
Robust Conformal Prediction under
Joint Distribution Shift

Anonymous Author(s)
Affiliation
Address
email

Abstract

Uncertainty prevails due to the lack of knowledge about data or model, and con-1

formal prediction (CP) predicts multiple potential targets, hoping to cover the true2

target with a high probability. Regarding CP robustness, importance weighting3

can address covariate shifts, but CP under joint distribution shifts remains more4

challenging. Prior attempts addressing joint shift via f -divergence ignores the5

nuance of calibration and test distributions that are critical for coverage guaran-6

tees. More generally, with multiple test distributions shifted from the calibration7

distribution, simultaneous coverage guarantees for all test domains requires a new8

paradigm. We design Multi-domain Robust Conformal Prediction (mRCP) that first9

formulates the coverage difference that importance weighting fails to capture under10

any joint shift. To squeeze such coverage difference and guarantee the (1 − α)11

coverage in all test domains, we propose Normalized Truncated Wasserstein dis-12

tance (NTW) to comprehensively capture the nuance of any test and calibration13

conformal score distributions, and design an end-to-end training algorithm incorpo-14

rating NTW to provide elasticity for simultaneous coverage guarantee over distinct15

test domains. With diverse tasks (seven datasets) and architectures (black-box and16

physics-informed models), NTW strongly correlates (Pearson coefficient=0.905)17

with coverage differences beyond covariate shifts, while mRCP reduces coverage18

gap by 50% on average robustly over multiple distinct test domains.19

1 Introduction20

The growing data volume, enhanced computation capability, and advanced models significantly21

improve machine learning predictive accuracy. Nevertheless, noises, unobservable factors, and the22

lack of knowledge lead to uncertainty that stakeholders should ponder along model predictions23

when making decisions particularly in areas such as fintech [25], autonomous driving [2], traffic24

forecasting [4], and epidemiology [32, 27]. Conformal Prediction (CP) addresses uncertainty by25

predicting a set of possible target(s) rather than a single guess [31]. Specifically, CP computes26

conformal scores (residuals between predicted and true targets for regression tasks) of a trained27

model f on a calibration set, and calculates the 1− α quantile q of these scores. For any input x, CP28

produces the smallest prediction set C(x) consisting of target values whose conformal scores are less29

than q. Assuming that the test and calibration data are exchangeable (including i.i.d.), the true target30

y is guaranteed to be covered by C(x) with at least 1− α probability.31

In practice, calibration distribution PXY and test distribution QXY may differ thus PXY ̸= QXY ,32

termed as joint distribution shift and violate the exchangeability assumption. Joint shift can occur33

with either covariate shift (PX ̸= QX ) or concept shift (PY |X ̸= QY |X ), though what causes a34

joint shift is difficult to infer from the observed data only. With importance weighting, covariate35

shift is shown not to affect the coverage confidence guarantee [29]. To address CP under joint36
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Figure 1: (a) Multiple test domains E = {e1, ..., eM} with joint shifts (Q(e)
XY ̸= PXY ); (b) coverage difference

Djoint = F̂Q(q) − F̂P (q) (Eq. (5)) due to Q
(e)
XY ̸= PXY is decomposed into the Dcoviriate (Eq. (7)) caused by

covariate shift (Q(e)
X ̸= PX ) and the remaining Dconcept (Eq. (8)) due to concept shift (Q(e)

Y |X ̸= PY |X ); (c)
Wasserstein-1 (W-) distances (Eq. (11)) between test and weighted calibration conformal score CDFs capture
the expected Dconcept (Eq. (10)). However, f -divergence (e.g., total variation, KL divergence) does not compare
two CDFs pointwisely and fails to capture such an expectation. Test domains 1 and 2 both have identical
total variations to the calibration domain but different W-distances. With multiple test domains, using a single
1− α quantile [33, 6] lead to the dilemma of CP coverage efficiency and confidence guarantee; (d) Solution:
Normalized Truncated W-distance (Eq. (16)) is robust to outlier scores and different score scales across test
domains, and the mRCP algorithm reduces NTW on all test domains can elastically train a model to guarantee
conformal coverage for Q(e)

Y |X ̸= PY |X∀e ∈ E = {e1, ..., eM}.

shift, f -divergence is adopted in [33, 6] to measure the difference between PXY and QXY or37

the corresponding conformal scores distributions. However, f -divergence ignores where the two38

distributions differ, which quantiles and coverage guarantees depend on (Figure 1, (c)). When test39

data are sampled from multiple distinct test distributions Q(e)
XY , e ∈ E = {e1, ..., eM}, it is desired40

to ensure simultaneous 1− α coverage for all test distributions. Previous work selects the highest41

1− α quantile from all test distributions and constructs C(x) for x ∈ Q
(e)
X ,∀e ∈ E = {e1, ..., eM},42

producing excessively large set C(x). Selecting other quantiles may lead to smaller coverage on a43

test domain than was expected during calibration, leading to prediction overconfidence. Without a44

new paradigm to guarantee coverage under multiple shifted test distributions, the dilemma between45

CP coverage efficiency and confidence guarantee seems unavoidable.46

We first decompose the coverage difference under any joint distribution shift to a component due to47

covariate shift (PX ̸= Q
(e)
X , addressed by importance weighting [29]) and that due to concept shift48

(PY |X ̸= Q
(e)
Y |X ). We propose Normalized Truncated Wasserstein distance (NTW) to robustly capture49

where the test and importance-weighted calibration conformal score cumulative density function50

(CDF) deviate (Figure 1, (b)). We design Multi-domain Robust Conformal Prediction (mRCP) by51

minimizing all NTW terms over E = {e1, ..., eM} during model training (Figure 1, (d)) to elastically52

guarantee coverage confidence for all test domains. Experiments on regression tasks on seven datasets53

demonstrate that: 1) NTW well-correlates with the coverage difference after importance weighting54

(Pearson coefficient 0.905); 2) mRCP provides conformal predictions that reduce average coverage55

difference by 50% compared to baselines under multiple joint shifts; 3) mRCP is sufficiently general56

to address joint distribution shifts even after incorporating domain knowledge when available.57

2 Background and related work58

2.1 Conformal prediction59

Let x ∈ X and y ∈ Y denote the input and output random variable, respectively, where X and60

Y ⊆ R is the input and output space, respectively. On X × Y , the calibration domain is defined by a61
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joint distribution PXY , and we consider a calibration set Sc = {(x1, y1), . . . , (xn, yn)} are drawn62

i.i.d. from PXY . Similarly, a test set St = {(x1, y1), . . . , (xm, ym)} is drawn i.i.d. from test domain,63

which is defined by a joint distribution QXY .64

With a trained regression model f , the conformal score vi = v(xi, yi) = |f(xi)− yi| is the residual65

between the predicted target f(xi) and the true target yi. The set of calibration conformal scores is66

denoted as Vc = {v(xi, yi)|(xi, yi) ∈ Sc}. Let q be the ⌈(1− α)(n+ 1)⌉/n quantile of Vc:67

q = Quantile
(
⌈(1− α)(n+ 1)⌉

n
,
1

n

∑
vi∈Vc

δvi

)
, (1)

where δvi represents the point mass at vi (i.e., the distribution placing all mass at the value vi).68

Quantile(1− α, F ) := inf{z|Pr(Z < z) ≥ 1− α} and F is the CDF of Z. With the quantile q, the69

CP prediction set of an input x from St is70

C(x) = {ŷ ∈ R||f(x)− ŷ| ≤ q, (x, y) ∈ St} . (2)

Most CP methods, such as[22, 23], rely on the assumption of exchangeability, which is relaxed from71

the i.i.d. assumption [31]. In our scenario, if the calibration and test samples are drawn from the72

identical joint probability distribution (PXY = QXY ), these calibration and test samples are i.i.d.73

Under this assumption, the probability that the true target y is included in C(x) is at least 1 − α,74

which is called coverage guanrantee, or more formally,75

Pr (y ∈ C(x)) ≥ 1− α. (3)

2.2 Conformal prediction under domain shift76

Covariate shift (PX ̸= QX ) means marginal distributions between the calibration and test domains77

are different. CP under covariate shift is addressed using importance weighting [29]. Under a78

probabilistic view, [14] defined the covariate shift as a bounded perturbation on any test input and79

developed adaptive probabilistically robust CP. The condition of multiple test domains is discussed80

in [15], and similar topics include coverages under feature-stratification [7, 11].81

Joint distribution shift (PXY ̸= QXY ) indicates at least one of covariate shift (PX ̸= QX ) and82

concept shift (different conditional distributions, PY |X ̸= QY |X ) will occur [17]. This shift is more83

general and the importance weighting method cannot address changes in conditional distribution.84

With M test domains E = {e1, ..., eM}, each e ∈ E is defined by a joint distribution Q
(e)
XY and holds85

a joint shift with calibration domain PXY (i.e., PXY ̸= Q
(e)
XY ). Considering this condition, previous86

works, such as [6, 33], presume all test domains fall in a predefined f -divergence range, calculate87

confidence-specified quantile of each test domain, and apply the highest quantile to all domains.88

This method causes excessively high coverages and thus overlarge prediction sets, which reduces89

prediction efficiency because smaller prediction sets can help locate true targets better.90

3 Conformal prediction under joint distribution shift91

3.1 Decomposition of coverage difference92

We decompose the coverage difference between a calibration domain PXY and a test domain QXY93

under joint distribution shift at a user-specified confidence (1− α).94

Similar to Vc, we define the test conformal score set Vt = {v(xi, yi)|(xi, yi) ∈ St}. With the95

indicator function 1, empirical CDFs of calibration and test conformal scores are96

F̂P (v) =
1

n

∑
vi∈Vc

δv1vi<v, F̂Q(v) =
1

m

∑
vi∈Vt

δv1vi<v. (4)

With given 1− α confidence, quantile q is calculated in Eq. (1), and the coverage difference under a97

joint distribution shift can be quantified as98

Djoint(q) = F̂Q(q)− F̂P (q). (5)

[29] employs importance weighting for CP under covariate shift. Specifically, if the ratio of test99

to calibration covariate likelihoods, QX/PX , is known, a calibration conformal score vi ∈ Vc is100
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weighted by pi = w(xi)/
∑n

j=1 w(xj), where w(xi) = QX(xi)/PX(xi). Therefore, the empirical101

CDF of weighted empirical calibration scores is given by102

F̂Q/P (v) =
∑n

i=1
piδvi1vi<v,

where the subscript Q/P indicates conformal scores of calibration domain P is weighted by confor-103

mal scores of test domain Q. The confidence-specified quantile of the weighted calibration conformal104

scores is105

q∗ = Quantile
(
⌈(1− α)(n+ 1)⌉/n,

∑n

i=1
piδvi

)
. (6)

As importance weighting ensures the 1− α coverage as though covariate shift were absent, coverage106

difference Dcovariate caused by covariate shift is the gap between the coverages under test conformal107

score CDF using quantiles on unweighted and weighted calibration conformal score distributions.108

Dcovariate(q, q
∗) = F̂Q(q)− F̂Q(q

∗). (7)

Importance weighting can not address CP under joint shift as it fails to capture changes in conditional109

probability distribution caused by concept shift, thus we present the coverage difference caused by110

concept shift is111

Dconcept(q, q
∗) = Djoint(q)−Dcovariate(q, q

∗) = F̂Q(q
∗)− F̂P (q), (8)

which is remaining coverage difference after applying importance weighting. Here we assume112

F̂P (q) = F̂Q/P (q
∗), so we can rewrite Dconcept by113

Dconcept(q
∗) = F̂Q(q

∗)− F̂Q/P (q
∗). (9)

The error bound for the assumption is quite small especially when the calibration set size n is large.114

The detailed proof is provided in Appendix B. We denote Dconcept as D for simplification.115

3.2 Normalized Truncated Wasserstein distance116

To develop a metric that is independent of confidence level and can quantify the overall closeness117

between weight calibration and test conformal scores, we estimate the expected coverage difference118

under concept shift as119

E[D] =
1

n

∑
vi∈Vc

∣∣∣F̂Q(vi)− F̂Q/P (vi)
∣∣∣ , (10)

based on the approximation in Eq. (9), where E indicates the expectation function.120

Definition 1 (Wasserstein-1 Distance). If F1 and F2 are two cumulative distribution functions (CDFs),121

the Wasserstein-1 distance, dW, is quantified by the area between F1 and F2.122

dW(F1, F2) =

∫
R
|F1(v)− F2(v)|dx. (11)

Applying Wasserstein-1 distance (W-distance) in Eq. (11) to F̂Q and F̂Q/P , we get123

dW(F̂Q, F̂Q/P ) =

∫ ∞

0

|F̂Q(v)− F̂Q/P (v)|dv. (12)

As we define conformal scores as the residuals between predicted and true targets, they are always124

positive, so we only need to integral from 0 to ∞ in Eq. (12).125

We assume Vc is sorted. As both F̂Q and F̂Q/P are empirical CDFs, we can approximately represent126

dW(F̂Q, F̂Q/P ) in a discrete form as127

dW(F̂Q, F̂Q/P ) ≈
∑n−1

i=1

∣∣∣F̂Q(vi)− F̂Q/P (vi)
∣∣∣ (vi+1 − vi), vi ∈ Vc. (13)

Eq. (13) shows dW(F̂Q, F̂Q/P ) can be estimated as a weighted summation of |F̂Q(vi)− F̂Q/P (vi)|128

for vi ∈ Vc\{vn} with the corresponding weight vi+1 − vi. Also, Eq. (10) indicates that E[D] can129

be regarded as the weighted summation of |F̂Q(vi)− F̂Q/P (vi)| for vi ∈ Vc with weight 1/n. The130
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similarity between Eq. (13) and Eq. (10) allows us to apply the W-distance between the test and131

weighted calibration conformal score to capture expected coverage difference under concept shift.132

Care needs to be taken for Eq. (13) to make this metric more robust. At first, we expect the weights133

vi+1 − vi to be approximately equal, as weights in Eq. (10) are constants 1/n. However, some outlier134

calibration conformal scores have large distances from their neighbors, causing involved weights135

much higher than 1/n. These outlier scores are represented as a long tail of F̂Q/P when it converges136

to 1. Therefore, it is necessary to establish a partition threshold to truncate the long tail. We calculate137

the partition threshold138

vσ = inf
{
vi|F̂Q/P (vi) ≥ 1− σ, vi ∈ Vc

}
, (14)

which is the smallest calibration conformal score whose coverage is greater or equal to a user-defined139

value 1 − σ. In contrast to the original dW(F̂Q, F̂Q/P ) integrated on the set of real numbers, the140

truncated form is integrated from 0 to vσ as141

dTW(F̂Q, F̂Q/P ) =

∫ vσ

0

|F̂Q(v)− F̂Q/P (v)|dv. (15)

Secondly, as the summation of weights in Eq. (10) is 1, we also need to divide each vi+1 − vi142

by vσ − v1. When the calibration set is large enough, it is plausible to assume the existence of a143

calibration sample fitting the trained model f very well, causing the smallest calibration conformal144

score v1 ≈ 0. Therefore, this normalized can be formulated as145

dNTW(F̂Q, F̂Q/P ) =
1

vσ

∫ vσ

0

|F̂Q(v)− F̂Q/P (v)|dv. (16)

A lower dNTW indicates more similarity between F̂Q/P and F̂Q, thus leading to more robust conformal146

prediction in the test domain. As a result, NTW enables us to assess the expected coverage difference147

due to concept shift in Eq. (10). Experiment results in Section 5 and Appendix E show the necessity148

of truncation and normalization. We also prove that the W-distance between the test and weighted149

calibration conformal score population CDF can establish an upper bound for coverage difference150

under concept shift in Appendix C.151

4 Multi-domain robust conformal prediction152

If a calibration set Sc, and a test set St are drawn from a domain PXY , the i.i.d. assumption is153

satisfied, and the coverage guarantee in Eq. (3) holds for (x, y) ∈ St.154

The domain PXY can be decomposed into M multiple domains, denoted as E = {e1, ..., eM}.155

PXY (x, y) =
1

M

∑
e∈E

Q
(e)
XY (x, y) (17)

However, for e ∈ E , denote S
(e)
t a test set drawn from Q

(e)
XY , then the coverage guarantee may no156

longer hold for (x, y) ∈ S
(e)
t , because joint distribution shift may occur between PXY and Q

(e)
XY . It157

indicates CP can be overconfident and underconfident for samples from different Q(e)
XY , resulting in158

prediction biases.159

Inspired by the works of multi-domain generalization [26, 18, 19, 1], we propose Multi-domain160

Robust Conformal Prediction (mRCP) to make the coverage approach confidence in all domains,161

using a training set S(e) from the data distribution Q
(e)
XY for e ∈ E and a calibration set Sc from PXY .162

The objective function of mRCP includes two components. First, for the minimization of prediction163

residuals, denoting l a loss function, Empirical Risk Minimization (ERM) [30] is incorporated as164

LERM(θ) =
∑

e∈E
L(e)(θ) =

∑
e∈E

E(xi,yi)∼S(e) [l(fθ(xi), yi)] . (18)

Secondly, we aim for robust conformal prediction on each domain during testing, seeking a low value165

of E[D] in Eq. (10) across test domains, so mRCP needs to address coverage differences due to166

covariate and concept shifts simultaneously. To remove coverage differences due to covariate shifts,167
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it applies importance weighting to each domain e ∈ E during training and obtains F̂Q(e)/P , which is168

the calibration conformal score CDF weighted by Q
(e)
XY .169

Besides, as we have a training set S(e) from domain Q
(e)
XY , an empirical CDF of conformal scores in170

Q
(e)
XY can be computed, denoted as F̂ tr

Q(e) . NTW quantifies the expected coverage difference caused171

by concept shift between F̂
Q(e)/P

and training conformal score CDF F̂ tr
Q(e) . Combining these two172

components, the objective function of mRCP is173

LmRCP(θ) =
∑

e∈E
L(e)(θ) + β

∑
e∈E

dNTW(F̂ tr
Q(e) , F̂Q(e)/P ), (19)

where β is a hyperparameter balancing these two parts. mRCP algorithm is shown in Algorithm 1.

Algorithm 1 Multi-domain Robust Conformal Prediction

Require: M training sets S(e), e ∈ E ; one calibration set Sc; N training epochs; model fθ; partition value σ;
loss function l; penalty hyperparameter β.

1: for e ∈ E do
2: for (xi, yi) ∈ Sc do

3: w(xi) =
Q

(e)
X

(xi)

PX (xi)
, p(i,e) =

w(xi)∑n
j=1 w(xj)

▷ Covariate shift between Q
(e)
XY and PXY

4: end for
5: end for
6:
7: for i = 1 to N do
8: Vc = {v(xi, yi)|(xi, yi) ∈ Sc} ▷ Calibration score set
9: for e ∈ E do

10: L(e)(θ) = E(xi,yi)∼S(e) [l(fθ(xi), yi)] ▷ ERM loss of domain e

11: V (e) =
{
v(xi, yi)|(xi, yi) ∈ S(e)

}
▷ Training score set of domain e

12: F̂ tr
Q(e) =

∑
vi∈V (e) δvi1vi≤v ▷ Training score CDF of domain e

13: F̂Q(e)/P (v) =
∑

vi∈Vc
p(i,e)δvi1vi≤v ▷ Calibration score CDF weighted by Q

(e)
XY

14: vσ = inf
{
F̂
Q(e)/P

(vi) ≥ 1− σ, vi ∈ Vc

}
▷ Truncation threshold

15: dNTW

(
F̂ tr
Q(e) , F̂Q(e)/P

)
= 1

vσ

∫ vσ
0

∣∣∣F̂ tr
Q(e)(v)− F̂Q(e)/P )

∣∣∣ dv ▷ NTW calculation
16: end for
17: Optimize fθ based on LmRCP(θ) =

∑
e∈E L(e)(θ) + β

∑
e∈E dNTW

(
F̂ tr
Q(e) , F̂Q(e)/P

)
18: end for

174

5 Experiment175

In this section, we validate NTW in Eq. (16) as a good indicator of expected coverage difference due176

to concept shift and demonstrate the effectiveness of mRCP in obtaining coverage robustness across177

different test domains.178

5.1 Datasets and models179

We conducted experiments across various datasets: (a) the airfoil self-noise dataset [5]; (b) Seattle-180

loop [9], PeMSD4, PeMSD8 [16] for traffic speed prediction; (c) US-Regions, US-States, and181

Japan-Prefectures [10] for epidemic spread forecasting. The airfoil dataset was manually altered to182

create three subsets demonstrating covariate and concept shifts. 24 domains for the traffic datasets183

were designated based on data generation hours, while epidemic dataset instances were categorized184

into four domains reflecting different pandemic stages. A multilayer perceptron (MLP) with a (input185

dimension, 64, 64, 1) architecture was utilized for all datasets. Traffic and epidemic prediction tasks186

were also trained on corresponding physics-informed partial differential equations (PDEs), which are187

the Susceptible-Infected-Recovered (SIR) model and the Reaction-Diffusion (RD) model respectively.188

We refer to Appendix D for detailed experiment setups.189
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5.2 Experiments of NTW190

For each of the experiment setups, a training set, a validation set, and a test set were sampled from191

each Q
(e)
XY for e ∈ E . One calibration set was sampled from PXY which is a mixture probability192

distribution of Q(e)
XY for e ∈ E , as shown in Eq. (17). To validate NTW is a good indicator of E[D],193

we only need to use ERM in Eq. (18) to train the model fθ, which can be an MLP or a PDE. The loss194

function l is the ℓ1 norm, as same as how we compute conformal scores.195

After training, for e ∈ E , we first calculated the NTW between the calibration conformal score CDF196

weighted by Q
(e)
X /PX , and validation conformal score CDF of Q(e)

X . Denote the NTW of domain197

e as d(e)NTW. Then, we estimated the expected coverage difference caused by concept shift on a test198

domain e, denoted as Eα[D
(e)], using the coverage difference expectation between the test and199

weighted calibration conformal score CDFs on a 1− α confidence set {0.1, ..., 0.9}.200

Eα[D
(e)] and d

(e)
NTWshould have a positive correlation for e ∈ E , proving NTW can capture the201

expected coverage difference caused by concept shift.202

Baselines: We select six baseline metrics to validate the effectiveness of NTW. Total variation203

dTV [13], and Kullback-Leibler (KL) divergence dKL [21] are chosen as two typical f -divergence204

metrics. Expectation difference ∆E [19] is selected since it is a widely applied generalization metric.205

We also measure standard, normalized, and truncated W-distance, denoted as dW, dNW, and dTW206

respectively, to demonstrate applying normalization and truncation together is necessary.207

Metric: We apply the Pearson coefficient to quantify the correlations between metrics and the208

coverage difference expectation. It measures the linear correlation between two values by giving a209

value between -1 and 1 inclusive. 1,0, and -1 indicate perfect positive linear, no linear, and negative210

linear correlations, respectively. Therefore, if the Pearson coefficient of a metric is higher, this metric211

can indicate the expected coverage difference better. We provide a detailed definition of the Pearson212

coefficient in Appendix E.

Table 1: Pearson coefficients between metrics and coverage difference expectation under concept shift

Dataset Model dNTW dTV dKL ∆E dW dNW dTW

Airfoil MLP 1.000 -0.356 -0.545 0.891 0.878 0.951 0.967
Seattle-

loop
MLP 0.971 0.461 0.054 0.781 0.759 0.762 0.765
PDE 0.996 0.890 0.058 0.897 0.893 0.909 0.921

PeMSD4
MLP 0.992 0.846 -0.390 0.926 0.915 0.964 0.941
PDE 0.986 0.682 -0.068 0.858 0.872 0.928 0.858

PeMSD8
MLP 0.905 0.397 -0.089 0.333 0.267 0.371 0.529
PDE 0.827 0.129 -0.114 0.253 0.118 0.141 0.527

US-
States

MLP 0.999 0.966 0.965 0.872 0.885 0.912 0.931
PDE 0.999 0.966 0.964 0.817 0.848 0.890 0.899

US-
Regions

MLP 0.636 -0.530 -0.338 -0.205 -0.308 -0.352 -0.405
PDE 0.709 0.308 0.350 0.484 0.355 0.322 0.137

Japan-
Prefectures

MLP 0.996 0.986 0.988 0.943 0.948 0.954 0.950
PDE 0.997 0.983 0.981 0.907 0.918 0.935 0.924

Average 0.905 0.574 0.325 0.619 0.583 0.607 0.629
Standard Deviation 0.128 0.474 0.562 0.368 0.420 0.437 0.428

213

Results: Table 1 illustrates the Pearson coefficients between NTW and the coverage difference214

expectation among seven datasets and different models, compared with the other six baseline metrics.215

We highlight that NTW keeps holding the largest Pearson coefficient among all experiment setups,216

which means the proposed metric can keep indicating the coverage difference expectation. Specifically,217

the coefficients of total variation dTV and KL divergence dKL fluctuate along experiments, meaning218

that they can not truly indicate the coverage difference expectation. ∆E can not capture the coverage219

difference expectation either. Lastly, due to the lack of robustness to score scales and outliers,220

standard, normalized, and truncated W-distance, denoted as dW, dNW, and dTW respectively, can221
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not indicate the coverage difference expectation as well as dNTW. It also displays the average and222

standard deviation of the Pearson coefficient of the proposed NTW and six baselines. NTW not only223

has the highest average Pearson coefficient but also has the lowest standard deviation, which means224

the correlation between NTW and the coverage difference expectation caused by concept shift is225

very stable. In Figure 3 and Figure 4, we also visually show the correlation between the expected226

coverage difference under concept shift and each metric. We refer to Appendix E for detailed analysis.227

This observation suggests the potential of incorporating NTW in the training process, leading to the228

development of the mRCP approach. By applying the NTW metric, mRCP aims to enhance coverage229

robustness in test domains.230

5.3 Experiments of mRCP231

Since we prove NTW can assess expected coverage difference under concept shift effectively, mRCP232

is designed to minimize it during training. In this case, validation sets are unnecessary, and we only233

draw training, and test sets from Q
(e)
XY . Again, we draw one calibration set from PXY . The model fθ234

can also be an MLP or PDE based on different experiment setups. The loss function l is the ℓ1 norm.235

We implement mRCP according to Algorithm 1.236

Baselines: Two methods of optimization with out-of-distribution data are selected as baselines. DRO237

in Eq. (20) by [26] follows the minimax principle to reduce the highest L(e) to obtain fair prediction238

among test distributions. On the other hand, V-REx in Eq. (21), introduced by [18], focuses on239

reducing the variance of L(e) to obtain fairness. As we include importance weighting in mRCP, we240

do not take it as a baseline, and the effectiveness of importance weighting is discussed in Section 6.241

LDRO(θ) = max
e∈E

L(e). (20)

242

LV-REx(θ) =
∑

e∈E
L(e) + β Var(L(e) | e ∈ E). (21)

Metric: Denote E′
e[Eα[D

(e)]] the expectation of coverage difference over confidence levels243

and test domains and E′
e[L(e)] the expectation of prediction residual over test domains. The244

two expectations become smaller means the algorithm’s performance is better. Both values are245

normalized by the corresponding results from the same experiment setup trained by ERM. Changing246

the weight β in Eq. (19) will draw a Pareto front, thus we want the Pareto front closer to the origin.247

Since V-REX is also controlled by a hyperparameter, we draw Pareto fronts for it as well.248

Result: Figure 2 displays the Pareto fronts for mRCP, DRO, and V-REx, highlighting the trade-offs249

between prediction residual and coverage difference expectation across different models and datasets.250

Figure 2, (a) shows the results for the airfoil self-noise dataset when trained with a Multilayer251

Perceptron (MLP) model. The mRCP method achieves a more favorable Pareto front compared to252

V-REx, indicating a better balance between prediction residual and coverage difference expectation.253

Additionally, mRCP attains a lower normalized coverage difference expectation than DRO at a254

comparable level of the prediction residual. In Figure 2, (b), we observe the experiment results on255

the epidemic spread prediction task using three epidemic datasets. With the same MLP architecture,256

mRCP delivers superior Pareto fronts relative to the baselines. When employing the epidemic PDE,257

the SIR model only has two trainable parameters, so their data points can not compose Pareto curves258

due to the model’s limited flexibility. Thus, we show the average of these points. Despite this259

limitation, mRCP maintains its advantage over the baseline methods. Figure 2, (c) and (d) present260

results from the traffic prediction task on three different traffic datasets. Here, the Pareto curves261

for both the MLP and the reaction-diffusion (RD) PDE model are well-defined, because RD model262

with six parameters, offers greater adaptability, allowing for clearer Pareto fronts. Overall, Figure 2263

collectively indicates that mRCP consistently achieves lower coverage difference expectations without264

compromising prediction residual as significantly as DRO and V-REx in different tasks and datasets.265

6 Discussion266

mRCP can distinguish coverage differences under concept shift and covariate shift. A notable267

feature of the mRCP Pareto curves depicted in Figure 2 is their results when β is small, which are not268

at E′
e[Eα[D

(e)]] = 1, unlike the Pareto curves of V-REx. This is because, during training, mRCP269

8



Figure 2: Pareto fronts of Multi-domain Robust Conformal Prediction(mRCP), compared with DRO and
V-REx: Experimental results of (a) airfoil self-noise example, (b) epidemic spread prediction, and (c) (d) traffic
speed prediction. mRCP always reaches a smaller coverage difference expectation than DRO and V-REx with
less increase in prediction residual. Red boxes in (b) are zoomed-in areas. Shadow areas and error bars indicate
the standard error.

has considered the coverage difference under covariate shift by applying importance weighting to270

calibration conformal score CDF. Consequently, as β in Eq. (19) increases, the NTW term is only271

trained to mitigate the coverage difference under the concept shift, as shown in Figure 2,(a).272

DRO and V-REx are defeated because of improper selection of optimization metrics. Examining273

Eq. (20) and Eq. (21), we can see both baselines aim to promote fairness by equalizing the expected274

losses across different domains. As the loss function is ℓ1 norm, which is identical to how conformal275

scores are calculated, the experiment results of ∆E in the last row of Figure 3 show this metric is276

ineffective in capturing the coverage difference due to concept shift.277

Nonetheless, mRCP’s limitations arise from the inherent challenges associated with penalty-278

based optimization algorithms. Whether it is mRCP or V-REx, penalty-based optimization algo-279

rithms necessitate a model with a high capacity for fitting complex patterns. For instance, in Figure 2,280

(b), the Pareto curves are not discernible when predictions are derived from an epidemic PDE (SIR281

model) with only two adjustable parameters. In contrast, as shown in Figure 2, (d), the traffic PDE282

(RD model) demonstrates greater flexibility and adaptability with six tunable parameters, exhibiting283

distinct Pareto curves.284

7 Conclusion285

This study begins by decomposing the coverage difference caused by covariate and concept shifts.286

We then introduce the Normalized Truncated Wasserstein distance (NTW) as a metric for capturing287

coverage difference expectation under concept shift by comparing the test and weighted calibration288

conformal score CDFs. This metric can indicate the discrepancy position in calibration and test score289

distributions. Normalization and truncation make the metric score scales and outliers. Finally, we290

develop an end-to-end algorithm called Multi-domain Robust Conformal Prediction (mRCP) that291

incorporates NTW during training, allowing coverage to approach confidence in all test domains.292
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A Related work380

Table 2: Related works and mRCP

Task
Number of
Test Domains

Test Domain Property Work

Adaptive Conformal Prediction
under Exchangeability

1 Identical to Calibration Domain [22, 23]

Conformal Prediction
under Covariate Shift

1 Covariate Shift [29, 14]

Multi-Domain Conformal Prediction Multiple

Feature-stratified [7, 11]
Covariate Shift [15]
Joint Distribution Shift in Certain
F -divergence Range

[33, 6]

Joint Distribution Shift mRCP

B Error bound for the assumption of identical coverages381

According to the computation of q and q∗ in Eq. (1) and Eq. (6), respectively, we can define the382

coverages in unweighted and weighted calibration score distributions as383

F̂P (q) = inf
{
F̂P (vi)|F̂P (vi) ≥ ⌈(1− α)(n+ 1)⌉/n, vi ∈ Vc

}
,

384

F̂Q/P (q
∗) = inf

{
F̂Q/P (vi)|F̂Q/P (vi) ≥ ⌈(1− α)(n+ 1)⌉/n, vi ∈ Vc

}
.

Denoting q+ = inf{vi|vi ∈ Vc, vi > q} and q∗+ = inf{vi|vi ∈ Vc, vi > q∗}, we can bound F̂P (q)385

and F̂Q/P (q
∗) as386

F̂P (q) ∈
[
⌈(1− α)(n+ 1)⌉/n, F̂P (q+)

)
, F̂Q/P (q

∗) ∈
[
⌈(1− α)(n+ 1)⌉/n, F̂Q/P (q

∗
+)
)
.

Therefore, the absolute difference between F̂ ∗(q∗) and F̂ (q) is bounded by387

|F̂Q/P (q
∗)− F̂P (q)| < max

(
F̂Q/P (q

∗
+)− ⌈(1− α)(n+ 1)⌉/n, F̂P (q+)− ⌈(1− α)(n+ 1)⌉/n

)
.

Especially, when the calibration set size n is large enough (like having thousands of samples),388

F̂Q/P and F̂P will be quite smooth, the upper above will be even negligible, allowing us to assume389

F̂Q/P (q
∗) = F̂P (q).390

C Upper bound of coverage difference under concept shift391

In this section, we prove that the W-distance between a test and weighted calibration conformal score392

population CDF can establish an upper bound for coverage difference under concept shift.393

As D quantifies the absolute difference between F̂Q/P and F̂Q at a calibration conformal score, it394

can be constrained by an upper bound given by the Kolmogorov distance [12] defined as follows.395

Definition 2 (Kolmogorov Distance). If F1 and F2 are two cumulative distribution functions (CDFs),396

the Kolmogorov distance, dK, is defined as the maximum absolute difference between the CDFs.397

dK(F1, F2) = sup
v∈R

|F1(v)− F2(v)|.

As F̂Q/P and F̂Q are empirical (not population) CDFs of weighted calibration and test conformal398

scores, the bounding relationship can be reformulated as399

dK(F̂Q, F̂Q/P ) = sup
v∈Vc∪Vt

|F̂Q(v)− F̂Q/P (v)| ≥ sup
v∈Vc

|F̂Q(v)− F̂Q/P (v)| = sup
v∈Vc

|D(v)|. (22)
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The upper bound dK(F̂Q, F̂Q/P ) depends on the two conformal score sets Vc and Vt, indicating that400

the inclusion of samples in Sc and St is likely to introduce variability in dK(F̂Q, F̂Q/P ). Nevertheless,401

we aim for an upper bound that is not reliant on specific samples and relies on the calibration and test402

conformal score population CDFs, FP and FQ.403

Firstly, we convert the upper limit in Eq. (22) into terms of FP and FQ. Denoting the joint probability404

density function (PDF) of features and score in the calibration and test domain as pXV and qXV405

respectively, the corresponding continuous CDFs of conformal scores are illustrated as406

FP (v) =

∫ v

0

∫
X
pXV (u, t)dudt, FQ(v) =

∫ v

0

∫
X
qXV (u, t)dudt, (23)

where X is the space of the feature variable X .407

PDFs of features in calibration and test domains, denoted as pX and qX respectively, are defined as408

pX =

∫
R

pXV (u, t)dt, qX =

∫
R

qXV (u, t)dt. (24)

To address the coverage difference due to covariate shift, importance weighting from [29] is rewritten409

as w = qX

pX
. Also, normalization is unnecessary, because w here is a correction function to transform410

the marginal distribution of pX into qX . The weighted version of pXV is denoted as p′
XV =411

wpXV = qXpV |X , which can be applied to derive the weighted continuous CDF of calibration412

conformal score by413

FQ/P (v) =

∫ v

0

∫
X
p′
XV (u, t)dudt =

∫ v

0

∫
X
qX(u)pV |X(u, t)dudt. (25)

The Kolmogorov distance between FQ/P and FQ is dK(FQ, FQ/P ) = supv∈R |FQ(v)− FQ/P (v)|.414

Theorem 1 (Triangular Inequality for Kolmogorov Distance). If F1, F2, and F3 are three cumulative415

distribution functions (CDFs), their Kolmogorov distances follow this inequality:416

dK(F1, F3) ≤ dK(F1, F2) + dK(F2, F3).

Proof. Consider any point x ∈ R, then we have |F1(x) − F3(x)| ≤ |F1(x) − F2(x)| + |F2(x) −417

F3(x)|.This inequality holds due to the triangle inequality for absolute values. Now, taking the supre-418

mum over all x, we have supx∈R |F1(x)− F3(x)| ≤ supx∈R (|F1(x)− F2(x)|+ |F2(x)− F3(x)|).419

Note that the right-hand side is not necessarily equal to the sum of the suprema of the individ-420

ual terms, because the points at which the suprema of |F1(x) − F2(x)| and |F2(x) − F3(x)|421

are attained may be different. However, we know that for any x, |F1(x) − F2(x)| is at most422

dK(F1, F2) and |F2(x) − F3(x)| is at most dK(F2, F3). Therefore, supx∈R |F1(x) − F3(x)| ≤423

dK(F1, F2) + dK(F2, F3). Since the left-hand side is the definition of dK(F1, F3), we can demon-424

strate that dK(F1, F3) ≤ dK(F1, F2) + dK(F2, F3).425

As Kolmogorov distance satisfies the triangular inequality theorem, as shown and proved in Theo-426

rem 1, the triangular inequality relationship can be expanded to427

dK(F̂Q, F̂Q/P ) ≤ dK(FQ/P , F̂Q/P ) + dK(FQ, FQ/P ) + dK(F̂Q, FQ). (26)

Secondly, the Kolmogorov distance between an empirical CDF and its corresponding population CDF428

can be constrained by Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [20], defined in Definition 3.429

Definition 3 (Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality). If F is a population cumulative430

distribution function (CDF), and F̂ is an empirical CDF with n samples of a random variable X ,431

then for any ϵ ≥
√

1
2n ln 2, the following inequality holds.432

Pr(dK(F̂ , F ) > ϵ) ≤ e−2nϵ2 .

Based on Definition 3, saying |Vc| = n and |Vt| = m, we can apply DKW inequality to433

dK(F̂Q/P , FQ/P ) and dK(F̂Q, FQ) as follows, for ϵ ≥
√

1
2n ln 2 and ρ ≥

√
1

2m ln 2.434

Pr(dK(F̂Q/P , FQ/P ) ≤ ϵ) > e−2nϵ2 , Pr(dK(F̂Q, FQ) ≤ ρ) > e−2mρ2

.
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If the two events dK(F̂Q/P , FQ/P ) < ϵ and dK(F̂Q, FQ) < ρ are independent, the inequality in435

Eq. (26) can be expanded in Eq. (27), which holds with at least probability e−2(nϵ2+mρ2). By applying436

DKW inequality, we successfully quantify the variability of dK(F̂Q, F̂Q/P ) in Eq. (22) as a form of a437

probable event, and use the population conformal score CDFs to limit the worst-case of coverage438

difference under concept shift.439

dK(F̂Q, F̂Q/P ) ≤ dK(FQ, FQ/P ) + ρ+ ϵ. (27)

Finally, having established in Eq. (13) that the W-distance can serve as an estimator for coverage440

difference expectation, we explore whether Eq. (27) may similarly be bounded by this metric. The441

W-distance of the two population conformal score CDFs are explicitly shown as442

dW(FQ, FQ/P ) =

∫
R

∣∣FQ(v)− FQ/P (v)
∣∣dv =

∫
R

∣∣∣∣∫ v

0

∫
R
qXV (u, t)dudt−

∫ v

0

∫
R
p′
XV (u, t)dudt

∣∣∣∣dv
=

∫
R

∣∣∣∣∫ v

0

∫
R
qXV (u, t)dudt−

∫ v

0

∫
R
qX(u)pV |X(u, t)dudt

∣∣∣∣dv
(28)

According to [24], if the weighted calibration conformal score probability density function (PDF) has443

Lebesgue density bounded by C, which means p′
V does not exceed C, then for any test conformal444

score PDF qV , dK(FQ, FQ/P ) can be bounded as445

dK(FQ, FQ/P ) ≤
√

2CdW(FQ, FQ/P ) (29)

Finally, we can derive the upper limit of coverage difference under concept shift, supv∈Vc
|D(v)|, in446

Eq. (30) at least probability e−2(nϵ2+mρ2).447

sup
v∈Vc

|D(v)| ≤ dK(F̂Q, F̂Q/P ) ≤
√
2CdW(FQ, FQ/P ) + ϵ+ ρ (30)

This property is attractive in that the maximum difference in coverage due to concept shift can also448

be constrained in relation to the W-distance of population score CDFs, denoted as dW(FQ, FQ/P ).449

Despite the unobservability of dW(FQ, FQ/P ), we can still estimate it using its empirical form,450

dW(F̂Q, F̂Q/P ).451

Even though coverage guarantee on an arbitrary joint shift is almost impossible, Eq. (28) demonstrates452

robust conformal prediction is attainable if we can train a function reducing the discrepancy between453

calibration and test conformal score distributions. To be specific, dW(FQ, FQ/P ) can be reduced to454

zero as far as pV |X = qV |X . In other words, if we regard pXV and qXV as push-forward probability455

distribution of PXV and QXV by the trained model f , making the concept shift between pV |X and456

qV |X smaller will reduce coverage difference expectation on test domain.457

D Datasets, models, and experiment setups458

Extensive experiments are conducted under 3 tasks with 7 datasets. Some tasks involve both black-box459

and physics-informed models to demonstrate the generalizability of NTW and mRCP.460

D.1 Airfoil self-noise example461

The airfoil dataset from the UCI Machine Learning Repository [5] consists of 1503 instances of462

1-dimensional target Y and 5-dimensional feature X = (X1, X2, X3, X4, X5). This dataset is463

manually separated and modified to create three different domains.464

Domain separation:465

Step 1. Covariate Shift by Data Separation. The original dataset is initially segmented into three466

primary subsets A,B,C based on the 33% and 66% quantiles of the first dimension X1. Subsequently,467

each of these subsets is further divided into three smaller portions at a 7:2:1 ratio, denoted like468

A0.7, A0.2, A0.1 from A. Finally, we assemble three new datasets with covariate shift as S(e1) =469

A0.7 ∪B0.2 ∪ C0.1, S(e2) = A0.2 ∪B0.1 ∪ C0.7, S(e3) = A0.2 ∪B0.1 ∪ C0.2.470
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Step 2. Concept Shift by Target Modification. Differently distributed random noises are added to471

target values to cause concept shifts. For yi from S(e1), yi+ = yi/1000 ∗ τ ; for yi from S(e2),472

yi+ = yi/τ ; for yi from S(e3), yi+ = τ . τ follows a normal distribution N(0, 102). Since we obtain473

three subsets in the end, |E| = 3.474

Model selection:475

We utilize a straightforward multilayer perceptron (MLP) as a trainable model, with an architecture476

of (input dimension, 64, 64, 1) tailored for the regression task.477

D.2 Traffic speed prediction478

The Seattle-loop [9], and PeMSD4, PeMSED8 datasets [16] contain sensor-observed traffic volume479

and speed data collected in Seattle, San Francisco, and San Bernardino. The snapshots from sensors480

are taken at 5-minute intervals. This task aims to predict the traffic speed of the local road segment in481

the next time step, using the traffic data from local and neighboring segments collected currently.482

Domain separation:483

Naturally, instances can be categorized into 24 subsets, |E = 24|, based on the hour they are obtained.484

It is anticipated that there are joint shifts between the data distribution of every single hour (test485

domains) and the data distribution of the whole day (calibration domain), as traffic patterns vary over486

time, making it unnecessary to modify any data. We select the workday data from the three datasets.487

Model selection:488

(a) MLP with the same structure (input dimension, 64, 64, 1) is applied to the traffic prediction task.489

(b) The Reaction-Diffusion (RD) model is selected as the physics-informed Partial differential490

equation (PDE) for traffic speed prediction. Reaction-diffusion mechanism, originally formulated for491

chemical systems to describe particle dynamics, has been adapted for traffic analysis by [3] to uncover492

traffic patterns on different road segments, offering an alternative to purely data-driven models like493

long-short-term memory. [28] further advanced this approach by integrating the RD model into494

graphical neural networks to capture traffic state interactions among adjacent road segments, with495

the reaction term accounting for influences against traffic flow and the diffusion term for influences496

along it. To be specific, for a given sensor i, with Nd upstream and Nr downstream neighboring497

sensors, the traffic states from these sensors impact sensor i after δt time through diffusion and498

reaction effects, respectively. We expand the original RD model in [28] to Eq. (31), where the traffic499

speed and volume at sensor i at time t is ui(t) and qi(t), respectively. The parameters ρ(i,j) and σ(i,j)500

represent the diffusion and reaction strengths between sensor i and sensor j, while their superscripts501

indicate if they serve for speed or volume. Also, di and ri are bias terms for the two components.502

ui(t+ δt)− ui(t) =
∑
j∈Nd

(ρu(i,j)(ui(t)− uj(t)) + ρq(i,j)(qi(t)− qj(t)) + di

+ tanh(
∑
j∈Nr

σu
(i,j)(ui(t)− uj(t)) + σq

(i,j)(qi(t)− qj(t)) + ri). (31)

D.3 Epidemic spread prediction503

Three epidemic datasets, US-Regions, US-States, and Japan-Prefectures [10] include the number of504

patients infected by influenza-like illness (ILI) recorded by U.S. Department of Health and Human505

Services, Center for Disease Control and Prevention (CDC), and Japan Infectious Diseases Weekly506

Report. We aim to use the local population, the rise in the number of infected patients observed this507

week, and the cumulative total of infections as predictive features of the increase in infections for the508

upcoming week.509

Domain separation: According to the Pandemic Intervals Framework (PIF) by CDC, samples are510

divided by four pandemic intervals, Initiation, Acceleration, Declaration, and Subsidence, so |E| = 4.511

We establish the interval endpoints based on specific percentages of the total infected patient count,512

specifically at the 15%, 50%, and 85% thresholds.513

Model selection:514

(a) MLP with the same architecture is utilized for the epidemic spread forecasting task as well.515
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(b) PDE for this task is the SIR model that categorizes the population into three groups: those516

susceptible to the disease S, those infectious I , and those who have recovered and gained immunity517

R. It outlines the temporal changes in their populations, as described by [8]. The governing518

differential equations can be expressed as Eq. 32, where N , λ, and γ represent the total population,519

infection rate, and recovery rate, respectively.520 
dS(t)
dt = −λS(t)I(t)

N ,
dI(t)
dt = λS(t)I(t)

N − γI(t) = (λS(t)
N − γ)I(t),

dR(t)
dt = γI(t).

(32)

We make the assumption that the location is isolated, hence N = S(t) + I(t) +R(t). Additionally,521

the population of recovered individuals is represented by R(t) = γ
∫ t

0
I(t)dt. Given this, if to522

signifies the initial time of the current epidemic and δt denotes the time step, which is a week in the523

three datasets, we can express the dynamic change of infectious individuals discretely as Eq. (33).524

I(t+ δt)− I(t) =

(
λ(N − I(t)− γ

∑t
to
I(t))

N
− γ

)
I(t). (33)

D.4 Experiment setups for NTW and baseline metrics525

As we only need to validate the positive correlation between NTW and coverage difference ex-526

pectation, all models are trained by ERM. In the airfoil self-noise example, 100 trials are carried527

out. For the traffic task, 61 locations from the Seattle-loop, 59 locations from PeMSD4, and 33528

locations from PeMSD8 are chosen, with 10 trials conducted at each location. For simplicity in the529

calculation, all selected locations have just one segment upstream and one segment downstream. For530

epidemic datasets, all locations from US-Regions, US-States, and Japan-Prefectures (49 locations531

in US-States, 10 locations in US-Regions, and 46 locations in Japan-Prefectures) are encompassed532

in the experiments, with 10 trials implemented on each location. The same experiment setups are533

operated on all baseline metrics and NTW. σ values for MLP and PDE are 0.8 and 0.95, respectively.534

The ratio of training, calibration, validation, and testing data on airfoil self-noise datasets, three535

traffic datasets, and three epidemic datasets are 1:1:1:1, 3:2:2:3, and 1:2:1:1, respectively. Data536

separation was conducted randomly. Adam optimizer with a learning rate of 0.001 was applied for all537

experiments. On average, one trial requires one hours on a workstation with double NVIDIA RTX538

3090 GPU.539

D.5 Experiment setups for mRCP, V-REx, and DRO540

We define 1 trial as running a series of experiments of all predefined β values once, except for DRO.541

For the airfoil self-noise example, 100 trials with random data preprocessing are conducted. For the542

traffic speed prediction task, we randomly select 10 locations from each of the three traffic datasets543

and operate one trial on all selected locations. In the epidemic spread prediction task, all locations of544

the three datasets are included and we operate one trial on each of them. All combinations of models545

(MLP and PDE) and algorithms (mRCP, DRO, V-REx) share the same experiment setups mentioned546

above. σ values for MLP and PDE are 0.8 and 0.95, respectively. β values for mRCP and V-REx in547

different experiment setups are shown in Table 3. Each Pareto curve consists of at least 10 β values.548

For airfoil self-noise datasets and three traffic datasets, the original data is evenly and randomly split549

for training, calibration, and testing. For three epidemic datasets, we randomly split the original data550

for training, calibration, and testing with a ratio of 2:1:2. Adam optimizer with a learning rate of551

0.001 was applied for all experiments. On average, one trial requires 12 hours on a workstation with552

double NVIDIA RTX 3090 GPU.553

16



Table 3: β values for mRCP and V-REx in experiment setups

Dataset Model Algorithm β Values

Airfoil Self-Noise MLP
mRCP 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20, 30, 50, 80, 100.
V-REx 0.1, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20.

Japan-Prefectures
MLP

mRCP 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10, 20, 40, 100, 200, 500.
V-REx 0.1, 1, 1.5, 2, 3, 4, 5, 7.5, 10, 20, 40, 100, 200, 500.

PDE
mRCP 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.
V-REx 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.

US-Regions
MLP

mRCP 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10, 20, 40, 100, 200, 500.
V-REx 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20, 30, 40, 100.

PDE
mRCP 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.
V-REx 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.

US-States
MLP

mRCP 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10, 20, 40, 100, 200, 500.
V-REx 0.1, 1, 1.2, 1.7, 2, 2.5, 3, 3.5, 4, 5, 7, 10, 15.

PDE
mRCP 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.
V-REx 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10.

Seattle-loop
MLP

mRCP 0.1, 1, 2, 3, 4, 5, 10, 25, 100, 200, 400, 700, 1000.
V-REx 0.1, 1, 1.5, 2, 2.5, 3, 4, 5, 10, 50.

PDE
mRCP 0.1, 1, 5, 10, 20, 40, 80, 160, 320, 640.
V-REx 0.1, 0.2, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5.

PeMSD4
MLP

mRCP 0.1, 1, 2, 5, 10, 50, 100, 150, 200, 300, 400, 500.
V-REx 0.1, 1, 2, 3, 4, 5, 7.5, 10, 13, 16, 19, 22, 25.

PDE
mRCP 0.1, 1, 5, 10, 50, 100, 200, 500, 1000, 5000, 10000.
V-REx 0.1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 15.

PeMSD8
MLP

mRCP 0.1, 1, 2, 5, 10, 50, 100, 150, 250, 300, 400, 500.
V-REx 0.1, 1, 2, 3, 4, 5, 7.5, 10, 20, 30, 40, 75, 80, 150.

PDE
mRCP 0.1, 1, 5, 10, 50, 100, 200, 500, 1000, 2000.
V-REx 0.1, 1, 2, 3, 5, 7, 10, 15, 20, 30.

E Additional experiment results554

E.1 Pearson coefficient definition555

Here we provide a detailed definition of the Pearson coefficient as follows.556

Definition 4 (Pearson coefficient). The Pearson correlation coefficient, denoted as r, is calculated as557

the covariance of the two variables divided by the product of their standard deviations, as follows.558

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
. (34)

where xi and yi are the individual sample points of random variables X and Y indexed with i and x559

and y are the means of their samples, respectively.560

The Pearson correlation coefficient measures the linear correlation between two variables. It gives a561

value between -1 and 1 inclusive, where 1 indicates a perfect positive linear relationship, -1 indicates562

a perfect negative linear relationship, and 0 indicates no linear correlation.563

E.2 Correlation visualization564

Figure 3 shows the experimental results of the correlation between NTW and coverage difference565

expectation, compared with three baselines: total variation, KL divergence, and expectation difference.566

It is organized into a matrix of subplots, with each column corresponding to a specific dataset and567

each row depicting the performance of a metric. Within these subplots, individual points represent568

the conjunction of a metric’s value with the associated coverage difference expectation for a given569

test domain. A positive trend between NTW and the coverage difference expectation is shown in the570
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top row, showcasing NTW’s strong correlation. In contrast, the other metrics exhibit inconsistent571

correlations across the varied datasets and models, as seen in the lower three rows of subplots.572

Figure 4 also illustrates the expected coverage difference’s correlation to NTW, standard W-distance,573

normalized W-distance, and truncated W-distance, proving that normalization and truncation are574

equally important for robust correlations.
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Figure 3: Experimental results of the correlation between Normalized Truncated Wasserstein distance
(NTW) and coverage difference expectation, compared with total variation, KL divergence, and expec-
tation difference. Each point represents a pair of metric value and coverage difference expectation for a test
domain. The first row of the subplots demonstrates NTW indicates the expectation across different datasets and
models, whereas other baseline metrics, represented in the other three rows, can not consistently capture it.
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Figure 4: Experimental results of the correlation between Normalized Truncated Wasserstein distance
(NTW) and coverage difference expectation of concept shift, compared with standard, normalized,
and truncated Wasserstein distance. Each point represents a pair of metric value and coverage difference
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NeurIPS Paper Checklist576

1. Claims577

Question: Do the main claims made in the abstract and introduction accurately reflect the578

paper’s contributions and scope?579

Answer: [Yes]580

Justification: We focus on robust conformal prediction under joint distribution shift. The581

abstract and introduction accurately state our contributions. We propose Normalized Wasser-582

stein distance to quantify the coverage difference caused by concept shift and develop583

multi-domain robust conformal prediction to make coverage approach confidence when584

multiple test domains hold joint shifts with the calibration domain.585

Guidelines:586

• The answer NA means that the abstract and introduction do not include the claims587

made in the paper.588

• The abstract and/or introduction should clearly state the claims made, including the589

contributions made in the paper and important assumptions and limitations. A No or590

NA answer to this question will not be perceived well by the reviewers.591

• The claims made should match theoretical and experimental results, and reflect how592

much the results can be expected to generalize to other settings.593

• It is fine to include aspirational goals as motivation as long as it is clear that these goals594

are not attained by the paper.595

2. Limitations596

Question: Does the paper discuss the limitations of the work performed by the authors?597

Answer: [Yes]598

Justification: We discuss the limitation of our proposed method in Section 6. The proposed599

method requires the training model’s enough capacity to fit complex patterns. Also, as it600

needs to approximate the ratio of covariate likelihood between calibration and test domains,601

it requires enough training and calibration samples to conduct accurate kernel density602

estimation.603

Guidelines:604

• The answer NA means that the paper has no limitation while the answer No means that605

the paper has limitations, but those are not discussed in the paper.606

• The authors are encouraged to create a separate "Limitations" section in their paper.607

• The paper should point out any strong assumptions and how robust the results are to608

violations of these assumptions (e.g., independence assumptions, noiseless settings,609

model well-specification, asymptotic approximations only holding locally). The authors610

should reflect on how these assumptions might be violated in practice and what the611

implications would be.612

• The authors should reflect on the scope of the claims made, e.g., if the approach was613

only tested on a few datasets or with a few runs. In general, empirical results often614

depend on implicit assumptions, which should be articulated.615

• The authors should reflect on the factors that influence the performance of the approach.616

For example, a facial recognition algorithm may perform poorly when image resolution617

is low or images are taken in low lighting. Or a speech-to-text system might not be618

used reliably to provide closed captions for online lectures because it fails to handle619

technical jargon.620

• The authors should discuss the computational efficiency of the proposed algorithms621

and how they scale with dataset size.622

• If applicable, the authors should discuss possible limitations of their approach to623

address problems of privacy and fairness.624

• While the authors might fear that complete honesty about limitations might be used by625

reviewers as grounds for rejection, a worse outcome might be that reviewers discover626

limitations that aren’t acknowledged in the paper. The authors should use their best627

19



judgment and recognize that individual actions in favor of transparency play an impor-628

tant role in developing norms that preserve the integrity of the community. Reviewers629

will be specifically instructed to not penalize honesty concerning limitations.630

3. Theory Assumptions and Proofs631

Question: For each theoretical result, does the paper provide the full set of assumptions and632

a complete (and correct) proof?633

Answer: [Yes]634

Justification: We refer to Section 3, Appendix B, Appendix C for detailed theoretical work.635

Guidelines:636

• The answer NA means that the paper does not include theoretical results.637

• All the theorems, formulas, and proofs in the paper should be numbered and cross-638

referenced.639

• All assumptions should be clearly stated or referenced in the statement of any theorems.640

• The proofs can either appear in the main paper or the supplemental material, but if641

they appear in the supplemental material, the authors are encouraged to provide a short642

proof sketch to provide intuition.643

• Inversely, any informal proof provided in the core of the paper should be complemented644

by formal proofs provided in appendix or supplemental material.645

• Theorems and Lemmas that the proof relies upon should be properly referenced.646

4. Experimental Result Reproducibility647

Question: Does the paper fully disclose all the information needed to reproduce the main ex-648

perimental results of the paper to the extent that it affects the main claims and/or conclusions649

of the paper (regardless of whether the code and data are provided or not)?650

Answer: [Yes]651

Justification: We show detailed experiment setups, including models, datasets, and algo-652

rithms, in Section 5 and Appendix D.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• If the paper includes experiments, a No answer to this question will not be perceived656

well by the reviewers: Making the paper reproducible is important, regardless of657

whether the code and data are provided or not.658

• If the contribution is a dataset and/or model, the authors should describe the steps taken659

to make their results reproducible or verifiable.660

• Depending on the contribution, reproducibility can be accomplished in various ways.661

For example, if the contribution is a novel architecture, describing the architecture fully662

might suffice, or if the contribution is a specific model and empirical evaluation, it may663

be necessary to either make it possible for others to replicate the model with the same664

dataset, or provide access to the model. In general. releasing code and data is often665

one good way to accomplish this, but reproducibility can also be provided via detailed666

instructions for how to replicate the results, access to a hosted model (e.g., in the case667

of a large language model), releasing of a model checkpoint, or other means that are668

appropriate to the research performed.669

• While NeurIPS does not require releasing code, the conference does require all submis-670

sions to provide some reasonable avenue for reproducibility, which may depend on the671

nature of the contribution. For example672

(a) If the contribution is primarily a new algorithm, the paper should make it clear how673

to reproduce that algorithm.674

(b) If the contribution is primarily a new model architecture, the paper should describe675

the architecture clearly and fully.676

(c) If the contribution is a new model (e.g., a large language model), then there should677

either be a way to access this model for reproducing the results or a way to reproduce678

the model (e.g., with an open-source dataset or instructions for how to construct679

the dataset).680
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(d) We recognize that reproducibility may be tricky in some cases, in which case681

authors are welcome to describe the particular way they provide for reproducibility.682

In the case of closed-source models, it may be that access to the model is limited in683

some way (e.g., to registered users), but it should be possible for other researchers684

to have some path to reproducing or verifying the results.685

5. Open access to data and code686

Question: Does the paper provide open access to the data and code, with sufficient instruc-687

tions to faithfully reproduce the main experimental results, as described in supplemental688

material?689

Answer: [No]690

Justification: We would like to provide open access to the data and code if this submission691

is accepted.692

Guidelines:693

• The answer NA means that paper does not include experiments requiring code.694

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/695

public/guides/CodeSubmissionPolicy) for more details.696

• While we encourage the release of code and data, we understand that this might not be697

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not698

including code, unless this is central to the contribution (e.g., for a new open-source699

benchmark).700

• The instructions should contain the exact command and environment needed to run to701

reproduce the results. See the NeurIPS code and data submission guidelines (https:702

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.703

• The authors should provide instructions on data access and preparation, including how704

to access the raw data, preprocessed data, intermediate data, and generated data, etc.705

• The authors should provide scripts to reproduce all experimental results for the new706

proposed method and baselines. If only a subset of experiments are reproducible, they707

should state which ones are omitted from the script and why.708

• At submission time, to preserve anonymity, the authors should release anonymized709

versions (if applicable).710

• Providing as much information as possible in supplemental material (appended to the711

paper) is recommended, but including URLs to data and code is permitted.712

6. Experimental Setting/Details713

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-714

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the715

results?716

Answer: [Yes]717

Justification: We provide detailed information about data splits and preprocessing, hyper-718

parameters, optimizer, black-box model architecture, and physics-informed equations in719

Appendix D.720

Guidelines:721

• The answer NA means that the paper does not include experiments.722

• The experimental setting should be presented in the core of the paper to a level of detail723

that is necessary to appreciate the results and make sense of them.724

• The full details can be provided either with the code, in appendix, or as supplemental725

material.726

7. Experiment Statistical Significance727

Question: Does the paper report error bars suitably and correctly defined or other appropriate728

information about the statistical significance of the experiments?729

Answer: [Yes]730

Justification: Statistical measures of experiment results are shown in Figure 2 and Table ??.731

Guidelines:732
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• The answer NA means that the paper does not include experiments.733

• The authors should answer "Yes" if the results are accompanied by error bars, confi-734

dence intervals, or statistical significance tests, at least for the experiments that support735

the main claims of the paper.736

• The factors of variability that the error bars are capturing should be clearly stated (for737

example, train/test split, initialization, random drawing of some parameter, or overall738

run with given experimental conditions).739

• The method for calculating the error bars should be explained (closed form formula,740

call to a library function, bootstrap, etc.)741

• The assumptions made should be given (e.g., Normally distributed errors).742

• It should be clear whether the error bar is the standard deviation or the standard error743

of the mean.744

• It is OK to report 1-sigma error bars, but one should state it. The authors should745

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis746

of Normality of errors is not verified.747

• For asymmetric distributions, the authors should be careful not to show in tables or748

figures symmetric error bars that would yield results that are out of range (e.g. negative749

error rates).750

• If error bars are reported in tables or plots, The authors should explain in the text how751

they were calculated and reference the corresponding figures or tables in the text.752

8. Experiments Compute Resources753

Question: For each experiment, does the paper provide sufficient information on the com-754

puter resources (type of compute workers, memory, time of execution) needed to reproduce755

the experiments?756

Answer: [Yes]757

Justification: We provide the information about our workstation and computation time for758

one trial in Appendix D.759

Guidelines:760

• The answer NA means that the paper does not include experiments.761

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,762

or cloud provider, including relevant memory and storage.763

• The paper should provide the amount of compute required for each of the individual764

experimental runs as well as estimate the total compute.765

• The paper should disclose whether the full research project required more compute766

than the experiments reported in the paper (e.g., preliminary or failed experiments that767
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