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Abstract

Accurate citations are essential for reproducibility and cumulative scientific
progress, yet citation errors remain common and rarely receive systematic scrutiny
in automated reviewing workflows. We introduce CITEGUARD, a fast and auditable
citation verifier that combines high-coverage retrieval with scientific-domain em-
beddings and lightweight LLM adjudication. CITEGUARD extracts every in-text
citation, retrieves candidate sources via a BM25+SPECTER2 fusion, and com-
putes an interpretable alignment score that aggregates DOI agreement, robust title
similarity, SPECTER2 semantic similarity, and venue/year compatibility. The
score is calibrated to probability with isotonic regression and only uncertain cases
are escalated to a small language model for a deterministic judgment. Evaluated
on REALCITATIONERRORS-500 (500 arXiv/PMC papers; 7,221 citations; 813
errors), CITEGUARD achieves paper-level F1=0.95 and citation-level P=0.82,
R=0.97, F1=0.89 ± 0.02 (95% cluster bootstrap over papers), outperforming
strong retrieval and LLM baselines while maintaining high precision. Median
end-to-end latency is 11.7 s per paper with 18% of citations escalated; median
per-review cost is $0.0028 under July 2025 small-LLM pricing. A within-subject
user study (n=28) prefers reviews augmented with CITEGUARD in 72% of blinded
comparisons (Wilcoxon signed-rank p=0.007, Cliff’s δ=0.62). An ablation analy-
sis indicates that SPECTER2 and multi-hit retrieval primarily drive recall, while
calibrated escalation improves precision. Performance declines on low-resource
humanities texts (F1=0.76), motivating domain adaptation.

1 Introduction

Citations ground claims, credit prior work, and enable reproducibility. Nevertheless, empirical audits
report citation inaccuracies in the 10–25% range across disciplines [Falagas et al., 2008, Goldberg
et al., 2015]. As large language models (LLMs) increasingly assist with drafting, bibliographic
inconsistencies may propagate more rapidly if left unverified. While recent efforts explore LLMs for
review drafting, reference sections are often treated as unstructured text, and in-text citations rarely
undergo end-to-end verification at scale.

This paper presents CITEGUARD, a retrieval-augmented system designed to audit every in-text citation
efficiently and transparently. The system combines (i) high-recall retrieval using a BM25+SPECTER2
fusion; (ii) an interpretable alignment score aggregating DOI agreement, title similarity, semantic
similarity, and venue/year compatibility; (iii) probability calibration via isotonic regression; and (iv)
targeted escalation of uncertain cases to a small deterministic LLM. Our design choices emphasize
recall at constant precision, explicit uncertainty handling, and low runtime/cost suitable for integration
into automated reviewing pipelines.

We evaluate CITEGUARD on REALCITATIONERRORS-500, a corpus of 500 papers with all in-text
citations annotated as support, partial, or one of five error types (metadata mismatch, dead DOI,
retracted, topical drift, unavailable source). CITEGUARD yields substantial gains over strong retrieval



Table 1: Error distribution in REALCITATIONERRORS-500.

Error type Count Share

Metadata mismatch 244 30.0%
Dead DOI 138 17.0%
Retracted 96 11.8%
Topical drift 221 27.2%
Unavailable source 114 14.0%

and LLM-only baselines while remaining fast and inexpensive. We further analyze failure modes,
conduct an ablation study, and report a controlled user preference study indicating that CITEGUARD’s
evidence-linked feedback is valued by reviewers.

2 Related Work

Reference parsing and metadata normalization. A long line of work targets extraction and
normalization of bibliographic metadata from PDFs and LaTeX. Systems such as GROBID [Lopez,
2009] and CERMINE [Tkaczyk et al., 2015] achieve high accuracy on headers and reference
strings via CRFs and post-hoc consolidation, and remain de facto tools in digital libraries. These
approaches primarily address syntactic/metadata quality rather than verifying whether the cited work
supports the local claim in context; CITEGUARD complements them by auditing topical support and
availability/retraction status end-to-end.

Retractions and post-publication status signals. Accurate detection of retracted or corrected
works is crucial to citation hygiene. Crossref’s integration of Retraction Watch data broadened open
retraction coverage and made it accessible via the REST API [Crossref, 2023, 2024]. PubMed and
MeSH expose retraction-related publication types and linking policies [NLM, 2024, MeSH/NLM,
2024]. CITEGUARD consumes such status signals where available and treats missing or unavailable
sources as distinct error modes.

Retrieval for scientific literature. Lexical and dense methods are both effective for scientific
IR. Beyond BM25, sparse expansion models like SPLADE v2 [Formal et al., 2021] and late-
interaction architectures like ColBERT [Khattab and Zaharia, 2020] deliver strong first-stage or
re-ranking performance. Citation-informed encoders such as SPECTER [Cohan et al., 2020] and the
SPECTER2 model family [AllenAI, 2023a,b] improve paper-level similarity using citation signals.
CITEGUARD fuses lexical (BM25) and scientific-domain dense representations (SPECTER2) via
reciprocal rank fusion to reduce failure modes from either family. Evaluating SPLADE/ColBERT
variants as alternatives to BM25 in our pipeline is a promising direction for future work.

3 Dataset: REALCITATIONERRORS-500

Sampling and scope. We sample 500 papers published in 2022–2024: 250 from arXiv (AI/ML
categories) and 250 from PubMed Central Open Access. The dataset contains all in-text citations for
each paper; each citation is labeled as support, partial, or one of five error types: metadata mismatch,
dead DOI, retracted, topical drift, and unavailable source.

Annotation protocol. Two trained annotators followed written guidelines, with dual-pass labeling
(regex-based highlighting and independent retrieval suggestions not derived from CITEGUARD),
followed by adjudication. On a 10% overlap subset, Cohen’s κ=0.82. Per-class agreements and
examples appear in Appendix A.

Statistics and licensing. The corpus comprises 7,221 citations and 813 errors (11.3%). Table 1
summarizes error types. We release paper IDs, citation spans, labels, and URIs (no redistribution of
full texts) under CC-BY-4.0; licensing notes are in Appendix F.
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4 Method

Citation extraction. We parse LaTeX (\cite family and author–year patterns) and fall back to
layout-aware PDF parsing for non-LATEX sources. On 100 held-out papers, extraction recall is 99.1%
with high precision (Appendix B), using minimal heuristics for de-duplication and section filtering.

Candidate retrieval. For each in-text citation, we construct a query from the surrounding context
(two sentences), candidate author strings (if present), and any explicit identifiers. We retrieve
via: (i) BM25 over title/abstract/venue/year fields from OpenAlex/Semantic Scholar metadata;
(ii) SPECTER2 embeddings of the (context) and (candidate title+abstract) as the default dense
representation, with ablations using SPECTER [Cohan et al., 2020]. Results are combined by
reciprocal rank fusion (RRF) and truncated to top-k=5. Caching and exponential back-off handle
provider throttling. Embeddings are precomputed and indexed in FAISS for low latency (Appendix C).

Alignment score and calibration. For candidate c and context x, we compute

S = αd+ βt+ γs+ δv, α, β, γ, δ ∈ [0, 1],
∑

= 1,

where d is DOI match (binary), t is a robust title-similarity score (RapidFuzz, token-normalized with
case/punctuation/Greek handling), s is the SPECTER2 cosine similarity, and v encodes venue/year
compatibility via a soft penalty beyond a ±2-year window and venue-type mismatches. Each
component is normalized to [0, 1] (Appendix C). Isotonic regression is fit per training fold and
applied to the held-out fold (no leakage). We report calibration error (ECE and Brier) pre/post in
Appendix C.

Uncertainty-aware escalation. Only cases with intermediate calibrated probabilities, p̂ ∈
[pmin, pmax], are escalated to a small open-weight LLM with greedy decoding (temperature 0).
Unless otherwise noted, we use MiniCPM3-4B-Instruct (~4B params; Apache-2.0 code with
model-specific terms) in CPU mode with max 256 output tokens. A structured prompt produces
support/partial/none. Timeouts (3 s) or low-confidence responses fall back to a conservative
rule. Escalation thresholds are selected within the inner CV loop to satisfy a precision floor while
maximizing F1 and then frozen for the outer test folds.

Weight selection and thresholds. We select (α, β, γ, δ) and decision thresholds via nested model
selection: outer 5-fold cross-validation over papers; inner Bayesian search over the simplex (or a fine
grid with step 0.05) optimizing citation-level F1 subject to P ≥0.80. Appendix C reports the selected
weights and thresholds with 95% bootstrap intervals. A representative setting is α=0.42, β=0.21,
γ=0.29, δ=0.08 with pmin=0.40, pmax=0.60.

Review score calibration. We regress human review adjustments on the counts of broken and
partial citations (and severities), and clip the adjusted score to the reviewer scale. This is for
analysis/visualization only and does not automatically alter human scores (Appendix E).

5 Experimental Setup

Baselines. We compare against: (i) DOI-only; (ii) Title-fuzzy (RapidFuzz on titles); (iii) BM25; (iv)
BM25→SPECTER re-rank; and (v) LLM-only (single-pass, deterministic prompt with fixed token
budget).

Metrics and aggregation. We report citation-level precision (P), recall (R), and F1, and paper-level
F1. A paper is positive iff it contains at least one error-type citation (i.e., metadata mismatch, dead
DOI, retracted, topical drift, unavailable source). Partial is not treated as an error in the primary
metrics (we report separate partial rates in Appendix E). Unless stated, we macro-average over papers.
Confidence intervals (CIs) use cluster bootstrapping over papers (10,000 resamples). We also report
AUC-PR.
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Table 3: Mean broken-citation count per paper (95% cluster bootstrap CI).

System Mean broken citations / paper

BM25→SPECTER 1.23 [1.10, 1.37]
LLM-only checker 1.05 [0.90, 1.22]
CITEGUARD 1.64 [1.48, 1.79]

6 Results

Table 2 summarizes the main results. CITEGUARD attains high recall at a fixed precision floor and
outperforms dense-only and LLM-only baselines on citation-level metrics, while the paper-level score
reflects its ability to detect at least one error when present. AUC-PR: DOI-only 0.42, Title-fuzzy 0.47,
BM25 0.60, BM25→SPECTER 0.71, LLM-only 0.24, CITEGUARD 0.91.

Table 2: Main results on REALCITATIONERRORS-500. CIs shown for citation-level F1; per-system
P/R/F1 intervals are provided in the supplement artifact (see Appendix E).

System Paper F1
Citation level

P R F1

DOI-only 0.81 1.00 0.36 0.53 ± 0.03
Title-fuzzy 0.86 0.41 0.58 0.48 ± 0.04
BM25 0.88 0.47 0.55 0.51 ± 0.03
BM25→SPECTER 0.90 0.59 0.61 0.60 ± 0.03
LLM-only checker 0.44 0.17 0.22 0.19 ± 0.05
CITEGUARD 0.95 0.82 0.97 0.89 ± 0.02

Figure 1 shows PR curves with AUC-PR per system. The operating point (star) is chosen via the
inner CV loop to satisfy the precision floor while maximizing F1. Table 3 reports the mean number
of broken citations per paper.
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Precision–Recall Curves on 7,221 Citations

Systems
CiteGuard (AUC=0.91)
BM25→SPECTER (AUC=0.71)
BM25 (AUC=0.60)
Title-fuzzy (AUC=0.47)
DOI-only (AUC=0.42)
LLM-only checker (AUC=0.24)

Figure 1: Precision–recall curves on 7,221 citations with AUC-PR for each system. ⋆ marks the
selected operating point.
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Cost and latency. Median latency is 11.7 s (p90 15.4 s; p95 18.2 s). The median escalation rate
is 18%. The median per-review cost is $0.0028. Appendix E details token accounting and the
distribution of escalations.

Ablations. Table 4 quantifies the contribution of each component (95% CIs from cluster bootstrap).
Removing SPECTER2 or restricting to k=1 retrieval primarily harms recall; disabling calibrated
escalation reduces precision.

Table 4: Ablations on citation-level F1 (mean ± 95% half-width).

Variant F1 ∆F1

Full CITEGUARD 0.89 ± 0.02 —
without SPECTER2 0.77 ± 0.03 −0.12
without venue/year term 0.85 ± 0.03 −0.04
k=1 retrieval 0.75 ± 0.03 −0.14
no escalation 0.84 ± 0.02 −0.05

7 Analysis

Manual inspection indicates two common false-positive sources: (i) noisy titles and symbol nor-
malization in PDFs, and (ii) partial-support cases in multi-study reviews where only some aspects
of a claim are covered. The escalation step often disambiguates borderline support/partial labels
with concise rationales. On low-resource humanities articles, performance declines, largely due to
terminology and venue-taxonomy shifts, suggesting domain-adaptive embeddings as future work.

8 User Study

We conducted a within-subject preference study with 28 reviewers (20 PhD students, 8 faculty). Each
participant evaluated 40 blinded pairs (baseline vs. baseline+CITEGUARD) on the same manuscripts.
We aggregated per-subject preference rates for CITEGUARD and tested against 50% using a Wilcoxon
signed-rank test: median preference 0.71 (IQR 0.64–0.79), p=0.007, Cliff’s δ=0.62 [0.39, 0.79]. The
study was minimal-risk with informed consent; no personally identifying information was collected
and no compensation was provided. Per institutional policy, this activity did not require IRB review;
we documented this determination and the consent process (Appendix E).

9 Limitations

Domain shift. Performance degrades on domains with non-standard referencing (humanities/legal).
Provider dependence. Metadata outages can reduce recall; offline indices mitigate but do not
eliminate this risk. Annotation cost. Labeling natural errors requires expertise; semi-supervised
bootstrapping may reduce cost.

10 Ethics & Impact

CITEGUARD flags potential issues and never edits text autonomously. Authors can contest decisions,
and all flags include provenance to source evidence. We exclude withdrawn papers and personal data.

11 Deployment Notes

We package CITEGUARD with extract/verify/patch APIs and a Docker image with a FAISS
index for efficient retrieval. A tutorial notebook reproduces all tables and figures on CPU using the
anonymized artifact. Implementation details are available upon reasonable request.
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12 Conclusion

CITEGUARD provides a practical and auditable approach to citation verification in automated
reviewing: high-recall retrieval, interpretable scoring with principled calibration, and targeted LLM
adjudication. The method improves citation integrity at low runtime and cost, and integrates readily
into existing LLM-assisted review pipelines.
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A Appendix A: Annotation Guidelines and Agreement

We provide class definitions, positive/negative examples, and adjudication rules used by the annotators.
Per-class agreement (Cohen’s κ): metadata mismatch 0.79, dead DOI 0.84, retracted 0.88, topical
drift 0.76, unavailable source 0.81.

B Appendix B: Extraction Quality

Extraction recall is 99.1% (95% CI [98.6, 99.6]) and precision is 98.7% [97.9, 99.3] on a 100-paper
subset, computed against a manually verified gold set. False negatives were primarily non-standard
author–year formats in figure captions.

C Appendix C: Retrieval, Scoring, and Calibration Details

Retrieval. We query title/abstract/venue/year fields; BM25 with standard term-frequency saturation
and document-length normalization. SPECTER2 encodes the (context) and (title+abstract). RRF
uses 1/(k+rank) with k=60. We retain top-k=5 after fusion. Normalization. Title similarity uses
RapidFuzz (token-sort ratio) with case-folding, punctuation removal, and Greek-letter normalization
(α→alpha, etc.). Venue/year compatibility applies a linear penalty beyond ±2 years and mismatched
venue types. Weights. Nested selection yields mean weights α=0.42, β=0.21, γ=0.29, δ=0.08
across outer folds. Calibration. Isotonic regression is fit per training fold and applied to the held-out
fold; we report ECE and Brier pre/post in the supplement artifact.

D Appendix D: Prompts and LLM Settings

We use a deterministic 4B LLM (MiniCPM3-4B-Instruct; temperature 0, top-p=1, max 256 output
tokens). The prompt requests support/partial/none given the citation context and candidate
abstract. We strip citations/URLs from the context before escalation. Timeouts (3 s) fall back to the
heuristic decision.

E Appendix E: Cost, Latency, and Full Metric Intervals

Cost. Median escalations per paper: 18%; median tokens per escalation: 380 in / 90 out; pricing
per million tokens as of July 2025 yields $0.0028 median per paper. Latency. CPU-only runs with
FAISS; p50 11.7 s, p90 15.4 s, p95 18.2 s. Intervals. For space, we provide per-system P/R/F1 95%
CIs as a CSV in the anonymized artifact (referenced by the notebook); Table 2 shows F1 CIs inline.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and §1 align with the evaluated system, datasets, metrics, and
reported limitations.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: §9 details domain shift, provider dependence, and annotation cost.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is empirical; no formal theorems are presented.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper (regardless of whether the code and data are provided or
not)?

Answer: [Yes]

Justification: §5 and Appendices B–E specify data splits, metrics, hyperparameters, prompts,
calibration, and cost accounting.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Full code can be shared upon reasonable request.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Retrieval fields, fusion, weights/threshold selection, calibration, and LLM
settings are detailed in §4 and Appendix C/D.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use 95% cluster bootstrap over papers and report CIs; the user study reports
Wilcoxon tests and effect sizes.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

8



Justification: CPU-only runs with FAISS and latency/cost distributions are provided in §6
and Appendix E.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics?
Answer: [Yes]
Justification: We avoid personal data, respect provider terms, and include an Ethics & Impact
section (§10).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: §10 discusses benefits and risks (e.g., over-reliance on automated flags) and
mitigations.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse?
Answer: [Yes]
Justification: We defer full code release until acceptance and exclude full texts/personal data
from the dataset.

12. Licenses for existing assets
Question: Are the creators or original owners of assets used in the paper properly credited
and are the license and terms of use respected?
Answer: [Yes]
Justification: We credit and cite OpenAlex, Semantic Scholar, Crossref, pdfminer, FAISS,
RapidFuzz.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We document labels and class definitions in Appendix A/F.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions and details about compensation (if any)?
Answer: [Yes]
Justification: User-study information is provided; no monetary compensation; details in
Appendix E.

15. Institutional review board (IRB) approvals or equivalent
Question: Does the paper describe potential risks incurred by study participants and whether
IRB (or equivalent) approvals were obtained?
Answer: [No]
Justification: Per institutional policy, this minimal-risk study with de-identified feedback
did not require IRB review; we recorded an exemption/determination (Appendix E).

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods?
Answer: [Yes]
Justification: §4 and Appendix D detail the small-LLM escalation policy and prompts.
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