-trained language models or visual
models based on ViT architecture [12,37,63] are not specif-
ically trained on mathematical data or diagrams.Compared
to natural language tasks, they tend to perform relatively
worse on tasks related to numerical reasoning. In human
cognition, a single sensory input is often insufficient to sup-
port high-level reasoning and decision-making. Instead,
it is necessary to combine multiple sensory inputs to per-

form reasoning. Similarly, multimodal reasoning abilities
must be built upon unimodal reasoning abilities. In previ-
ous studies by scholars in related fields on math word prob-
lems(MWPs) [8], it can be observed that NLP models have
limitations in understanding mathematical or scientific data,
such as shallow heuristics [40].

3.3. Reasoning methods for geometry problems

One common way to assess the capacity of deep learn-
ing models for advanced multi-modal reasoning is through
the use of geometry problem solving as a testing ground.
The method of automatically solving geometric problems
can be traced back to a stage that was highly dependent
on a limited set of manually crafted rules [49, 51], and its
solving performance was not ideal. In recent years, some
methods for solving geometric problems have been pro-
posed to promote research in this field. An interpretable
framework for solving geometric problems has been pro-
posed [33], which is characterized by a symbolic geomet-
ric solver that parses diagrams and texts into a unified for-
mal language [33, 51, 65] and iteratively updates the con-
dition status through symbolic reasoning until the target
is searched. Chen et al.propose Neural Geometric Solver
(NGS) [7] to address geometric problems by jointly un-
derstanding text, diagram, and then generating explainable
programs.Then also present a unified multitask Geometric
Transformer framework, Geoformer [6], to tackle calcula-
tion and proving problems simultaneously in the form of se-
quence. Cao and Xiao proposed a dual-parallel text encod-
ing method, DPE-NGS, based on the issue that NGS lacks
the ability to extract features from long texts [3]. It should
be noted that existing large pre-trained language models
(LMs) can encode a vast amount of linguistic information,
but advanced reasoning skills such as numerical reasoning
are difficult to learn solely from language modeling ob-
jectives [17],and often requires additional fine-tuning and
modification for optimal performance. Pre-training meth-
ods proposed by relevant researchers, such as MEP [6] and
the inferable number prediction task [42], as well as skill in-
jection methods [17], have significantly improved the abil-
ity of pre-trained language models to generalize to mathe-
matical problems.

Currently, there is still a significant performance gap in
solving geometry problems using neural solvers [3,6,7,22].
The main reason is the inadequate representation of di-
agrams and the difficulty of cross-modal fusion. Exist-
ing neural solvers adopt a multimodal framework similar
to processing natural images. However, in geometric dia-
grams, the spatial relationships are complex, and the primi-
tives are thin and overlapping, making it difficult to extract
fine-grained features, and even disrupting the structure and
semantic information.PGPSNet [66]utilizes CNN to learn
the coarse-grained global features of diagrams, and en-
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Figure 2. A timeline of representative multimodal large models in
the past three years, primarily based on the publication dates of
their technical papers.

codes sub-sentences of text to describe finer-grained struc-
tures and semantic information within the diagrams. This
integrated approach further enhances the performance of
geometric solvers.The analysis of geometric diagrams and
cross-modal fusion will remain a challenging yet promising
area for exploration.

4. LLMs for Numerical Reasoning

Language ability does not equal to ”thinking” or ”rea-
soning” in LLMs. One of the long-term goals of artificial
intelligence is to develop machines with the ability to rea-
son mathematically. The N2Formal team at Google Re-
search Center, for instance, envisions creating an automated
mathematician [43]. Large Language Models(LLMs) has
already beaten a lot of expectations as to what is possible
in automated Numerical reasoning and have recently revo-
lutionized the field of natural language processing(NLP).

4.1. Reasoning ability of LLMs

An ability is emergent if it is not present in smaller mod-
els but is present in larger models [57]. In mathemati-
cal problem-solving, logical reasoning, and mathematical
symbol manipulation, emergent abilities often appear sud-
denly and unpredictably at a particular model size. But
the model size highly correlated with the performance of
larger models is not the only scale to measure emergent
abilities. Emergent abilities are an interesting and important
phenomenon. However, existing LLMs have weaknesses in
complex reasoning. For example, Hendrycks et al. have
shown that pre-training GPT series models with smaller pa-

rameter sizes on mathematical corpora results in higher ac-
curacy than GPT-3 175B without pre-training [19]. Bang et
al. conducted a technical evaluation of ChatGPT’s strengths
and limitations in reasoning across 10 different categories,
including numerical reasoning. They identified weaknesses
in its ability to perform inductive reasoning, mathematical
reasoning, and multi-hop reasoning, among others [2].

4.2. LLMs prompting methods

Especially when the language model is large enough
(>100B parameters), it exhibits emergent abilities to per-
form complex multi-step reasoning with only a few ex-
amples provided [56, 58]. By combining some advanced
prompting strategies, the understanding ability of LLMs can
be further improved.Different prompting strategies, such as
zero-shot, few-shot, and CoT [58], have been successfully
applied to numerical reasoning tasks. The reasoning abil-
ity of LLMs is influenced by the complexity of the prompt,
and extending the idea of self-consistency to complexity
consistency shows that complex prompts achieve better per-
formance than simple prompts [14]. MathPrompter utilizes
zero-shot prompting technology to generate multiple alge-
braic expressions or Python functions that solve the same
mathematical problem in different ways, improving the con-
fidence level of the output results [21]. Prompting exam-
ples for more complex problems involving heterogeneous
information, such as mathematical reasoning with tabu-
lar data, have also been proposed [36]. Progressive-Hint
Prompting (PHP) [68] has proposed a new approach for
LLMs to reconsider problems, rather than just focusing on
the hand-designed prompts for the problems and answers.
This approach has achieved significant performance im-
provements in mathematical reasoning tasks and has outper-
formed state-of-the-art results on multiple reasoning bench-
marks. As LLMs have developed, prompts have been able
to achieve performance comparable to or even better than
full fine-tuning on the training set [14, 26, 28].

4.3. Multimodal numerical reasoning

Many researchers have explored various methods of in-
teracting with LMs to input or output data in multiple
modes, as displayed in Figure2. For example,the initial
and most primitive way was to use programming code as
an intermediate medium between visual and linguistic rep-
resentations [10,45]. However, this approach can only gen-
erate symbolic images, and its quality cannot compare to
the images generated by modern text-to-image models.The
current main methods involve prompting language models
(LLMs), fine-tuning small-scale models, or training a visual
module, connecting the language model with Visual Prompt
Generator(VPG). The most direct way to utilize LLMs for
reasoning is to convert multimodal information input into a
single modality, namely textual language.Like X-LLM [5],
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Format(prompt) Method Dataset Total(%) Angle(%) Length(%) Other(%)
W/O Program

GPT-3.5
Turbo

GeoQA
30.27 31.75 24.07 10.71

W/O Diagram 35.35 40.24 31.40 32.76
Text-Diagram 36.22 41.57 33.62 23.91

Text-Only Lı̄LA 30.17(IID)↑1.87 20.62(OOD)↑8.62 - - -

Table 2. Results on the GeoQA and Lı̄LA dataset by GPT-3.5 Turbo.It should be noted that GeoQA uses accuracy as its evaluation metric,
while Lı̄LA uses F1 score as its evaluation metric.And the results of Lı̄LA are compared with the results obtained using GPT-3 in the
original paper. Besides, we evaluate both in-distribution (IID) and out-of-distribution (OOD) performance for datasets in Lı̄LA.

X2L interface is utilized to convert multimodal inputs (im-
ages, speech, videos) into foreign languages and input them
into a large language model (ChatGLM). X-LLM aligns
multiple frozen unimodal encoders and a frozen LLM us-
ing the X2L interface.

LLMs have sparked a transformation in the field of mul-
timodal understanding, shifting from traditional pre-trained
visual language models (VLM) to large language model-
based visual language models (VL-LLM). By integrating
a visual module into LLM, VL-LLM can inherit the ex-
isting knowledge, zero-shot generalization ability, reason-
ing capability, and planning ability of LLM. Extracting vi-
sual features and image captions using a captioning model
or frozen pre-trained image encoders and then combining
the captions with the original information to input into
LLMs [18, 20, 34, 60, 61]. A two-stage framework called
multimodal-CoT [67] has been proposed to address the sig-
nificant information loss and lack of spatial coordination
during the captioning process. In this framework, the T5
model [44] is fine-tuned to integrate visual and language
representations for performing multimodal CoT. The PNP-
VQA approach [55], aiming to address the issue of miss-
ing image information in PICa [60], incorporates an Image-
Question Matching module. This module selects relevant
patches from the image that are most related to the question.
Captions are generated specifically for these patches, which
are then fed into UnifiedQAv2 as context. This process
ensures that the generated captions are question-specific.
Moreover, UnifiedQAv2 [23] is utilized for PLM selection,
enabling zero-shot VQA capability. Visual ChatGPT [59]
extends the advantages and potential of multimodal-CoT in
a specific domain, such as ScienceQA [34], to a wide range
of tasks. It is based on specific principles that govern how
ChatGPT outputs calls and how to invoke the Visual Foun-
dation Models (VFMs). This includes defining the input
and output formats. Subsequently, an executor parses and
executes the instructions, returning the results back to Chat-
GPT. Additionally, HuggingGPT [53] combines hundreds
or even thousands of models from HuggingFace and GPT,
allowing it to tackle 24 different tasks.

The general multimodal reasoning model does indeed
focus on the breadth of tasks, but in the domain of nu-

merical reasoning, it is important to pay more attention to
accuracy and precision.Chameleon [35] enhances LLMs to
help address inherent limitations such as the inability to ac-
cess up-to-date information, utilize external tools, or per-
form precise. mathematical reasoning.With the introduction
of the plugin feature in GPT-4, previous constraints have
been overcome. Furthermore, models like MiniGPT-4 [69],
which freeze the visual and language modules during pre-
training and instruction fine-tuning stages while adjusting
a limited number of parameters, or models like Kosmos-
1 [20], which freeze the visual module and train the lan-
guage module, or models like LLaVA [31], which freeze
the visual module during instruction fine-tuning and train
the language module, all limit the alignment between differ-
ent modalities and lack joint training on single-modal and
multi-modal data, making it difficult to effectively unleash
the various potentials of large-scale models. In contrast,
mPLUG-Owl [62] trains the visual module using multi-
modal data while freezing the language module, allowing
the visual features to align with the language features. How-
ever, the initial pre-training of the visual module and the
loading of the base LLM incur significant computational
costs. VPGTrans framework [64] can greatly reduce the
computational overhead and required training data for train-
ing VL-LLM, achieving comparable or better results with
just around 10% of the data and computation time. This
provides greater possibilities for most researchers to cus-
tomize their own VL-LLM.

4.4. Experimental setting

We tested the ability of GPT-3.5 Turbo to solve geometry
problems using some data from GeoQA and Lı̄LA [38] .
Due to interface limitations, we input samples containing
images into the model in a language form that the model
could understand through designed prompts.

Firstly, an Inter-GPS diagram parser is used to extract
the structural and semantic information of certain images in
GeoQA, which serves as additional context for paired ques-
tion text. Considering the ChatGPT API’s good support
for LaTeX interpretation, the extracted information is fur-
ther converted to LaTeX format and included as part of the
prompts. Additionally, the problem-solving process and so-
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Classification of
Question Types

Number of
Question Types

Acc(%)
IID OOD

Comparison
Calculation Problem 129 15.50 12.40

Coordinate
Calculation Problem 27 18.52 7.40

Length
Calculation Problem 300 25 9.67

Area
Calculation Problem 538 18.77 8.56

Volume
Calculation Problem 78 25.64 7.69

Others 312 22.76 13.14

Table 3. Classification of Question Types and Accuracy in the
Lı̄LA dataset

lution programs from the original dataset are incorporated
as the thinking chain and answer references, respectively,
in the prompt examples. The correctness of multiple-choice
questions in the context of few-shot learning can be tested
by conducting In-context Learning tests. In this approach,
the model is provided with a small number of examples
(e.g., two) for each task or question type, allowing it to learn

Figure 3. An example of a prompt about a GeoQA sample.

the patterns and context necessary for accurate answer-
ing. By evaluating the model’s performance on a sepa-
rate set of single-choice questions, we can assess its ability
to generalize and provide correct answers in similar con-
texts.For the geometry questions in the Lı̄LA dataset, ran-
domly select three examples using both the IID and OOD
strategies (3-shot). Additionally, ablation experiments were
conducted on the prompts in the GeoQA dataset,as shown
in the Figure3.

Our experimental results on Lı̄LA show overall improve-

ments compared to GPT3, but there is not much difference
on Geoqa compared to earlier old methods. The main rea-
son for this could be the uncertainty caused by random se-
lection, leading to an increase in test variance. ChatGPT
has high instability in selecting this type of contextual ex-
amples. Using policy gradient descent [36] may lead to
better results. Another reason is to consider how to effec-
tively convert visual information into language that Chat-
GPT can understand.In comparison to the short problem
texts of Geometry3K, GeoQA’s question text contains all
the variable information required in the problem-solving
program. Therefore, the inclusion of image information
does not provide a significant advantage.

Result Analysis. The results of our experiment are
shown in Table 2. Furthermore, we classify the data in the
Lı̄LA dataset into the following types and calculate their ac-
curacy in Table 3:

• Comparison calculation problems, refer to a type of
geometry problems that involve comparing the shapes
and sizes of two or more geometric figures to solve for
an unknown value.

• Coordinate calculation problems, refer to the type
of geometry problems that require calculating coordi-
nates in two or three dimensions to solve problems re-
lated to the area, perimeter, distance, and other proper-
ties of geometric figures.

• Length calculation problems, refer to the type of ge-
ometry problems that require calculating the length of
geometric figures such as line segments, polylines, and
polygons to solve problems.

• Area calculation problems, refer to the type of ge-
ometry problems that require calculating the area of
geometric figures to solve problems.

• Volume calculation problems, refer to the type of ge-
ometry problems that require calculating the volume of
geometric figures to solve problems.

Error Analysis. Even though we employed a 3-shot
prompt scheme, the performance of GPT-3.5 Turbo is still
relatively weak due to the need for improvement in its math-
ematical reasoning ability. Therefore, there are not many
questions that can be correctly answered. To facilitate fur-
ther research, we selected one incorrect question from each
of the two types of questions: comparative calculation and
coordinate calculation. Please refer to the failure cases in
Figure 4.The failure cases can be divided into two types:
a) The model fails to understand the different meanings of
numerical values in geometric problems and applies them
to different formulas. b)The model cannot perform calcula-
tions correctly by combining geometric space with graphi-
cal formulas.
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Figure 4. Two examples with predictions from GPT-3.5 Turbo.

5. Future Work

We identified the limitations of existing work, which
served as inspiration for our reflections on future research
directions. There is significant room for exploration in the
field of multimodal numerical reasoning.

5.1. Specialized datasets

Although we listed some datasets related to multimodal
numerical reasoning in Chapter 2, most of them are fo-
cused on geometry calculations in mathematics and some
general science-related question-answering tasks involving
numerical reasoning [3, 6, 7, 33, 47, 51, 52, 65, 66]. Geom-
etry calculation tasks are relatively clear examples of mul-
timodal numerical reasoning related datasets. However, in
the fields of science and engineering, there are also many
applications that require the integration of multimodal in-
formation to infer the final result, such as geographic sur-
veying, physical motion distance-speed information, chem-
ical formula formulations, mathematical reasoning with im-
age data, etc. However, on datasets such as ScienceQA [34]
and IconQA [37], most questions are still focused on gen-
eral science question-answering tasks related to natural im-
ages, and there are only a small number of questions that
involve in-depth numerical reasoning. Therefore, there is
still a lack of specialized datasets for science and engineer-
ing fields in the research of multimodal numerical reason-
ing. In future research, collecting and annotating datasets
specifically for these fields can help promote the training
of models and exploration of their capabilities. In addition,
finer-grained classification and analysis of the possible nu-
merical capabilities in the data set is also necessary to ex-
plore the problem-solving ability of the model, such as the
analysis of numerical certainty, and the analysis of the con-
sistent ability of images and text.

5.2. More effective prompts

Considering the limitations of current models in
problem-solving, it is possible to design more appropri-
ate and effective prompts.Prompt engineering is becoming
more and more important in the era of large models, espe-
cially in mining the emerging capabilities of large language
models. The thought chain prompt method shows good per-
formance, and we have also made some discussions in the
paper, such as [61] using the prompt method call tool to
mine and expand the multimodal reasoning ability of LLMs.
In our final experiments, we also adopted fixed-designed
template hints to guide LLMs to generate answers in the
format we need. Sometimes an effective prompt may come
from a sentence [26], or it may be a well-designed template.
In future work, we can think more about the techniques of
prompt engineering and analyze the characteristics of multi-
modal numerical reasoning. For example, the prompt exam-
ples given can be how images and texts express the human
way of thinking consistently.

5.3. Instruction fine-tuning applied to multi-modal
problem solving

Researchers explored the method of LLM instruction
tuning to make LLM follow natural language instructions
and complete real-world tasks, and the results showed that
its zero-shot generalization ability was significantly im-
proved. In addition to its applications in NLP tasks, this
method can also be applied to the multi-modal field of com-
puter vision [31]. Futhermore, in future work on multi-
modal numerical reasoning, instruction fine-tuning can be
considered by combining existing multi-modal reasoning
datasets for manual annotation or using LLM to generate
some multi-modal reasoning instructions to follow the data,
and then selecting some evaluation metrics or scoring mod-
els for multi-modal reasoning. Instruction fine-tuning can
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be used to fine-tune LLM to make it more suitable for mul-
timodal reasoning tasks.

5.4. Generating questions

In the field of multimodal numerical reasoning, generat-
ing questions is a viable direction for education, testing, and
data analysis. It can generate suitable questions that involve
multimodal numerical reasoning skills, such as mathemati-
cal and geometric problems. This can be helpful for dataset
expansion and model inference capability improvement.But
the difficulty levels of generating questions and the reliabil-
ity of generalizing to a wider range of numerical values still
need to be examined. And there are some challenges that
need to be addressed: One of the challenges is the difficulty
level of the generated questions, which should be appro-
priate for different target audiences and maintain consistent
difficulty levels, another challenge is the semantic consis-
tency of the multimodal information in the generated ques-
tions. Generating suitable images relies on specific meth-
ods, and abstract image generation is different from natural
image generation. Currently, there is limited research in this
area, and maintaining consistency between different modal-
ities is also a research issue that needs to be considered.

5.5. Complex abstract graphs processing

There is room for improvement in the fine-grained pro-
cessing and modal fusion capabilities when dealing with
complex abstract graphs.In multimodal numerical reason-
ing, the data images are often abstract images, which re-
quire analysis and processing of multiple layers of informa-
tion and details. Current models, whether neural network
models for image processing or large language models, still
lack the ability to handle abstract images effectively. In
Patch-TRM [37], experiments on the abstract dataset of
IconQA showed good performance, but there is still a need
to develop new methods for processing the information in
mathematical and geometric images. Additionally, the abil-
ity to align abstract images with numerical text also requires
improvement in model capabilities.

5.6. Enhance LLMs’ reasoning abilities

Lastly, injecting domain-specific knowledge from ex-
isting research areas into LLMs to enhance their reason-
ing abilities, rather than solely relying on external tools
for assisted computation, or exploring untapped potentials
when conditions permit, could yield significant advance-
ments.LLMs have shown excellent performance in lan-
guage reasoning expression, and the emergence of gener-
ative capabilities provides possibilities for exploring the ca-
pabilities of large language models. However, given the
current limitations of large language models in multimodal
numerical reasoning, many studies have attempted to call
upon external tools for assistance, such as the recent col-

laboration with Wolfram, which has impressed many re-
searchers. However, given the complexity and computa-
tional cost of these external tools, it is still necessary to en-
hance the reasoning and multimodal processing capabilities
of LLMs themselves. This requires injecting more domain-
specific knowledge into the models to better integrate and
process this information.

6. Conclusion
In this paper, we conducted a comprehensive survey

into multimodal numerical reasoning. We reviewed var-
ious datasets and their evaluation criteria that have been
employed, and discussed the methods that have been em-
ployed, including early symbolic solvers, subsequent neu-
ral networks, and more recently, large language models.We
also identified deficiencies and limitations in the existing
datasets and methods for multimodal numerical reason-
ing. Finally, we outlined directions for future research
and emphasized the potential for further exploration in this
field. Through our investigation and summary of multi-
modal numerical reasoning, we hope to provide interested
researchers and practitioners with useful information and
inspiration.
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