
Published as a conference paper at ICLR 2024

STRUCTURAL INFERENCE WITH DYNAMICS ENCOD-
ING AND PARTIAL CORRELATION COEFFICIENTS

Aoran Wang 1 & Jun Pang 1,2

1 Faculty of Science, Technology and Medicine, University of Luxembourg
2 Institute for Advanced Studies, University of Luxembourg
{aoran.wang, jun.pang}@uni.lu

ABSTRACT

This paper introduces a novel approach to structural inference, combining a vari-
ational dynamics encoder with partial correlation coefficients. In contrast to prior
methods, our approach leverages variational inference to encode node dynamics
within latent variables, and structural reconstruction relies on the calculation of
partial correlation coefficients derived from these latent variables. This unique
design endows our method with scalability and extends its applicability to both
one-dimensional and multi-dimensional feature spaces. Furthermore, by reorga-
nizing latent variables according to temporal steps, our approach can effectively
reconstruct directed graph structures. We validate our method through extensive
experimentation on twenty datasets from a benchmark dataset and biological net-
works. Our results showcase the superior scalability, accuracy, and versatility of
our proposed approach compared to existing methods. Moreover, experiments
conducted on noisy data affirm the robustness of our method.

1 INTRODUCTION

Complex dynamical systems often find their mathematical representations as networks of interact-
ing agents. In this conceptualization, the system can be visualized as an interaction graph, where
individual agents are nodes, their interactions are edges, and the underlying system’s structure is en-
capsulated within an adjacency matrix. This modeling paradigm transcends diverse domains, find-
ing applications in understanding physical systems (Kwapień & Drożdż, 2012; Ha & Jeong, 2021),
unraveling multi-agent dynamics (Brasó & Leal-Taixé, 2020; Li et al., 2022), and deciphering the in-
tricate interplay within biological systems (Tsubaki et al., 2019; Pratapa et al., 2020). As the pursuit
of understanding dynamical systems gains momentum, there arises an imperative—unveiling the
structure concealed within the intricate web of interactions. The recognition of this hidden frame-
work not only advances our comprehension of the system’s intrinsic mechanisms but also empowers
us to predict and control its behavior, a goal of paramount significance. However, a common chal-
lenge prevails across these scenarios: the availability of only a fraction of nodes’ observable features
within a limited temporal window. This limitation leaves the underlying structural skeleton partially
or completely veiled by the complex dynamical processes at play. To surmount this challenge, a
need arises for an approach capable of reconstructing the concealed structure of dynamical systems
solely from the observable features.

We introduce the notion of a trajectory, which amalgamates observed features from all nodes over
a defined time interval. These trajectories encapsulate a rich tapestry of information, encoding the
evolution of node features—a result of their historical states and interactions with fellow agents.
Several methodologies grounded in variational autoencoders (VAEs) have emerged with the aim of
unearthing the underlying structure based on these trajectories (Kipf et al., 2018; Alet et al., 2019;
Webb et al., 2019; Chen et al., 2021; Löwe et al., 2022; Wang & Pang, 2022; Wang et al., 2023a).
Guided by the Information Bottleneck (IB) principle, they navigate the reconstruction of dynami-
cal systems’ adjacency matrices within their latent spaces. Yet, a substantial limitation looms large:
these approaches mandate a global perspective of the entire system, rendering structural inference on
large-scale graphs computationally infeasible. In contrast, correlations and partial correlations offer
an alternative route to structure recovery, demonstrating scalability irrespective of graph size (Whit-

1

Published as a conference paper at ICLR 2024

taker, 1990; Pratapa et al., 2020). However, they require the node features to be one-dimensional at
every time step and lack the versatility to decipher directed graph structures.

In response to these challenges, we introduce a novel structural inference framework that harnesses
the strengths of VAEs and partial correlations, Structural Inference with Dynamics Encoding and
Partial Correlation Coefficients (SIDEC). Leveraging a VAE variant known as the variational dy-
namics encoder (VDE) (Hernández et al., 2018), we encode node feature dynamics over a de-
fined temporal window into latent variables. Concurrently, we reduce feature dimensionality by
extracting essential information—creating a versatile foundation for structural inference. These la-
tent variables form the basis for calculating partial correlation coefficients (PCOR), enabling the
reconstruction of underlying interaction graph structures. SIDEC transcends the limitations of its
predecessors, enabling structural inference on extensive graphs without an exponential surge in com-
putational demands. It extends its applicability to trajectories featuring both one-dimensional and
multi-dimensional node features. Remarkably, through the reorganization of latent variables, tem-
poral order information is extracted, enabling precise inference of directed graph structures. Exper-
imental results validate the prowess of SIDEC, surpassing previous methods in both accuracy and
scalability, while demonstrating resilience to diverse noise conditions.

Our contributions encompass the following aspects:

• We propose a novel structural inference approach, which is rooted in variational dynamics encoder
and partial correlation coefficients.

• This method effectively addresses scalability concerns, does not need a prior for structure, and
provides a versatile solution for structural inference across various feature dimensions.

• Through innovative latent variable manipulation, we expand its capabilities to accurately infer
directed graph structures.

• Empirical validation underscores its superiority over existing benchmarks and its robustness in the
presence of additive Gaussian noise.

2 RELATED WORK

Structural inference with VAEs. Structural inference seeks to faithfully reconstruct the interaction
graph underlying a dynamical system, relying solely on observational data representing the state of
agents over time. Neural Relational Inference (NRI) (Kipf et al., 2018) is a seminal work that ven-
tured into structural inference, employing VAEs within a fixed fully connected graph framework.
Building on the foundation laid by NRI, subsequent research has expanded the horizons of this
field. These extensions encompass the adaptation to multi-interaction systems (Webb et al., 2019),
the incorporation of efficient message-passing mechanisms (Chen et al., 2021), the exploration of
modular meta-learning (Alet et al., 2019), the iterative elimination of indirect connections (Wang
& Pang, 2022), and the development of efficient structural inference techniques integrated with
reservoir computing networks (Wang et al., 2023a). Despite these advancements, a common limi-
tation among these methods is their reliance on latent spaces to infer entire graph structures, which
constrains their scalability, particularly when confronted with larger graphs. Moreover, their loss
functions naturally introduce a uniform prior on the structure, which is not versatile for all graphs.

Structural inference with correlations and partial correlations. In addition to VAE-based struc-
tural inference approaches, researchers have harnessed correlation and partial correlation method-
ologies to unravel the structures of interaction graphs. These techniques encompass diverse strate-
gies, including Pearson correlation (Maucher et al., 2011; Specht & Li, 2017), distance correla-
tion (Liu et al., 2021), partial correlations (Papili Gao et al., 2018; Millington & Niranjan, 2019),
low-order partial correlations (Zuo et al., 2014), and semi-partial correlation coefficients (Kim,
2015). While these methods excel within specific domains, such as gene regulatory networks and
financial networks, they grapple with limitations. Notably, they struggle to accommodate multi-
dimensional node features and lack the capability to discern the directionality of edges. To address
these challenges, this work introduces a fresh perspective by repurposing VAEs to shift their focus
from structural inference to encoding node dynamics with the help of VDE. By integrating partial
correlation calculations into the reconstruction process, this approach overcomes scalability chal-
lenges and ensures robustness across various node feature dimensionalities.

2

Published as a conference paper at ICLR 2024

3 PRELIMINARIES

In this section, we provide preliminaries and background knowledge.

Notations and problem formulation. We conceptualize a dynamical system as a directed underly-
ing interaction graph, where the system’s agents correspond to nodes, and the directed interactions
among these agents manifest as edges in the graph. Denoted as G = (V, E), this directed graph
comprises V , the feature set of n nodes, and and E , the set of edges. The temporal evolution of
nodes’ features is encapsulated in trajectories: V = {V } = {V 0, V 1, . . . , V T−1}, spanning T time
steps, with V t signifying the feature set of all n nodes at time step t: V t = {vt0, vt1, . . . , vtn−1}. The
feature vector at time t for node i, denoted as vti ∈ Rd, 0 ≤ t ≤ T − 1, is d-dimensional. Usually,
a set of M trajectories is observed: {V[1], V[2], ..., V[m], ..., V[M]}. We assume that the nodes are
observed in their entirety, and E remains immutable during the observation. From E , we derive an
asymmetric adjacency matrix denoted as A ∈ Rn×n. Within A, each element aij ∈ {0, 1} indi-
cates the presence (aij = 1) or absence (aij = 0) of an directed edge from node i to node j. The
dynamics of the system are significantly influenced by A, with node i’s features at time t+ 1 as:

vt+1
i = vti +∆ ·

∑
j∈Ui

f(||vi, vj ||α), (1)

where ∆ denotes a time interval, U i is the set of nodes connected with node i, and f(·) is the state-
transition function deriving to dynamics caused by the edge from node j to i, and ||·, ·|| α denotes
the α-distance. Importantly, U i is derived from the adjacency matrix A, highlighting the role of A
in determining the interactions between nodes and the system’s dynamics. This paper primarily fo-
cuses on the challenge of structural inference, which involves the unsupervised reconstruction of the
structure encapsulating the underlying interaction graph based on M observable sets of trajectories.

Information bottleneck. The Information Bottleneck (IB) theory has emerged as a valuable frame-
work for understanding the inner workings of deep neural networks (Tishby et al., 1999; Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). At its core, IB aims to discover a minimal sufficient
representation, denoted as Z, for a given input data X and its label Y . This discovery is achieved
by minimizing the expression I(Z;X)− u · I(Z;Y), where u serves as a Lagrangian multiplier that
balances the trade-off between sufficiency and minimality. Furthermore, the Variational Information
Bottleneck (VIB) (Alemi et al., 2017), introduces a variational approximation to the IB theory. It
unveils that the objective function of VAEs constitutes a specific instance of this approximation. In
the realm of unsupervised learning, VAEs excel at extracting the minimal sufficient statistics from
input features, facilitating the derivation of output features while retaining compressed and abstract
representations within their latent spaces.

Previously, VAE-based structural inference techniques (Kipf et al., 2018; Webb et al., 2019; Chen
et al., 2021; Wang & Pang, 2022; Wang et al., 2023a) have employed the VIB framework to recon-
struct the adjacency matrix within the VAE’s latent space, expressed as:

Z = argmin
Z

I(Z;V t,A)− u · I(Z;V t+1). (2)

Initially, these methods assume a fully connected graph A and subsequently sample Â from the
latent space Z. However, scalability issues arise when confronted with graphs exceeding 100 nodes,
as they require learning representations for each node pair, necessitating processing of the entire
graph. Additionally, the assumption of a uniform distribution in the Kullback-Leibler (KL) term
of the loss function implies equal edge existence probabilities, an assumption unsuitable for all
graphs. In contrast, our approach, SIDEC, harnesses the power of a Variational Dynamics Encoder
(VDE) (Hernández et al., 2018). It conceptualizes the minimal sufficient statistics within the la-
tent space as dynamics within the node features, offering both scalability and the elimination of
assumptions regarding edge existence probabilities.

Partial correlations. Partial correlation is a statistical concept that quantifies the association be-
tween two random variables after removing the influence of all other random variables (Kim,
2015). In the context of this research, it serves to estimate the direct relationship or associa-
tion between two nodes, essentially indicating the existence of interaction between them. Let’s
consider a random vector X = (x1, x2, ..., xi, ..., xn)

′ where |X| = n. We denote the vari-
ance of a variable random xi as Var i(= var(xi)) and the covariance between two random vari-
ables xi and xj as Cov ij(= cov(xi, xj)). The variance-covariance matrices of random vectors

3

Published as a conference paper at ICLR 2024

Encoder Decoder

Variational Dynamics Encoder (VDE)

Overview of the Whole Pipeline

Calculation of
Partial Correlation

Coefficients

Calculation of Partial Correlation Coefficients
With Eqn.3 With Eqn.12

Figure 1: The pipeline of SIDEC. The wrapped box on the bottom left shows the pipeline of the
calculation of partial correlation coefficients (PCOR).

X and XS (S ⊂ {1, 2, ..., n} and |S| < n) are denoted as CX and CS , respectively, where
XS is a random sub-vector of X . The correlation between two random variables xi and xj is
rij =

Covij√
V ari

√
V arj

(= corr(xi, xj)). The partial correlation rij|k of xi with xj given xk is:

rij|k =
rij − rikrjk√

1− r2ik

√
1− r2jk

, (3)

For cases involving more than three variables, such as more than three nodes in a graph, we extend
the formulation to higher-order partial correlations. This involves considering the inverse variance-
covariance matrix of X , denoted as DX = C−1

X . Here, dij and cij are the (i, j)-th elements of the
matrices DX and CX , respectively. Then following (Whittaker, 1990), the partial correlation of xi

with xj given a random vector XS is:

rij|S = − dij√
dii

√
djj

. (4)

XS is the random sub-vector of X after removing the random variables xi and xj . Its size is |S| =
|X| − 2. For more details about the derivation, please refer to Appendix A.1. While Eqn. 4 provides
insights into the graph’s structure, it should be noted that partial correlation alone is insufficient.
The methodology for obtaining the graph’s structure is discussed in Section 4.3.

4 METHOD

4.1 ENCODING DYNAMICS WITH VARIATIONAL DYNAMICS ENCODER

Unlike previous VAE-based structural inference methods (Kipf et al., 2018; Webb et al., 2019; Chen
et al., 2021; Wang & Pang, 2022; Wang et al., 2023a), which employ VAEs to simultaneously learn
edge representations and reconstruct the adjacency matrix of the graph in their latent spaces, SIDEC
takes a different approach. It leverages a Variational Dynamics Encoder (VDE) (Hernández et al.,
2018) designed to capture minimal information about the dynamics of node features within a defined
time window. While the architecture of VDE bears some resemblance to a VAE, it is tailored for
time-series data. The VDE is presented in the top row in Fig. 1. Specifically, VDE predicts the state
of a node (vt+τ

i) at a future time step (t + τ) based on its current state (vti), where τ represents the
length of the time window required for the system’s dynamics to be considered Markovian.

To clarify, prior VAE-based methods aim to preserve minimal sufficient statistics in the latent space
and formulate it as the adjacency matrix Â of the graph, as depicted in Eqn. 2. In contrast, SIDEC
employs VDE to learn minimal sufficient statistics essential for encoding node feature dynamics
within a specific time window, which can be expressed through the VIB principle:

zti = argmin
zt
i

I(zti; v
t
i)− u · I(zti; vt+τ

i), (5)

where vti is the feature of node i at time t, and vt+τ
i is its feature after a time window τ . The

information about the dynamics is encoded in the latent space of VDE.

Implementation. Suppose we have a set of M observable trajectories of a dynamical system with
n nodes, with each trajectory covering the evolution of all node features within a time period T . At
each time step, VDE processes the features of a single node. VDE comprises three operations: an

4

Published as a conference paper at ICLR 2024

encoder parameterized by ϕ that computes qϕ(zti|vti), a decoder parameterized by θ that computes
pθ(v

t+τ
i |zti), and a reparametrization step. The implementation of VDE can be formulated as:

Encoder: µt
i, σ

t
i = ENC(vti), (6)

Reparametrization: zti = µt
i + σt

i ⊙ ϵ, where ϵ ∼ N (0, I), (7)

Decoder: v̂t+τ
i = DEC(zti), (8)

where vti is the input node feature at time t, v̂t+τ
i is the prediction of node feature after a time window

τ . ENC and DEC are encoder and decoder operations, respectively, and are implemented as multi-
layer perceptrons (MLPs). For the exact implementation of the encoder and decoder please refer to
Appendix A.7. µt

i and σt
i are the outputs of the encoder, with ⊙ as the element-wise production. To

reduce the dimensionality for PCOR calculations, the scale of zti to be one. Importantly, z̃ti = µt
i,

ensuring that the learned variable z̃ti encodes the dynamics for node features from time t to t+ τ .

Advantages. Leveraging VDE to encode node dynamics offers several advantages:

1. Focus on dynamics: By adhering to the VIB principle, VDE concentrates on capturing minimal
sufficient statistics that encode the dynamics of node features, making it particularly well-suited
for modeling dynamical systems.

2. Scalability: Unlike previous VAE-based methods, VDE operates solely on node features and
doesn’t necessitate a complete view of the entire n-node system, enhancing scalability.

3. No uniform prior: VDE doesn’t impose a uniform prior on the edges, unlike previous methods,
making it more adaptable to various graph types.

4. Dimensionality reduction: VDE can effectively reduce the dimensions of node features, ac-
commodating dynamical systems with varying feature counts and enabling the use of correlation
calculations, which inherently require one-dimensional features.

4.2 TRAIN WITH A HYBRID LOSS

In this study, the training of the VDE hinges on a composite loss function comprising two key
components: the reconstruction loss, denoted as Lrecon, and the autocorrelation loss, represented
as Lautoc. The reconstruction loss, Lrecon, derives inspiration from the widely employed Evidence
Lower Bound loss for VAEs (Kingma & Welling, 2013). It comprises two integral segments: one
that evaluates the prediction accuracy of node features after a time window τ , and another that
assesses the KL divergence between latent space priors. Formally expressed as:

Lrecon = Eqϕ(z|vt)[log pθ(v
t+τ |z)]−DKL(qϕ(z|vt) ∥ pθ(z)). (9)

This loss function is implemented as:

Lrecon =
1

L

∑
∥v̂t+τ − vt+τ∥2 − 1

2L

∑
(1 + log σ2 − σ2 − µ2), (10)

where L signifies the batch size. The autocorrelation loss, Lautoc, serves the purpose of opti-
mizing VDE to capture comprehensive representations of long-time kinetics within time-series
data (Hernández et al., 2018). This loss seeks to ensure that no process in the data evolves more
slowly than the true underlying process, as proposed by Noé & Nuske (2013). A favorable outcome
of this optimization process results in phase-space decomposition that yields a linear model with
larger leading dynamical eigenvalues, enhancing the overall representation quality. For a single-
layer decomposition of phase-space, equivalent to the autocorrelation of µ (Noé & Nuske, 2013),
the autocorrelation loss is defined as:

Lautoc = −E[(µt − µ̄t)(µt+τ − µ̄t+τ)]

sµtsµt+τ

, (11)

where µ̄ and sµ are the sample mean and population mean of the latent space vector for a specific
data batch. Consequently, the combined loss for training VDE is formulated as:

LVDE = Lrecon + Lautoc. (12)

4.3 STRUCTURAL INFERENCE WITH PARTIAL CORRELATION COEFFICIENTS

The role of VDE extends beyond encoding node feature dynamics; it also encompasses the critical
task of reconstructing the underlying graph structure based on this encoding. To begin, we collect the
obtained z̃ti for all nodes, forming M sets of features denoted as Z = {Z[m], 1 ≤ m ≤ M}, where

5

Published as a conference paper at ICLR 2024

Z[m] ∈ R(T−τ)×n. For each Z[m], we employ Eqn. 4 to compute a matrix of partial correlations
R, where the (i, j)-th cell of the matrix denotes the partial correlation of xi with xj given a random
vector XS , rij|S . Subsequently, the obtained R is utilized to calculate PCOR, including statistics
tij|S and p-values pij|S , as detailed in (Weatherburn, 1949; Sheskin, 2003):

pij|S = 2Φt

(
− |tij|S |, H − 2− n

)
, where tij|S = rij|S

√
H − 2− n

1− r2ij|S
. (13)

H is the sample size (= T − τ for a Zm), n is the number of nodes in the graph. Φt(·) signifies the
cumulative density function of a Student’s t distribution with degrees of freedom H − 2 − n. The
resultant structure of the graph is represented as P, with each (i, j)-th cell equals to pij|S . Across
M trajectories, a collection of M P matrices is obtained. However, in this symmetric configuration,
the derived structure cannot capture the intricacies of directed graphs, which are characterized by
unsymmetrical structures. To address this, we propose a novel algorithm that leverages temporal
information to infer directed edges.

From temporal order to directed edges. In the real-world dynamics of systems, events typi-
cally occur in chronological order. Building upon this observation, we utilize temporal infor-
mation to infer the structure of a directed graph. We reorganize the M sets of features Z as
Z = {Z[m], 1 ≤ m ≤ M}, with each Z[m] = {Z[m],i ∈ R(T−τ−1)×n, 1 ≤ i ≤ n}. Each row
of {Z[m],i} comprises [zt−1

0 , zt−1
1 , ..., zti, z

t−1
n−1], combining the dynamics encoding of time step t

for node i with the dynamics encoding of time step t−1 for the remaining nodes. Moreover, follow-
ing Eqn. 13, we calculate p-values for each {Z[m],i}. This results in a matrix of p-values, denoted
as Pi, estimating the directed edges from other nodes to node i. We then compose the overall P as
follows: P(:, i) = Pi(:, i), yielding an unsymmetrical matrix that effectively estimates the structure
of a directed graph. SIDEC adopts this pipeline to reconstruct the structure of directed graphs, i.e.,
the adjacency matrix A = P. For implementation details, please refer to Appendix A.7.

Advantages. Employing PCOR for structural inference offers several distinct advantages:
1. Enhanced accuracy: Benchmark assessments for structural inference have demonstrated that

PCOR exhibit superior accuracy (Anonymous, 2023). The utilization of these coefficients en-
sures high precision in the reconstructed structure.

2. Dimensionality reduction: VDE initially reduces the dimensionality of the trajectories, broad-
ening the applicability of PCOR to multi-dimensional trajectories.

3. Directed graphs: Incorporating temporal information allows the algorithm to infer directed
graph structures, overcoming the limitation of symmetric structures.

5 EXPERIMENTS

In our evaluation, we subjected SIDEC to rigorous testing across a diverse range of 20 datasets.
These datasets encompassed trajectories featuring both multi-dimensional and one-dimensional fea-
tures. Our evaluation included robustness testing against trajectories with added Gaussian noise and
an in-depth ablation study assessing the influence of time window selection.

5.1 GENERAL SETTINGS

Datasets. The benchmark we employed for evaluation, StructInfer (Anonymous, 2023), provided
a comprehensive set of datasets specifically tailored for structural inference tasks. We selected
datasets related to “Vascular Networks”, which involved both Springs and NetSims dynamical
simulations. These datasets comprised trajectories with varying numbers of nodes, denoted as
n ∈ {15, 30, 50, 100, 150, 200, 250}. Each dataset was identified based on the type of dynamical
simulation and the number of nodes. For instance, “VN SP 15” denotes trajectories generated using
Springs simulation with 15 nodes, while “VN NS 30” indicates trajectories generated using Net-
Sims simulation with 30 nodes. Notably, Springs-generated trajectories possessed four-dimensional
features at each time step, whereas NetSims-generated trajectories featured one-dimensional fea-
tures. This diverse dataset selection allowed us to assess SIDEC’s performance across various fea-
ture types and its capacity to conduct structural inference on larger graphs. Our data split followed
the predefined training, validation, and test sets within the StructInfer benchmark.

6

Published as a conference paper at ICLR 2024

Table 1: Average AUROC Results (%) of SIDEC and baselines on StructInfer datasets.

Methods VN SP 15 VN SP 30 VN SP 50 VN SP 100 VN SP 150 VN SP 200 VN SP 250

NRI 94.5± 0.01 95.1± 0.01 94.6± 0.02 89.2± 0.02 OOM OOM OOM
MPM 96.6± 0.01 89.7± 0.04 85.1± 0.02 84.6± 0.03 OOM OOM OOM
ACD 94.3± 0.01 93.7± 0.01 87.5± 0.03 90.5± 0.03 OOM OOM OOM
iSIDG 96.6± 0.02 95.6± 0.01 95.7± 0.02 85.1± 0.02 OOM OOM OOM
RCSI 97.0± 0.01 95.3± 0.01 94.5± 0.02 90.7± 0.03 OOM OOM OOM
SIDEC 97.6± 0.01 97.0± 0.02 96.5± 0.03 95.7± 0.02 95.3± 0.02 95.5± 0.02 95.0± 0.03

Methods VN NS 15 VN NS 30 VN NS 50 VN NS 100 VN NS 150 VN NS 200 VN NS 250

NRI 90.3± 0.01 74.6± 0.04 69.7± 0.03 68.8± 0.02 60.5± 0.04 OOM OOM
MPM 91.2± 0.01 83.4± 0.03 72.7± 0.04 70.3± 0.03 63.5± 0.03 OOM OOM
ACD 80.3± 0.02 65.4± 0.06 69.1± 0.03 68.7± 0.03 62.8± 0.03 OOM OOM
iSIDG 91.2± 0.02 78.1± 0.06 73.7± 0.02 68.8± 0.02 64.1± 0.05 OOM OOM
RCSI 91.5± 0.02 82.3± 0.04 74.1± 0.02 70.3± 0.03 64.5± 0.03 OOM OOM
SIDEC 96.1± 0.03 97.9± 0.01 98.5± 0.02 98.5± 0.01 98.1± 0.03 98.5± 0.02 98.7± 0.03

In addition to the StructInfer datasets, similar to previous works (Wang & Pang, 2022; Wang et al.,
2023a) we conducted evaluations on six directed synthetic biological networks (Pratapa et al., 2020)
with the names Linear (LI), Linear Long (LL), Cycle (CY), Bifurcating (BF), Trifurcating (TF), and
Bifurcating Converging (BF-CV). These networks represented critical components involved in the
differentiation and development of cells (Saelens et al., 2019). To simulate these networks, we used
BoolODE (Pratapa et al., 2020), recording trajectories consisting of 49 time steps. Subsequently, we
performed subsampling of time steps on these raw trajectories. Trajectories were randomly divided
into training, validation, and test sets in a ratio of 8:2:2. In this case, the features at each node
represented one-dimensional mRNA expression levels.

Baselines and metrics. We compare SIDEC with the following state-of-the-art VAE-based methods
for structural inference on directed graphs:

• NRI (Kipf et al., 2018): a VAE-based model for unsupervised relational inference.
• MPM (Chen et al., 2021): an NRI-based method with a relation interaction mechanism and a

spatio-temporal message passing mechanism.
• ACD (Löwe et al., 2022): a model that leverages shared dynamics to infer causal relations.
• iSIDG (Wang & Pang, 2022): a VAE-based model that iteratively updates the adjacency matrix to

be fed to the encoder with direction information.
• RCSI (Wang et al., 2023a): a reservoir computing network is integrated with a VAE for more

efficient structural inference.

To evaluate and compare these methods, we utilized the area under the receiver operating char-
acteristic (AUROC) metric to assess the inferred adjacency matrix against ground truth data. For
trajectories from StructInfer, every group of them is the results from three different graphs. For
instance, “VN SP 15” has three different graphs but with the same number of nodes. Following the
instructions of the benchmark, we thus run methods on each graph three times, with one extra run
on the one with the lowest performance, and then report the average AUROC results for all ten runs.
Trajectories generated by synthetic biological networks underwent ten runs with varying random
seeds, with the average AUROC results reported.

Experimental settings. All experiments were conducted on a single NVIDIA Tesla V100 SXM2
32G graphics card, paired with two Xeon Gold 6132 @ 2.6GHz CPUs. The deep learning methods
were trained for a maximum of 600 epochs, with batch sizes, learning rates, and hyperparameters
configured according to their respective original implementations. Further details are available in
Appendix C, while Appendices D.1-D.2 provide more experimental results and comparison with
other structural inference methods.

5.2 EXPERIMENTAL RESULTS

In this section, we delve into a comprehensive analysis of the performance of all the methods applied
to both VN trajectories from StructInfer and synthetic biological networks. The experimental out-
comes of our proposed model and the baseline methods are concisely summarized in Tables 1 and 2.
Within Table 1, “OOM” designates “out-of-memory,” indicating instances where certain methods
couldn’t be executed due to memory limitations.

7

Published as a conference paper at ICLR 2024

Table 2: Average AUROC Results (%) of SIDEC and baselines on synthetic biological networks.

Methods LI LL CY BF TF BF-CV

NRI 70.5± 0.03 75.0± 0.02 64.5± 0.03 59.1± 0.03 55.1± 0.02 59.2± 0.04

MPM 75.0± 0.02 79.2± 0.03 79.0± 0.03 63.5± 0.02 58.4± 0.03 64.4± 0.03

ACD 65.0± 0.03 68.4± 0.02 62.9± 0.02 59.8± 0.03 57.2± 0.03 55.8± 0.03

iSIDG 86.2± 0.02 88.1± 0.02 79.5± 0.02 68.3± 0.02 60.2± 0.03 70.7± 0.03

RCSI 88.5± 0.03 91.0± 0.03 81.0± 0.02 72.2± 0.03 65.0± 0.02 73.7± 0.02

SIDEC 89.0± 0.02 92.3± 0.03 82.4± 0.02 75.8± 0.03 68.5± 0.03 78.5± 0.02

Table analysis shows clear trends. When confronted with trajectories featuring multi-dimensional
feature like VN SP, SIDEC outperforms VAE-based methods significantly in graphs with over 100
nodes, demonstrating remarkable scalability and proficiency in structure reconstruction, a trend also
evident in VN NS trajectories. Contrasting with baseline sensitivity to node count changes, SIDEC
consistently excels in reconstruction accuracy. Furthermore, in VN NS experiments, while baselines
appear sensitive to changes in graph node counts, SIDEC maintains consistently high performance
in terms of structure reconstruction accuracy. This pattern of superiority is further affirmed by
experiments on six synthetic biological networks, with SIDEC’s exceptional performance attributed
to these key factors:

1. Utilization of VDE for dynamics encoding: Unlike conventional VAE-based baseline models,
SIDEC leverages a VDE to encode the dynamics of individual nodes into latent variables. This
approach operates specifically on node features, avoiding the need to process the entire graph.
This feature imparts exceptional scalability, especially for large graphs. Moreover, it stands out
by not imposing a uniform prior on the inferred structure.

2. Synergy between PCOR and VDE: As evident from the StructInfer benchmark, the calculation
of PCOR, when used in isolation, exhibits remarkable accuracy in reconstructing graph struc-
tures. However, its applicability is constrained, as it cannot handle multi-dimensional features or
infer structures in directed graphs. In our proposed methods, VDE plays a dual role: it reduces
feature dimensionality and encodes dynamics into the latent variable, which is subsequently uti-
lized in the calculation of PCOR. This symbiotic relationship harnesses the strengths of both
PCOR and VDE, resulting in significantly enhanced performance.

3. Introducing directionality through temporal ordering: SIDEC introduces directional edges
by considering temporal ordering. This innovation substantially broadens the utility of PCOR for
structural inference in directed graphs. As demonstrated in the tables, this extension seamlessly
restores the accuracy and scalability of PCOR.

4. Versatility in edge priors: SIDEC does not rely on a uniform prior for edges, making them
exceptionally versatile. They can be applied across a broader spectrum of graph types. The VN
datasets, characterized by diverse properties, resist summarization via a uniform prior. This is
precisely where SIDEC outperforms VAE-based methods.

5.3 ROBUSTNESS TESTS

1 2 3 4 5
−10

−8

−6

−4

−2

0
Springs

1 2 3 4 5

NetSims

Levels of Noise

Δ
A

U
R

O
C

 (i
n

%
)

#15 #30 #50 #100 #150 #200 #250

Figure 2: Performance differences (in %) of SIDEC on
VN trajectories with Gaussian noise of different levels.

In this section, we delve into the perfor-
mance degradation of SIDEC when ap-
plied to VN trajectories from StructInfer,
which have been subjected to various lev-
els of added Gaussian noise. We utilize
two sets of datasets: VN SP and VN NS
trajectories, each intentionally perturbed
with five distinct levels of Gaussian noise
from the StructInfer dataset. To quantify
the performance differences, we calculate
∆AUROC = AUROCNX − AUROCN0,
where AUROCN0 signifies the average
AUROC results for pristine, noise-free tra-
jectories, and AUROCNX represents the

average AUROC values obtained under X level of added Gaussian noise, X ∈ {1, 2, 3, 4, 5}. These
results are visually presented in Fig. 2. As evident from both figures within Fig. 2, the inclusion of
noise in trajectories indeed exerts a negative influence on the performance of SIDEC. This perfor-

8

Published as a conference paper at ICLR 2024

mance degradation is linearly correlated with the intensity of noise. However, it is noteworthy that
despite the noise, the performance drops remain below 10%. This observation underscores SIDEC’s
robustness against added Gaussian noise, ranging from moderate to high. Interestingly, the left side
of Fig. 2 reveals that the performance drops for larger graphs are consistently smaller than those
observed for smaller graphs. For instance, the line representing the performance drop on VN SP 30
consistently surpasses that of VN SP 15, and a similar trend is noted for other line pairs. In contrast,
the right side of Fig. 2 presents a less distinct pattern for VN NS trajectories, with lines exhibiting
greater overlap. This intriguing observation suggests that SIDEC excels at extracting and encoding
rich information from multi-dimensional features into the latent variable. When applied to larger
graphs, this results in a more substantial amount of information encoded within the latent variable,
enabling SIDEC to effectively mitigate the adverse effects of noisy features.

5.4 ABLATION STUDY ON THE LENGTH OF TIME WINDOW

1 2 3 4 5 6 7 8 9 10
τ

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
U

R
O

C
 (%

)

VN_SP_15
VN_NS_15

Figure 3: Average AUROC values
(in %) of SIDEC-T on noise-free
VN SP 15 and VN NS 15 trajec-
tories with different values of τ .

In this section, we delve into the critical aspect of selecting the
appropriate length for the time window, denoted as τ , which
has the potential to significantly impact the performance of
SIDEC when applied to VN trajectories sourced from Struct-
Infer. As mentioned in Section 4.1, τ is chosen based on the
dynamics between vt and vt+τ in a manner that ensures the
system’s dynamics exhibit Markovian behavior. However, due
to the continuous evolution of dynamical systems and the in-
herent discrete nature of the obtained trajectories, our assess-
ment of the system’s Markovian properties is an approxima-
tion. To pinpoint the most suitable value for the time window
τ , we conduct an ablation study using noise-free VN SP 15
and VN NS 15 trajectories. Our test set for τ encompasses
values drawn from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the
results are averaged over ten independent runs, presented in
Fig. 3. As evident from the figure, when τ increases, the

performance of SIDEC on both VN SP 15 and VN NS 15 gradually deteriorates, with more pro-
nounced performance drops observed at larger τ values. This phenomenon stems from the fact that
selecting an excessively large time window disrupts the underlying mechanism of VDE. When too
many time steps are skipped, the node feature dynamics become excessively chaotic, rendering VDE
less effective at capturing and encoding these dynamics. Consequently, based on the insights derived
from this ablation study, we opt for τ = 1 as the most suitable choice.

6 CONCLUSION

In this paper, we introduced an innovative structural inference method, employing VDE in tandem
with partial correlation coefficients. VDE serves a dual purpose: encoding node dynamics into latent
variables and extracting essential information from node features to reduce dimensionality. These
latent variables enable precise graph reconstruction via partial correlation coefficients, accommo-
dating trajectories with one-dimensional and multi-dimensional features. Notably, our approach
sidesteps the need for a comprehensive graph view, granting it exceptional scalability for large
graphs, a long-standing challenge. Through temporal reordering of latent variables, our method
is able to reconstruct directed graph structures. Experimental results validate its efficacy across
diverse datasets and large-scale graphs, showcasing robustness against Gaussian noise.

Currently, due to the formidable challenges involved in acquiring real-world data, our experimental
validation is confined to synthetic data. A promising avenue for future research lies in the collection
and curation of real-world datasets tailored for structural inference tasks. Furthermore, inspired by
recent work (Wang et al., 2023b), the exploration of individualized local receptive fields for each
node presents another intriguing avenue for future investigation. Such local biases, when incorpo-
rated during structural inference, hold the potential to uncover deeper insights into complex real-
world networks. Besides that, it would also be interesting to develop a structural inference method
that can deal with the incomplete view of nodes, where some nodes are unobservable. These promis-
ing research directions pave the way for advancements in structural inference.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

To ensure both the reproducibility and comprehensiveness of this paper, we have included an ap-
pendix containing detailed implementation information. Additionally, the code can be found at
https://github.com/wang422003/SIDEC_torch. Appendix A.1 presents the pseudo-
code outlining the PCOR method used in this work, while Appendix A.6 offers the pseudo-code
for the complete SIDEC pipeline. Furthermore, Appendix A.7 furnishes a comprehensive list of
instructions on how to construct SIDEC from scratch. For a thorough understanding of the datasets
employed in our research, please refer to Appendix B, where we provide detailed descriptions of
their characteristics and sources. With these comprehensive resources, we have taken diligent steps
to ensure the reproducibility of our work.

ACKNOWLEDGMENTS

Author Jun Pang acknowledges financial support from the Institute for Advanced Studies of the Uni-
versity of Luxembourg through an Audacity Grant (AUDACITY-2021). The experiments presented
in this paper were carried out using the HPC facilities of the University of Luxembourg (Varrette
et al., 2022) (see hpc.uni.lu).

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In Proceedings of the 5th International Conference on Learning Representations
(ICLR), 2017.

Ferran Alet, Erica Weng, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Neural relational infer-
ence with fast modular meta-learning. In Advances in Neural Information Processing Systems 32
(NeurIPS), 2019.

Theodore Wilbur Anderson. An Introduction to Multivariate Statistical Analysis, volume 2. Wiley
New York, 1958.

Authors Anonymous. Benchmarking structural inference methods for dynamical interacting sys-
tems. https://structinfer.github.io/, 2023.

James Biagioni and Jakob Eriksson. Inferring road maps from global positioning system traces:
Survey and comparative evaluation. Transportation research record, 2291(1):61–71, 2012.

Guillem Brasó and Laura Leal-Taixé. Learning a neural solver for multiple object tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6247–6257, 2020.

Thalia E Chan, Michael PH Stumpf, and Ann C Babtie. Gene regulatory network inference from
single-cell data using multivariate information measures. Cell Systems, 5(3):251–267, 2017.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation Research Record, 1748
(1):96–102, 2001.

Siyuan Chen, Jiahai Wang, and Guoqing Li. Neural relational inference with efficient message pass-
ing mechanisms. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI),
pp. 7055–7063, 2021.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM International Conference on Knowledge Discovery and Data Mining (KDD), pp.
785–794. ACM, 2016.

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume
Cottarel, Simon Kasif, James J Collins, and Timothy S Gardner. Large-scale mapping and val-
idation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
PLoS Biology, 5(1):e8, 2007.

10

https://github.com/wang422003/SIDEC_torch
http://hpc.uni.lu
https://structinfer.github.io/

Published as a conference paper at ICLR 2024

Seungwoong Ha and Hawoong Jeong. Unraveling hidden interactions in complex systems with deep
learning. Scientific Reports, 11(1):1–13, 2021.

Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. TIGRESS: trust-
ful inference of gene regulation using stability selection. BMC Systems Biology, 6(1):1–17, 2012.

Carlos X. Hernández, Hannah K. Wayment-Steele, Mohammad M. Sultan, Brooke E. Husic, and
Vijay S. Pande. Variational encoding of complex dynamics. Physical Review E, 97(6):062412,
2018.

W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. Bravo, S. Davis,
L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. Irizarry, M. Lawrence, M. I.
Love, J. MacDonald, V. Obenchain, A. K. Ole’s, H. Pag‘es, A. Reyes, P. Shannon, G. K. Smyth,
D. Tenenbaum, L. Waldron, and M. Morgan. Orchestrating high-throughput genomic analysis
with Bioconductor. Nature Methods, 12(2):115–121, 2015.

Vân Anh Huynh-Thu and Pierre Geurts. dynGENIE3: dynamical GENIE3 for the inference of gene
networks from time series expression data. Scientific Reports, 8(1):3384, 2018.

Seongho Kim. ppcor: an R package for a fast calculation to semi-partial correlation coefficients.
Communications for Statistical Applications and Methods, 22(6):665, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural rela-
tional inference for interacting systems. In Proceedings of the 35th International Conference on
Machine Learning (ICML), pp. 2688–2697. PMLR, 2018.

Jarosław Kwapień and Stanisław Drożdż. Physical approach to complex systems. Physics Reports,
515(3):115–226, 2012.

Jiachen Li, Hengbo Ma, Zhihao Zhang, Jinning Li, and Masayoshi Tomizuka. Spatio-temporal graph
dual-attention network for multi-agent prediction and tracking. IEEE Transactions on Intelligent
Transportation Systems, 23(8):10556–10569, 2022.

Kuan Liu, Haiyuan Liu, Dongyan Sun, and Lei Zhang. Network inference from gene expression
data with distance correlation and network topology centrality. Algorithms, 14(2), 2021.

Sindy Löwe, David Madras, Richard Z. Shilling, and Max Welling. Amortized causal discovery:
Learning to infer causal graphs from time-series data. In Proceedings of the 1st Conference on
Causal Learning and Reasoning (CLeaR), pp. 509–525. PMLR, 2022.

Baoshan Ma, Mingkun Fang, and Xiangtian Jiao. Inference of gene regulatory networks based on
nonlinear ordinary differential equations. Bioinformatics, 36(19):4885–4893, 2020.

Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Ric-
cardo Dalla Favera, and Andrea Califano. ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7:1–15, 2006.

Markus Maucher, Barbara Kracher, Michael Kühl, and Hans A. Kestler. Inferring Boolean network
structure via correlation. Bioinformatics, 27(11):1529–1536, 04 2011.

Patrick E Meyer, Frederic Lafitte, and Gianluca Bontempi. minet: A R/Bioconductor package for
inferring large transcriptional networks using mutual information. BMC bioinformatics, 9:1–10,
2008.

Tristan Millington and Mahesan Niranjan. Quantifying influence in financial markets via partial
correlation network inference. In Proceedings of the 11th International Symposium on Image and
Signal Processing and Analysis (ISPA), pp. 306–311. IEEE CS, 2019.

Frank Noé and Feliks Nuske. A variational approach to modeling slow processes in stochastic
dynamical systems. Multiscale Modeling & Simulation, 11(2):635–655, 2013.

11

Published as a conference paper at ICLR 2024

Nan Papili Gao, SM Minhaz Ud-Dean, Olivier Gandrillon, and Rudiyanto Gunawan. SINCERI-
TIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression
profiles. Bioinformatics, 34(2):258–266, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Aditya Pratapa, Amogh P. Jalihal, Jeffrey N. Law, Aditya Bharadwaj, and T.M. Murali. Benchmark-
ing algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature
Methods, 17(2):147–154, 2020.

Xiaojie Qiu, Arman Rahimzamani, Li Wang, Bingcheng Ren, Qi Mao, Timothy Durham, José L
McFaline-Figueroa, Lauren Saunders, Cole Trapnell, and Sreeram Kannan. Inferring causal gene
regulatory networks from coupled single-cell expression dynamics using Scribe. Cell Systems, 10
(3):265–274, 2020.

Arman Rahimzamani and Sreeram Kannan. Network inference using directed information: The
deterministic limit. In 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 156–163. IEEE, 2016.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell
trajectory inference methods. Nature Biotechnology, 37(5):547–554, 2019.

Marco Sarich, Frank Noé, and Christof Schütte. On the approximation quality of markov state
models. Multiscale Modeling & Simulation, 8(4):1154–1177, 2010.

David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman
and hall/CRC, 2003.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F
Beckmann, Thomas E Nichols, Joseph D Ramsey, and Mark W Woolrich. Network modelling
methods for FMRI. Neuroimage, 54(2):875–891, 2011.

Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 914–921, 2020.

Alicia T Specht and Jun Li. Leap: constructing gene co-expression networks for single-cell rna-
sequencing data using pseudotime ordering. Bioinformatics, 33(5):764–766, 2017.

A.K Subramanian. Pytorch-vae. https://github.com/AntixK/PyTorch-VAE, 2020.

Attila Szabo and Neil S Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic
Structure Theory. Courier Corporation, 2012.

Bishenghui Tao, Hong-Ning Dai, Jiajing Wu, Ivan Wang-Hei Ho, Zibin Zheng, and Chak Fong
Cheang. Complex network analysis of the bitcoin transaction network. IEEE Transactions on
Circuits and Systems II: Express Briefs, 69(3):1009–1013, 2021.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
Proceedings of 2015 IEEE Information Theory Workshop (ITW), pp. 1–5. IEEE, 2015.

Naftali Tishby, F.C. Pereira, and W. Biale. The information bottleneck method. In Proceedings of
the 37th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.
368–377. IEEE, 1999.

Masashi Tsubaki, Kentaro Tomii, and Jun Sese. Compound–protein interaction prediction with end-
to-end learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309–318,
2019.

12

https://github.com/AntixK/PyTorch-VAE

Published as a conference paper at ICLR 2024

S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh. Management of an Academic
HPC & Research Computing Facility: The ULHPC Experience 2.0. In Proceedings of the 2022
6th High Performance Computing and Cluster Technologies Conference. (HPCCT 2022), Fuzhou,
China, July 2022. Association for Computing Machinery (ACM). ISBN 978-1-4503-9664-6.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Aoran Wang and Jun Pang. Iterative structural inference of directed graphs. In Advances in Neural
Information Processing Systems 35 (NeurIPS), 2022.

Aoran Wang and Jun Pang. Active learning based structural inference. In Proceedings of the 40th
International Conference on Machine Learning (ICML), pp. 36224–36245. PMLR, 2023.

Aoran Wang, Tsz Pan Tong, and Jun Pang. Effective and efficient structural inference with reservoir
computing. In Proceedings of the 40th International Conference on Machine Learning (ICML),
pp. 36391–36410. PMLR, 2023a.

Kun Wang, Guohao Li, Shilong Wang, Guibin Zhang, Kai Wang, Yang You, Xiaojiang Peng, Yux-
uan Liang, and Yang Wang. The snowflake hypothesis: Training deep GNN with one node one
receptive field. arXiv preprint arXiv:2308.10051, 2023b.

Charles Ernest Weatherburn. A First Course Mathematical Statistics, volume 158. Cambridge
University Press Archive, 1949.

Ezra Webb, Ben Day, Helena Andres-Terre, and Pietro Lió. Factorised neural relational inference
for multi-interaction systems. arXiv preprints arXiv:1905.08721, 2019.

Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, 1990.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph
generation. In Proceedings of the European conference on computer vision (ECCV), pp. 670–685,
2018.

Yiming Zuo, Guoqiang Yu, Mahlet G. Tadesse, and Habtom W. Ressom. Biological network infer-
ence using low order partial correlation. Methods, 69(3):266–273, 2014.

13

Published as a conference paper at ICLR 2024

A MORE DETAILS ABOUT SIDEC

A.1 PARTIAL CORRELATIONS

In this section, we provide a derivation of the partial correlation mentioned in Section 3. The
derivation strictly follows the description provided by Kim (2015). Consider the random vector
X = (x1, x2, ..., xi, ..., xn)

′ where |X| = n. We denote the variance of a variable random xi and the
covariance between two random variables xi and xj as V ari(= var(xi) and Covij(= cov(xi, xj),
respectively. The variance-covariance matrices of random vectors X and XS (S ⊂ {1, 2, ..., n}
and |S| < n) are denoted by CX and CS , respectively, where XS is a random sub-vector of
the random vector X . The correlation between two random variables xi and xj is denoted by
rij =

Covij√
V ari

√
V arj

(= corr(xi, xj)). Thus, the partial correlation rij|k of xi with xj given xk is:

rij|k =
rij − rikrjk√

1− r2ik

√
1− r2jk

, (14)

Interestingly, we can easily obtain another version of the partial correlation as:
rij|k = corr(resid(i|k), resid(j|k))

=
Covij − CovikV ar−1

k Covkj√
V ari − CovikV ar−1

k Covki

√
V arj − CovjkV ar−1

k Covkj

, (15)

where resid(i|k) = xi − x̂i(xk) and x̂i(xk) = CorikV ar−1
k xk. This form concurrence the defini-

tion of partial correlation in (Whittaker, 1990).

With this equivalence, we can introduce the calculation of higher-order partial correlations proposed
by Whittaker (1990). To do this, we need to consider the inverse variance-covariance matrix of X ,
DX = C−1

X . We denote dij and cij are the (i, j)-th cell of the matrices DX and CX , respectively.
Then following (Whittaker, 1990) the partial correlation of xi with xj given a random vector XS is:

rij|S = − dij√
dii

√
djj

, (16)

where XS is the random sub-vector of X after removing the random variables xi and xj and its size
is |S| = |X| − 2. Through inversion of DX , all partial correlations between xi and xj given all
other variables XS are simultaneously calculated. This formulation is in practice a more efficient
calculation than the recursion formula proposed by Anderson (1958). We suggest interested readers
to refer to the literature for more details. Thus the introduction of Eqn. 4 in Section 3 is validated.

A.2 AUTOCORRELATION LOSS

As elaborated in Section 4.2, the autocorrelation loss term Lautoc, outlined in Equation 11, plays a
pivotal role in enhancing the network’s capacity to capture the extended timescale kinetics within
time-series data (Hernández et al., 2018). While the minimization of the reconstruction loss holds
the potential to recover these intricate dynamical processes, it alone proves insufficient. To ensure
robust model convergence, the original VDE paper (Hernández et al., 2018) drew inspiration from
the variational approach to conformational dynamics (VAC) (Noé & Nuske, 2013). In this context,
the authors introduced the autocorrelation loss function. This innovation allowed for the estimation
of autocorrelations using multiple short simulations distributed across the state space, eliminating
the necessity for direct simulation of slow processes within a single, lengthy trajectory. This feature
confers a critical advantage in addressing the sampling challenges that frequently plague dynami-
cal systems investigations. In line with this approach, we incorporate the autocorrelation loss into
SIDEC. For a more comprehensive understanding of the derivation of Equation 11, we refer to the
insights offered by Noé & Nuske (2013). Following the insights, here we provide more details about
the derivation of Eqn. 11.

Basics. Let Ω be a state space, and use x, y to denote points in this state space. We consider a
Markov process mpt ∈ Ω which is stationary and ergodic with respect to its unique stationary (in-
variant) distribution µ(x) ≡ p(mpt = x) ∀t. The dynamics of the process mpt are characterized

14

Published as a conference paper at ICLR 2024

by the transition density
p(x,y; τ) = p(mpt+τ = y|mpt = x), (17)

which we assume to be independent of the time t. The correlation density, i.e., the probability
density of finding the process at points x and y at a time spacing of τ , is then defined by

C(x,y; τ) = µ(x)p(x,y; τ) = p(mpt+τ = y,mpt = x). (18)
We further assume mpt to be reversible with respect to its stationary distribution, i.e.:

µ(x)p(x,y; τ) = µ(y)p(x,y; τ) (19)
C(x,y; τ) = C(y,y; τ) (20)

Reversibility is not strictly necessary but tremendously simplifies the forthcoming expressions and
their interpretation (Sarich et al., 2010). If at time t = 0, the process is distributed according to a
probability distribution ρ0, the corresponding distribution at time τ is given by:

ρτ (y) =

∫
Ω

dxρ0(x)p(x,y; τ) =: P(τ)ρ0. (21)

The time evolution of probability densities can be seen as the action of a linear operator P(τ),
called the propagator of the process. This is a well-defined operator on the Hilbert space L2

µ−1(Ω)

of functions which are square-integrable with respect to the weight function µ−1. The scalar-product
on this space is given by

⟨u|v⟩µ−1 =

∫
Ω

dxu(x)v(x)µ−1(x). (22)

If we assume the transition density to be a smooth and bounded function of x and y, the propagator
can be shown to be bounded, with operator norm less or equal to one. Since the stationary of µ
implies P(τ)µ = µ, we have ∥P(τ)∥ = 1. Reversibility allows us to show that the propagator is
self-adjoint and compact. Furthermore, using the definition of the transition density, we can show
that P(τ) satisfies a Chapman-Kolmogorov equation: For times τ1, τ2 ≥ 0, we have:

P(τ1 + τ2) = P(τ1)P(τ2). (23)

Spectral decomposition. It follows from the above arguments that P(τ) possesses a sequence of
real eigenvalues λi(τ) with |λi(τ)| ≤ 1 and |λi(τ)| → 0. Each of these eigenvalues corresponds
to an eigenfunction li ∈ L2

µ−1(Ω). The functions li form an orthonormal basis of the Hilbert space
L2
µ−1(Ω). Clearly, λ1(τ) = 1 is an eigenvalue with eigenfunction l1 = µ. In many applications, we

can assume that λ1(τ) is non-degenerate and −1 is not an eigenvalue. Additionally, there usually is
a number m of positive eigenvalues

1 = λ1(τ) > λ2(τ) > ... > λm(τ), (24)
which are separated from the remaining spectrum. Because of the Chapman-Kolmogorov equation,
each eigenvalue λi(τ) decays exponentially in time, i.e. we have

λi(τ) = exp(−κiτ), (25)
for some rate κi ≥ 0. Clearly, κ1 = 0, κ2, ..., κm are close to zero, and all remaining rates are
significantly larger than zero. If we now expand a function u ∈ L2

µ−1(Ω) in terms of the functions
li, i.e.

u =

∞∑
i=1

⟨u|li⟩µ−1 li, (26)

we can decompose the action of the operator P(τ) into its action on each of the basis functions:

P(τ)u =

∞∑
i=1

⟨u|li⟩µ−1P(τ)li

=

∞∑
i=1

λi(τ)⟨u|li⟩µ−1 li

=

∞∑
i=1

exp (−κiτ)⟨u|li⟩µ−1 li.

(27)

15

Published as a conference paper at ICLR 2024

For time windows τ ≫ 1
κm+1

, all except the first m terms in the above sum have become very
small (Sarich et al., 2010), and to a good approximation we have

P(τ)u ≈
m∑
i=1

exp (−κiτ)⟨u|li⟩µ−1 li. (28)

Knowledge of the dominant eigenfunctions and eigenvalues is therefore most helpful to the under-
standing of the process.

Rayleigh variational principle. In nontrivial dynamical systems neither the correlation densities
p(x,y; τ) and C(x,y; τ) nor the eigenvalues λi(τ) and eigenfunctions li are analytically avail-
able. Noé & Nuske (2013) provides a variational principle based on which these quantities can
be estimated from simulation data generated by the dynamical process mpt. For this, the for-
malism introduced above is used to formulate the Rayleigh variational principle used in quantum
mechanics (Szabo & Ostlund, 2012) for Markov processes. Let f be a real-valued function of state,
f = f(x) : Ω → R. Its autocorrelation with respect to the stochastic process mpt is given by

autoc(f ; τ) = E[f(mp0)f(mpτ)] =

∫
x

∫
y

dxdyf(x)C(x,y; τ)f(y) = ⟨P(τ)µf |µf⟩µ−1 . (29)

In the Dirac notation often used in physical literature, integrals such as the one above may be abbre-
viated by E[f(x0)f(xτ)] = ⟨µf |P(τ)|µf⟩. We may easily get that the autocorrelation function of
a weighted eigenfunction rk = µ−1lk is:

autoc(rk; τ) = E[rk(mp0)rk(mpτ)]

= ⟨P(τ)lk|lk⟩µ−1

= λk(τ)⟨lk|lk⟩µ−1

= λk(τ),

(30)

where λk(τ) is the eigenvalue of rk.

Let l̂2 be an approximate model for the second eigenfunction, which is normalized and orthogonal
to the true first eigenfunction: ⟨l̂2, µ⟩µ−1 = 0 and ⟨l̂2, l̂2⟩µ−1 = 1. Then according to (2.24) in (Noé
& Nuske, 2013), we find for r̂2 = µ−1 l̂2:

autoc(r̂2; τ) = E[r̂2(mp0)r̂2(mpτ)] ≤ λ2(τ). (31)

Similarly, let l̂k be an approximate model for the k’th eigenfunction, with the normalization and
orthogonality constraints: ⟨l̂k, li⟩µ−1 = 0,∀i < k and ⟨l̂k, l̂k⟩µ−1 = 1, then

autoc(r̂k; τ) = E[r̂k(mp0)r̂k(mpτ)] ≤ λk(τ). (32)
An important insight at this point is that a variational principle of conformation dynamics can be
formulated in terms of correlation functions. In contrast to quantum mechanics or other fields where
the variational principle has been successfully employed, no closed-form expression of the operator
P(τ) is needed. The ability to express the variational principle in terms of correlation functions with
respect to P(τ) means that the eigenvalues to be maximized can be directly estimated from data.
If statistically sufficient realizations of mpt are available, then the autocorrelation function can be
estimated via

autoc(r̂k; τ) = E(r̂k(mp0)r̂k(mpτ)) ≈
1

N

∑
r̂k(mp0)r̂k(mpτ), (33)

where N is the number of simulated time windows of length τ .

For Structural Inference. This section provides the contextual foundation for the formulations
presented above. The variational principle posits that, in the limit of an infinite dataset, no process
within the data can be identified that is slower than the true underlying process. However, our aim
is to encode the dynamics of individual nodes into latent variables, capturing the true essence of the
dynamical system’s behavior. Therefore, we must establish a metric to gauge the suitability of the
current VDE in modeling the true process. This metric ensures that the latent variable zt effectively
encapsulates the dynamics that faithfully represent the entire process.

As expressed in Equation 28, acquiring knowledge of the dominant eigenfunctions li and their cor-
responding eigenvalues λi proves most valuable for approximating the underlying process. Conse-
quently, we turn to the Rayleigh variational principle to estimate these critical quantities from data

16

Published as a conference paper at ICLR 2024

Algorithm 1 From temporal order to directed edges.

1: Input: M sets of latent variables as Z = {Z[m], 1 ≤ m ≤ M}, where Z[m] ∈ R(T−τ)×n,
2: Output: A set of matrices of p-values representing the relation between n nodes: {P},
3: for node i in total n nodes do
4: Z[m],i = [zt−1

0 , zt−1
1 , ..., zti, z

t−1
n−1],

5: end for
6: Constitute set Z = {Z[m], 1 ≤ m ≤ M}, with each Z[m] = {Z[m],i ∈ R(T−τ−1)×n, 1 ≤ i ≤

n},
7: for trajectory m in total M trajectories do
8: for node i in total n nodes do
9: Calculate the variance-covariance matrix CX based on Z[m],i,

10: Calculate DX = C−1
X ,

11: for node j do
12: Calculate partial correlation rij|S = − dij√

dii

√
djj (Eqn. 4),

13: Calculate tij|S = rij|S
√

H−2−n
1−r2

ij|S
,

14: Calculate pij|S = 2Φt

(
− |tij|S |, H − 2− n

)
,

15: end for
16: Form P[m],i based on pij|S ,
17: end for
18: Form P[m](:, i) = P[m],i(:, i) for all node i,
19: end for
20: Return the set of p-value matrices {P} = {P[m], 1 ≤ m ≤ M}.

generated by the dynamical process, simultaneously striving to maximize the eigenvalues. As out-
lined in Equation 33, the maximization of eigenvalues aligns with the maximization of the estimated
autocorrelation function. Notably, in our specific case characterized by a single linear decomposition
of the phase-space limit, only one eigenvalue warrants consideration. This eigenvalue corresponds
to the autocorrelation of the latent variable zt, giving rise to Equation 11 as elucidated in Section 4.2.

A.3 FROM TEMPORAL ORDER TO DIRECTED EDGES

In this section, we discuss more about the method mentioned in Section 4.3, which is leveraged to
help PCOR to reconstruct the structure of directed graphs. PCOR is initially designed to measure
the correlations between variables. Thus it cannot provide the directionality of the relation between
variables, as the calculations of correlation has no directionality. However, if we take the temporal
information into consideration, and would figure out that there actually exists a temporal directed
connection in the time series. Suppose we have three nodes, i, j, and k. In the underlying interaction
graph, there exists a directed edge from j to i, while the node k is disconnected from the rest. We
sample the node features within a time period T , and obtain {V } = {V 0, V 1, ..., V T−1} as the
trajectory of the system. At time step t, we have V t = {vti , vtj , vtk}.

If we just use node features at the same time step for PCOR calculation, it would be impossible
to figure out the directed edge from j to i, as the partial correlation coefficients pij|S = pji|S .
However, we may recompose the time series which serves as the input for PCOR. Instead of feeding
PCOR with {V } = {V 0, V 1, ..., V T−1}, whose element V t = {vti , vtj , vtk}, we rearrange the node
features for every time step. For example, if we would like to figure out which other node may
have a directed edge to node i, we construct a new feature trajectory {Vi} = {V 1

i , V
2
i , ..., V

T−1},
where at time step t, V t

i = {vti , v
t−1
j , vt−1

k }. In this formulation, every present feature of node i

is paired with the feature from the previous time step of other nodes. We then feed {Vi} to PCOR
to obtain a Pi representing the measurement of the relation between node i and other nodes. If we
detect there is a connection between j and i in the obtained Pi, because the events typically occur
in chronological order and with the pairing of node features, the result can only lead to there is a
directed edge from j to i. For other nodes, we calculate the Pj , Pk following the above-mentioned
steps. After obtaining all coefficient matrices, we constitute the final coefficient matrix for the entire
system P as P(:, i) = Pi(:, i). We may replace vti in the above formulation with zti , and thus we

17

Published as a conference paper at ICLR 2024

Algorithm 2 Overall pipeline of SIDEC.

1: Input: M trajectories of node features as V = {V[m], 1 ≤ m ≤ M}. Each trajectory consists
of the features of n nodes spanning from time [0, T − 1], which is marked as vt[m],i for node i at
time t in trajectory m.

2: Parameters: Number of epochs E, batch size B, time window length τ ,
3: Output: A set of matrices of p-values representing the relation between n nodes: {P},
4: Flatten all node features from all node trajectories and form a new set Vall,
5: Constitute Nb batches from Vall with size B,
6: for batch Xb in total Nb batches do
7: Train encoder ENC and obtain {µt

i, σ
t
i} for current batch (Eqn. 6),

8: Obtain {z} based on reparameterization step (Eqn. 7),
9: Train decoder DEC and obtain {v̂t+τ

i } for current batch (Eqn. 8),
10: Calculate reconstruction loss: Lrecon = 1

L

∑
∥v̂t+τ −vt+τ∥2− 1

2L

∑
(1+log σ2−σ2−µ2)

(Eqn. 10),
11: Calculate autocorrelation loss: Lautoc = −E[(µt−µ̄t)(µt+τ−µ̄t+τ)]

sµtsµt+τ
(Eqn. 11),

12: Calculate loss for VDE: LVDE = Lrecon + Lautoc,
13: Update weights of encoder and decoder,
14: end for
15: After training, feed Vall into VDE again, and collect the z̃ = {µ} for every input,
16: Reshape z̃ according to the length of the trajectory and the number of nodes, and obtain Z =

{Z[m], 1 ≤ m ≤ M}, where Z[m] ∈ R(T−τ)×n,
17: Follow steps in Algorithm 1 to obtain the set of p-value matrices {P} = {P[m], 1 ≤ m ≤ M},
18: Return the set of p-value matrices {P} = {P[m], 1 ≤ m ≤ M}.

obtain the procedure mentioned in Section 4.3. We summarize the pipeline for inferring directed
edges with PCOR in our work in Algorithm 1.

A.4 THE LENGTH OF TIME WINDOW

In the context of the paper, when it is mentioned that τ represents the length of the time window
required for the system’s dynamics to be considered Markovian, it is referring to the concept of
Markovianity in continuous-time Markov processes (Noé & Nuske, 2013). In these processes, the
future state of the system is determined solely by its current state and not by how it arrived in that
state. This property is essential to simplify the modeling and analysis of dynamical systems.

The time window τ is crucial because it sets the scale at which the dynamics are examined. For a
system to be considered Markovian, the choice of τ should be such that the memory of past states
does not significantly influence the future states beyond this time window. In practical terms, this
means that if you know the state of the system at time τ , then this information is sufficient to predict
its state at time t+ τ without needing to know its earlier history.

The impact of the time window τ on the Markovian nature of the system can be understood as:

1. If τ is too short, the system’s evolution may still be influenced by its immediate past, not adhering
to the Markovian property.

2. If τ is appropriately chosen, it allows for the dynamics of the system to ’forget’ its past states,
thus adhering more closely to the Markovian assumption. This is critical for the effective appli-
cation of Markov models and for simplifying the analysis of the system’s dynamics. This could
be the case of analyzing open quantum system which somehow expresses its non-Markovian
characteristic.

In these scenarios, a τ value larger than 1 might be more appropriate. In the case of the StructIn-
fer (Anonymous, 2023) datasets, which were generated with smaller time intervals and subsequently
subsampled, a τ value of 1 suggests that the system behaves Markovian over these intervals. This
means that past states do not significantly influence future states beyond this time window.

18

Published as a conference paper at ICLR 2024

Exploring how the length of the time window affects various dynamical systems and sampling fre-
quencies in detail will deepen our understanding of the VDE and consequently broaden the applica-
tion scenario of SIDEC. We plan to delve into this research area in future work.

A.5 FULL TRAJECTORIES OR JUST ONE?

It is worth investigating the effectiveness of SIDEC with just one trajectory as input and with all
trajectories as input. We gathered experimental data to compare the performance of SIDEC with full
node trajectories (SIDEC(*Full)) and single-node trajectories. Table 3 presents our findings.

Table 3: Average AUROC Results (%) of SIDEC and SIDEC(*Full) on VN SP trajectories.

Methods VN SP 15 VN SP 30 VN SP 50 VN SP 100 VN SP 150 VN SP 200 VN SP 250

SIDEC(*Full) 95.8± 0.02 96.2± 0.03 96.0± 0.02 95.0± 0.01 94.6± 0.03 OOM OOM
SIDEC 97.6± 0.01 97.0± 0.02 96.5± 0.03 95.7± 0.02 95.3± 0.02 95.5± 0.02 95.0± 0.03

The results indicate that SIDEC(*Full) is consistently outperformed by SIDEC using single-node
trajectories. Additionally, using full trajectories leads to scalability issues on graphs with more
than 150 nodes. It also complicates the identification of latent variables corresponding to specific
nodes. These findings justified our choice to focus on single-node trajectories in the VDE stage for
efficiency and efficacy.

A.6 OVERALL PIPELINE

We summarize the overall pipeline of SIDEC in Algorithm 2.

Algorithm 3 Pseudocode for the encoder in
VDE.

1: Input: features input
2: x = mlp1(input)
3: x = mlp2(x)
4: x = mlp3(x)
5: out = mlp4(x)
6: Return: out

Algorithm 4 Pseudocode for the decoder in
VDE.

1: Input: features input
2: x = mlp5(input)
3: x = mlp6(x)
4: x = mlp7(x)
5: out = mlp8(x)
6: Return: out

A.7 IMPLEMENTATION

In this section, we provide details about the implementation of the proposed SIDEC. Besides the
description in this section, readers may also refer to the code in the following GitHub Repository:
https://github.com/wang422003/SIDEC_torch.

Implementation of VDE. The basic class of VDE is implemented as the inheritance of VAE Class
of “PyTorch-VAE” (Subramanian, 2020), with the following modification:

1. New encoder and decoder: We implement the encoder and decoder according to the VDE
implementation (Hernández et al., 2018). We enclose the setup of the encoder and decoder as
pseudo code and shown in Algorithms 3 and 4. The implementation of MLP in the encoder and
decoder is described in Algorithm 5 with parameters shown in Table 4.

2. Changes in loading data: We integrated the data loading pipelines from iSIDG implemented by
StructInfer (Anonymous, 2023) into the VDE data loading pipeline.

3. New loss functions: Besides the reconstruction loss term that is implemented already in the
VAE Class, we implemented the pipeline for autocorrelation loss and the summation of both
reconstruction loss and autocorrelation loss.

4. Addition of “predict()” method: We added a method in the VAE class to run the trained model
again and sample the latent variables.

19

https://github.com/wang422003/SIDEC_torch

Published as a conference paper at ICLR 2024

Algorithm 5 An MLP block.

1: Input: features input
2: x = Linear(input)
3: x = Swish(x)
4: out = DropOut(x)
5: Return: out

Table 4: Parameters in the Linear layers in MLPs in encoder and decoder.

BLOCK Number of Units Dropout Rates

MLP1 2048 0.0
MLP2 2048 0.3
MLP3 2048 0.3
MLP4 1 0.0
MLP5 2048 0.0
MLP6 2048 0.3
MLP7 2048 0.3
MLP8 Original Dimension d 0.0

Calculation of Partial Correlation Coefficients. The main pipeline of the calculation of partial
correlation coefficients follows the one provided in https://gist.github.com/fabianp/
9396204419c7b638d38f, which is a Python implementation of the calculation of partial cor-
relations. But we need to calculate the p-values, thus we extend this function with the following
modification.

1. Add “args”: We added a new variable input named “args”, which serves as the input variable of
the general control arguments.

2. Create a new function of “ ttest finish()” This function follows the one used in Scipy (Virtanen
et al., 2020), which takes in the correlation matrix and degree of freedom to calculate the t-
statistics and p-values.

3. AUROC calculation: We created a new function to calculate the AUROC results of the re-
constructed structure. The implementation is done with the help of “roc auc score()” from
sklearn (Pedregosa et al., 2011).

Experimental Setting. We run SIDEC on a single NVIDIA Tesla V100 SXM2 graphic card,
which has 32 GB of graphic memory and 5120 NVIDIA CUDA Cores. The batch size is set as
256, but we believe it can be larger to even 2048. The learning rate is set as 0.0005. The maximum
epochs for training is 500.

Minor Impact on Running Time. Our method, SIDEC, integrates structural inference through
two main components: training of VDE and subsequent inference utilizing both VDE and PCOR.
Through our experimental observations, we found that the training phase of VDE is the most time-
consuming aspect, accounting for approximately 98% of the total computation time. This pattern is
consistent across all our experiments.

B MORE DETAILS ABOUT DATASETS

StructInfer benchmark. The StructInfer benchmark (Anonymous, 2023) evaluated 12 structural
inference methods in a comprehensive way on a synthetic dataset. The dataset is firmly believed
as created by the author, and it covers 11 types of different underlying interaction graphs and two
types of dynamical simulations. We name the dataset StructInfer, which is the same as the name
provided on the official website https://structinfer.github.io/. As there are so many
trajectories, we chose the ones under the name “Vascular Networks”, or in short “VN”, whose un-
derlying interaction graphs approximate the real-world vascular networks in bio-systems. Besides,
we also contact the authors and get the trajectories with more than 100 nodes, and the ones with
additive Gaussian noise. We would like to thank the authors for their help. As the data is already

20

https://gist.github.com/fabianp/9396204419c7b638d38f
https://gist.github.com/fabianp/9396204419c7b638d38f
https://structinfer.github.io/

Published as a conference paper at ICLR 2024

split into three sets: for training, for validation, and for testing, we keep this setting. In the follow-
ing paragraphs, we describe more details about the Springs and NetSims simulations utilized by the
StructInfer benchmark.

For Springs simulation, it follows the approach by (Kipf et al., 2018), to simulate spring-connected
particles’ motion in a 2D box using the Springs simulation. In this setup, nodes represent particles,
and edges correspond to springs governed by Hooke’s law. The Springs simulation’s dynamics are
described by a second-order ordinary differential equation: mi ·x′′

i (t) =
∑

j∈Ni
−k·

(
xi(t)−xj(t)

)
.

Here, mi represents particle mass (assumed as 1), k is the fixed spring constant (set to 1), and Ni

is the set of neighboring nodes with directed connections to node i, which is sub-sampled from the
graphs generated in the StructInfer in previous steps. We integrate this equation to compute x′

i(t)
and subsequently xi(t) for each time step t. The resulting values of x′

i(t) and xi(t) create 4D node
features at each time step.

For NetSims simulation, it is firstly mentioned in NetSim dataset (Smith et al., 2011), which offers
simulations of blood-oxygen-level-dependent (BOLD) imaging data in various human brain regions.
Nodes in the dataset represent spatial regions of interest from brain atlases or functional tasks. In-
teraction graphs from the previous section determine connections between these regions. Dynamics
are governed by a first-order ODE model: x′

i(t) = σ ·
∑

j∈Ni
xj(t) − σ · xi(t) + C · ui, where σ

controls temporal smoothing and neural lag (set to 0.1 based on (Smith et al., 2011), and C regulates
external input interactions (set to zero to minimize external input noise) (Smith et al., 2011). 1D
node features at each time step are obtained from the sampled xi(t).

For trajectories with Gaussian noise, we refer to the ones from StructInfer dataset (Anonymous,
2023), which we utilized in our study, includes trajectories with Gaussian noise added at various
levels. As detailed in the dataset’s documentation, the authors introduced this noise to the generated
trajectories to simulate real-world conditions more accurately. The modified node features, repre-
sented as ṽti , are calculated using the formula: ṽti = vti + ζ · 0.02 ·∆, where ζ is a standard Gaussian
random variable (ζ ∼ N (0, 1)), vti denotes the original feature vector of node i at time t, and ∆ rep-
resents the designated noise level. The noise levels applied range from 1 to 5 across all the original
trajectories.

Synthetic networks. The six directed Boolean networks (LI, LL, CY, BF, TF, BF-CV) are the
most often observed fragments in many gene regulatory networks, each has 7, 18, 6, 7, 8 and
10 nodes, respectively. Thus by carrying out experiments on these networks, we can acknowl-
edge the performance of the chosen methods on the structural inference of real-world biological
networks. We collect the six ground-truth directed Boolean networks from Pratapa et al. (2020)
and simulate the single-cell evolving trajectories with BoolODE Pratapa et al. (2020) (https:
//github.com/Murali-group/BoolODE) with default settings mentioned in that paper for
every network. We first sample a total number of 12000 raw trajectories. We then sample different
numbers of trajectories from raw trajectories and randomly group them into three datasets: for train-
ing, for validation, and for testing, with a ratio of 8 : 2 : 2. After that, we sample different numbers
of snapshots according to the requirements of experiments in Section 5.1 with equal time intervals
in every trajectory and save them as “.npy” files for data loading.

C IMPLEMENTATION OF BASELINES

C.1 NRI

We use the official implementation code by the author from https://github.com/
ethanfetaya/NRI with a customized data loader for our chosen datasets. We add our metric
evaluation in the “test” function, after the calculation of accuracy in the original code.

C.2 MPM

We use the official implementation code by the author from https://github.com/
hilbert9221/NRI-MPM with a customized data loader for our chosen datasets. We add our
metric evaluation for AUROC in the “evaluate()” function of class “XNRIDECIns” in the original
code.

21

https://github.com/Murali-group/BoolODE
https://github.com/Murali-group/BoolODE
https://github.com/ethanfetaya/NRI
https://github.com/ethanfetaya/NRI
https://github.com/hilbert9221/NRI-MPM
https://github.com/hilbert9221/NRI-MPM

Published as a conference paper at ICLR 2024

C.3 ACD

We follow the official implementation code by the author as the framework for ACD (https:
//github.com/loeweX/AmortizedCausalDiscovery). We run the code with a cus-
tomized data loader for the datasets in this work. We implement the metric-calculation pipeline in
the “forward pass and eval()” function.

C.4 ISIDG

We ask the authors of iSIDG for the code and follow the instructions on the settings of hyper-
parameters in their work. We disable the metric evaluations for the AUPRC and Jaccard index in the
original implementation of iSIDG for faster computation.

C.5 RCSI

We would like to thank the authors of RCSI for the code. We follow the instructions on the settings
of hyper-parameters in their work. Same as iSIDG, we disable the metric evaluations for AUPRC
and Jaccard index in the original implementation of iSIDG for faster computation.

C.6 TIGRESS

In our utilization of TIGRESS, we adhere to the official implementation provided by the author, ac-
cessible at https://github.com/jpvert/tigress. To streamline our experimental work-
flow, we have developed a specialized wrapper. This wrapper exhibits the capability to parse multi-
ple arguments, thereby facilitating the selection of specific trajectories for focused inference. Addi-
tionally, it seamlessly transforms trajectories into a format compatible with TIGRESS, orchestrates
the systematic input of trajectories into the TIGRESS algorithm, and efficiently archives the resultant
outputs in predefined directories.

C.7 ARACNE

We use the implementation of ARACNe by the Bioconductor (Huber et al., 2015) package
minet (Meyer et al., 2008) with a customized wrapper for the selection of a set of targeted tra-
jectories for inference, transform trajectories into a suitable format, feed each trajectory into the
ARACNe algorithm, and store the output into designated directories.

C.8 CLR

For our implementation of CLR, we harness the capabilities of the minet package, a Bioconductor
resource (Huber et al., 2015; Meyer et al., 2008). To optimize our workflow, we have developed a
tailored wrapper. This wrapper has the ability to parse multiple arguments, enabling the selection of
specific trajectories for targeted inference. Furthermore, it facilitates the seamless transformation of
trajectories into a compatible format, orchestrates the sequential input of trajectories into the CLR
algorithm, and efficiently stores the resulting outputs in designated directories.

C.9 PIDC

We use the official implementation of PIDC by the author at https://github.com/
Tchanders/NetworkInference.jl with a customized wrapper for data loading. Our wrap-
per will parse multiple arguments to select a set of targeted trajectories for inference, transform
trajectories into a suitable format, feed each trajectory into the PIDC algorithm, and store the output
into designated directories.

C.10 SCRIBE

Our utilization of Scribe relies on the official implementation provided by the developer, which is
accessible at https://github.com/aristoteleo/Scribe-py. To streamline our work-
flow, we have developed a custom wrapper. This wrapper is designed to perform a range of tasks,

22

https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/jpvert/tigress
https://github.com/Tchanders/NetworkInference.jl
https://github.com/Tchanders/NetworkInference.jl
https://github.com/aristoteleo/Scribe-py

Published as a conference paper at ICLR 2024

including the selection of specific target trajectories for inference, the transformation of trajecto-
ries into a compatible format, the sequential input of trajectories into the Scribe algorithm, and the
systematic organization and storage of output results within designated directories.

C.11 DYNGENIE3

Our usage of dynGENIE3 relies on the official implementation authored by the developer, acces-
sible at https://github.com/vahuynh/dynGENIE3. To streamline the process, we have
designed a custom wrapper. This wrapper performs various tasks, such as the selection of tar-
get trajectories for inference, data format conversion to ensure compatibility, sequential input of
trajectories into the XGBGRN algorithm, and systematic storage of output results in designated
directories.

C.12 XGBGRN

We employ the official XGBGRN implementation developed by the author, accessible at https:
//github.com/lab319/GRNs_nonlinear_ODEs, within a customized wrapper. This
wrapper serves multiple purposes, including the selection of specific trajectories for inference, the
transformation of these trajectories into a compatible format, the sequential feeding of each trajec-
tory into the XGBGRN algorithm, and the organized storage of output results in dedicated directo-
ries.

D MORE EXPERIMENTAL RESULTS

Because of the page limitation, more experimental results can be found in this section.

D.1 PERFORMANCE ON RANDOM GRAPHS

One of the key advantages of SIDEC lies in its absence of a uniform prior on edges, distinguishing
it from previous VAE-based structural inference methods (Kipf et al., 2018; Chen et al., 2021; Löwe
et al., 2022; Wang & Pang, 2022; Wang et al., 2023a), which incorporate a uniform prior in their
KL-divergence terms. This distinction prompted our interest in assessing SIDEC and the baseline
methods on trajectories where edges possess a fixed probability of existence or absence. For this
purpose, we selected the “Social Networks” trajectories from the StructInfer benchmark, character-
ized by underlying graphs generated via Erdős-Rényi graph (ERDdS & R&wi, 1959) generators,
featuring directed edges generated with a fixed probability.

Our experimentation involved running SIDEC and the baseline methods on “SN SP” and “SN NS”
trajectories, each with 15, 30, 50, and 100 nodes. The results, presented as the average AUROC
values from ten runs, are detailed in Table 5. A noteworthy observation from the table is that when
tasked with structural inference on trajectories produced by Springs simulations, featuring four-
dimensional features, the performance differences between SIDEC and VAE-based methods are less
pronounced compared to the results outlined in Section 5.2.

This phenomenon is particularly evident when the graph is relatively small, containing no more than
30 nodes. This aligns with the notion that VAE-based structural inference methods, equipped with
the assumed uniform prior and the capacity to extract information from multi-dimensional features,
exhibit strong performance in scenarios where the underlying interaction graph resembles an Erdős-
Rényi graph and the trajectories exhibit multi-dimensional characteristics.

However, as the graph size increases, SIDEC consistently outperforms VAE-based methods, ben-
efiting from its scale-insensitive nature. Furthermore, when trajectories solely comprise one-
dimensional features, SIDEC surpasses VAE-based methods significantly. In such cases, the in-
corporation of VDE for dynamic encoding, in conjunction with the synergy between PCOR and
VDE, equips SIDEC to effectively address information deficiencies within the trajectories.

23

https://github.com/vahuynh/dynGENIE3
https://github.com/lab319/GRNs_nonlinear_ODEs
https://github.com/lab319/GRNs_nonlinear_ODEs

Published as a conference paper at ICLR 2024

Table 5: Average AUROC Results (%) of SIDEC and baselines on SN trajectories.

Methods SN SP 15 SN SP 30 SN SP 50 SN SP 100

NRI 93.3± 0.01 79.9± 0.02 80.4± 0.02 71.8± 0.01

MPM 92.7± 0.00 79.3± 0.01 75.9± 0.01 69.4± 0.03

ACD 93.5± 0.01 81.2± 0.01 79.6± 0.02 68.8± 0.02

iSIDG 93.5± 0.00 81.4± 0.01 80.8± 0.02 69.3± 0.01

RCSI 94.1± 0.02 82.7± 0.01 81.3± 0.01 73.4± 0.02

SIDEC 94.0± 0.02 89.8± 0.01 89.0± 0.04 90.0± 0.01

Methods SN NS 15 SN NS 30 SN NS 50 SN NS 100

NRI 58.4± 0.04 51.4± 0.01 49.6± 0.03 50.2± 0.03

MPM 67.4± 0.02 50.9± 0.01 53.1± 0.03 50.1± 0.02

ACD 65.2± 0.05 52.9± 0.03 49.3± 0.02 50.8± 0.01

iSIDG 66.1± 0.04 53.8± 0.03 54.8± 0.01 51.7± 0.02

RCSI 67.6± 0.03 55.8± 0.02 55.0± 0.02 53.2± 0.03

SIDEC 91.6± 0.02 90.2± 0.02 89.7± 0.02 89.2± 0.02

D.2 PERFORMANCE ON UNDIRECTED GRAPHS

As established at the outset of this paper, numerous correlation-based structural inference methods
are ill-suited for the reconstruction of directed graphs. While our prior experiments exclusively
employed trajectories with directed underlying interaction graphs, it’s equally pertinent to assess
the performance of correlation-based techniques, traditional baselines, and our proposed SIDEC on
trajectories generated with undirected underlying interaction graphs. Fortunately, the StructInfer
benchmark contains such trajectories, specifically under the category ”Landscape Networks,” fea-
turing undirected underlying interaction graphs. In addition to the aforementioned baselines, we
have incorporated several other methods for comparative evaluation:

• TIGRESS (Haury et al., 2012): A correlation-based model employing iterative feature selection
with least-angle regression and bootstrapping.

• ARACNe (Margolin et al., 2006): A mutual-information-based method that calculates pairwise
mutual information and utilizes the Data Processing Inequality principle to eliminate indirect in-
teractions.

• CLR (Faith et al., 2007): This method employs pairwise mutual information but assumes a back-
ground noise distribution for mutual information.

• PIDC (Chan et al., 2017): A model based on Partial Information Decomposition, interpreting
aggregated unique information as the strength of edges between nodes.

• Scribe (Qiu et al., 2020): Utilizes Restricted Directed Information (Rahimzamani & Kannan,
2016) and its variants to quantify causality within the structure by considering the influence of
confounding factors.

• dynGENIE3 (Huynh-Thu & Geurts, 2018): A random-forest-based method that employs ordinary
differential equations to model time series dynamics.

• XGBGRN (Ma et al., 2020): Similar to dynGENIE3 but leverages XGBoost (Chen & Guestrin,
2016) instead of random forests.

It’s essential to note that these methods operate exclusively on one-dimensional features and cannot
perform structural inference on trajectories generated using Springs simulation. Additionally, their
design inherently prevents them from inferring directed edges. In our evaluation, we’ve also imple-
mented an algorithm based solely on partial correlation coefficients, denoted as PCOR, and a variant
of SIDEC that lacks the component for rearranging latent variables to reconstruct directed graphs,
known as SIDEC-V. Besides that, we also implemented following correlation-based structural infer-
ence methods: Person Correlation (P-cor) (Maucher et al., 2011), Distance Correlation (D-cor) (Liu
et al., 2021), Low-order Partial Correlation (LPCOR) (Zuo et al., 2014), and Semi-partial Correla-
tion Coefficients (SPCOR) (Kim, 2015). These methods, by design, only produce symmetric results.
We show the results in Table. 6. On “LN SP” trajectories, SIDEC and SIDEC-V consistently out-
perform VAE-based methods, displaying a robustness independent of graph size, with minor drops
in AUROC values. This trend aligns with our findings in Section 5.2.

However, when examining the results for “LN NS” trajectories, SIDEC exhibits superior perfor-
mance mainly on graphs with no fewer than 30 nodes. It’s worth noting that the performance

24

Published as a conference paper at ICLR 2024

Table 6: Average AUROC Results (%) of SIDEC and baselines on LN trajectories.

Methods LN SP 15 LN SP 30 LN SP 50 LN SP 100

NRI 97.0± 0.02 94.9± 0.00 87.1± 0.01 82.8± 0.01

MPM 97.9± 0.01 95.5± 0.02 86.9± 0.01 84.2± 0.03

ACD 97.0± 0.02 95.8± 0.01 87.6± 0.02 83.9± 0.02

iSIDG 97.4± 0.02 94.7± 0.02 87.4± 0.02 83.2± 0.02

RCSI 97.3± 0.02 94.4± 0.02 88.0± 0.02 84.3± 0.02

SIDEC-V 97.6± 0.02 96.3± 0.02 96.0± 0.02 94.7± 0.02

SIDEC 97.7± 0.02 96.5± 0.03 96.2± 0.02 95.1± 0.03

Methods LN NS 15 LN NS 30 LN NS 50 LN NS 100

TIGRESS 84.1± 1.16 87.4± 3.32 92.2± 0.42 93.8± 1.96

ARACNe 92.3± 4.84 80.4± 5.67 71.2± 0.48 62.8± 8.36

CLR 97.3± 3.17 96.6± 4.87 91.0± 2.35 95.0± 0.53

PIDC 97.5± 1.01 82.0± 7.28 88.6± 1.69 94.2± 2.28

Scribe 54.2± 3.98 56.2± 3.88 52.1± 2.49 52.5± 1.62

dynGENIE 51.3± 5.21 50.1± 2.42 50.5± 1.22 67.3± 14.23

XGBGRN 97.2± 1.13 96.5± 2.10 96.9± 0.83 98.0± 0.93

NRI 56.0± 0.04 53.9± 0.02 54.4± 0.02 51.8± 0.03

MPM 52.2± 0.02 62.1± 0.05 53.4± 0.01 50.4± 0.03

ACD 61.9± 0.03 61.6± 0.04 53.4± 0.02 50.2± 0.02

iSIDG 59.2± 0.05 56.2± 0.03 55.7± 0.03 52.3± 0.02

RCSI 60.3± 0.03 60.2± 0.02 57.6± 0.03 53.5± 0.02

P-cor 68.9± 0.31 65.1± 0.10 66.7± 0.39 68.1± 0.44

D-cor 67.3± 0.23 66.4± 0.37 65.2± 0.20 65.0± 0.26

LPCOR 81.9± 0.60 80.6± 1.56 78.5± 0.98 69.5± 3.01

SPCOR 95.0± 0.19 91.8± 3.08 84.0± 0.63 71.5± 2.55

PCOR 97.3± 0.56 92.0± 5.20 84.8± 1.66 79.2± 4.32

SIDEC-V 97.2± 0.03 93.8± 0.03 96.0± 0.01 96.0± 0.02

SIDEC 97.4± 0.03 96.7± 0.02 97.0± 0.03 97.5± 0.02

gaps are relatively narrow, with XGBGRN, CLR, and PIDC maintaining high accuracy across the
datasets. Nonetheless, these methods display substantial result deviations, indicating limited stabil-
ity and reliability in reconstruction. Furthermore, XGBGRN, CLR, and PIDC cannot accommodate
trajectories with multi-dimensional features, as they conflict with their core operating mechanisms.
The results indicate that both P-cor and D-cor show subpar performance across all datasets. This
can be attributed to their limitation of considering only pairwise correlations and overlooking the
influence of other potentially impactful nodes. LPCOR, while better, still falls short as it calculates
coefficients conditional on a subset rather than all other variables.

Interestingly, SPCOR and PCOR demonstrate comparable performance, with PCOR slightly out-
performing SPCOR. This can be attributed to SPCOR’s reliance on semi-partial correlation cal-
culations, which may limit its effectiveness in identifying connections between nodes with larger
degrees. Despite the variations in graph structure across the datasets, neither SPCOR nor PCOR
outperforms SIDEC. In contrast, SIDEC boasts broader applicability, irrespective of node feature
dimensionality, and consistently delivers medium to high accuracy. In comparison to PCOR, which
can be regarded as the second half of SIDEC, our proposed method markedly enhances structural
reconstruction accuracy, underscoring the value of encoding node dynamics in structural inference.

D.3 PERFORMANCE ON LARGER GRAPHS

To bolster our claim of SIDEC’s scalability, we conducted additional experiments using the NRI
simulator (Kipf et al., 2018) – a tool also employed by (Chen et al., 2021; Löwe et al., 2022; Wang
& Pang, 2022; Wang et al., 2023a; Wang & Pang, 2023) for dataset generation. These experiments
involved generating spring-ball systems with 500 and 1,000 balls, producing a total of 12,000 tra-
jectories per graph, subsequently divided into training, validation, and test sets in an 8:2:2 ratio.

In these experiments, only SIDEC was able to operate effectively without encountering out-of-
memory (OOM) issues, unlike other VAE-based baseline methods. The resulting average AUROC
values over ten runs are shown in Table 7. Compared with other methods, SIDEC managed to re-

25

Published as a conference paper at ICLR 2024

Table 7: Average AUROC Results (%) of SIDEC on spring-ball systems.

w. 500 Balls w. 1,000 Balls

SIDEC 92.8± 0.04 90.1± 0.03

Table 8: Statistics of PEMS datasets.

Dataset # Nodes # Edges # Time Steps Missing Ratio

PEMS03 358 547 26, 208 0.672%
PEMS04 307 340 16, 992 3.182%
PEMS07 883 866 28, 224 0.452%

Table 9: Average AUROC Results (%) of SIDEC on PEMS datasets.

PEMS03 PEMS04 PEMS07

SIDEC 72.8± 0.07 75.4± 0.04 70.1± 0.06

construct the structure of these graphs with 500 and 1,000 nodes. And compared with the results of
it on smaller graphs, the results on the AUROC values still support its high accuracy on the struc-
tural inference. These results not only demonstrate SIDEC’s capability to reconstruct the structure
of large graphs but also maintain high accuracy in structural inference across varying graph sizes.

D.4 PERFORMANCE ON REAL-WORLD DATASET

We would like to emphasis that obtaining comprehensive, real-world data for structural inference
poses significant challenges, both in terms of cost and time. Often, real-world data lack complete
information on node features or reliable knowledge of underlying interaction graphs, as seen in gene
regulatory networks (Pratapa et al., 2020) and scene graphs (Yang et al., 2018). In other cases, such
as transaction networks (Tao et al., 2021) and road maps (Biagioni & Eriksson, 2012), data may not
cover all nodes in the system.

Despite these challenges, we agree with the necessity of testing our method, SIDEC, on real-world
data. To this end, we have conducted additional experiments using three widely recognized public
traffic network datasets: PEMS03, PEMS04, and PEMS07 (Song et al., 2020). These datasets,
derived from the California Caltrans Performance Measurement System (PeMS) (Chen et al., 2001),
comprise data aggregated into 5-minute intervals. The adjacency matrix of the nodes is constructed
by road network distance with a thresholded Gaussian kernel (Song et al., 2020). Table 8 summarizes
these datasets.

We resampled the data such that constructing 49 time steps of points for each trajectory, and obtained
534, 346, and 547 trajectories, respectively. We then split all datasets with ratio 8:2:2 into training
sets, validation sets and test sets, and run SIDEC on all of them. Our results, presented in Table 9,
demonstrate SIDEC’s effective performance despite challenges such as noise, missing data, and
adjacency matrix inaccuracies. It’s important to note that these datasets’ adjacency matrices only
connect sensors on the same road, omitting alternative connecting paths, which could impact results.
As shown in the table, despite the noise and missing data, and the inaccuracy in the adjacency
matrices provided by the dataset, SIDEC manages to perform well and can deal with the challenges.
It is notable that the adjacency matrices in these datasets just connect the sensors if they are on the
same road, but they ignore the existence of paths or alleys that may also connect the sensors. Because
of this, when compared with the experimental results discussed in Section 5, the performance of
SIDEC is impacted.

E LIMITATIONS

While SIDEC showcases considerable capabilities in structural inference, akin to other methods in
this domain, it does have certain limitations that warrant attention.

First and foremost, SIDEC is tailored for dynamical systems characterized by a static underlying
interacting structure. In scenarios where the underlying structure undergoes temporal variations,

26

Published as a conference paper at ICLR 2024

the simplicity of the VDE setup can hinder the effective capture of node dynamics. However, we
envision the possibility of extending SIDEC to accommodate dynamic graphs by encoding edge
dynamics, thus addressing this limitation.

Secondly, the dynamical systems under investigation must be fully observed within the defined time
period. This entails that all nodes need to be observed, and their features meticulously recorded.
In principle, the VDE operates on a Markovian assumption, which could be theoretically compro-
mised when some influential factors remain unobserved. Nevertheless, we maintain confidence in
SIDEC’s adaptability to such tasks, as it primarily relies on node features, potentially mitigating
these concerns.

Thirdly, our evaluation of SIDEC was exclusively conducted on synthetic datasets, leaving a void in
the examination of its performance on real-world, intricate data. This highlights the pressing need
for a comprehensive and reliable real-world structural inference dataset, an omission in the existing
landscape. However, it’s important to acknowledge that these limitations serve as catalysts for fu-
ture research endeavors aimed at enhancing both SIDEC and structural inference methodologies in
general. By surmounting these challenges, we can substantially expand the application domains of
SIDEC, offering invaluable contributions to researchers across diverse fields.

F BROADER IMPACT

Much like NRI, MPM, ACD, iSIDG, and other structural inference methodologies, SIDEC extends
its utility to a diverse range of researchers across the realms of physics, chemistry, sociology, and bi-
ology. In our investigations, we have demonstrated SIDEC’s proficiency in reconstructing expansive
graph structures while displaying robustness to variations in the dimensionality of node features,
underscoring its versatility and broad applicability. However, the advent of structural inference
technology, while profoundly beneficial to many fields, also raises concerns about potential misuse.
There exists the possibility of utilizing this technology to unveil intimate relationships among users
within social networks, which, if misapplied, could encroach upon individuals’ privacy.

27

	Introduction
	Related Work
	Preliminaries
	Method
	Encoding Dynamics with Variational Dynamics Encoder
	Train with a Hybrid Loss
	Structural Inference with Partial Correlation Coefficients

	Experiments
	General Settings
	Experimental Results
	Robustness Tests
	Ablation Study on the Length of Time Window

	Conclusion
	More Details about SIDEC
	Partial Correlations
	Autocorrelation Loss
	From Temporal Order to Directed Edges
	The Length of Time Window
	Full Trajectories or Just One?
	Overall Pipeline
	Implementation

	More Details about Datasets
	Implementation of Baselines
	NRI
	MPM
	ACD
	ISIDG
	RCSI
	TIGRESS
	ARACNe
	CLR
	PIDC
	Scribe
	dynGENIE3
	XGBGRN

	More Experimental Results
	Performance on Random Graphs
	Performance on Undirected Graphs
	Performance on Larger Graphs
	Performance on Real-world Dataset

	Limitations
	Broader Impact

