
Accelerating Large Batch Training via Gradient Signal
to Noise Ratio (GSNR)

Anonymous Author(s)
Affiliation
Address
email

Abstract

As models for nature language processing (NLP), computer vision (CV) and1

recommendation systems (RS) require surging computation, a large number of2

GPUs/TPUs are paralleled with a large batch (LB) to improve training throughput.3

Training such LB tasks often converges to sharp minimum and downgrades final4

precision. Adversarial learning (ConAdv) and LANS method scales ImageNet5

and BERT pretraining up to 96k batch size. In this work, we develop the variance6

reduced gradient descent technique (VRGD) based on the gradient signal to noise ra-7

tio (GSNR) and apply it onto popular optimizers such as SGD/Adam/LARS/LAMB.8

We carry out a theoretical analysis of VR-SGD’s convergence rate to explain its9

fast training dynamics, and a generalization analysis to demonstrate its smaller10

generalization gap on LB training. Comprehensive experiments demonstrate that11

VRGD can remarkably accelerate training (1.7 ∼ 4×), narrow the generalization12

gap and improve final accuracy. We push the batch size limit of BERT pretraining13

up to 128k/64k and DLRM to 512k without noticeable accuracy loss. We improve14

ImageNet Top-1 accuracy at 96k by 0.52pp than LARS and significantly reduce15

generalization gap by 68.3%.16

1 Introduction17

Recent machine learning models have grown wider and deeper in their architectures (e.g., GPT-318

[Floridi and Chiriatti, 2020], M6 [Lin et al., 2021], Switch Transformer [Fedus et al., 2021]). Training19

complex models may consume more training data to converge, which needs a surge in computing20

capacity and efficiency. However, hardware improvement can not keep pace with the expansion of21

model calculations [Bommasani et al., 2021].22

Several techniques to speed up training are proposed. The aggregation and scattering of gradients23

among massive workers requires an efficient synchronization algorithm. Since the communication24

bandwidth between GPUs/TPUs is much higher than CPU-GPU (e.g., NVLink, Foley and Danskin25

[2017]), several efficient synchronization strategies such as Ring-All-Reduce [Gibiansky, 2017] and26

software toolkits like Horovod [Sergeev and Del Balso, 2018] are proposed to replace the traditional27

PS-Worker framework [Li et al., 2014b,a]. In addition, training with LB can notably improve28

throughput [You et al., 2017b; Hoffer et al., 2019]. You et al. [2020] successfully train BERT using29

1024 TPUs and a LB (64k) within 76 minutes. It demonstrates the efficiency of GPUs/TPUs in large30

scale parallel tasks. Small batch (SB) is not able to fully utilize those powerful GPUs/TPUs.31

However, Keskar et al. [2017] theoretically analyze the LB training and finds that it can be easily32

trapped into sharp local minimum, leading to strong generalization gap. Hoffer et al. [2017] indicate33

that the generalization gap can be attributed to the fewer update steps in LB training compared with34

SB when using identical epochs. Dai and Zhu [2018] theoretically demonstrate that training with35

more steps or expanding the learning rate to batch size ratio helps to converge to a flatter local36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

minimum. Although these issues can be partly resolved by layer-wise adaptive rate scaling (LARS,37

You et al. [2017a]) and layer-wise adaptive large batch (LAMB, You et al. [2020]), the batch size38

limit still exists.39

To push the batch size limit and reduce generalization gap, we propose the element-wise adaptive40

techniques called variance reduced gradient descent technique (VRGD) based on GSNR of parameters.41

Our contributions are listed below:42

• We carry out theoretical derivations of convergence rate and generalization analysis to explain43

why VRGD can accelerate LB training and achieve dramatically smaller generalization gap.44

• We perform comprehensive LB experiments and find that VRGD can remarkably accelerate45

training (1.7 ∼ 4×), narrow the generalization gap and improve final precision than previous46

SOTA (e.g., LAMB, LARS).47

• VR-LAMB pushes the batch size limit of BERT pretraining up to 128k/64k without any48

accuracy loss, while LAMB stops scaling at 64k/32k. VR-LARS improves the ImageNet49

Top-1 accuracy to 74.82% at 96k, 0.52pp higher than LARS. The generalization gap of50

ImageNet trained with VR-LARS is dramatically reduced by 68.3% comparing with LARS51

at 96k. VR-SGD pushes the batch size limit of DLRM from 64k to 512k without noticeable52

accuracy loss.53

2 Related Work54

2.1 Large Batch Training55

Several techniques are proposed to improve the optimization and generalization ability in LB training.56

Goyal et al. [2017] propose a linear scaling rule on learning rate (LR) to achieve the same accuracy57

as SB and push the batch size limit of ImageNet to 8k. EXTRAP-SGD uses the extra-gradient to58

stabilize the optimization trajectory and smooth training [Lin et al., 2020]. SWAP quickly trains the59

model with LB in the first stage and refines it by averaging the weights of multiple SB models in60

the second stage [Gupta et al., 2020]. Batch Augmentation replicates multiple instances with the61

same batch size to improve generalization [Hoffer et al., 2019]. The batch size of the experiments in62

EXTRAP-SGD/SWAP/Batch-Augmentation are less than 8k and are not compared in our experiments.63

DecentLaM removes the growing momentum-incurred bias observed in DmSGD and pushes Im-64

ageNet to 32k [Yuan et al., 2021]. Layer-wise LRs adjustment optimizers such as LARS [You et65

al., 2017a], complete layer-wise adaptive rate scaling (CLARS, Huo et al. [2021]), LAMB [You et66

al., 2020] successfully improve the batch size up to 64k both for ImageNet and BERT pretraining67

without accuracy loss. Recently, the concurrent adversarial learning (ConAdv) method pushes the68

batch size limit of ImageNet training up to 96k [Liu et al., 2021]. LANS replaces the layer-wise LR69

adjustment in LAMB with block-wise style [Zheng et al., 2020] and also pushes BERT training up to70

96k. Adasum adds those gradients after scaling with proper scalars and even pushes the batch size71

limit of BERT up to 128k/32k [Maleki et al., 2021].72

2.2 Gradient Variance and GSNR73

Unlike gradient mean, which is widely used in optimizers, gradient variance and its successor GSNR74

are less used. But gradient variance is frequently discussed in generalization gap. Johnson and Zhang75

[2013a] propose the stochastic variance reduced gradient (SVRG) with the explicit gradient variance76

reduction method. Other variants of SVRG like SRVR-NPG, SVRPG and Control Variate methods77

are also proposed to reduce the gradient variance during training [Liu et al., 2020b; Wang et al.,78

2013; Papini et al., 2018; Miller et al., 2017]. Rainforth et al. [2018] use GSNR to analyze the79

variational bounds in variational auto-encoder (VAE). McCandlish et al. [2018] use GSNR to predict80

the useful upper bound of batch size. Smith et al. [2018]; Devarakonda et al. [2017] adaptively81

increase the batch size during training to achieve acceleration without accuracy loss. Liu et al. [2020a]82

theoretically derive a quantitative relationship between GSNR and generalization gap and prove that83

larger GSNR leads to better generalization performance. Therefore, gradient variance and GSNR are84

potentially useful to train deep neural networks.85

2

3 Preliminaries86

3.1 GSNR87

Figure 1: Schematic of VRGD’s mechanism: up-
dating parameters with larger GSNR (left panel)
and smaller GSNR (right panel).

Given a data distribution Z = X × Y , a model88

ŷ = f(x, θ) parameterized by θ and the loss89

function L. The parameters’ gradient w.r.t. sam-90

ple (xi, yi) can be written as (Refer to all "nota-91

tions" in the Appendix.C):92

gi(θ) :=
∂L(yi, f(xi, θ))

∂θ
(1)

Then j-th parameter’ (θj) gradient computed using (xi, yi) is gi(θj). Here we use i to index the93

data samples and j to index the parameters of θ. We denote the sample-wise gradient mean as94

g̃(θ) = E(x,y)∼Z(g(x, y, θ)) and variance of gi(θ) as ρ2(θ) = Var(x,y)∼Z(g(x, y, θ)). The GSNR95

for each model parameter θj is defined as:96

r(θj) :=
g̃2(θj)

ρ2(θj)
(2)

Intuitively, GSNR measures the consistency of the gradient direction of each parameter across a batch97

of data samples. The gradient space of the parameters tends to converge in the same direction when98

the GSNR is large, but diverge if the GSNR is small (Figure.1).99

3.2 GSNR and Generalization Gap100

Consider a training set D = {(x1, y1), ..., (xn, yn)} ∼ Z(n), where n samples come from Z , and101

a test set of dataset size (n′) from Z ′(n′) denoted by D′ = {(x′
1, y

′
1), ..., (x

′
n′ , y′n′)} ∼ Z ′(n′). The102

empirical training and test losses can be denoted as:103

L[D] =
1

n

n∑
i=1

L(yi, f(xi, θ)); L[D′] =
1

n′

n′∑
i=1

L(y′i, f(x
′
i, θ)) (3)

respectively. Then the empirical generalization gap is given by L[D′]− L[D]. Both the training loss104

L[D] and the test loss L[D′] would decrease after one training step and can be denoted as ∆L[D]105

and ∆L[D′] respectively. The ratio between the expectations of ∆L[D] and ∆L[D′] for one training106

step can be denoted as:107

R(Z, n) := ED,D′∼Zn(∆L[D′])

ED∼Zn(∆L[D])
(4)

Assumption 1 (Non-overfitting limit approximation of Liu et al. [2020a]). The parameters’ gradient108

over the training set and test set i.e., gD(θ) and gD′(θ) obey the same distribution.109

Based on Assumption 1 and using a small learning rate λ → 0, Liu et al. [2020a] derive the110

relationship between the one-step generalization ratio (eq.4) and GSNR:111

R(Z, n) = 1− 1

n

∑
j

Wj
1

rj +
1
n

, where Wj :=
ED∼Zn(∆Lj [D])

ED∼Zn(∆L[D])
with

∑
j

Wj = 1 (5)

where ∆Lj [D] is the training loss reduction caused by updating θj . A more detailed mathematical112

derivation can be found in Liu et al. [2020a]. This relationship (eq.5) demonstrates that GSNR113

(rj) plays a crucial role in determining the generalization performance of the model. Updating the114

model parameters with smaller GSNR leads to generalization gap growth. Also note that we have115

R(Z, n)→ 1 when n→∞, which means that training with a larger dataset helps generalization.116

4 Proposed Algorithms117

In this section, we propose VRGD with their general updating rules (taking VR-SGD as an example118

in Algorithm.1). The SGD is shown in Appendix.D for comparison.119

3

Algorithm 1: V R− SGD

Input: require device number k ≥ 2
Input: B = GlobalBatchSize/k
Input: γ = 0.1

1 while θt not converged do
for device d = 1 to k do

g̃d(θt)← 1
B

∑B
i=1∇θL(yi, f(xi, θt−1)) (Get gradient on each GPU/TPU)

g̃2
d(θt)← g̃d(θt)⊗ g̃d(θt) (Element-wise multiply, so as square terms below)

g̃(θt)← 1
k

∑k
d=1 g̃d(θt) (Reduce gradient over all devices)

σ2
t ← 1

k

∑k
d=1 g̃

2
d(θt)− g̃2(θt) (Compute gradient variance)

r(θt)← g̃2(θt)
σ2
t

(Compute GSNR)
for layer l = 0 to h do

r(θ
(l)
t)← r(θ

(l)
t)

1
J

∑J
j=1 r(θ

(l)
t,j)

(Normalize GSNR so that r(θ(l)t) = 1)

r(θ
(l)
t)←

{
γ, if r(θ

(l)
t) < γ

1, if r(θ
(l)
t) > 1

(Confine the max/min ratio within 1
γ)

θt ← θt−1 − λ · r(θt) · g̃(θt) (Update weights)

4.1 VR-SGD’s Updating Rules120

Consider the simple updating rule for SGD as follows:121

θt = θt−1 − λ · g̃(θt) (6)

where λ is the learning rate. Previous section demonstrates that updating the weights with larger122

GSNR confines the model’s generalization gap growth during training. Therefore, GSNR can be123

used in the optimizer for better generalization. In the mathematical derivation of GSNR’s role on the124

generalization gap, all sample-wise gradients for the entire dataset are used to compute the gradient125

variance, which is less efficient. However, in the LB training training, where each batch is large126

enough to accurately estimate the gradient variance, we replace the entire dataset with a LB and the127

sample-wise with device-wise gradient computation. Gradients on each GPU/TPU device can be128

synchronized using Ring-AllReduce, thus perfectly avoiding the inefficiency of gradient variance129

computation. The simplified gradient variance computation is as follows:130

σ2
t =

1

k

k∑
d=1

g̃2
d(θt)− g̃2(θt) (7)

where k devices are used, each of which computes 1/k part of the gradient g̃d(θt), the same as what131

data parallel does. The GSNR can then be easily calculated based on eq.2 (ρ2(θj) is replaced by σ2
j).132

The mean values of GSNR are removed at each layer before applying gradient to the parameters.133

This normalization of GSNR ensures that the global averaged GSNR remains at 1.0:134

r(θ
(l)
t) =

r(θ
(l)
t)

1
J

∑J
j=1 r(θ

(l)
t,j)

(8)

where lth layer contains J parameters. We constrain the max/min of GSNR within 1/γ so that135

those neurons with very small GSNR remain active:136

r(θ
(l)
t) =

{
γ, if r(θ

(l)
t) < γ

1, if r(θ
(l)
t) > 1

(9)

where γ is a hyper-parameter used here. For simplicity, we don’t tune γ but set it to 0.1 in all of our137

experiments by default. Finally, we element-wisely adapt λ according to GSNR of each parameter138

and get the updating rule for VR-SGD:139

θt = θt−1 − λ · r(θt) · g̃(θt) (10)

4

Figure.1 shows the mechanism of VRGD. As for a good estimation of gradient mean (left panel),140

optimizer should be confident to move along the direction of gradient mean or even further. However,141

when gradients on the devices are scatteredly distributed (right panel), updating weights with gradient142

mean may bring noises and slow down convergence, which should be avoided.143

Differences compared with existing LB methods:144

• The linear scaling rule uses the same large LR for all parameters, which tends to diverge145

when some gradients are too large; LARS/LAMB/LANS use large LRs for some layers but146

layer-wisely or block-wisely limit LRs when ||θt|| is compatible with its updating quantity,147

i.e., ||θt|| ∼ ||λ · g̃(θt)||; VRGD that we propose here element-wisely limit the updating148

quantity for those parameters without confident gradient estimation (Fig.1b, large gradient149

variance or small GSNR).150

• GSNR and its relationship with generalization gap is discussed in Liu et al. [2020a], but151

further work to embed such GSNR into the optimizers is missing. In our work, we apply152

GSNR in the SGD/LARS/LAMB and demonstrate that GSNR helps the model maintain a153

small generalization gap in LB training based on the derivations of the generalization gap154

and ImageNet experiments.155

• VRGD does not need extra-gradient used in EXTRAP-SGD or the two-stage training like156

SWAP. Sub gradients used in Batch Augmentation have different transforms each while157

VRGD uses the same transforms. Adasum adaptively sums two gradients scaled by a158

constant while VRGD still uses the mean gradient.159

4.2 VR-Adam, VR-LAMB and other VRGD optimizers160

GSNR can be easily applied on any optimizer using the general updating rules shown above. Here we161

discuss those popular optimizers frequently used in the research community, e.g., SGD, Adam, LARS162

and LAMB. As for VR-Adam, GSNR is calculated directly based on g̃(θt) and then used to adapt the163

gradient mean before gradients’ momentum estimation. Similar with the gradients’ momentum, we164

apply the momentum mechanism on GSNR (p̂t) for faster convergence. If we adapt the final update165

term, i.e. θt ← θt−1 − λ · r(θt) · m̂t/(
√
v̂t + ε), the 1st and 2nd order momentum estimation (mt166

and vt) for the next training step would be biased (meaning that the update term cannot be inferred167

merely on m̂t and v̂t since r(θt) ̸= 1).168

VR-LAMB is similar to VR-Adam, except that VR-LAMB layer-wisely adapt the LRs for stable169

convergence when using very large LRs. VR-Adam and VR-LAMB are shown in Appendix.D.170

VR-LARS and VR-Momentum, which are based on LARS and Momentum, are similar to VR-SGD171

that it uses GSNR to adapt the gradient means before applying them to the model weights (algorithms172

omitted).173

5 Theoritical Analysis174

5.1 Convergence Analysis175

Assumption 2 (bounded gradient). ||∇L(θ)|| ≤ G176

Assumption 3 (l-smooth). ∃l > 0 satisfies ||∇L(x)−∇L(y)|| ≤ l||x− y||177

We mathematically derive the convergence rate of VR-SGD under nonconvex settings and assume178

the training process satisfies Assumption.2 and Assumption.3, which are widely used in convergence179

analysis [Shamir and Zhang, 2013; Ghadimi and Lan, 2013; Allen-Zhu and Hazan, 2016; Allen-Zhu180

et al., 2019; You et al., 2020]. Table.1 of Appendix compares the assumptions of ours and those181

popular optimizers. It shows that our assumptions are weaker than LARS/LAMB/DecentLaM and182

similar with SGD. Detailed derivations can be found in Appendix.A. Then we have Theorem.1.183

Theorem 1. Let λt =
√

L(θ1)−L(θ∗)
T ||ℓ||1 and 1√

T̂
=
√

[(L(θ1)−L(θ∗)]||ℓ||1
T , VR-SGD is bounded by:184

E||∇L(θt)||2 ≤ O

(
(1 +

r2uG
2

2
)

1

r2l

√
T̂

)
(11)

where rl and ru are the lower and upper bound of GSNR.185

5

Convergence rates discussion: 1) The convergence rate O(1√
T̂
) of VR-SGD is the same as SGD186

[Johnson and Zhang, 2013b]; 2) VR-SGD’s bound depends on the lower (rl) and upper bound (ru) of187

GSNR. Larger batch size brings smaller gradient variance (eq.43 of Appendix.B) and larger GSNR188

(both bigger rl and ru), then may result in a tighter bound with quicker convergence (verified by189

experiments shown in Figure.2).190

5.2 Generalization Gap191

This section derives the generalization gap of SGD and VR-SGD during SB and LB scenarios.192

Detailed derivations can be found in Appendix.B. Citing eq.14 of Liu et al. [2020a] below, i.e.,193

when training satisfies Assumption.1 and λ→ 0, after one training step the expectation of empirical194

generalization gap at tth step is:195

ED,D′∼Zn(∆tL[D]−∆tL[D
′]) = λ

∑
j

σ2
t,j +O(λ2) (12)

where we use σ2
t,j and rt,j to denote σ2(θt,j) and r(θt,j) for simplicity. Next, we assume that the196

batch size of LB is k times than that of SB. λ0 (λ) represents the learning rate of SB (LB). The197

accumulated generalization gap after training T steps for SB using SGD and T/k steps for LB can be198

derived as follows:199

E(GAPSB,SGD) ≈ λ0

T∑
t=1

∑
j

σ2
t,j ; E(GAPLB,SGD) ≈ λ

k

T/k∑
t=1

∑
j

σ2
t,j (13)

If we assume "σt,j is t-independent", eq.13 are simplified as E(GAPSB,SGD) ≈ λ0T
∑

j σ
2
j and200

E(GAPLB,SGD) ≈ λT
k2

∑
j σ

2
j respectively. Taking λ = k2λ0, E(GAPLB,SGD) will have the201

same accumulated generalization gap as SB. This is known as the linear/square scaling rules. However,202

the assumption that "σt,j is t-independent" is unrealistic. Similarly, the accumulated generalization203

gap of VR-SGD in LB training can be written as:204

E(GAPLB,V R−SGD) ≈
T/k∑
t=1

∑
j

λrt,jσ
2
t,j

k
=

λ

k

T/k∑
t=1

∑
j

g2
t,j (14)

The generalization gap of SGD and VR-SGD in LB training:205

When training converges (gt,j → 0), we have g2
t,j < σ2

t,j because rt,j = g2
t,j/σ

2
t,j → 0 (ver-206

ified experimentally by Figure.4 of Liu et al. [2020a]). Therefore, we have λ
k

∑T/k
t=1

∑
j g

2
t,j <207

λ
k

∑T/k
t=1

∑
j σ

2
t,j , i.e., E(GAPLB,V R−SGD) < E(GAPLB,SGD). This inequality demonstrates208

that VR-SGD has a much smaller generalization gap than SGD in LB training (verified by our209

ImageNet experiments shown in Table.3).210

6 Experiments211

In this section, we show comprehensive experiments on commonly used LB benchmarks such as212

BERT Pretraining [Devlin et al., 2019], ImageNet-2012 [Russakovsky et al., 2015] and DLRM213

[Naumov and Mudigere, 2020]. We mainly adopt the square root rules to scale LRs. We set the214

hyper-parameters of VRGD as γ = 0.1 and k to the minimum GPU devices that can hold the LB215

without out of memory for resource efficiency (but satisfy k ≥ 8) in all experiments. Similar with216

other optimizers, VRGD can generate a generally good training curve using default sets. The 1st and217

2nd order decay rates are set to β1 = β3 = 0.9, β2 = 0.999 by default. Experiments are performed218

with TensorFlow on 96 DGX-A100 nodes (768-GPUs).219

6.1 BERT Pretraining220

BERT pretraining is a common NLP task needs speeding up with LB training. For a fair comparison,221

we use the same settings as LAMB [You et al., 2020] except optimizer and learning rate: (1) BERT222

large pretrains using Wikipedia and BooksCorpus and then finetunes on SQuAD(v1.1) to evaluate its223

6

precision with F1 score; (2) A two-phase training strategy is used. First 90% steps use a sequence224

length of 128 (phase-1) and last 10% use a sequence length of 512 (phase-2). Mixed-Batch Training225

is used when batch size is set to 64k/32k, 96k/32k and 128k/64k.226

Table 1: Dev set F1 score of BERT pretraining and then finetuning on SQuAD(v1.1). Each
score is the median result of 3 repeated experiments. The baseline of BERT-large on SQuAD(v1.1)
is 90.395 [You et al., 2020].

Batch Size 16k 32k 64k/32k 64k 96k/32k 96k 128k/32k 128k/64k
Steps 31250 15625 8599 7820 6256 5214 6137 4301
LAMB∗ [You et al., 2020] 91.35 91.48 90.58 - - - - -
Adam∗ [Nado et al., 2021] - 91.58 91.04 90.46 - - - -
LANS∗ [Zheng et al., 2020] - - - - 90.60 - - -
Adasum∗ [Maleki et al., 2021] - - - - - - 90.50 -
VR-LAMB 91.42 91.58 91.49 91.30 91.23 90.70 - 90.85

(ours) (+0.07pp) (+0.00pp) (+0.45pp) (+0.84pp) (+0.63pp)
∗ means the F1 scores are cited from their work.

Using median of repeated experiments is the same as Nado et al. [2021].

We use NVIDIA’s best practise1 to carry out VR-LAMB experiments and tune nothing of the down-227

stream SQuAD(v1.1) tasks (same as LAMB). Detailed hyper-parameters are listed in Appendix.D.228

Results shown in Table.1 indicate that:229

• VR-LAMB outperforms LAMB (widely used in BERT LB pretraining) in all batch sizes230

from 16k to 64k/32k. F1 score is improved up to 91.49 at 64k/32k, 0.91pp higher than231

LAMB.232

• VR-LAMB also outperforms Adam (with standard bias correction and LR discontinuity233

removal) and LANS by an improvement of 0.84pp at 64k and 0.63pp at 96k/32k respectively.234

• VR-LAMB pushes the batch size limit up to 128k/64k using just 4301 steps and maintains a235

F1 score of 90.85. Although Adasum achieves a F1 score of 90.50 at 128k/32k, but it needs236

6137 steps to converge (30% extra steps than VR-LAMB). VR-LAMB achieves 50% less237

steps than LAMB at 64k/32k and even 0.45pp higher of F1 score than baseline.238

6.2 ImageNet with ResNet50239

ImageNet training with ResNet50 v1.5 [He et al., 2016a] is a standard CV benchmark for LB training.240

We use the default sets of official best practise of Google Tensorflow2 with linear LR warm-up, label241

smoothing and cosine LR decay (to 0). It is the same setup as LARS [Liu et al., 2021]. We merely242

adjust the optimizers and learning rate for a fair comparison. We find some successful LB applications243

using Momentum, LAMB and LARS, but not for Adam, AdaGrad or AdamW optimizers [Goyal et244

al., 2017; You et al., 2020; Liu et al., 2021]. LARS based on Momentum is more fitful on CV tasks.245

Therefore, we merely apply VR-LARS on ImageNet. Detailed hyper-parameters are listed in the246

appendix.D.247

Table 2: Top-1 test accuracy of ImageNet using ResNet50. Each test accuracy of VR-LARS(ours)
is averaged over 5 repeated experiments. The standard Top-1 accuracy of MLPerf-v0.5 is 74.9%.

Batch Size 2k 4k 8k 16k 32k 64k 96k
Momentum∗ [Goyal et al., 2017] 76.51% 76.44% 76.26% - - - -
DecentLaM∗ [Yuan et al., 2021] 76.43% - 76.19% 76.73% 76.22% - -
LAMB∗ [You et al., 2020] 77.11% 76.92% 76.89% 76.66% 76.42% - -
LARS∗ [Liu et al., 2021] - 76.90% 76.60% 76.60% 76.60% 75.30% 74.30%
VR-LARS 77.14% 77.23% 77.36% 77.27% 76.81% 75.86% 74.82%

(ours) (+0.03pp) (+0.31pp) (+0.47pp) (+0.54pp) (+0.21pp) (+0.56pp) (+0.52pp)
∗ means the results are cited from their work.

The results shown in Table.2 indicate that:248

• VR-LARS outperforms Momentum, DecentLaM, LAMB and LARS (previous SOTA) in all249

batch sizes (from 0.03pp to 0.56pp). The improvements are higher for larger batch size.250

1https://github.com/NVIDIA/DeepLearningExamples/tree/master
2https://github.com/tensorflow/models/tree/r1.13.0

7

• VR-LARS achieves 75.86% accuracy at 64k batch size, 0.56pp higher than LARS. When251

batch size reaches up to 96k, VR-LARS maintains 74.82% accuracy, close to the MLPerf-252

v0.5 standard (74.9%).253

Generalization Gap: Table.3 demonstrates that VR-LARS can dramatically narrow the generalization254

gap in LB training. The generalization gap is only 1.46 for VR-LARS at 96k (68.3% smaller than255

LARS), even smaller than ConAdv+AA (2.2; Liu et al. [2021]). Note that VR-LARS can be used256

together with ConAdv+AA and other techniques for further improvement.257

Table 3: Generalization Gap of large batch train-
ing on ImageNet.

LARS∗ VR-LARS (ours)
32k 64k 96k 32k 64k 96k

Train 82.50 79.60 78.90 80.00 78.06 76.28Accuracy
Test 76.60 75.30 74.30 76.81 75.86 74.82Accuracy

Generalization 5.90 4.30 4.60 3.12 2.20 1.46
Gap (-47.1%) (-48.8%) (-68.3%)

∗ means the results are cited from [Liu et al., 2021].
Similar phenomenon that train accuracy becomes smaller in VR-
LARS is also observed in ConAdv+AA [Liu et al., 2021].

Table 4: Test AUC of DLRM trained with SGD
and VR-SGD in 1 epoch. The reported results
are averaged over 5 repeated experiments. The
baseline AUC is 0.8014 for SGD at 32k batch
size.

Batch Size 32k 64k 128k 256k 512k
SGD† 0.8014 0.8025 0.8021 0.7827 0.7787
VR-SGD 0.8026 0.8048 0.8042 0.8023 0.8013

(ours) (+0.12pp) (+0.23pp) (+0.21pp) (+1.96pp) (+2.26pp)
† means we reproduce based on NVIDIA’s best practise.

258

6.3 DLRM Training259

Criteo Terabyte click logs dataset (4 billion records) trained with DLRM is a standard CTR prediction260

benchmark newly added in MLPerf-v0.7. DLRM is used following NVIDIA’s best practise1. For a261

fair comparison, we merely modify LRs and optimizers (hyper-parameters are listed in Appendix.D).262

Settings of Linear LR warm up, polynomial decay and training with 1 epoch are used by their default263

set up. Results in Table.4 indicates that:264

• VR-SGD outperforms SGD in all batch size settings. Similar with experiments shown above,265

the improvement of VR-SGD w.r.t SGD increases along with larger batch sizes (from 0.12pp266

to 2.26pp).267

• VR-SGD pushes the batch size limit up to 512k and maintains a high AUC of 0.8013, close268

to the baseline of 0.8014. Note that Google’s submission of MLPerf v0.7 merely uses a269

maximum batch size of 64k [Kumar et al., 2021].270

7 Ablation Studies271

7.1 Orthogonal Experiments272

Table 5: Top-1 test accuracy of CIFAR10 trained with Momen-
tum/Adam/LAMB/LARS optimizers and their corresponding
VRGD optimizers using ResNet56. Each test accuracy is
averaged over 5 repeated experiments. The reported target
accuracy for ResNet56 is 93.03% [He et al., 2016a].

Batch Size 256 512 1k 2k 4k 8k
Momentum† 93.68% 93.56% 93.17% 92.19% 17.40% 14.57%
VR-Momentum 93.79% 93.71% 93.50% 93.28% 92.70% 90.57%

(ours) (+0.11pp) (+0.15pp) (+0.33pp) (+1.09pp) (+75.30pp) (+76.00pp)
Adam† 91.88% 92.24% 92.02% 91.98% 59.38% 20.74%
VR-Adam 92.46% 92.40% 92.43% 92.10% 91.74% 90.86%

(ours) (+0.58pp) (+0.16pp) (+0.41pp) (+0.12pp) (+32.36pp) (+70.12pp)
LAMB† 92.08% 92.03% 91.90% 92.13% 58.35% 15.13%
VR-LAMB 92.29% 92.34% 92.05% 92.43% 92.04% 91.07%

(ours) (+0.21pp) (+0.31pp) (+0.15pp) (+0.30pp) (+33.69pp) (+75.94pp)
LARS† 92.30% 92.29% 92.34% 82.39% 27.50% 12.21%
VR-LARS 92.35% 92.53% 92.44% 92.79% 92.35% 91.86%

(ours) (+0.05pp) (+0.24pp) (+0.10pp) (+10.40pp) (+64.85pp) (+79.65pp)
† means we reproduce based on Google TensorFlow’s best practise.

Figure 2: Composite averaged test
accuracy or AUC curves of each op-
timizer for CIFAR10 experiments.
The abrupt surging of accuracy at
91th and 136th epoch is caused by
decaying LR with a rate of 0.1.

273

In this section, we demonstrate that GSNR is important in optimization and VRGD can be applicable274

to most popular optimizers using CIFAR10. During CIFAR10 training with ResNet56 [He et al.,275

8

2016a,b], we use the default sets of the official best practice for Google Tensorflow2 and mainly276

add square-root LR scaling rules to perform the 216 composite experiments shown in Figure.2.277

Additional linear LR warm-up, label smoothing and cosine LR decay (to 0) techniques are used278

to stabilize LB training experiments shown in Table.5, the same as ImageNet training. Detailed279

hyper-parameters are listed in Appendix.D. As for the test accuracy curves, Figure.2 shows the280

averaged composite test accuracy curve of all 216 experiments for the LR-batch size pairs. Training281

with VR-Momentum/VR-Adam/VR-LAMB converge much faster (1.7 ∼ 4×). As for the final282

precision, Table.5 demonstrate that VR-Momentum/VR-Adam/VR-LAMB/VR-LARS dramatically283

outperform Momentum/Adam/LAMB/LARS when batch size is larger than 4k, which demonstrates284

that VRGD is applicable to most popular optimizers in LB training. The improvements of VRGD285

comparing with their base optimizers grow with the increase of batch size. VRGD optimizers remains286

convergent when batch size reaches 8k.287

7.2 GSNR’s Behaviour288

To understand GSNR’s behaviour in VRGD optimizers, we perform the linear regression experiments.289

The true weights are set to Wi = i, i ∈ [1, 10] and the corresponding parameters wi are initialized to290

zero. Given randomly generated inputs X , we have the true labels as Y = WX and the MSE loss as291

L = ||Y − wX||2. Finally, optimize w with 100 steps.292

Training about 50 (half) steps, VR-SGD is able to converge to the test loss where SGD requires 100293

steps (Figure.1a of Appendix.D). The weights of VR-SGD (dashed lines of Figure.1b of Appendix.D)294

converge faster to their ground truth. We find that w5, w6 converge firstly, then w3, w8 and finally295

w1, w10. Consistently, the GSNR of w5, w6 arise firstly (updating w5, w6 with larger LRs), then296

w3, w8 while the GSNR of w5, w6 decrease slowly (no need to update the converged weights using297

large LRs). Finally after step 60, the GSNR of w1, w10 begin to arise. Intuitively, GSNR helps298

element-wisely fine-tune the LRs for different weights.299

7.3 Hyper-parameters Sensitivity300

Figure 3: Hyper parameter sen-
sitivity experiments: test loss of
various γ (Upper panel) and k
(Bottom panel).

There are two main hyper-parameters in VRGD, i.e., normal-301

ization strength factor γ and the equivalent GPU device number302

k. We take use of linear regression trained with VR-SGD303

using batchsize = 2048 shown above to examine the hyper-304

parameter sensitivity.305

Figure.3 shows that the optimal γ is around (0.04, 0.2) for lin-306

ear regression. Test loss would be larger if γ → 1, which means307

VR-SGD is reduced to SGD. It again demonstrates that GSNR308

is valuable to improve final precision. On the other hand, the309

optimal k is around [32, 256]. This means that each gradient310

mean calculated using [8, 64] samples on each GPU/TPU de-311

vice, and gradient variance calculated using [32, 256] values312

of the gradient mean will return a good evaluation of GSNR.313

In fact, we do not use the optimal hyper-parameters. Instead,314

above experiments use γ = 0.1 and set k to the minimum GPU315

devices that can hold the LB without out of memory (but sat-316

isfy k ≥ 8, refer all of the hyper-parameters in Appendix.D).317

Fine-tuning γ and k may further improve the results.318

8 Summary319

In this paper, we propose the VRGD for large batch training using GSNR. We carry out theoretical320

derivations of convergence rate and generalization analysis to explain why VRGD can accelerate321

large batch training and reduce generalization gap. Comprehensive experiments on BERT-pretraining,322

ImageNet and DLRM verify that VRGD can push the batch size limit than previous SOTA optimizers323

in LB training and perform better. Codes will be released when published.324

9

References325

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In326

International conference on machine learning, pages 699–707. PMLR, 2016.327

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-328

parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,329

2019.330

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,331

Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-332

ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.333

Xiaowu Dai and Yuhua Zhu. Towards theoretical understanding of large batch training in stochastic334

gradient descent. CoRR, abs/1812.00542, 2018.335

Aditya Devarakonda, Maxim Naumov, and Michael Garland. Adabatch: Adaptive batch sizes for336

training deep neural networks. arXiv preprint arXiv:1712.02029, 2017.337

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep338

bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar339

Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the340

Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, pages341

4171–4186. Association for Computational Linguistics, 2019.342

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter343

models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.344

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds345

and Machines, 30(4):681–694, 2020.346

Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink interconnect. IEEE Micro,347

37(2):7–17, 2017.348

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex349

stochastic programming. SIAM J. Optim., 23(4):2341–2368, 2013.350

Andrew Gibiansky. Bringing hpc techniques to deep learning. Baidu Research, Tech. Rep., 2017.351

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,352

Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet353

in 1 hour. arXiv preprint arXiv:1706.02677, 2017.354

Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in par-355

allel: Large-batch training that generalizes well. In 8th International Conference on Learning356

Representations, ICLR. OpenReview.net, 2020.357

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image358

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,359

pages 770–778, 2016.360

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual361

networks. In European conference on computer vision, pages 630–645. Springer, 2016.362

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-363

ization gap in large batch training of neural networks. In Isabelle Guyon, Ulrike von Luxburg,364

Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,365

Advances in Neural Information Processing Systems, pages 1731–1741, 2017.366

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment367

your batch: better training with larger batches. arXiv preprint arXiv:1901.09335, 2019.368

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using new369

complete layer-wise adaptive rate scaling. In Thirty-Fifth AAAI Conference on Artificial Intelligence,370

AAAI, pages 7883–7890. AAAI Press, 2021.371

10

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance372

reduction. Advances in neural information processing systems, 26, 2013.373

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance374

reduction. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger,375

editors, Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural376

Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake377

Tahoe, Nevada, United States, pages 315–323, 2013.378

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter379

Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th380

International Conference on Learning Representations, ICLR. OpenReview.net, 2017.381

Sameer Kumar, Yu Emma Wang, Cliff Young, James Bradbury, Naveen Kumar, Dehao Chen, and382

Andy Swing. Exploring the limits of concurrency in ML training on google TPUS. In Alex Smola,383

Alex Dimakis, and Ion Stoica, editors, Proceedings of Machine Learning and Systems 2021, MLSys384

2021, virtual, April 5-9, 2021. mlsys.org, 2021.385

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James386

Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter387

server. In 11th USENIX Symposium on Operating Systems Design and Implementation, pages388

583–598, 2014.389

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed390

machine learning with the parameter server. Advances in Neural Information Processing Systems,391

27, 2014.392

Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch training in393

deep learning. In International Conference on Machine Learning, pages 6094–6104. PMLR, 2020.394

Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming Ding, Yichang Zhang, Peng Wang, Ang395

Wang, Le Jiang, Xianyan Jia, et al. M6: A chinese multimodal pretrainer. arXiv preprint396

arXiv:2103.00823, 2021.397

Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Understanding why neural398

networks generalize well through GSNR of parameters. In 8th International Conference on399

Learning Representations, ICLR. OpenReview.net, 2020.400

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)401

policy gradient and natural policy gradient methods. Advances in Neural Information Processing402

Systems, 33:7624–7636, 2020.403

Yong Liu, Xiangning Chen, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Concurrent adversarial404

learning for large-batch training. arXiv preprint arXiv:2106.00221, 2021.405

Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Olli Saarikivi, Tianju Xu, Vadim Eksarevskiy,406

Jaliya Ekanayake, and Emad Barsoum. Scaling distributed training with adaptive summation. In407

Alex Smola, Alex Dimakis, and Ion Stoica, editors, Proceedings of Machine Learning and Systems408

2021, MLSys 2021, virtual, April 5-9, 2021. mlsys.org, 2021.409

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of410

large-batch training. CoRR, abs/1812.06162, 2018.411

Andrew Miller, Nick Foti, Alexander D’Amour, and Ryan P Adams. Reducing reparameterization412

gradient variance. Advances in Neural Information Processing Systems, 30, 2017.413

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large414

batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv415

preprint arXiv:2102.06356, 2021.416

Maxim Naumov and Dheevatsa Mudigere. Dlrm: An advanced, open source deep learning recom-417

mendation model, 2020.418

11

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochas-419

tic variance-reduced policy gradient. In International conference on machine learning, pages420

4026–4035. PMLR, 2018.421

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood,422

and Yee Whye Teh. Tighter variational bounds are not necessarily better. In Jennifer G. Dy and423

Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,424

ICML, volume 80 of Proceedings of Machine Learning Research, pages 4274–4282. PMLR, 2018.425

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,426

Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet427

Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),428

115(3):211–252, 2015.429

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in430

tensorflow. arXiv preprint arXiv:1802.05799, 2018.431

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence432

results and optimal averaging schemes. In International conference on machine learning, pages433

71–79. PMLR, 2013.434

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning435

rate, increase the batch size. In 6th International Conference on Learning Representations, ICLR.436

OpenReview.net, 2018.437

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for stochastic438

gradient optimization. Advances in Neural Information Processing Systems, 26, 2013.439

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv440

preprint arXiv:1708.03888, 2017.441

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.442

arXiv preprint arXiv:1708.03888, 6(12):6, 2017.443

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan444

Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning:445

Training BERT in 76 minutes. In 8th International Conference on Learning Representations, ICLR.446

OpenReview.net, 2020.447

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin.448

Decentlam: Decentralized momentum SGD for large-batch deep training. In 2021 IEEE/CVF449

International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17,450

2021, pages 3009–3019. IEEE, 2021.451

Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. Accelerated large batch optimization of BERT452

pretraining in 54 minutes. CoRR, abs/2006.13484, 2020.453

12

	Introduction
	Related Work
	Large Batch Training
	Gradient Variance and GSNR

	Preliminaries
	GSNR
	GSNR and Generalization Gap

	Proposed Algorithms
	VR-SGD's Updating Rules
	VR-Adam, VR-LAMB and other VRGD optimizers

	Theoritical Analysis
	Convergence Analysis
	Generalization Gap

	Experiments
	BERT Pretraining
	ImageNet with ResNet50
	DLRM Training

	Ablation Studies
	Orthogonal Experiments
	GSNR's Behaviour
	Hyper-parameters Sensitivity

	Summary

