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ABSTRACT

Visible and infrared Person Re-identification(ReID) is still very challenging on
account of few cross-modality dataset and large inter-modality variation. Most
existing cross-modality ReID methods have trouble eliminating cross-modality
discrepancy resulting from the heterogeneous images. In this paper, we present an
effective framework and build a large benchmark, named NPU-ReID. To this end,
we propose a dual-path fusion network and taking transformer as the smallest
feature extraction unit. To expand cross-modality sample diversity, we propose
a modality augmentation strategy to generate semi-modality pedestrian images
by exchanging certain patch and the main innovation is that the cross-modality
gap can be indirectly minimized by reducing the variance of semi-modality and
infrared or visible modality. Moreover, in order to make the traditional triplet
loss more suitable for cross-modal matching tasks, multi-masking triplet loss is
a targeted design for optimizing the relative distance between anchor and posi-
tive/negative samples pairs from cross-modality, especially constraining the dis-
tance between simple and hard positive samples. Experimental results demon-
strate that our proposed method achieves superior performance than other meth-
ods on SYSU-MM01, RegDB and our proposed NPU-ReID dataset, especially on
the RegDB dataset with significant improvement of 6.81% in rank1 and 9.65% in
mAP.

1 INTRODUCTION

Person re-identification (ReID) is a challenging task in computer vision, which is widely used in au-
tonomous driving, intelligent video surveillance and human-computer interaction systems Ye et al.
(2021); Zheng et al. (2019); Miao et al. (2019). Person ReID aims to search target pedestrian across
multiple non-overlapping surveillance cameras or from different video clips. At present, most re-
searches performed on single-modality visible images captured in daytime has achieved good per-
formance, such as TransReID He et al. (2021), AGW Ye et al. (2021), MMT Ge et al. (2020),
HOReID Wang et al. (2020), PAT Li et al. (2021) and ISP Zhu et al. (2020). However, in night-time
surveillance and low-light environments, visible cameras fail to capture person images with rich
appearance information. The light limitation determines that single-modality ReID framework fails
to satisfy all-weather practical application scenarios.

With cameras which can be switched to infrared mode being widely used in intelligent surveillance
systems, cross-modality infrared-visible ReID has been a key but challenging technology. Visible
images and infrared images are heterogeneous images pairs with very different visual features. Intu-
itively, pedestrians in visible images have clearer texture features and valid appearance information
than infrared images under good illumination environment, and infrared images can provide more
distinct pedestrian outward appearance and integrated contour information. Naturally, robust fea-
tures representation can be generated by sufficiently incorporating cross-modality complementary
information. However, single modality person ReID method is difficult to be directly used for cross-
modality tasks because of large inter-modality variations. The differences of images belonging to
the same identity from cross-modality will be even greater than that of images belonging to the dif-
ferent identity from the same modality. The large modality gap between visible images and infrared
images and unknown environmental factors arises a vitally challenging cross-modality problem. As
is shown in Figure 1, the same identity from the same modality suffers from large intra-modality
variations arising from different human poses as well as diverse camera viewpoints. Meanwhile, the
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Figure 1: Illustration of the Person Re-Identification. When the left visible image is used as a query,
the images list above is ranked results in single-modality and the images list below is ranked results
in cross-modality. The 1st to 3rd cols present True Positive samples, which means these gallery
images and the query images all belong to the same person. The last col presents False Positive
samples.

heterogeneous imaging processes of different spectrum cameras result in large cross-modality vari-
ations. These variations may lead to larger intra-identification difference than cross-identification
difference, and then cause wrong matching results. Therefore, it is demanded to prompt a solution
to reduce the cross-modality discrepancy and intra-modality variations.

Researchers have proposed many methods to address the aforementioned challenges in cross-
modality ReID. Several methods map persons images from different modality into a common feature
space to minimize modality gap Ye et al. (2018a;b; 2020;?). To alleviate the color discrepancy, gen-
erative adversarial networks (GANs) is used to synthesize fake RGB/IR images while preserving
the identity information as much as possible in many works Wang et al. (2019; 2020); Wang et al.
(2019); Zhang et al. (2019). However, there is still the challenge of appearance variations including
background clutter and viewpoint variations. Furthermore, these methods continue to use triplet
loss or ranking loss in single-modality metric learning to supervise the network to mining identity-
related cues, rather than designing modality-related loss function to learn discriminative features in
the cross-modality setting.

The quality of dataset directly affect the representation ability of embedding feature, which deter-
mines the accuracy and efficiency of identification to some extent. Consequently, we build a cross-
modality dataset called NPU-ReID, which makes up for the deficiency of small-scale and uneven
modality distribution. We collect images with multi-view camera system consisting of 4 visible
cameras and 4 infrared cameras, which ensures that each identity has several infrared and visible
images under each camera. Aiming at tackling the concurrent challenge in intra- and cross-modality
variations, we present a novel modality augmentation to to eliminate the modality discrepancy. The
straightforward operation is to generate semi-modality images by exchanging certain regions with
a patch from images of the same identity from another modality, which can deepen the information
communication between infrared images and visible images. Simply, the augmented image con-
tains two types of information from different modality, which can effectively reduce the difficulty of
cross-modal matching.

In addition, the ReID network always trained with cross entropy loss and triplet loss to improve
the discrepancy between inter-category and intra-category. We propose the Multi-masking triplet
loss to neutralize advantages and disadvantages of traditional triplet loss and triplet loss with hard
sample mining and design a cross-modality positive sample distance compress function to reduce
intra-category difference.
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The main contributions of this paper are as follows:

• We build a new paradigm for cross-modality person re-identification, which outperforms
state-of-the-arts on SYSU-MM01, RegDB and our proposed NPU-ReID dataset, espe-
cially on the RegDB dataset with significant improvement of 6.81%/9.65% on rank1/mAP
91.84%.

• We build NPU-ReID, a comprehensive visible-infrared dataset for person re-identification
tasks, giving in total 34621 visible images and 38578 infrared images of 600 identities.

• We present a modality augmentation strategy to fully exploit heterogeneous image prop-
erties, which is plug-and-play and can be easily applied to the most existing methods for
cross-modality tasks. To guide network to learn more powerful and generic features, We
design a multi-mask triplet loss for cross-modality recognition to compress the distance be-
tween anchor from one modality and corresponding sample pairs from the other modality.

2 RELATED WORKS

2.1 CROSS-MODALITY PERSON RE-IDENTIFICATION

Cross-modality Person re-identification has developed rapidly Ye et al. (2020); Wang et al. (2019);
Li et al. (2020); Wang et al. (2019); Chen et al. (2021), which has achieved higher and higher
accuracy in RegDB Nguyen et al. (2017) and SYSU-MM01 Wu et al. (2017). Generally, in neural
networks, two-stream structure Ye et al. (2020); Ye et al. (2018a) and FC layer structure are used
to extract the features with different modalities separately and calculate loss through the distance
metric. Li et al. (2020) introduced X-modality to the shared feature space, which was generated by a
lightweight network including two convolution layers and one ReLU layer on visible images. Ye et
al. Ye et al. (2021) proposed a channel augmentation strategy. The primary idea is to evenly generate
color independent images by randomly exchanging channels of RGB. Thanks to the widespread
application of GANs in recent years, several method leverage GANs to apply cross-modality style
transfer, feature disentanglement or intermediate modality generation Wang et al. (2020); Choi et al.
(2020); Wang et al. (2019).

The comparison among existing commonly used Re-ID datasets is shown in Table 1. Single modality
person re-identification has made great achievements supported by constantly emerging visible ReID
datasets, such as Market 1501 Zheng et al. (2015), DukeMTMC Zheng et al. (2017), CUHK03 Li
et al. (2014) and MSMT17 Wei et al. (2018). There are two datasets for visible and thermal Person
re-identification tasks, RegDB Nguyen et al. (2017) and SYSU-MM01 Wu et al. (2017). The images
in SYSU-MM01 dataset are collected by 6 cameras including two infrared cameras and four visible
cameras.The scale of RegDB dataset is smaller than that of SYSU-MM01 dataset, including 4120
infrared images and 4120 visible images, corresponding to 412 identities.

Recent years have witnessed remarkable progress in Face Recognition and RGB ReID task, with a
variety of approaches proposed in the literatures and applied in real applications. Liu et al. Liu &
Tan (2021) proposed hetero-center triplet loss on the basis of HC loss Zhu et al. (2020). Hetero-
center triplet loss improve HC loss in the form of triplet, which constrain the distance of different
class centers from both intra-modality and cross-modality and reduce the number of calculations. Lv
et al. Lv et al. (2022) proposed the whole constraint and partial triplet-center loss (WCPTL) to deal
with the discrepancy between different modalities in local features. But center loss with triplet is so
keen to coincidence of centers of the same ID from cross-modality that decrease the inter-category
discrepancy.

3 THE NPU-REID DATASET

3.1 DATASET DESCRIPTION

We propose a cross-modality multi-view Re-ID dataset named NPU-ReID. In this section, we will
talk about how we collect and annotate images, and then analyze the advantages, disadvantages and
application scenarios of the dataset.
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RegDB SYSU-MM01 NWPU-ReID

Figure 2: Examples of RGB images and thermal images in SYSU-MM01 dataset, RegDB dataset
and our NPU-ReID. Each columns are of the different person. In each image pairs, the images on
the top is infrared and the images on the bottom is visible.

Since deep learning performance benefits from the dataset that it is trained on, it is inevitable to build
a large-scale and comprehensive dataset. For this purpose, we present a new dataset named NPU-
ReID for visible-thermal Person re-identification, covering 600 identities respectively. NPU-ReID
dataset contains images captured by 8 cameras, including four visible cameras and four thermal
cameras. To ensure that the number of pedestrian images of every identity is as equal as possible
and there are peoples with different poses and viewpoints in images, visible cameras and thermal
cameras are mutually crosswise installed. Moreover, there are also equal numbers of cameras in-
stalled indoor or outdoor. Since the thermal images have only one channel, they are expanded to
three channels at the same value so that feed them into the network with 3-channel visible images.

There are 600 valid pedestrians identities in NPU-ReID dataset. We have a fixed split using 480
identities for training, 120 for validation and 120 for testing. During training, all images of the 480
persons in training dataset in 8 cameras can be sampled. During testing, there are two test modes,
Visible to Thermal or Thermal to Visible. Visible to Thermal mode means that the images from
thermal modality were used as the gallery set while those from visible modality (default is visible)
were used as the query set. In both modes, we adopt three forms of the scope of search and two ways
to select gallery dataset, which motivated by SYSU-MM01. For the scope of search, indoor-search,
outdoor-search and all-search all can be selected and details In indoor-search mode, the gallery set
only contains the visible images captured by four indoor visible cameras. Generally, the all-search
mode is more challenging than the indoor-search mode. The single-shot and multi-shot setting are
main two ways to select gallery dataset, where 1 or 10 images of a person are randomly selected
to form the gallery set. Significantly, since each of the eight cameras has a different view, only the
images under the camera in which query is sampled need to be skipped during the search.

Table 1: Comparison of NPU-ReID and exsiting ReID datasets. There are datasets for single modal-
ity and cross-modality ReID. IP denotes the number of images per identity.

Dataset ID Visible Thermal cameras IP
Single modality datasets

Market-1501 1501 32,668 0 6 21.76
CUHK03 1467 13164 0 6 8.97
MSMT17 4101 126441 0 15 30.83

DukeMTMC-reID 1404 36441 0 8 25.95
Cross-modality datasets

RegDB 412 4120 4120 2 20.00
SYSU-MM01 491 30071 15792 6 93.40

NPU-ReID 600 34621 38578 8 122.00
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3.2 SPECIALITY.

Some of the visualizations results of NPU-ReID, RegDB and SYSU-MM01 dataset are shown in
Figure 2. The images from two modalities in RegDB dataset are captured by visible and thermal
cameras installed in the same location, so there are no viewpoint change in the pedestrian images of
the same identity, which fails to satisfy the task of matching pedestrian images across camera views.
In SYSU-MM01 dataset, the number of visible images is several times that of infrared images, that
is the problem of modality imbalance, which fails to support Visible to Thermal mode. However,
in NPU-ReID, the images captured by different cameras differs greatly with different viewpoints
and poses. The view angle of the dataset differs greatly and the number of images in each modality
is balanced compared to others. As can be seen from Figure 2, images in our dataset has a higher
resolution and contains more characteristic information of pedestrians.

4 OUR PROPOSED METHOD

In this section, we introduce the overview framework of our proposed cross-modality ReID method.
Our framework mainly consists of three components: modality augmentation, the dual-path rep-
resentation learning network based on transformer and metric learning with identity loss and our
proposed multi-mask triplet loss.

4.1 OVERALL ARCHITECTURE
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Figure 3: Our proposed framework for cross-modality ReID.

The transformer-based methods are springing up like mushrooms, but there is no specific model
designed for cross-modality person re-identification. We propose a carefully-designed dual-path
transformer network for infrared-visible person re-identification, as is shown in Figure 3. We explore
how many parameters a two-stream network based on transformer should share, which is still not
well investigated in the existing literature. The network consists of input stem module and four
stages. The first two stages form the modality-specific branch and the following two stages form the
modality-shared branch.

Given two image of size H×W, we first feed them into modality augmentation(MAG) to operate
data transforms. Then the augmented images are resized to 224×224 and split into non-overlapping
patches of size P×P to reduce computational complexity. We have verified that taking the image
of size 224×224 as input can achieve better performance than the original image through several
experiments, which demonstrates that square images are more helpful for window partition, window
merging and attention calculation.

In stage 1 and stage 2, the transformer blocks are used to capture infrared features and visible fea-
tures in parallel simultaneously. The design of the transformer block is motivated by the Swin
Transformer’s success Liu et al. (2021), which is built with encoder, bottleneck and decoder. The in-
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put patches are fed into the transformer block following patch merging layer to generate hierarchical
features with multi-scale and decrease the computational complexity with respect to image size.

In order to avoid the lost of a large amount of specific-modality feature information due to concen-
trating on learning cross-modality shared features, specific-modality features are learned in the first
two stages respectively, and shared-modality features are learned in the last two stages. The advan-
tages of this framework have been proved in A.3. Finally, all features are used to calculate identity
loss and multi-masking triplet loss to optimize the identity relationship among different person from
cross-modality.

In this section, we first analyze the impact of triplet loss functions with different variants concerning
of samples pairs selection and weight contribution of hard samples on model performance.

Commonly, the sample strategy random sample P identities within each batch, of which K visible
and K infrared images are random selected. In triplet loss, all selected simple pairs are considered
equally for the overall loss calculation, which limits network’s ability to identify more informative
pairs among the selected ones. Whereas triplet loss with hard example mining only consider hard
samples for each triplet, it is the other extreme form compared triplet loss. This method abandons a
majority of samples and fails to take full advantage of all train samples, resulting at the training is
inefficient.

4.2 THE MULTI-MASKING TRIPLET LOSS

Figure 4: Illustration of the hard triplet
pairs. The left circle contains visible im-
ages of category I and infrared images of
category II, and the right circle contains
infrared images of category I and visi-
ble images of category II. The dotted line
points to the corresponding hard positive
samples.

Through abundant experiments, we find that the posi-
tive samples are all from another modality and the neg-
ative samples are almost from the same modality for
anchor sample from one modality.The former is un-
doubted because the variance in heterogeneous images
is larger than that in homogeneous images of the same
identity. The latter makes cross-modality retrieval de-
generate into single-modality retrieval, raising the prob-
lem of mis-alignment in task. In training parse, anchor
and negative samples are all from the same modality,
while query and gallery are from two different modality
in reference. Therefore, the network should attach more
importance to learning discriminative features from dif-
ferent modalities in cross-modality ReID.

Moreover, we also find that the hard positive sam-
ples of all anchors from one identities are always the
same sample from another modality, which indicates
that hard examples are probably outliers. These out-
liers may magnify intra-category variance and exist sta-
bly even when the model is converged.

Therefore, to solve the problem mentioned above, in
addition to the baseline identity loss with cross entropy loss, we adopt a moderate cross-modality
triplet loss function, multi-masking triplet(MMT) loss. The loss, consisting of MMAP and MMAN
loss, is used to optimize the distance of cross-modality positive pairs and negative pairs. The loss in-
herits the strength of relative distance optimization from common triplet loss and meanwhile relieves
the problem of mis-align task and outlier sample, as is shown in Figure 4.

Specifically, for visible anchor sample, we select negative samples only in thermal images. In calcu-
lation. The number of negative sample pairs to be selected is reduced from 2(P −1)K to (P −1)K.
Then we reduce the inter-modality discrepancy by constraining the distance between the hard sam-
ple and the easy sample from thermal modality as shown in Figure 5. Anchor and negative sample
from different modalities are pushed far away and positive sample from different modalities are
pulled closer, which is consistent to our analysis. As Visible to Thermal mode an example, the loss
function is defined as:

Lmtri =
∑

a∈batch

[(
max
p∈V

da,p −min
n∈T

da,n +m1

)
+ λ

(
max
p∈V

da,p −min
p∈V

da,p −m2

)]
(1)
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Figure 5: Illustration of the proposed MMT
Loss. Graphics with different colors denote
features belonging to different identities and
the dot and the triangle means features from
visible modality and infrared modality re-
spectively.

where da,p/n denotes the Euclidean distance of an-
chor samples and positive/negtive samples. V and T
denote visible modality and thermal modality.

Our design has two benefits: 1) It is likely to con-
sider all the possible triplet relations in the aug-
mented image set. We can take two different sam-
ples from the same modality into account at the same
time, which is beneficial to reduce the intra-category
difference and improve the recognition accuracy. 2)
Compared with the method which constrains the dis-
tance between one sample and the center of its cate-
gory by center loss, our method avoids that the out-
lier sample destroy other pairwise distance.

4.3 THE MODALITY AUGMENTATION

For cross-modality visible-thermal person re-identification, one of the challenge is to learn
fused feature embedding of the same identity from different modalities. The cross-
modality matching is usually formulated by learning modality shared or invariant features.

Original Images Region Exchanged Augmentation Original Images

Figure 6: Illustration of the area ex-
changeable augmentation in visible-
infrared person re-identification, where
the images in first column and last col-
umn original images from RegDB and
NPU-ReID. The middle two columns
display augmented images.

Our image augmentation strategy is similar to cutmix,
while the critical difference is that the removed regions
are filled with patches from the image with the same iden-
tity from another modality rather than random training
images. Some visualization results of our augmentation
method are shown in Figure 6.

We describe the MAG operation in detail. The visi-
ble training set and the thermal training set of the iden-
tity i are denoted as Vi = {vi1, vi2, · · · , vik} and T i =
{ti1, ti2, · · · , tik}. The goal of MAG is to generate new
training images v′ki and t′ki by exchanging part region of
vik and tik. A pair of images is exchanged partly by the
probability of p, which can be used to simulate the image
of obscured pedestrian. The sample strategy of exchang-
ing region (x1, y1, x2, y2) is as follows. Assume the size
of input image is H × W , then the aera of origin image
is S = H × W . We constrain the area ratio of the ex-
changing region to the original image to [Al, Ah] and the
aspect ratio of exchanging region is randomly initialized
to [rl, rh]. Then, we can infer that the height and width of

the exchanging region is h =
√
S ×A× r, w =

√
S×A
r

by calculation. Finally, we can determine the size, shape
and position of the exchanging region by randomly initial-
izing a center point c = (xc, yc).

The basic motivation behind the Modality Augmentation
(MAG) is that the cross-modality gap can be indirectly
minimized by reducing the variance of semi-modality and
infrared or visible modality. Since the labels of the orig-
inal image are the same as those of the exchanging area,
the labels of the augmented image remain unchanged. It
can let model pay attention to the efficient discriminative
information buried in the shared features simultaneously
increase training efficiency. Moreover, the MAG method
also can be regarded as a special regional pixel-level image fusion. The fused image not only con-
tains the visible feature which represents the color information of the appearance, but also contains
the thermal feature which represents the contour information. More importantly, the augmented
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Table 2: Evaluation of MAG and MMT on three cross-modality ReID datasets, where the ‘B’ refers
to the most two-path IV-ReID network training the network only with cross-entropy loss.

Method NPU-ReID RegDB SYSU-MM01
B MAG MMTN MMTP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP
✓ 88.66 97.26 99.15 79.27 86.89 95.73 98.12 83.91 52.49 91.18 96.14 54.19
✓ ✓ 90.1 98.14 99.37 82.11 89.05 96.74 98.37 85.68 58.91 92.27 96.71 56.33
✓ ✓ 92.87 98.52 99.79 82.98 91.19 96.82 98.58 86.43 61.76 92.58 96.56 58.14
✓ ✓ ✓ 93.35 98.88 99.63 83.61 91.74 97.07 98.71 87.94 63.35 93.02 96.73 58.92
✓ ✓ ✓ ✓ 94.41 99.21 99.9 84.92 91.84 98.01 98.93 88.79 64.16 93.42 97.5 60.17

images from two different modalities corresponding to the same ID label, which can guarantee that
the intra-class distance of the feature mapped to the shared space is shorter than the inter-modality
distance. Therefore, the intra-ID inter-modality variant can be effectively reduced. We observe that
the MAG successfully lets the model less focus on discriminative but modality-specific features and
more focus on common but modality-shared features. Our design has two benefits: 1) The area
exchanging strategy can replaced random region in original images with a patch in the image from
the other modality by chance, which improves generalization and localization by letting a model
pay attention to both the most discriminative parts of objects and the entire object region rather than
excessive depending on certain region. 2) It can be seamlessly integrated with other common image
augmentation operations and introduces a minimal computation overhead.

5 EXPERIMENTAL RESULTS

In this section, we analyze the effectiveness of each component in our our network and compare our
results with existing state-of-the-art (SOTA) algorithms.

5.1 MODULE ABLATION

We evaluate the effect of the cross-modality augmentation strategy and the multi-masking triplet
loss on all three ReID datasets and the results are shown in Table 2. We observe the performance on
the three datasets improved significantly when applying our designed cross-modality augmentation
operation. Our proposed MAG evenly improves the baseline rank-1 and mAP by about 4% and
3% on three datasets.When incorporating with the multi-masking triplet loss, the performance is
further dramatically reinforced. Our proposed MMTN and MMTP work together and are mutually
reinforcing, improving the baseline mAP by an average four percent. It can be noted that the overall
performance reaches the best when utilizing the mixed loss function of MMTN and MMTP.

Table 3: Comparison with state-of-the-art methods on RegDB dataset.

Method Venue Visible to Thermal Thermal to Visible
R1 R10 R20 mAP R1 R10 R20 mAP

BDTR IJCAI 18 33.56 58.61 67.43 32.76 32.92 58.46 68.43 31.96
Deep Zero-padding ICCV 17 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82

MAC MM 19 36.43 62.36 71.63 37.03 36.20 61.68 70.99 36.63
MSR TIP 19 48.43 70.32 79.95 48.67 - - - -
D2RL CVPR 19 43.40 66.10 76.30 44.10 - - - -

AlignGAN ICCV 19 57.90 - - 53.60 56.30 - - 53.40
cm-SSFT CVPR 20 72.30 0.00 - 72.90 - - - -

X-modality AAAI 20 62.21 83.13 91.72 60.18 - - - -
DDAG ECCV 20 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
HAT TIFS20 71.83 87.16 92.16 67.56 - - - -

Hi-CMD CVPR 20 70.93 86.39 - 66.04 - - - -
JSIA-ReID AAAI 20 48.50 - - 49.30 48.10 - - 48.90

AGW TPAMI 21 70.05 - - 66.37 - - - -
NFS CVPR 21 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79
CAJ ICCV21 85.03 95.49 97.54 79.14 70.02 86.45 91.61 66.30

Our method - 91.84 98.01 98.93 88.79 89.54 97.29 98.60 86.22

This subsection presents a comparison with the current state-of-the-art methods on RegDB, NPU-
ReID and SYSU-MM01 datasets, as shown in Table 3, Table 4 and Table 5 respectively.

Comparisons on RegDB dataset. The experiments on the RegDB dataset demonstrate that the
proposed method obtains the best performance under visible to infrared mode and infrared to visible
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mode. Specially, we achieve rank-1 accuracy of 91.84% and mAP of 88.79% in Visible to Thermal
mode, and rank-1 accuracy of 89.54% and mAP of 86.22% in thermal to visible mode and the mAP
on RegDB climbed above 85 for the first time.

Table 4: Comparison with state-of-the-art on NPU-ReID dataset.
Methods Venue

All-Search Indoor-Search
Visible to Thermal Thermal to Visible Visible to Thermal Thermal to Visible

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP
BDTR TIP 20 66.73 84.37 92.18 47.21 65.29 83.23 91.98 47.03 54.38 83.77 90.53 49.02 55.21 83.21 90.48 49.15
DDAG ECCV 20 90.80 99.25 99.72 79.99 89.82 99.32 99.78 78.55 86.29 96.22 99.45 80.89 82.89 98.13 98.58 80.54
AGW TPAMI 21 90.97 99.13 99.60 80.96 90.10 99.38 99.84 79.67 88.87 97.13 99.11 71.76 73.96 97.56 99.02 70.94

TSLFN NC 21 90.27 99.13 99.70 78.84 90.68 99.30 99.69 79.99 90.19 98.89 99.34 79.10 89.86 98.62 99.56 80.21
CAJ ICCV21 70.49 82.43 98.16 54.59 68.59 93.64 98.35 54.74 53.97 83.36 92.22 50.83 54.27 83.51 91.98 52.19
Ours - 94.41 99.41 99.90 84.92 93.46 99.08 99.89 83.57 85.91 98.76 99.75 85.90 83.37 98.10 99.67 84.22

Table 5: Comparison with the state-of-the-arts on SYSU-MM01.
Methods Venue

All-Search Indoor-Search
Single-Shot Multi-Shot Single-Shot Multi-Shot

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP
HOG CVPR05 2.74 18.91 32.51 4.28 3.25 21.82 36.51 2.04 4.38 29.96 50.43 8.7 4.62 34.22 56.28 3.87

LOMO CVPR15 1.75 14.14 26.63 3.48 1.96 15.06 27.3 1.85 2.24 22.53 41.53 6.64 2.24 22.79 41.8 3.31
BDTR IJCAI 18 17.01 55.43 71.96 19.66 - - - - - - - - - - - -

Deep Zero-padding ICCV 17 14.8 54.12 71.33 15.95 19.13 61.4 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64
cmGAN LJCAI 18 26.97 67.51 80.56 27.8 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37 80.94 92.11 32.76
D2RL CVPR 19 28.9 70.6 82.4 29.2 - - - - - - - - - - - -

AlignGAN ICCV 19 42.4 85 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3
MAC MM 19 33.26 79.04 90.09 36.22 - - - - - - - - 46.56 93.57 98.8 40.08
MSR TIP 19 37.35 83.40 93.34 38.11 43.86 86.94 95.68 30.48 39.64 89.29 97.66 50.88 53.05 93.71 98.93 47.48
DEF MM 19 48.71 88.86 95.27 48.59 54.63 91.62 96.83 42.14 52.25 89.86 95.85 59.68 - - - -

HPILN IET IP 19 41.36 84.78 94.51 42.95 47.56 88.13 95.98 36.08 45.77 91.82 98.46 56.52 - - - -
cm-SSFT CVPR 20 47.70 54.1 - - 57.4 59.1 - - - - - - 59.62 94.45 98.07 50.6

X-modality AAAI 20 49.92 89.79 95.96 50.73 - - - - - - - - 60.42 96.88 99.5 53.52
CMM+CML MM 20 51.80 92.72 97.71 51.21 56.27 94.08 98.12 43.39 54.98 94.38 99.41 63.7 -

DDAG ECCV 20 54.75 90.39 95.81 53.02 - - - - 61.02 94.06 98.41 67.98 - - - -
Hi-CMD CVPR 20 34.94 77.58 - 35.94 - - - - - - - - - - - -

JSIA-ReID AAAI 20 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7
TSLFN NeuroC 21 56.96 91.5 96.82 54.95 62.09 93.74 97.85 48.02 59.74 92.07 96.22 64.91 69.76 95.85 98.9 57.81
AGW TPAMI 21 47.50 84.39 92.14 47.65 - - - - 54.17 91.14 95.98 62.97 - - - -
HAT TIFS 21 55.29 92.14 97.36 53.89 - - - - 62.1 95.75 99.2 69.37 69.76 95.85 98.9 57.81
NFS CVPR 21 56.91 91.34 96.52 55.45 63.51 94.42 97.81 48.56 62.79 96.53 99.07 69.79 70.03 97.7 99.51 61.45

Our method - 64.16 93.42 97.5 60.17 67.61 96.28 98.64 56.72 64.53 97.66 99.37 70.73 73.28 97.12 98.74 63.44

Comparisons on NPU-ReID dataset. To keep things fair, we evaluate the state-of-the-art VI-ReID
methods published in the last years on our NPU-ReID dataset. We apply Visible to Thermal mode
and Thermal to Visible mode in the case of single-shot in all-search and indoor-search testing mode
respectively. It is worth mentioning that our proposed method achieves the best performance under
various settings. In Visible to Thermal all-search mode, our method outperforms achieves 94.41%
rank-1 and 84.92% mAP.

Comparisons on SYSU-MM01 dataset. The results on SYSU-MM01 are shown in Table 5, our
method has outperformed the state-of-the-art methods. In single-shot all-search mode, our method
achieves 64.16% Rank-1 and 60.17% mAP and it surpasses the performance of the state-of-the-art
method.

Above results all demonstrate that our proposed model outperforms existing method. We have
achieved much better performance under all-search and indoor-search settings, suggesting that our
method can learn better intra-modality specific features and cross-modality sharing features by well
designing modality augmentation strategy and multi-masking triplet loss.

6 CONCLUSION

In this paper, we propose NPU-ReID, a visible-infrared dataset for cross-modality person identifi-
cation and discuss the differences among these datasets and ours. We also propose a novel modality
augmentation method for cross-modality vision tasks. It can effectively reduce modality variance
and integrated with other common data augmentation operations. In addition, we propose a novel
multi-masking triplet loss to improve the traditional triplet, which ensure that hard positive sample is
closer to easy positive sample and hard negative sample is far from anchor. Experimental results on
three datasets demonstrate that our method achieves remarkable improvements compared to the cur-
rent state-of-the-art methods. In addition, we verify the effectiveness of our augmentation strategy
and loss function in other visible and thermal ReID and person detection method.
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A APPENDIX

A.1 DATASETS AND EXPERIMENTAL SETTINGS

Datasets. All of the experiments are performed on benchmark datasets SYSU-MM01 Wu et al.
(2017) and RegDB Nguyen et al. (2017). The detailed introduction of dataset has been described in
Sec. 2. In this paper, we evaluate our method on RegDB visible-to-thermal and thermal-to-visible
modes and SYSU-MM01 by all search and indoor search single search. On our proposed NPU-
ReID, we carried out extensive testings and adopting an integrated evaluation mode on the other two
datasets.

Evaluation metrics. All experiments follow widely used standard evaluation protocols for Re-ID
task. Cumulative Matching Characteristics (CMC) and mean Average Precision (mAP) are adopted

11
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as the evaluation metrics. CMC(rank-r accuracy) is more concerned with the top-R positive sample
in ranking results, and mAP is determined by the ranking results of all positive samples in the gallery.

Experimental settings. The proposed method is implemented in PyTorch. The improved dual-path
Swin Transformer is adopted as the backbone. All models are trained on NVIDIA 3090Ti GPU and
the pre-trained weights on ImageNet are used to initialize the model. A batch size of 8, an initial
learning rate of 0.01, and the SGD optimizer with momentum 0.9 and weight decay 5e-4 are used.

Visible

Thermal

Input stem Stage4Stage 1 Stage 2 Stage3

1
F

2
F

3
F

4
F

5
F

Figure 7: Illustration of network architecture with different fusion way.

A.2 THE EVALUATION ON OTHER CROSS-MODALITY METHOD

Applicability with Other ReID Methods To assess whether MAG and MMT loss benefit other
network, we incorporate our method into several popular representative network, such as TSLFN,
AGW and CAJ. THe experimental results on two datasets are shown in Table 6. It is obviously
that the network performance is all improved when utilizing the MAG augmentation and MMT loss
function, which strongly demonstrates the effectiveness of the proposed method for cross-modality
ReID tasks.

Visible-Infrared Pedestrian Detection. To demonstrate the generalizability of Modality augmen-
tation, we also evaluate our proposed augmentations incorporated on cross-modality pedestrian de-
tection task. We conduct the baseline method and the CFT method using CSPDarknet53 and CFB as
backbone on LLVIP dataset and use the default settings with the authors’ released code. The results
in Table 7. demonstrate that the performance can be significantly improved under various metrics.
Across these methods, our approach consistently improves the origin performance. Equipped with
our strong augmentation, the performance further improves to 66.6%. It would be further improved
by fine-tuning the hyper-parameters, such as the number and the scale limitation of exchanging area.

Table 6: Applicability of our proposed channel augmentation with state-of-the-art methods on NPU-
ReID and RegDB dataset.

Method MAG+MMT NPU-ReID RegDB
R1 R10 R20 mAP R1 R10 R20 mAP

TSLFN 83.78 98.99 99.74 69.10 86.65 96.94 98.50 72.73
TSLFN ✓ 85.26 99.16 99.78 72.35 88.40 96.75 98.35 79.56
AGW 79.77 98.37 99.52 68.36 70.05 - - 66.37
AGW ✓ 81.95 98.58 99.64 71.49 79.82 96.29 98.17 71.49
CAJ 60.49 91.43 97.16 44.59 85.03 95.49 97.54 79.14
CAJ ✓ 80.18 98.37 99.46 67.45 88.47 96.59 98.21 83.39
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Table 7: Evaluation of our proposed modality augmentation incorporated on cross-modality pedes-
trian detection method.

Model Backbone mAP50 mAP75 mAP
YOLOv5 CSPDarknet53 95.8 71.4 62.3

YOLOv5+MAG CSPDarknet53 96.4 73.7 63.5
CFT CFB 97.5 72.9 63.6

CFT+MAG CFB 97.8 73.6 66.5

A.3 THE EXPLORATION OF NETWORK ARCHITECTURE.

In this subsection, we explore how many parameters a dual-path transformer network should share,
which is still not well investigated in the existing works.

We first explore which is the most reasonable structure of feature extractor. Several ablation ex-
periments are conducted to explore the impact of share parameters on the performance of network.
We build the following baseline network with Swin Transformer model. As is shown in Figure 7,
The network is divided into input stem and four stages, and it is set to learn cross-modality features
from stages 1, 2, 3 or 4 in sequence. We evaluate the performance of different backbone networks
with different shared mechanisms on NPU-ReID datasets and RegDB datasets, as is listed in Ta-
ble 8. We find that it is not effective to learn cross-modality features from beginning or learn only
intra-modality features from beginning to end, such as F1 and F5. As we can see from the result
of F3 shared mechanism, only after the network has fully learned the modality-specific features,
modality-shared features can represent not only infrared information but also visible information,
which is more beneficial for the subsequent tasks. The experiment results has verified the network
of learning modality-specific features in the first two stages and learning modality-shared features
in the last two stages can achieve the best performance.

Table 8: The results of different fusion architecture on RegDB and NPU-ReID.

Structure NPU-ReID RegDB
R1 R10 R20 mAP R1 R10 R20 mAP

F1 79.93 96.24 98.38 70.04 83.5 94.81 97.67 78.73
F2 81.96 98.44 99.12 72.29 83.54 95.19 98.01 78.23
F3 82.36 98.52 99.85 73.57 87.89 95.73 98.12 84.91
F4 81.6 98.47 98.89 72.8 83.11 92.3 95.58 81.34
F5 80.23 97.63 98.32 71.16 85.8 94.11 97 82.75
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