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Automatic and Aligned Anchor Learning Strategy for Multi-View
Clustering

Anonymous Authors

ABSTRACT
Multi-View clustering (MVC) commonly utilizes the anchor tech-
nique as a strategic approach to mitigate the computational com-
plexity associated with large-scale data. Existing methods generally
assume a pre-selection of anchors to facilitate subsequent clustering
tasks. However, the determination of the optimal number of anchors
is often non-trivial and necessitates their treatment as a tunable
parameter, thereby incurring additional computational overhead.
Moreover, it is not reasonable to assume an identical number of
anchors across all views, as this assumption restricts the represen-
tational capacity of anchors in individual views. To address the
above issues, we propose a view adaptive anchor multi-view clus-
tering called Multi-view Clustering with Automatic and Aligned
Anchor (3AMVC). We introduce a Hierarchical Bipartite Neighbor
Clustering (HBNC) strategy to adaptively select a suitable number
of representative anchors from the original samples of each view.
Specifically, when the representative difference of anchors lies in a
acceptable and satisfactory range, the HBNC process is halted and
picks out the final anchors. Moreover, we propose an innovative
anchor alignment strategy in response to the varying quantities of
anchors across different views. This approach initially evaluates the
quality of anchors on each view based on the intra-cluster distance
criterion and then proceeds to align based on the view with the
highest-quality anchors. The carefully organized experiments well
validate the effectiveness and strengthens of 3AMVC.

CCS CONCEPTS
• Computing methodologies; • Cluster analysis; • Theory of
computation; • Unsupervised learning and clustering;

KEYWORDS
Multi-view Clustering, Large-scale Clustering, Anchor Graph Clus-
tering

1 INTRODUCTION
Multi-view Clustering (MVC) [13, 39, 40, 50] generally delves into
the intricacies of the similarity relationships among sample pairs,
and constructs a graph matrix that captures the underlying struc-
ture and relationships within the dataset, thereby enabling the
accurate completion of the clustering task. MVC typically begins
by meticulously constructing individual graph structures for each
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distinct view. Subsequently, these distinct graphs are synthesized
through a fusion process designed to extract a consensus graph
with enhanced quality [8, 20, 36, 42]. For example, Kang et al. [8]
unified the exploration graph structure, fusion graph and spectral
clustering process in one step. Wang et al. [36] introduced rank
constraints to individual graphs in each view, and then integrated
these high-quality graphs to obtain a clearer graph of the consen-
sus clustering structure. Wu et al. [42] proposed a voting model
for extracting neighbors across views, which can directly obtain
clustering labels by skipping the traditional spectral decomposition
procedure.

Although a substantial number of research affirming the capa-
bility of MVC in enhancing the clustering performance, the sheer
scale of data encountered in practical applications still remains
a formidable challenge [4, 27]. Traditional MVC methods, which
necessitate the construction of graph matrices at a minimum cost
of the square of the sample size 𝑛, are rendered powerless in the
face of large-scale datasets [7, 9, 48]. The anchor graph strategy
[16, 28, 31, 32, 38, 43, 49, 50] can address the challenges posed by
large-scale data application scenarios. Its basic idea is to approxi-
mate the overall sample using𝑚 anchors on each view. Obviously,
the consensus anchor graph has a significant impact on perfor-
mance. Consequently, a multitude of studies are dedicated to ex-
ploring the selection and fusion processes of anchors, aiming to
enhance the quality of the consensus anchor graph [32, 37, 44, 50].
K-means becomes the mainstream anchor generation method be-
cause of its linear complexity and the ability to preserve the inherent
characteristics of the clustering structure. Traditional methods such
as [44, 50] use K-means to select anchors on each view and then
subsequently fuse them. Sun et al. [32] employed the direct opti-
mization of the consensus anchor matrix, replacing the process
of individual view optimization followed by the fusion of anchor
matrices. Wang et al. [37] identified the Anchor-Unaligned Prob-
lem (AUP), and performed extensive experiments to demonstrate
that the alignment of anchors exerts a profound influence on the
performance of clustering.

Despite that the aforementioned approaches have effectively
improved the quality of anchor graph and improved the adapt-
ability of multi-view clustering tasks in large-scale data scenarios,
they collectively face an limitation, i.e., the selection of anchors
necessitates supplementary procedures. The majority of existing
approaches employ the correlation number of the cluster count
𝑘 [14, 35] or the correlation number of the sample size 𝑛 [12, 28]
to judiciously determine the optimal quantity of anchors. Even if
the K-means method may preserve the clustering structure to a
certain degree, the method of selecting tentative values struggles
to approximate the optimal anchors, let alone random sampling.
Additionally, although Wang et al. has delved into establishing the
correct correspondence between anchors across views [37], it does
not necessarily select the view with the highest quality anchor

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The framework of the traditional anchor alignment method (Left) and the proposed 3AMVC (Right). The traditional
alignment framework fixes the same number of anchors𝑚 for each view, and may choose a baseline view with poor quality of
anchors. The proposed 3AMVC method adaptively selects anchors of superior quality and accomplishes the alignment task
utilizing the baseline view that demonstrates the most exemplary performance.

graph as the reference for alignment. As far as we know, there
exists no universal framework capable of automatically selecting
high-quality anchors and aligning them based on the optimal view.
This is largely because that it is inherently a challenging problem
to perform clustering with an unknown number of clusters on a
single view.

In this paper, we propose a general multi-view automatic anchor
graph fusion framework termed Automatic and Aligned Anchor
for Multi-view Clustering (3AMVC). Specifically, we propose a Hi-
erarchical Bipartite Neighbor Clustering (HBNC) method, which
can complete clustering without specifying the number of clusters,
so as to automatically obtain high-quality anchors on each view.
Then, we improve the alignment method of Wang et al. [37], so that
it can explore the similarity relationship of anchors between two
views when the number of anchors in each view is inconsistent.
In addition, we record the similarity relationship between the an-
chors and the samples during the process of automatically anchor
selection, and use it to represent the quality of the anchor graph
of the view, so as to determine the optimal view before alignment.
Figure. 1 shows the difference between our method and the tra-
ditional anchor alignment framework. The traditional alignment
framework fails to discern and exploit anchors of superior quality
within a single view, and is more likely to perform alignment tasks
based on suboptimal views because it lacks a systematic evaluation
mechanism for the quality of the anchor graphs. While our method
can automatically select better quality anchors on a single view
and complete the alignment work based on the view with higher
anchor graph quality. We summarize the contributions as follows:

• We propose a novel Hierarchical Bipartite Neighbor Clus-
tering (HBNC) algorithm to identify and select high-quality
anchors on a single view. It does not require a prerequisite
specification number of anchors and is capable of preserving
the inherent characteristics of data structures like K-means.

• We design a general multi-view automatic anchor graph
fusion framework termed Multi-view Clustering with Auto-
matic and Aligned Anchor (3AMVC), which can align and
fuse anchor graphs according to the view with highest qual-
ity anchor graph when the number of anchors is inconsistent.

• Extensive experiments on five benchmark datasets show the
effectiveness and efficiency of the proposed method. Com-
pared with the traditional alignment framework FMVACC,
the proposed method has improved both in clustering per-
formance and running time.

2 RELATEDWORK
2.1 Multi-View Anchor Graph Clustering
Recently, due to the superior non-linear performance of multi-
view graph clustering, it has garnered increasingly extensive re-
search attention [8, 13, 25, 33, 34, 41]. However, the construction
of a complete graph matrix requires a computational complexity
that is at least quadratic in the number of samples 𝑛, which of-
ten proves inadequate when confronted with large-scale of data
scenarios. Therefore, many studies have turned to employ repre-
sentative anchors for the construction of anchor graphs instead of
the complete graphs, which can effectively reduce the quadratic
computational complexity to a linear correlation with the number
of samples [15, 20, 30, 32, 38, 46].

Specifically, multi-view anchor graph clustering basically fol-
lows a two-step strategy of optimization-fusion. The first step is to
optimize the anchor graph on each view as follows:

min
Z𝑖

∥X𝑖 − Z𝑖A𝑖 ∥2F + Ω (Z𝑖 ) , s.t. Z𝑖 ≥ 0,Z𝑖1𝑚 = 1𝑛, (1)

where Z𝑖 ∈ R𝑛×𝑚 and A𝑖 ∈ R𝑚×𝑑𝑖 is the anchor graph and the
anchor matrix of the 𝑖-th view respectively. Z𝑖1𝑚 = 1𝑛 is a sum-to-
one constraint that ensures that the sum of the sample similarity
corresponding to the anchors equals 1.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Automatic and Aligned Anchor Learning Strategy for Multi-View Clustering ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The framework of 3AMVC. Firstly, HBNC is performed on each view to automatically select representative anchors.
Secondly, select the baseline view based on the quality of the anchor graphs, and align the other anchor graphs with the baseline
view. Finally, the aligned anchor graphs of other views are fused with the anchor graph of the baseline view.

In the second step, the anchor graphs in each view are fused
through:

min
𝜷,S

∥𝛽𝑝Z𝑝 − S∥2F, s.t. 𝜷 ≥ 0, 𝜷⊤1𝑣 = 1, S1𝑚 = 1𝑛, (2)

where S ∈ R𝑛×𝑚 is the fused anchor graph, 𝜷 ∈ R𝑣 is the weight
coefficient which measures the impact of each view on the fused
anchor graph, and 𝜷⊤1𝑣 = 1 ensures that the sum of weights is 1
and satisfies constraint S1𝑚 = 1𝑛 .

After spectral decomposition of the fusion anchor graph, K-
means is performed on the left singular vector to obtain the final
clustering result. Multi-view anchor graph clustering can reduce
the time and space complexity to O(𝑣𝑚𝑛) and O(𝑛𝑚2), respectively
and effectively adapt to the large-scale data scenarios.

Although the existing approaches can well solve the problem of
large-scale multi-view clustering, they all encountered a common
problem, that is, the anchors are established before the optimiza-
tion process commences, hence the quality of these anchors plays
a pivotal role to the performance of the clustering. Most existing
methods take random sampling and K-means [9, 12] to select an-
chors, however, both of which require a given number of anchors.
This prerequisite number of anchors then becomes a hyperparame-
ter which requires time for searching.

2.2 Anchor-Unaligned Problem
The concept of anchors gains traction in the realm of large-scale
multi-view clustering. Wang et al. [37] have further identified a
critical, yet previously overlooked issue within the selection and fu-
sion method which is termed as Anchor-Unaligned Problem (AUP).

An intuitive solution to AUP is to avoid random anchor sampling
and to select the same anchor set across views as in [11]. However,
this approach restricts the model flexibility and uses the same set of
anchors across various views. Both intuitively and existing studies
have shown that learning more representative anchors can achieve
improved performance over random sampling. Another solution is
to optimize the consensus anchors representing cross-view features
in a latent common-shared space [32]. Liu et al. [16] added con-
straints to the consensus anchor graph, so that the connectivity of
the anchor graph equals to the number of clusters. Nonetheless, em-
ploying projections within the common space will inevitably result
in the loss of unique, view-specific information. Consequently, the
strategic and flexible selection of anchors within a single view, cou-
pled with a fusion process grounded in accurate correspondences,
emerges as a superior solution to ensure clustering performance in
large-scale scenarian.

Wang et al. [37] proposed a FastMulti-ViewAnchor-Correspondence
Clustering (FMVACC) method to solve AUP. Specifically, FMVACC
is to retain the feature and structure information of the anchor
set for anchor matching. The optimization formulation can be ex-
pressed as:

min
P

∥Z1 − Z𝑖P∥2F + 𝜆∥G1 − P⊤G𝑖P∥2F,

s.t. P1 = 1, P⊤1 = 1, P ∈ {0, 1}𝑚×𝑚 ,
(3)

where ∥Z1−Z𝑖P∥2F is the feature correspondence and ∥G1−PG𝑖P∥2F
is the structure correspondence. Moreover, 𝜆 is a parameter for
balancing two terms, G denotes the graph structure inside the
anchor set, Z is the respective anchor graph which represents the
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similarities between the samples and the anchors in each view,
𝑖 ∈ {2, 3, ..., 𝑣} represents the other views expect the 1-st one.

The above formulation indicates that the anchor graphs in the
other views are aligned to the anchor graph in the 1-st view from
the feature and structure correspondence simultaneously. While
FMVACC addresses the cross-view alignment of anchors with dif-
ferent dimensions, it still falls short in thoroughly exploring view
with superior quality, hence it simplistically adopts the first view as
the baseline for alignment tasks. Should the anchor graph derived
from the 1-st view fail to capture an precise representation of the
underlying structure, and if the alignment between the anchor and
the sample is not close enough, then there exists a risk. Specifically,
it could lead to subsequent views aligning based on a flawed rela-
tionship. Furthermore, since the existing anchor graph clustering
methods all use the same number of anchors across views, FM-
VACC does not consider the scene where the number of anchors is
different across views, so it lacks the capability to effectively align
disparate anchors.

2.3 Clustering without Knowing Cluster
Number

At present, the prevailing array of methods inherently assume the
number of clusters as a pre-defined parameter within the clustering
process. For instance, the K-means and k-NN methods, which are
widely applied throughout clustering procedures [5, 17–19, 26, 47],
are both derived from the premise of a predefined number of clus-
ters 𝑘 . Moreover, the task of selecting representative anchors on a
single view is essentially clustering without knowing the number
of clusters. An effective solution is to use other evaluation criteria
instead of cluster number 𝑘 . Hierarchical clustering [22, 23] and
density-based clustering [1, 10] are representative methods of such
solution. Hierarchical clustering gradually expands the clustering
granularity based on distance measure, starting from the recent
two samples clustered into one class, until all samples clustered
into one class, and the stopping condition is an appropriate number
of clusters or a distance threshold. And density-based clustering
generally complete clustering based on the density threshold. There
are other methods that design models and propose new criteria to
regulate samples within clusters [2, 6]. In summary, the aforemen-
tioned approaches are essentially provide criteria for the number
of clusters, either in a directly or indirectly manner. Nevertheless,
ascertaining the optimal number of clusters based solely on the
intrinsic characteristics of the dataset, without presupposing any
artificial thresholds, presents a significantly more intricate chal-
lenge. Ronen et al. [29] incorporated a subclustering network based
on the deep clustering frameowrk to ascertain an optimal number
of clusters 𝑘 . While Menon et al. [21] proposed to reflect the ap-
propriate number of clusters by the drastic change of clustering
scores. Aiming at the anchor selection, we prefer the clustering
method without knowing either cluster number or other alternative
indicators, whose computational complexity is affordable.

3 THE PROPOSED METHOD
In this section, we introduce the method for selecting high-quality
anchors on a single view, and elaborate the alignment strategies of
these anchors in relation to the baseline view. Figure. 2 shows the

Figure 3: The anchor selection strategy of BKHK and our
HBNC. (a) BKHK performs binary classification of samples
which leads to suboptimal performance when the number
of samples across different classes is imbalanced. (b) Our
method can flexibly select neighbors based on the distances
between samples, effectively addressing scenarios where the
distribution of sample sizes across clusters is uneven. (c)
Specifically, we evaluate the distance between the target sam-
ple and other samples within the sample range to be clus-
tered, and find the optimal threshold.

overall framework of our Multi-view Clustering with Automatic
and Aligned Anchor (3AMVC). Our method takes three steps: i) an
Adaptive Anchor SelectionModule to select the appropriate anchors
on a single view, ii) a Cross-View Anchor Alignment Module to
align the views based on the view with best quality of the anchor
graph, and iii) finally performing fusion to the aligned views.

3.1 Adaptive Anchor Selection Module
The fundamental premise of our anchor concept is to effectively
address the challenges posed by large-scale data so as to make
the computational complexity involved in the selection of anchors
within a single view affordable. Balance K-means based Hierarchical
K-means (BKHK) method [52] offers a novel approach by combin-
ing the flexibility of hierarchical clustering with a relatively low
computational complexity, providing us with a fresh perspective
on tackling these challenges. However, BKHK imposes excessively
stringent demands on the equalization performance of the dataset,
and it specifies a termination condition based on the number of
clusters in the hierarchical clustering process.

Building upon the foundation of BKHK, we introduce an effec-
tive Hierarchical Bipartite Neighbor Clustering (HBNC) method
that enable it to better accommodate datasets with uneven intra-
cluster sample sizes and to automatically determine the optimal
termination point. Figure. 3 shows the specific process of BKHK
and our HBNC. BKHK classifies all samples into two categories
layer by layer based on the distance between samples, and finally
obtains 𝑘 clusters with balanced number of internal samples. How-
ever, real data sets often do not follow the rules of intra-cluster
equilibrium, and BKHK will fail in such cases such as part (a) of
Figure. 3. In comparison, our method can determine the relevant
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optimal threshold, so as to flexibly divide the samples inside and
outside the target cluster.

3.1.1 How to determine the optimal threshold?
Intuitively, the relationships among samples within the same

cluster should be markedly distinct from those between samples
belonging to different clusters. As depicted in Figure 3 (c), there is
a significant disparity in the distances between the target sample
and the samples outside the cluster compared to those within its
own cluster.

Based on this principle, we design a new criterion for optimiz-
ing the optimal threshold to determine the neighbors of the tar-
get sample in the range of sample to be clustered. Take the 𝑙-th
layer clustering process as an example, we first randomly select
a target sample x𝑖 from 𝑛𝑙 samples to be clustered, and calcu-
late the distance between the target sample and other samples
denoted as d ∈ R𝑛𝑙×1. After sorting d, we get the vector form as
d̂ =

[
𝑑𝑖 [1] , 𝑑𝑖 [2] , ..., 𝑑𝑖 [𝑛𝑙 ]

]⊤. Our goal is to find an optimal thresh-
old𝑇𝑖 related to the sample x𝑖 , so as to divide the nearest neighbors
of the target sample. The optimal threshold 𝑇𝑖 should satisfy the
following condition:

𝑑𝑖 [1] ≤ 𝑑𝑖 [2] ≤ ...𝑑𝑖 [𝑘𝑖 ] ≤ 𝑇𝑖 ≤ 𝑑𝑖 [𝑘𝑖+1] ... ≤ 𝑑𝑖 [𝑛𝑙 ] . (4)

In this paper, we design an ingenious formula to determine the
appropriate threshold 𝑇𝑖 . Inspired by the grayscale binarization in
the field of image segmentation [24], we first introduce the concept
of inter-class error. Regardless of the layer in which it is performed,
the clustering task at hand involves categorizing the samples into
two groups. For convenience, we consider the cluster containing the
target sample as the first cluster, and all other samples as the second
cluster. We represent the proportion of each type of sample within
the entire samples as 𝑝1 and 𝑝2, as well as the average distance
between each cluster of samples and the target sample as 𝜇1 and
𝜇2. Then the inter-class error can be expressed as:

𝑝1 (𝜇1 − 𝜇)2 + 𝑝2 (𝜇2 − 𝜇)2, (5)

where 𝜇 is the mean value of all samples.
The proportion and mean satisfy the following conditions: 𝑝1 +

𝑝2 = 1 and 𝑝1𝜇1 +𝑝2𝜇2 = 𝜇. Based on that, we can transform Eq. (5)
as follows:

𝑝1𝑝2 (𝜇1 − 𝜇2)2 . (6)
Our expectation for the optimal threshold is that a threshold can

make the distance between samples in the cluster smaller and at the
same time the inter-class error larger. Therefore, the criterion for
determining the optimal threshold can be formulated as follows:

min
𝑘𝑖

𝜇1
𝑝1𝑝2 (𝜇1 − 𝜇2)2

, (7)

where 𝑘𝑖 is the number of samples in the first cluster with the target
sample.

Since the number of neighbors of the target sample is discrete
and finite, constrained within {1, 2, ..., 𝑛𝑙 }, the value of Eq. (7) is also
discrete and finite. Consequently, by determining the 𝑘𝑖 neighbors
of the target sample x𝑖 that can minimize the Eq. (7), we can obtain
the optimal threshold 𝑇𝑖 ∈

[
𝑑𝑖 [𝑘𝑖 ] , 𝑑𝑖 [𝑘𝑖+1]

)
. In practice, we only

need 𝑇𝑖 as an exact value, so for the sake of simplicity, we let

Algorithm 1 Bipartite neighbor clustering of the 𝑙-th layer

Input: Samples to be clustered Xl ∈ R𝑑×𝑛𝑙 .
1: Randomly select a sample as the target sample x𝑖 .
2: Calculate the distance d𝑙 between all samples and the target sample.
3: Sort the vector d𝑙 to get d̂𝑙 .
4: Calculate the neighbors and the optimal threshold of the target sample

according to Eq. (7).
Output: The neighbors and the optimal threshold of the target sample x𝑖 .

𝑇𝑖 = 𝑑𝑖 [𝑘𝑖 ] . We summarize this bipartite neighbor clustering process
in the 𝑙-th layer as Algorithm 1.

3.1.2 How to determine the number of clusters?
It is widely recognized that the closer the samples within a cluster

are to the clustering center, the more concentrated the distribution
of samples in that cluster, and consequently, themore representative
the cluster center becomes. K-means clusters according to this
principle. For a specific cluster 𝑖 , the problem can be expressed as:∑︁

x𝑗 ∈Θ𝑖

∥x𝑗 − 𝜃𝑖 ∥22, (8)

where Θ𝑖 denotes the 𝑖-th cluster, x𝑗 ∈ Θ𝑖 represents its samples, 𝜃𝑖
denotes the center of the cluster and 𝜃𝑖 = 1

𝑐𝑖

∑𝑐𝑖
𝑗=1 x𝑗 with 𝑐𝑖 being

the number of samples in this cluster.
The proposedHierarchical Bipartite Neighbor Clustering (HBNC)

algorithm introduces a new cluster through the binary classification
task of each layer. Consequently, if our algorithm performs through
𝐿 layers, then similar to K-means, the intra-cluster distance of all
clusters in our algorithm is expressed as:

𝐿∑︁
𝑖=1

∑︁
x𝑗 ∈Θ𝑖

∥x𝑗 − 𝜃𝑖 ∥22 . (9)

Although our HBNC algorithm operates without a predeter-
mined number of clusters, by effectively managing the stopping
criteria of the algorithm, we can halt the clustering process at an
opportune moment, thereby ascertaining the appropriate number
of clusters. The clustering result should lead to the centers of all
clusters being highly representative. Therefore, at the beginning of
the clustering task at each layer, we select the range of the sample
to be clustered based on the criterion that the distance between
the center and the sample within the cluster is maximized for the
chosen cluster. It is imperative to avoid obtaining many cluster-
ing centers to represent outliers, and avoid huge differences in the
value of Eq. (8) of each cluster. Here, at most one cluster center
representing outliers is acceptable. Therefore, when a cluster is
with a sample size of 1 again or the target value of the Eq. (8) of all
clusters tends to average, we terminate the algorithm and obtain a
more representative anchor set. The complete HBNC process ise
elaborated in Algorithm 2.

As for the complexity of the algorithm, the computational com-
plexity of each layer of HBNC is to calculate the distance of all sam-
ples within the sample range of the layer, which equals to O(𝑛𝑙𝑑).
Consequently, the complexity of the whole HBNC is O((𝑛1 + 𝑛2 +
...𝑛𝐿)𝑑), where 𝐿 is the number of layers. Relative to the first layer,
which processes the entire dataset of 𝑛1 = 𝑛 entries, the computa-
tional complexity of the subsequent layers is significantly reduced.
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Algorithm 2 Anchor selection stratrgy based on HBNC.

Input: Dataset X ∈ R𝑑×𝑛 .
1: while Not converge do
2: Update the layer 𝑙 .
3: Determine the range of samples to be clustered X𝑙 ∈ R𝑑×𝑛𝑙 .
4: Complete the bipartite neighbor clustering of the 𝑙-th layer according

to Algorithm 1.
5: Calculate the intra-distance of each cluster according to Eq. (8).
6: end while

Output: Anchor quality according to Eq. (9) and the anchors Θ.

As such, the overall complexity of our HBNC algorithm can be
denoted as O(𝑛𝑑).

3.2 Cross-View Anchor Alignment Module
The unequal number of anchors automatically selected on each
view compels us to further explore one-to-many or many-to-one
matching relationships, rather than being constrained by the strict
one-to-one matching framework. In addition, matching based on
the view where the higher quality anchor set is located should bring
better clustering performance.

3.2.1 How to determine the baseline view for alignment?
In the previous section, we propose a formulation in Eq. (9) to

simultaneously adeptly capture the relationship between the global
clustering center and the samples and reflect the representative
performance of the clustering center essentially. In this section, we
therefore employ Eq. (9) as a metric of anchor representativeness to
assess the quality of the anchor graph for each individual view. In
the process of devising anchor quality metrics for views, we discern
that the summation approach offers numerous advantages over the
mean-based formulations. Since our ultimate goal is to perform
spectral clustering on the fusion anchor graph, when the distribu-
tion of a certain type of samples forms a ring shape, it is preferable
that the selected anchors also follow a ring pattern, rather than
being at the center of the ring. For the sample-center distance in
the same cluster like Eq. (8), sum rather than average, can avoid the
ring distribution of the samples associated with the selected anchor.
In addition, it is clear that under the same sample distribution, the
more the number of anchors, the stronger the average representa-
tion of each anchor. Considering the variability in the number of
anchors selected for each view, relying on an average-based calcula-
tion may inadvertently place views with fewer anchors at a relative
disadvantage. By applying a summation technique universally, the
representativeness of the anchors is effectively distributed among
all samples, making it a more advantageous strategy. Ultimately,
we select the view with the smallest value from Eq. (9), where the
anchors exhibit the strongest representativeness and all samples
are closer to their respective anchors, to serve as the baseline view.

3.2.2 How to align anchor set with unequal number?
According to Wang et al.[37], we can align the anchors in terms

of feature and structure by summing the values of the anchors in
different dimensions. In order to match the optimal view and our
inconsistent number of anchors, our improved alignment method

Table 1: Multi-view Datasets in our Experiments

Dataset Size Clusters Views

ForestTypes 523 4 3
Reuters 1200 6 5
MFeat 2000 10 2

Caltech256 30607 256 4
VGGFace2 36287 100 4

is expressed as follows:

min
P

∥Z𝑏 − Z𝑖P∥2F + 𝜆∥G𝑏 − P⊤G𝑖P∥2F,

s.t. P1 = 1, P⊤1 = 1, P ∈ {0, 1}𝑚𝑖×𝑚𝑏 ,
(10)

where Z𝑏 ∈ R𝑛×𝑚𝑏 is the anchor graph of the baseline view, G𝑏

and G𝑖 represent the inner graph structures of the baseline view
and the 𝑖-th view. It is noteworthy that the matching matrix P
here is specific for each view and can express a one-to-many or
many-to-one relationship about the baseline view.

After obtaining {P}𝑣
𝑖=1,𝑖≠𝑏 , we can obtain the fused aligned an-

chor graph based on the baseline view as:

Z𝐴𝑙𝑖𝑔𝑛𝑒𝑑 = (Z𝑏 +
𝑣∑︁

𝑖=1,𝑖≠𝑏
Z𝑖P𝑖 )/𝑣 . (11)

Ultimately, by performing spectral decomposition on Z𝐴𝑙𝑖𝑔𝑛𝑒𝑑

according to Eq. (11), and subsequently applying K-means clustering
to its left singular values, the final clustering results are successfully
derived.

3.3 Complexity Analysis
In terms of space complexity, our major memory costs are ma-

trices {Θ𝑖 }𝑣𝑖=1 ∈ R𝑚𝑖×𝑑𝑖 , {P𝑖 }𝑣𝑖=1,𝑖≠𝑏 ∈ R𝑚𝑖×𝑚𝑏 , {Z𝑖 }𝑣𝑖=1 ∈ R𝑛×𝑚𝑖 .
The space complexity of 3AMVC is O(𝑚𝑚𝑎𝑥𝑑 +∑𝑣

𝑖=1𝑚𝑖𝑛 +𝑚2
𝑏
𝑣).

𝑚𝑚𝑎𝑥 is the largest number of anchors in all views.𝑚𝑏 is the num-
ber of anchors in the baseline view. In large-scale scenarios, the
main amount of computation is mainly the correlation term of 𝑛.
Therefore, the space complexity of 3AMVC is O(𝑛).

As for time complexity, which consists of three steps. As men-
tioned above, the time complexity of HBNC on a single view is
O((𝑛1 + 𝑛2 + ...𝑛𝐿)𝑑). In the alignment phase, updating { Z𝑖 }𝑣𝑖=1
costs O(𝑛𝑚𝑖𝑑𝑖 ). Updating { Θ𝑖 }𝑣𝑖=1 needs O(𝑛𝑚𝑖𝑚𝑏 +𝑚𝑖𝑚𝑏𝑑). Then
the alignment module costs O(𝑚2

𝑏
𝑚𝑖 ). After obtaining the aligned

and fused anchor graph, SVD needs O(𝑛𝑚2
𝑏
). Consequently, the

time complexity of our 3AMVC is approximately O(𝑛), which can
better cope with large-scale data scenarios.

4 EXPERIMENT
4.1 Experiment Setting
We verify the effectiveness of our algorithm on five widely used
multi-view benchmark datasets: ForestTypes, Reuters, MFeat, Cal-
tech256, and VGGFace2. The information of these datasets is listed
in Tab. 1. We compare our method with 8 state-of-the-art multi-
view clustering methods: BMVC [51], LMVSC [9], FMCNOF [45],
FPMVS-CAG [38], EOMSC-CA [16], FMVACC [37], UDBGL [3],
and fastMICE [4].
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Table 2: Empirical comparison of our 3AMVC with nine baseline methods on five benchmark datasets.

Methods BMVC LMVSC FMCNOF FPMVS-CAG EOMSC-CA FMVACC UDBGL fastMICE Proposed
ACC

ForestTypes 0.7266 0.7921 0.4551 0.7222 0.7419 0.7929 0.4990 0.7166 0.7984
Reuters 0.4950 0.4792 0.2858 0.4582 0.4758 0.5532 0.2783 0.2856 0.5734
MFeat 0.6905 0.5690 0.5695 0.6511 0.8220 0.8322 0.1575 0.8285 0.8737

Catech256 0.0871 0.0957 0.0270 0.0891 0.0985 0.0911 0.0776 0.0942 0.1023
VGGFace2 0.0617 0.0623 0.0347 0.0634 0.0858 0.0668 0.0511 0.0508 0.0756

NMI
ForestTypes 0.5338 0.5446 0.1699 0.4820 0.4724 0.5533 0.3116 0.5171 0.5397
Reuters 0.2946 0.2786 0.0715 0.2459 0.2524 0.3377 0.1225 0.1913 0.3316
MFeat 0.6653 0.8246 0.5547 0.5777 0.8319 0.7241 0.1990 0.8362 0.8240

Catech256 0.3158 0.3196 0.0000 0.2343 0.2468 0.2990 0.2375 0.3235 0.3210
VGGFace2 0.1426 0.1191 0.0581 0.1282 0.1578 0.1300 0.1013 0.1040 0.1404

Fscore
ForestTypes 0.6729 0.6572 0.4638 0.5828 0.6057 0.6460 0.5127 0.6014 0.6752
Reuters 0.3633 0.3570 0.2411 0.3487 0.3367 0.4013 0.3002 0.3320 0.4061
MFeat 0.6137 0.7811 0.4552 0.5250 0.7701 0.7078 0.2046 0.7837 0.7986

Catech256 0.0663 0.0600 0.0117 0.0322 0.0336 0.0664 0.0148 0.0738 0.0792
VGGFace2 0.0277 0.0251 0.0239 0.0314 0.0322 0.0267 0.0217 0.0201 0.0297

We set their parameters within the recommended range for all
comparison algorithms aforementioned. In the proposed method,
we adjusted 𝛽 to [10−2, 1, 102], 𝜆 to [0, 10−4, 10−2, 1, 104]. To assess
the clustering performance, we employ three well-used criteria
consisting of accuracy (ACC), normalizedmutual information (NMI)
and Fscore.

4.2 Experimental Results
Table. 2 reports the clustering results of other methods and our
3AMVC on five benchmark datasets. The best results are marked
in red, while the second-best results are marked in blue. According
to the results, we have the following observations:

• Our method exceeds other algorithms in most indicators, or
reaches a considerable level with other algorithms. In terms
of the ACC metric, 3AMVC achieves improvements of 0.69%
(ForestTypes), 3.65% (Reuters),4.97%(MFeat) 12.29%(Catech256),
and 13.17%(VGGFace2) respectively, when compared to the
troditional alignment algorithm FMVACC.

• On other datasets, we also obtain comparable results with
the suboptimal algorithm, and it is worth noting that almost
all the algorithms compared require the pre-K-means process
to select the anchors, while our algorithm avoids the process
of searching for the optimal number of anchors.

4.3 Parameter Sensitivity Analysis
Our experimental setup involves two hyperparameters, namely,
𝛽 and 𝜆. As shown in Figure. 4, we use the ACC metric to show
the influence of two parameters on the clustering effect on two
datasets: ForestTypes and Caltech256.

We observe that the influence of parameter changes on the clus-
tering effect is not intensive. Relatively speaking, when 𝛽 is set as

(a) ForestTypes (b) Caltech256

Figure 4: Sensitivity Analysis on five dataset with ACC met-
ric.

102 and 𝜆 is set as 104, the clustering performance will be further
improved.

4.4 Visualization
In order to illustrate the ability of our 3AMVC in anchor selection,
we employ visual representations to display the selected anchors
in the single view. We run K-means and our HBNC algorithm on
the two views of MFeat to select the appropriate anchors, and the
results are shown in Figure. 5. The samples are represented by
points, and the selected anchor points are uniformly represented
by red stars.

From Figure. 5, we observe that although K-means can better
cluster sample points into 𝑘 clusters based on characteristics, the ap-
proach, which utilizes cluster centers as representatives for anchor
points, struggles to preserve the inherent graph structure within
the clusters. Our HBNC algorithm effectively secures a set of more
representative anchor points without the need to predefine the
number of clusters. On one hand, the samples represented by these
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(a) K-means on 1-st view (b) HBNC on 1-st view

(c) K-means on 2-nd view (d) HBNC on 2-nd view

Figure 5: Visualization of selected anchor points on MFeat
dataset.

anchors exhibit a higher degree of similarity to them, which in
turn more accurately captures the graph’s structure. On the other
hand, this approach also circumvents potential inaccuracies that
may arise from anchors being positioned in the interstitial gaps
between samples. On the MFeat dataset, HBNC finally selected 54
and 64 anchors on the two views respectively.

4.5 Ablation Studies
In order to illustrate the effectiveness of our automatic anchor selec-
tion strategy and baseline view alignment strategy, we conducted
ablation experiments on these two parts respectively. The experi-
mental results are shown in Table 3. Methods that do not use either
strategy are recorded as 3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 . 3𝐴_𝑤/𝑜_𝑆𝐴 means that the
anchors are not automatically selected, and we use the K-means
method instead. 3𝐴_𝑤/𝑜_𝐴𝐵 stands for not aligning based on the
baseline view, we align based on the first view uniformly. 3𝐴𝑀𝑉𝐶

means the complete algorithm. We conduct experiments under
the best parameter settings of each dataset. From the Table 3, we
find that the performance of 3𝐴_𝑤/𝑜_𝑆𝐴 is significantly improved
on large datasets. This fully demonstrates the the importance of
high-quality anchor selection for improving large-scale cluster-
ing performance. In addition, we found that the performance of
3𝐴_𝑤/𝑜_𝑆𝐴 is lower than 3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 on some datasets, which we
believe is due to the mismatch between the anchor points selected
by K-means and our view quality metrics.

4.6 Complexity
Our method can be well applied to large-scale scenes. We record
our time comparison with other algorithms and draw Figure 6.
Compared with FMVACC, our algorithm has lower running time.
We speculate that this may be due to the computational complexity
of the K-means anchor selection strategy in each iteration is 𝑛, and

Table 3: Experiment results of ablation studies

Datasets Methods ACC NMI Fscore

ForestTypes

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.7231 0.4227 0.5628
3𝐴_𝑤/𝑜_𝑆𝐴 0.6161 0.4502 0.5540
3𝐴_𝑤/𝑜_𝐴𝐵 0.7217 0.4187 0.5604
3𝐴𝑀𝑉𝐶 0.7984 0.5397 0.6752

Reuters

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.4367 0.2312 0.3153
3𝐴_𝑤/𝑜_𝑆𝐴 0.4199 0.2070 0.2970
3𝐴_𝑤/𝑜_𝐴𝐵 0.5509 0.3282 0.3886
3𝐴𝑀𝑉𝐶 0.5734 0.3316 0.4061

MFeat

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.7676 0.6993 0.6618
3𝐴_𝑤/𝑜_𝑆𝐴 0.7744 0.7032 0.6664
3𝐴_𝑤/𝑜_𝐴𝐵 0.8176 0.7874 0.7312
3𝐴𝑀𝑉𝐶 0.8736 0.8240 0.7986

Caltech256

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.0882 0.2951 0.0591
3𝐴_𝑤/𝑜_𝑆𝐴 0.0922 0.2980 0.0692
3𝐴_𝑤/𝑜_𝐴𝐵 0.0485 0.2516 0.0203
3𝐴𝑀𝑉𝐶 0.1023 0.3210 0.0792

VGGFace2

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.0651 0.1267 0.0256
3𝐴_𝑤/𝑜_𝑆𝐴 0.0713 0.1371 0.0282
3𝐴_𝑤/𝑜_𝐴𝐵 0.0633 0.1262 0.0244
3𝐴𝑀𝑉𝐶 0.0756 0.1404 0.0297

Figure 6: Running time for all algorithms.

the computational complexity of our algorithm will decrease when
iterating again.

5 CONCLUSION
In this paper, we introduce a novel Multi-view Clustering with Au-
tomatic and Aligned Anchor (3AMVC) method designed to address
challenges of multi-view clustering in large-scale data scenarios.
The algorithm initiates with the innovative Hierarchical Bipartite
Neighbor Clustering (HBNC) approach, which eliminates the need
for a predefined number of clusters. This method identifies and
selects representative anchors within a single view, enabling the
construction of a robust anchor graph without relying on prior
knowledge. The subsequent phase involves the alignment of all
anchor graphs to the baseline view exhibiting the highest anchor
graph quality, culminating in the formation of a consolidated, high-
quality fused anchor graph. Our proposed method stands out in the
current research landscape by offering an effective parameter-free
strategy for anchor point selection. Extensive experiments verify
the effectiveness and efficiency of our proposed 3AMVC.
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