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ABSTRACT

Electroencephalogram (EEG) signals have become a popular medium for decod-
ing visual information due to their cost-effectiveness and high temporal resolution.
However, current approaches face significant challenges in bridging the modal-
ity gap between EEG and image data. These methods typically rely on complex
adaptation processes involving multiple stages, making it hard to maintain con-
sistency and manage compounding errors. Furthermore, the computational over-
head imposed by large-scale diffusion models limit their practicality in real-world
brain-computer interface (BCI) applications. In this work, we present AVDE, a
lightweight and efficient framework for visual decoding from EEG signals. First,
we leverage LaBraM, a pre-trained EEG model, and fine-tune it via contrastive
learning to align EEG and image representations. Second, we adopt an autoregres-
sive generative framework based on a ”next-scale prediction” strategy: images are
encoded into multi-scale token maps using a pre-trained VQ-VAE, and a trans-
former is trained to autoregressively predict finer-scale tokens starting from EEG
embeddings as the coarsest representation. This design enables coherent genera-
tion while preserving a direct connection between the input EEG signals and the
reconstructed images. Experiments on two datasets show that AVDE outperforms
previous state-of-the-art methods in both image retrieval and reconstruction tasks,
while using only 10% of the parameters. In addition, visualization of intermediate
outputs shows that the generative process of AVDE reflects the hierarchical nature
of human visual perception. These results highlight the potential of autoregressive
models as efficient and interpretable tools for practical BCI applications. The code
is available at https://anonymous.4open.science/r/avde-783D.

1 INTRODUCTION

How can we access and interpret the rich visual information encoded in human brain activity? This
question has captivated neuroscientists for decades, driving fundamental research at the intersection
of cognitive science and artificial intelligence. Decoding human vision from non-invasive neural
signals not only advances our understanding of neural representation mechanisms but also promises
transformative applications in brain-computer interfaces. Early pioneering work (Kay et al., 2008;
Miyawaki et al., 2008; Naselaris et al., 2009) established that simple visual patterns could be de-
coded from functional magnetic resonance imaging (fMRI), while recent advances in generative
AI have enabled reconstruction of remarkably detailed visual content from brain signals (Takagi &
Nishimoto, 2023a; Scotti et al., 2023; Fang et al., 2023).

Despite these successes, fMRI-based approaches face fundamental limitations for practical applica-
tions: they operate at temporal resolutions orders of magnitude slower than actual neural process-
ing, require costly infrastructure, and confine subjects to restrictive scanner environments (Menon &
Kim, 1999; Logothetis, 2008). These constraints have motivated a shift toward electroencephalog-
raphy (EEG) for visual decoding (Cichy & Pantazis, 2017). EEG offers millisecond-level temporal
precision, while providing significantly greater portability and accessibility at a fraction of the cost.
Recent work in EEG-based visual decoding (Li et al., 2024; Xiao et al., 2025; Zhang et al., 2025)
has demonstrated promising capabilities in both image retrieval and reconstruction, suggesting the
potential for more deployable applications.
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Figure 1: A typical unCLIP framework employed in previous EEG-based visual decoding works Li
et al. (2024); Zhang et al. (2025); Xiao et al. (2025); Scotti et al. (2023). Despite its flexibility, the
framework comprises multiple stages (five in this case), each introducing potential sources of error
that can accumulate and degrade overall performance. Furthermore, the computational and memory
demands of its components present significant challenges for practical implementation in BCIs.

However, a fundamental challenge persists: how to effectively bridge the vast distributional gap
between noisy EEG signals and structured visual content. This challenge manifests in three limita-
tions of current approaches. First, these methods typically rely on diffusion models and complex,
multi-stage adaptation processes based on unCLIP (Ramesh et al., 2022) to project EEG signals into
compatible latent representations. The sequential nature of these pipelines inherently compounds
errors across stages (Li & van der Schaar, 2023), degrading the fidelity of reconstructed images.
Second, the EEG encoders are typically trained from scratch using a limited number of image-EEG
pairs, which raises concerns about their capability to capture the intricate features in highly noisy
EEG signals. Third, the computational demands of large-scale diffusion models (often exceeding
3B parameters) render these systems impractical for BCI applications where efficiency and respon-
siveness are crucial.

To address these limitations, we propose Autoregressive Visual Decoding from EEG signals
(AVDE), a lightweight and efficient two-stage pipeline for EEG-to-image translation. Our approach
makes two key innovations: First, rather than training EEG encoders from scratch, we leverage
LaBraM (Jiang et al., 2024)—a model pre-trained on thousands of hours of diverse EEG data—and
fine-tune it using contrastive learning to align EEG and image representations. This transfer learning
approach substantially improves the extraction of meaningful features from noisy EEG signals. Sec-
ond, we replace complex multi-stage diffusion processes with a streamlined autoregressive frame-
work based on ”next-scale prediction.” Our approach encodes images into multi-scale token maps
using a pre-trained VQ-VAE (Tian et al., 2024), then trains a transformer to progressively predict
increasingly detailed visual representations, starting from EEG embeddings as the coarsest represen-
tation. This approach ensures coherent generation while maintaining a direct relationship between
EEG signals and visual outputs. Experiments on two datasets demonstrate that AVDE achieves
state-of-the-art performance in both retrieval and reconstruction tasks while using only 10% of the
parameters required by previous methods. Furthermore, visualization of the intermediate outputs
shows that the generative process of AVDE reflects the hierarchical nature of human visual per-
ception, underscoring the potential of autoregressive models as tools for exploring the dynamics of
human visual cognition.

In summary, the main contributions are as follows:

• We introduce AVDE, a novel framework for EEG-based visual decoding that employs a
hierarchical ”next-scale prediction” strategy within an autoregressive transformer. This ap-
proach progressively constructs visual representations from coarse to fine details, mirroring
the hierarchical nature of both biological visual processing and computational vision sys-
tems.

• We demonstrate that transfer learning from pre-trained EEG model significantly improves
visual decoding performance. By fine-tuning the LaBraM encoder (Jiang et al., 2024) with
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contrastive learning, we achieve more robust alignment between EEG and image represen-
tation spaces compared to training EEG encoders from scratch.

• We demonstrate through comprehensive experiments that AVDE achieves state-of-the-art
performance in both image retrieval and reconstruction tasks on two datasets, while being
more lightweight and computationally efficient than prior methods. Our approach reduces
parameter count by approximately 90% compared to diffusion-based methods, making it
more suitable for practical BCI applications.

2 METHOD

2.1 EEG ENCODING WITH LABRAM

A critical challenge in EEG-based visual decoding is extracting meaningful features from the in-
herently noisy signals. Rather than training encoders from scratch on limited EEG-image pairs, we
build upon LaBraM (Jiang et al., 2024), a model pre-trained on over 2000 hours of diverse EEG data
spanning multiple datasets and recording conditions.

The architecture processes input EEG data X ∈ RC×T (where C represents channels and T repre-
sents time points) through the following encoding scheme:

1) Temporal patching: The input EEG signal is segmented in the temporal dimension with a non-
overlapping window of length w, resulting in patches:

x = {xcj ,k ∈ Rw | j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊T
w
⌋} (1)

2) Local feature extraction: Each patch is processed by a temporal encoder comprising stacked
convolutional blocks (1D convolution, group normalization, GELU activation) to capture fine-
grained temporal patterns:

{ecj ,k ∈ Rd | j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊T
w
⌋} (2)

where d is the embedding dimension.

3) Spatiotemporal contextualization: To incorporate both temporal and spatial context into the
model, we set up two sets of trainable positional embeddings: a temporal embedding set TE =
{tek | k = 1, 2, . . . , ⌊T

w ⌋} and a spatial embedding set SE = {sej | j = 1, 2, . . . , C}. The final
patch representation is obtained by summing the corresponding temporal and spatial embeddings
with the encoder output:

{ecj ,k + tek + sej | j = 1, 2, . . . , C, k = 1, 2, . . . , ⌊T
w
⌋} (3)

4) Global integration: The enriched patch embeddings are processed by a Transformer encoder
(Vaswani et al., 2017) that models dependencies across both time and channels, effectively integrat-
ing information from the entire EEG epoch.

2.2 REPRESENTATION ALIGNMENT THROUGH CONTRASTIVE LEARNING

While pre-training provides a strong foundation for EEG feature extraction, the LaBraM model
was primarily trained on clinical data (Obeid & Picone, 2016) rather than EEG responses to visual
stimuli. To adapt the model for visual decoding, we fine-tune it through contrastive learning, which
creates alignment between EEG and image representation spaces.

Given paired EEG-image data (X ∈ RB×C×T , I ∈ RB×H×W ), we encode EEG signals us-
ing the LaBraM model and images using a frozen CLIP (Radford et al., 2021) encoder, produc-
ing embeddings e, z ∈ RB×d. We then optimize a bidirectional contrastive objective that max-
imizes agreement between corresponding EEG-image pairs while minimizing similarity between
non-corresponding pairs:

3
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Figure 2: AVDE involves two training stages. Stage 1: A pre-trained EEG encoder is fine-tuned
using contrastive learning to more effectively capture visual information embedded in EEG signals.
This adaptation aims to provide a more informative initialization for the subsequent visual recon-
struction process. Stage 2: A visual autoregressive transformer is trained using the next-scale pre-
diction objective (Equation 7). Specifically, the model takes the sequence ([s], R1, R2, . . . , RK−1)
as input and predicts the corresponding sequence (R1, R2, R3, . . . , RK). Training is guided by a
standard cross-entropy loss.

LCLIP = − 1

B

B∑
i=1

(
log

exp(s(ei, zi)/τ)∑B
j=1 exp(s(ei, zj)/τ)

+ log
exp(s(ei, zi)/τ)∑B

k=1 exp(s(ek, zi)/τ)

)
(4)

where s denotes cosine similarity and τ is a learned temperature parameter that controls the sharp-
ness of the distribution. This objective effectively creates a shared embedding space where EEG
signals are mapped near their corresponding image representations and away from unrelated ones.

To further strengthen the alignment, we incorporate a direct regression objective following practices
established in Benchetrit et al. (2023) and Li et al. (2024):

LCombined = λLCLIP + (1− λ)LMSE (5)

where LMSE is the mean squared error between normalized EEG and image embeddings, and λ (set
to 0.8 in our experiments) balances the two objectives. This dual-objective approach provides more
stable training dynamics and improves the precision of the EEG-to-image mapping by combining
the structural alignment properties of contrastive learning with the point-wise precision of direct
regression.

2.3 AUTOREGRESSIVE EEG-TO-IMAGE GENERATION

With aligned EEG representations in hand, we turn to the challenge of generating corresponding
images. Rather than employing complex diffusion-based pipelines, we adopt a hierarchical autore-
gressive approach inspired by VAR (Tian et al., 2024). This framework enables direct, progressive
image generation from EEG embeddings through a coarse-to-fine refinement process.

The architecture consists of two key components:

1) Multi-scale image tokenization: A pre-trained VQ-VAE tokenizes images into a hierarchy of
discrete representations at multiple resolutions. Given an image I , the tokenizer produces a feature
map F ∈ Rh×w×d that is quantized into K multi-scale residual maps (R1, R2, . . . , RK), where
each Rk has resolution hk × wk that progressively increases with k.
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These residual maps can be combined to progressively reconstruct the full-resolution feature map:

Fk =

k∑
i=1

up(Ri, (h,w)), (6)

where up(·) denotes bilinear upsampling, and Fk represents the accumulated feature map after in-
corporating the first k residuals. This formulation allows the image to be constructed incrementally,
from coarse structures to fine details.

2) Next-scale prediction transformer: A decoder-only transformer is trained to autoregressively
predict these residual maps from EEG embeddings e. The model learns to generate increasingly
detailed visual representations according to:

p(R1, . . . , RK) =

K∏
k=1

p(Rk | R1, . . . , Rk−1, e), (7)

where the sequence (R1, . . . , Rk−1, e) provides the context for predicting the next-scale residual
Rk.

This formulation is particularly appropriate for neural decoding because it mirrors theories of hier-
archical visual processing in the brain, where perception progresses from coarse features to increas-
ingly fine details. The EEG embedding e serves as the initial neural representation of the perceived
image, and the transformer progressively elaborates this representation across multiple scales.

In practice, as shown in Fig. 2, the EEG embedding e ∈ Rd is first projected to the transformer’s
hidden dimension h to create a special token [s], which initiates the generation process. For each
subsequent scale k > 1, the model processes the appropriately downsampled version of the previous
cumulative feature map:

F̃k−1 = down(Fk−1, (hk, wk)), (8)
where down(·) represents bilinear downsampling to match the target resolution (hk, wk) of the
current scale.

During training, we employ a block-wise causal attention mask to ensure the model only attends
to the appropriate context when predicting each scale. During inference, the process begins with
the EEG embedding and autoregressively generates each scale until reaching the final resolution,
at which point the multi-scale VQ-VAE decoder transforms the predicted feature map F̃K into a
complete image.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We primarily evaluate our method on the THINGS-EEG dataset (Grootswagers et al., 2022), which
serves as a widely adopted benchmark for EEG-based visual decoding. To further verify the ver-
satility of AVDE, we additionally conduct experiments on the EEG-ImageNet dataset (Zhu et al.,
2024), with results reported in Appendix C.

Dataset Overview. The THINGS-EEG dataset (Grootswagers et al., 2022) contains EEG record-
ings from 10 participants collected under a rapid serial visual presentation (RSVP) paradigm. The
training set consists of 1,654 object concepts, each associated with 10 images presented four times,
yielding a total of 66,160 EEG trials. The test set includes 200 distinct concepts, each represented
by a single image repeated 80 times, resulting in 16,000 EEG trials. To mitigate habituation effects,
both training and test images are presented in a pseudorandom order. Each image is displayed for
100 milliseconds, followed by a 100-millisecond blank screen to reduce blink-related and other arti-
facts. EEG signals were recorded from 63 channels, band-pass filtered between 0.1 Hz and 100 Hz,
and sampled at 1,000 Hz.

Data Preprocessing. Following the practice in Song et al. (2023) and Li et al. (2024), we segment
the EEG data into epochs spanning 0 to 1,000 ms relative to stimulus onset and apply baseline

5
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Table 1: Overall accuracy of 200-way zero-shot retrieval under both within-subject and cross-subject
settings. Each cell presents the Top-1 accuracy on the first line and the Top-5 accuracy on the second
line. Results are averaged over five different random seeds; corresponding standard deviation values
are presented in Table 10. For each subject, the highest accuracy values are indicated in bold.

Method Sub-01 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 Sub-09 Sub-10 Ave
Within-subject: train and test on one subject

EEGNetV4 (Lawhern et al., 2018) 0.144 0.159 0.202 0.224 0.132 0.129 0.198 0.246 0.184 0.237 0.186
0.391 0.398 0.432 0.517 0.289 0.402 0.467 0.549 0.419 0.543 0.441

EEGConformer (Song et al., 2022) 0.095 0.108 0.142 0.155 0.088 0.081 0.122 0.164 0.109 0.151 0.122
0.261 0.274 0.306 0.371 0.198 0.280 0.318 0.405 0.298 0.392 0.310

NICE (Song et al., 2023) 0.201 0.192 0.212 0.224 0.144 0.261 0.269 0.382 0.234 0.298 0.242
0.479 0.369 0.538 0.504 0.316 0.563 0.557 0.674 0.532 0.586 0.512

ATM (Li et al., 2024) 0.232 0.188 0.273 0.280 0.168 0.280 0.268 0.393 0.245 0.372 0.269
0.512 0.432 0.570 0.541 0.395 0.592 0.537 0.715 0.512 0.677 0.548

AVDE (Ours) 0.250 0.241 0.275 0.298 0.254 0.335 0.274 0.417 0.261 0.395 0.300
0.552 0.510 0.586 0.547 0.503 0.603 0.552 0.713 0.521 0.730 0.582

Cross-subject: leave one subject out for test

EEGNetV4 0.086 0.082 0.073 0.113 0.092 0.101 0.056 0.084 0.074 0.124 0.089
0.232 0.226 0.171 0.257 0.217 0.224 0.182 0.231 0.196 0.305 0.224

EEGConformer 0.069 0.066 0.058 0.090 0.074 0.081 0.045 0.067 0.059 0.099 0.071
0.197 0.193 0.146 0.217 0.185 0.191 0.156 0.198 0.167 0.260 0.191

NICE 0.103 0.100 0.086 0.127 0.091 0.146 0.102 0.112 0.098 0.169 0.113
0.286 0.257 0.206 0.323 0.183 0.341 0.268 0.239 0.242 0.386 0.273

ATM 0.121 0.128 0.082 0.127 0.094 0.107 0.083 0.122 0.096 0.171 0.115
0.296 0.302 0.224 0.293 0.249 0.259 0.257 0.296 0.247 0.381 0.280

AVDE (Ours) 0.141 0.170 0.091 0.152 0.125 0.173 0.074 0.185 0.132 0.180 0.143
0.322 0.384 0.218 0.325 0.324 0.386 0.204 0.401 0.336 0.393 0.329

correction using the mean signal from the 200 ms pre-stimulus interval. All electrodes are preserved,
and the data are downsampled to 200 Hz. Given that EEG amplitudes typically range from –0.1 mV
to 0.1 mV, we normalize the signals by scaling them with respect to 0.1 mV, resulting in values
primarily distributed between –1 and 1. For the test set, EEG responses corresponding to each
image are averaged across repetitions to improve the signal-to-noise ratio.

Implementation Details. We initialize the EEG encoder and the visual autoregressive (VAR)
transformer with the pre-trained weights provided in the official GitHub repositories of LaBraM
(Jiang et al., 2024) and VAR (Tian et al., 2024), respectively. The EEG encoder is trained using
the AdamW optimizer with an initial learning rate of 2e-3, a weight decay of 0.05, and a minimum
learning rate of 1e-5. The batch size is set to 1024. For the VAR transformer, we configure the model
with a depth of 16 and train it using the AdamW optimizer with β1 = 0.9, β2 = 0.95, a base learning
rate of 2e-5, a weight decay of 0.05, a global batch size of 512, and 50 training epochs. Additional
hyperparameter details are provided in Appendix B. During generation, we employ classifier-free
guidance (CFG) with a ratio of 4.0 and apply top-k sampling with k = 900. All the experiments are
conducted on Linux servers equipped with four NVIDIA A100 (40G) GPUs and Python 3.10.16 +
PyTorch 2.5.1 + CUDA 12.4 environment.

Evaluation. We assess the effectiveness of AVDE on both image retrieval and reconstruction tasks.
For the retrieval task, we compute the cosine similarity between the EEG embeddings generated by
the EEG encoder and the CLIP image embeddings of 200 test concepts. Retrieval performance is
evaluated based on the probability that the ground truth concept appears among the top-K candidates
(K = 1 or 5). For the reconstruction task, we adopt standard evaluation metrics following prior work
(Scotti et al., 2023; Li et al., 2024) to quantify the similarity between reconstructed and ground truth
visual stimuli: (1) PixCorr – pixel-wise correlation; (2) SSIM – Structural Similarity Index Measure;
(3) SwAV – average correlation distance computed from SwAV-ResNet50 (Caron et al., 2020) fea-
tures; and (4) Two-way identification using pretrained neural networks (AlexNet (Krizhevsky et al.,
2012) layers 2 and 5, Inception (Szegedy et al., 2015), and CLIP). Two-way identification is treated
as a bidirectional retrieval task, as described in Ozcelik & VanRullen (2023).
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3.2 RETRIEVAL PERFORMANCE

Table 1 presents a quantitative evaluation of EEG-based image retrieval performance, comparing
our proposed method, AVDE, with several baseline approaches. Remarkably, AVDE achieves a
top-1 accuracy of 0.300 and a top-5 accuracy of 0.582 in the zero-shot EEG-to-image retrieval task
under the within-subject setting. Under the more challenging cross-subject setting, it attains a top-1
accuracy of 0.143 and a top-5 accuracy of 0.329. These results represent a substantial improvement
over existing state-of-the-art methods, highlighting the effectiveness of our approach.

The strong performance of AVDE underscores the utility of the LaBraM-based EEG encoder, which
benefits significantly from large-scale pre-training. This pre-training enables the encoder to gen-
eralize more effectively across individuals and extract semantically meaningful features from raw
EEG signals. These high-quality EEG embeddings serve as a robust foundation for the subsequent
visual decoding stage, thereby facilitating more accurate and coherent EEG-to-image generation.
Overall, these findings demonstrate the potential of leveraging pre-trained architectures to enhance
the performance of EEG-based inference systems.

3.3 RECONSTRUCTION PERFORMANCE

Since Subject-08 exhibits the highest retrieval performance, we follow the convention of prior works
(Li et al., 2024; Zhang et al., 2025; Xiao et al., 2025) by quantitatively evaluating reconstruction per-
formance on Subject-08 to ensure a fair comparison. As shown in Table 2, AVDE outperforms ex-
isting approaches, achieving the highest scores across both high-level and low-level metrics. These
results indicate that AVDE improves not only low-level visual fidelity but also high-level seman-
tic consistency in the reconstructed images. Additional results for other subjects are provided in
Appendix D.

Table 2: Quantitative assessments of EEG-based visual reconstruction quality on Subject-08.

Method
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓
Li et al. (2024) 0.160 0.345 0.776 0.866 0.734 0.786 0.582
GeoCap 0.148 0.380 0.813 0.877 0.712 0.791 0.582
CognitionCapturer 0.175 0.366 0.760 0.610 0.721 0.744 0.577
AVDE (Ours) 0.188 0.396 0.817 0.889 0.765 0.795 0.557

Qualitative results in Figure 3 further substantiate the quantitative evaluations. Compared to pre-
vious methods, AVDE reconstructs images that more closely resemble the ground-truth stimuli in
terms of both structure and recognizable content. Whereas earlier models often yield semantically
ambiguous reconstructions, our approach recovers finer details and clearer object shapes, benefiting
from progressive multi-scale refinement and the informative EEG feature initialization.

3.4 EFFICIENCY ANALYSIS

We further analyze the inference efficiency of AVDE by comparing it against previous state-of-the-
art methods. Since most existing approaches adopt a similar unCLIP pipeline and utilize the same
diffusion model (SDXL (Podell et al., 2023)) for image generation, we select Li et al. (2024) as
a representative due to its widespread adoption and open-source availability. To comprehensively
assess both computational and spatial efficiency, we evaluate the following metrics: (1) FLOPs —
the number of floating-point operations; (2) Inference time — the GPU time required for generation;
and (3) Memory usage — the peak GPU memory usage during inference. All metrics are measured
using PyTorch’s built-in profiler on a single NVIDIA A100 GPU. The batch size is set to 1, cor-
responding to the resource cost of generating a single image. As summarized in Table 3, AVDE
achieves faster image generation and lower memory consumption compared to prior state-of-the-art
methods, demonstrating its superior suitability for practical applications.

7
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Figure 3: Qualitative Comparison of Visual Reconstruction Performance. Selected reconstruction
results from subject-08 demonstrate that the visual stimuli reconstructed by our method preserve
finer-grained features, suggesting improved fidelity and detail compared to alternative approaches.

Table 3: Comparison with state-of-the-art method on inference efficiency. All metrics are evaluated
using PyTorch’s built-in profiler on a single NVIDIA A100 GPU. The batch size is fixed at 1, and
results are averaged over 200 runs to ensure stability and reliability.

Method Params (M) Steps FLOPs (G) Inference Time (ms) Memory Usage (MB)
Li et al. (2024) 3818.1 50 (prior) + 4 (SDXL) 8738.6 310.4 4826.73
AVDE (Ours) 425.3 10 1350.5 91.2 1809.63

3.5 ABLATION STUDY

To evaluate the contribution of each core component in AVDE, namely the pre-trained EEG encoder
and the autoregressive generative framework, we perform the following experiments: (1) replac-
ing the pre-trained LaBraM encoder with other commonly used EEG encoders; and (2) substituting
the autoregressive generative framework with a standard unCLIP pipeline Li et al. (2024) based on
diffusion models. As shown in Table 4, performance degrades when the EEG encoder is replaced,
underscoring the value of high-quality embeddings from the pre-trained encoder for accurate visual
reconstruction. Similarly, replacing the autoregressive framework results in a substantial drop in per-
formance, suggesting that the ”next-scale prediction” autoregressive process more effectively aligns
the distributional characteristics of EEG signals with those of natural images, thereby enhancing the
interpretability of EEG data.

Table 4: Impact of using different EEG encoders or generative framework on the reconstruction
performance. The results are averaged over all subjects.

Method
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓
LaBraM+VAR 0.147 0.366 0.766 0.835 0.724 0.747 0.586
ATM+VAR 0.141 0.351 0.752 0.821 0.711 0.731 0.601
EEGNet+VAR 0.132 0.323 0.733 0.803 0.687 0.712 0.627
NICE+VAR 0.136 0.341 0.742 0.812 0.701 0.719 0.613

LaBraM+Diff. 0.138 0.346 0.746 0.817 0.707 0.726 0.606
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3.6 VISUALIZATION OF INTERMEDIATE OUTPUTS

Given that the “next-scale prediction” strategy employed in AVDE constitutes a progressive gener-
ative process, we examine how the model incrementally extracts and interprets visual information
from EEG signals throughout this procedure. To this end, we visualize all intermediate reconstruc-
tions by accumulating the feature maps at each scale and decoding them into images using the
decoder of a pre-trained multi-scale VQ-VAE. Formally, the set of cumulative feature maps is de-
noted as {Fk | k = 1, 2, . . . ,K}, where K represents the total number of scales, and each Fk is
computed as described in Equation 6.

As shown in Figure 4, the generative process in AVDE exhibits notable parallels to the hierarchical
organization of human visual perception. In the early stages of generation, the model produces
coarse features—mirroring the role of the retina and primary visual cortex (V1), which primarily
encode low-level visual attributes such as edges and color gradients (Tong, 2003; Tootell et al.,
1998). As the process continues, mid-level features begin to emerge, resembling the functional
role of V2 and V4 in integrating contours and object-level structures (Hegdé & Van Essen, 2007).
In the final stages, the model reconstructs semantically rich and coherent imagery, analogous to
the activity in higher-order visual regions such as the inferotemporal cortex, where holistic object
representations are formed (Tanaka, 1996). This progressive refinement underscores the potential of
autoregressive models to serve as computational tools for exploring the dynamics of human visual
cognition.

Figure 4: Intermediate reconstructions generated by AVDE across 10 progressive scales. Each
row corresponds to a distinct EEG-evoked reconstruction instance, and each column represents the
cumulative output up to a given scale. This process reflects the hierarchical nature of human visual
perception, drawing parallels to the function of successive cortical visual areas (e.g., V1, V2/V4,
and IT).

4 CONCLUSION

In this work, we presented AVDE, a novel autoregressive framework for visual decoding from EEG
signals that addresses key limitations of existing approaches in terms of complexity, efficiency, and
performance. By leveraging pre-trained EEG representations via LaBraM and replacing multi-stage
diffusion pipelines with a streamlined autoregressive process, AVDE enables accurate and coherent
reconstruction of visual content from noisy EEG data. Experiments on two datasets demonstrate
that AVDE outperforms state-of-the-art approaches in both retrieval and reconstruction tasks while
requiring only a fraction of their computational resources, making it well-suited for practical BCI
applications. Moreover, the hierarchical structure of AVDE ’s generative process mirrors the struc-
ture of human visual perception, highlighting its potential as a computational tool for investigating
the mechanisms of visual cognition.
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A RELATED WORK

A.1 VISUAL DECODING FROM NEURAL SIGNALS

The field of visual decoding from neural signals has evolved substantially, progressing from early
pattern recognition techniques to increasingly sophisticated generative models. Foundational stud-
ies (Kay et al., 2008; Naselaris et al., 2009) established key methodologies by employing Gabor
wavelet-based encoding models and Bayesian inference to identify stimuli from fMRI activity pat-
terns. These early efforts demonstrated the feasibility of decoding visual information from brain
activity, laying the groundwork for more advanced approaches. Subsequent progress was marked by
the integration of deep learning, particularly through representation alignment techniques. Methods
such as BrainCLIP (Liu et al., 2023) and a series of related works (Benchetrit et al., 2023; Xia et al.,
2024; Takagi & Nishimoto, 2023b; Qian et al., 2023) leveraged contrastive learning frameworks in-
spired by CLIP (Radford et al., 2021) to align neural signals with high-level visual representations.
These approaches significantly enhanced decoding accuracy, even under constraints of limited train-
ing data.

A paradigm shift occurred with the introduction of generative frameworks. Mind’s Eye (Scotti et al.,
2023) pioneered the application of the unCLIP approach from DALLE-2 (Ramesh et al., 2022) to
fMRI-based image reconstruction, incorporating a prior diffusion model to refine neural features
before generation. This multi-stage framework was subsequently adapted for EEG-based visual de-
coding (Li et al., 2024; Zhang et al., 2025; Xiao et al., 2025), yielding visually impressive results.
However, these complex pipelines introduced significant challenges: error propagation across multi-
ple processing stages, substantial computational requirements, and difficulty maintaining coherence
between the original neural signal and the generated output. These limitations highlight the need for
more direct, efficient approaches that preserve the relationship between neural activity and visual
reconstruction.

A.2 VISUAL GENERATIVE MODELS

Contemporary visual generative models primarily fall into two paradigms: diffusion models and au-
toregressive models, each with distinct computational characteristics particularly relevant for neural
decoding applications.

Diffusion models (Ho et al., 2020; Song et al., 2020; Podell et al., 2023; Peebles & Xie, 2023;
Esser et al., 2024) generate images by reversing a gradual noise-addition process, iteratively re-
fining random noise into coherent visual content through multiple denoising steps. While these
models produce high-quality images with exceptional detail, they require substantial computational
resources and typically involve 25-50 sequential denoising steps, limiting their applicability in
resource-constrained or real-time scenarios.

Autoregressive models (Esser et al., 2021; Yu et al., 2022; Van Den Oord et al., 2017; Razavi et al.,
2019; Lee et al., 2022) offer an alternative approach by discretizing images into token sequences
and predicting each token conditionally on previous ones. Traditionally, these models generated
images in raster-scan order (pixel-by-pixel or patch-by-patch), which limited their ability to capture
global structure and produce high-resolution outputs (Yu et al., 2022). However, recent innovations
in hierarchical autoregressive modeling, particularly Visual Autoregressive modeling (VAR) (Tian
et al., 2024), have transformed this landscape by introducing a coarse-to-fine generation strategy
called ”next-scale prediction.” This approach progressively elaborates visual details across multiple
resolution scales, requiring significantly fewer sampling steps (typically 8-12) while maintaining
global coherence.

The efficiency advantages of VAR make it particularly well-suited for neural decoding applications,
where computational constraints are significant and the hierarchical nature of the generation process
aligns conceptually with theories of visual processing in the brain. AVDE builds upon this paradigm,
leveraging its computational efficiency and hierarchical structure to establish a more direct mapping
between EEG signals and visual representations.
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B HYPERPARAMETER SETTINGS

Table 5: Hyperparameters for the LaBraM-based EEG encoder.

Hyperparameters Values

Temporal Encoder

Iput channels {1,8,8}
Output channels {8,8,8}

Kernel size {15,3,3}
Stride {8,1,1}

Padding {7,1,1}

Transformer encoder layers 12
Hidden size 200
MLP size 800

Attention head number 10

Batch size 1024
Peak learning rate 2e-3

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.99)

Weight decay 0.05
Total epochs 50

Warmup epochs 5
Drop path 0.1

Layer-wise learning rate decay 0.8
Contrastive loss factor λ 0.8

Table 6: Hyperparameters for the visual autoregressive transformer.

Hyperparameters Values

Number of layers 16
Hidden size 1024
MLP size 4096

Number of heads 16
Number of scales/steps 10

Size of scales (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)

Batch size 128
Peak learning rate 2e-5

Minimal learning rate 2e-6
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.95)

Weight decay 0.05
Total epochs 30

Warmup epochs 0
Drop path 0.1

Normalization ϵ 1e-6
Drop rate 0

Attention drop rate 0
Condition drop rate 0.1
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C RESULTS ON EEG-IMAGENET

C.1 DATASET DESCRIPTION

To verify the generalizability of our method, we also conducted experiments on the first 8 subjects
from the EEG-ImageNet dataset (Zhu et al., 2024). The visual stimuli consisted of 80 object cate-
gories drawn from a subset of ImageNet21k. Each category contained 50 manually curated images,
yielding 4,000 EEG–image pairs per subject. After randomizing the category order, the 50 images
in each category were sequentially presented using the RSVP paradigm, with each image shown for
500 ms. EEG signals were recorded from 62 channels, band-pass filtered between 0.5 and 80 Hz,
and sampled at 1,000 Hz. Following the protocol of the original study, we used the first 30 images
of each category for training and the remaining 20 for testing.

C.2 CLASSIFICATION

Table 7: Overall accuracy of 80-way classification on EEG-ImageNet. Each cell presents the Top-1
accuracy on the first line and the Top-5 accuracy on the second line. For each subject, the highest
accuracy values are indicated in bold.

Method Sub-01 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08

EEGNetV4 Lawhern et al. (2018) 0.297 0.241 0.206 0.139 0.177 0.165 0.152 0.097
0.612 0.607 0.639 0.402 0.553 0.689 0.672 0.357

EEGConformer Song et al. (2022) 0.301 0.263 0.194 0.141 0.209 0.173 0.151 0.102
0.629 0.618 0.636 0.421 0.552 0.701 0.667 0.365

NICE Song et al. (2023) 0.293 0.258 0.205 0.138 0.196 0.184 0.149 0.095
0.621 0.607 0.640 0.419 0.561 0.683 0.671 0.359

ATM Li et al. (2024) 0.306 0.245 0.213 0.151 0.205 0.187 0.146 0.091
0.633 0.624 0.641 0.428 0.557 0.699 0.676 0.353

AVDE (Ours) 0.308 0.270 0.227 0.154 0.218 0.329 0.301 0.144
0.634 0.628 0.643 0.435 0.566 0.703 0.695 0.388

C.3 RECONSTRUCTION

Table 8: Quantitative assessments of EEG-based visual reconstruction quality on EEG-ImageNet.

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.106 0.283 0.577 0.664 0.556 0.539 0.626
Sub-02 0.096 0.277 0.564 0.643 0.547 0.527 0.639
Sub-03 0.095 0.264 0.541 0.617 0.525 0.501 0.651
Sub-04 0.080 0.249 0.505 0.578 0.480 0.479 0.677
Sub-05 0.086 0.253 0.528 0.592 0.504 0.482 0.664
Sub-06 0.124 0.318 0.616 0.701 0.603 0.568 0.605
Sub-07 0.119 0.308 0.599 0.694 0.581 0.553 0.613
Sub-08 0.077 0.232 0.480 0.553 0.461 0.457 0.690
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Table 9: Reconstruction quality on EEG-ImageNet with baselines.

(a) Li et al. (2024)

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.099 0.269 0.559 0.629 0.529 0.511 0.648
Sub-02 0.092 0.264 0.543 0.611 0.532 0.501 0.659
Sub-03 0.091 0.255 0.525 0.603 0.508 0.480 0.675
Sub-04 0.078 0.236 0.491 0.563 0.466 0.460 0.698
Sub-05 0.081 0.240 0.504 0.569 0.485 0.460 0.692
Sub-06 0.119 0.307 0.589 0.678 0.584 0.545 0.628
Sub-07 0.114 0.296 0.584 0.669 0.565 0.538 0.642
Sub-08 0.074 0.224 0.462 0.529 0.448 0.435 0.699

(b) CognitionCapturer (Zhang et al., 2025)

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.105 0.267 0.551 0.631 0.536 0.509 0.662
Sub-02 0.098 0.263 0.540 0.606 0.539 0.499 0.646
Sub-03 0.088 0.262 0.515 0.593 0.509 0.481 0.679
Sub-04 0.091 0.243 0.494 0.570 0.461 0.456 0.690
Sub-05 0.075 0.244 0.492 0.567 0.483 0.460 0.690
Sub-06 0.113 0.305 0.601 0.691 0.584 0.549 0.616
Sub-07 0.109 0.293 0.595 0.662 0.564 0.553 0.643
Sub-08 0.077 0.213 0.472 0.532 0.449 0.430 0.693
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D ADDITIONAL RESULTS ON THINGS-EEG

D.1 RETRIEVAL

Table 10: Standard deviation values of Top-1 and Top-5 accuracy on the 200-way zero-shot retrieval
task. These results are complement to Table 1.

Method Sub-01 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 Sub-09 Sub-10
Within-subject: train and test on one subject

EEGNetV4 Lawhern et al. (2018) 0.012 0.008 0.008 0.019 0.020 0.012 0.015 0.015 0.017 0.009
0.045 0.041 0.025 0.031 0.010 0.031 0.035 0.034 0.026 0.028

EEGConformer Song et al. (2022) 0.014 0.015 0.013 0.020 0.017 0.010 0.009 0.011 0.018 0.019
0.009 0.008 0.044 0.043 0.017 0.015 0.026 0.040 0.018 0.041

NICE Song et al. (2023) 0.010 0.014 0.012 0.016 0.012 0.008 0.015 0.031 0.010 0.009
0.030 0.028 0.037 0.039 0.027 0.043 0.037 0.033 0.044 0.042

ATM Li et al. (2024) 0.016 0.006 0.022 0.015 0.011 0.027 0.013 0.022 0.016 0.020
0.017 0.022 0.015 0.018 0.011 0.024 0.026 0.026 0.023 0.028

AVDE (Ours) 0.018 0.011 0.015 0.012 0.017 0.027 0.018 0.023 0.012 0.017
0.020 0.023 0.016 0.021 0.019 0.025 0.018 0.028 0.019 0.025

Cross-subject: leave one subject out for test

EEGNetV4 Lawhern et al. (2018) 0.012 0.010 0.009 0.014 0.013 0.011 0.012 0.013 0.011 0.012
0.025 0.022 0.021 0.023 0.020 0.022 0.024 0.025 0.021 0.022

EEGConformer Song et al. (2022) 0.010 0.009 0.009 0.013 0.012 0.009 0.008 0.008 0.011 0.011
0.009 0.008 0.021 0.022 0.014 0.013 0.017 0.021 0.015 0.020

NICE Song et al. (2023) 0.009 0.010 0.009 0.011 0.010 0.008 0.011 0.017 0.008 0.007
0.019 0.018 0.024 0.025 0.017 0.021 0.023 0.020 0.025 0.023

ATM Li et al. (2024) 0.013 0.008 0.015 0.011 0.010 0.018 0.011 0.015 0.013 0.014
0.015 0.016 0.013 0.015 0.011 0.017 0.018 0.018 0.016 0.019

AVDE (Ours) 0.014 0.010 0.012 0.011 0.013 0.019 0.014 0.017 0.011 0.013
0.016 0.017 0.013 0.015 0.014 0.018 0.015 0.020 0.015 0.018

D.2 RECONSTRUCTION

Table 11: Quantitative assessments of EEG-based visual reconstruction quality on all subjects.

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.138 0.362 0.750 0.837 0.725 0.721 0.609
Sub-02 0.120 0.388 0.754 0.811 0.710 0.737 0.604
Sub-03 0.168 0.379 0.763 0.827 0.704 0.746 0.603
Sub-04 0.126 0.361 0.748 0.835 0.731 0.765 0.593
Sub-05 0.145 0.373 0.743 0.814 0.691 0.732 0.586
Sub-06 0.128 0.364 0.768 0.832 0.707 0.717 0.584
Sub-07 0.126 0.351 0.760 0.827 0.733 0.731 0.588
Sub-08 0.188 0.396 0.817 0.889 0.765 0.795 0.557
Sub-09 0.156 0.339 0.753 0.810 0.713 0.726 0.600
Sub-10 0.173 0.349 0.807 0.871 0.764 0.800 0.543
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Table 12: Reconstruction quality on THINGS-EEG with baselines.

(a) Li et al. (2024)

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.136 0.354 0.720 0.831 0.710 0.728 0.589
Sub-02 0.108 0.301 0.688 0.775 0.657 0.705 0.618
Sub-03 0.145 0.340 0.747 0.858 0.751 0.759 0.590
Sub-04 0.075 0.305 0.729 0.782 0.694 0.688 0.623
Sub-05 0.133 0.352 0.738 0.791 0.637 0.707 0.612
Sub-06 0.140 0.363 0.753 0.834 0.686 0.742 0.595
Sub-07 0.155 0.360 0.769 0.851 0.684 0.697 0.608
Sub-08 0.163 0.345 0.786 0.868 0.730 0.770 0.575
Sub-09 0.134 0.338 0.736 0.788 0.626 0.652 0.606
Sub-10 0.112 0.329 0.735 0.843 0.674 0.708 0.570

(b) CognitionCapturer (Zhang et al., 2025)

Subject
Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓

Sub-01 0.148 0.334 0.741 0.626 0.666 0.711 0.592
Sub-02 0.147 0.344 0.764 0.618 0.661 0.725 0.590
Sub-03 0.140 0.307 0.715 0.549 0.690 0.710 0.603
Sub-04 0.126 0.355 0.801 0.660 0.701 0.765 0.543
Sub-05 0.130 0.343 0.731 0.639 0.594 0.655 0.611
Sub-06 0.122 0.337 0.748 0.620 0.646 0.688 0.630
Sub-07 0.145 0.355 0.777 0.623 0.731 0.721 0.576
Sub-08 0.175 0.366 0.760 0.610 0.721 0.744 0.577
Sub-09 0.148 0.337 0.731 0.623 0.625 0.692 0.605
Sub-10 0.152 0.389 0.773 0.664 0.657 0.736 0.569
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Figure 5: Subject-08’s Best, Medium, and Worst reconstructions selected based on PixCorr.
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Figure 6: Subject-08’s Best, Medium, and Worst reconstructions selected based on SwAV.
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Figure 7: Subject-10’s Best, Medium, and Worst reconstructions selected based on PixCorr.
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Figure 8: Subject-10’s Best, Medium, and Worst reconstructions selected based on SwAV.
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Figure 9: Subject-03’s Best, Medium, and Worst reconstructions selected based on PixCorr.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Be
st

Se
en

Ge
ne

ra
te

d
M

ed
ia

n Se
en

Ge
ne

ra
te

d
W

or
st

Se
en

Ge
ne

ra
te

d

Figure 10: Subject-03’s Best, Medium, and Worst reconstructions selected based on SwAV.

21


	Introduction
	Method
	EEG Encoding with LaBraM
	Representation Alignment through Contrastive Learning
	Autoregressive EEG-to-image Generation

	Experiments
	Experimental Setup
	Retrieval Performance
	Reconstruction Performance
	Efficiency Analysis
	Ablation Study
	Visualization of Intermediate Outputs

	Conclusion
	Related Work
	Visual Decoding from Neural Signals
	Visual Generative Models

	Hyperparameter Settings
	Results on EEG-ImageNet
	Dataset Description
	Classification
	Reconstruction

	Additional Results on THINGS-EEG
	Retrieval
	Reconstruction


