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Abstract

Finding an optimal decision tree for a supervised learning task is a challenging1

combinatorial problem to solve at scale. It was recently proposed to frame this2

problem as a Markov Decision Problem (MDP) and use deep reinforcement learn-3

ing to tackle scaling. Unfortunately, these methods are not competitive with the4

current branch-and-bound state of the art. Instead, we propose to scale the res-5

olution of such MDPs using an information-theoretic tests generating function6

that heuristically, and dynamically for every state, limits the set of admissible7

test actions to a few good candidates. As a solver, we show empirically that our8

algorithm is at the very least competitive with branch-and-bound alternatives. As9

a machine learning tool, a key advantage of our approach is to solve for multiple10

complexity-performance trade-offs at virtually no additional cost. With such a set11

of solutions, a user can then select the tree that generalizes best and which has the12

interpretability level that best suits their needs, which no current branch-and-bound13

method allows.14

1 Introduction15

Decision trees (DTs) remain the dominant machine learning model in applications where interpretabil-16

ity is essential [Costa and Pedreira, 2023]. Thanks to recent advances in hardware, a new class of17

decision tree learning algorithms returning optimal trees has emerged [Bertsimas and Dunn, 2017,18

Demirovic et al., 2022, Mazumder et al., 2022]. These algorithms are based on a branch-and-bound19

solver that minimizes a regularized empirical loss, where the number of nodes is used as a regularizer.20

These optimization problems have long been known to be NP-Hard [Hyafil and Rivest, 1976] and21

despite hardware improvements, solvers of such problems do not scale well beyond trees of depth 322

when attributes take continuous values [Mazumder et al., 2022]. On the other hand, greedy approaches23

such as CART [Breiman et al., 1984] are still considered state-of-the-art decision tree algorithms24

because they scale and offer more advanced mechanisms to control the complexity of the tree. By25

framing decision tree learning as a sequential decision problem, and by carefully controlling the26

size of the search space, we achieve in this paper a best of both worlds, solving the combinatorial27

optimization problem with accuracies close to optimal ones, while improving scaling and offering a28

better control of the complexity-performance trade-off than any existing optimal algorithm.29

To do so, we formulate the problem of decision tree learning as a Markov Decision Problem (MDP,30

[L. Puterman, 1994]) for which the optimal policy builds a decision tree. Actions in such an MDP31

include tests comparing an attribute to a threshold (a.k.a. splits). This action space could include all32

possible splits or a heuristically chosen subset, yielding a continuum between optimal algorithms and33

heuristic approaches. Furthermore, the reward function of the MDP encodes a trade-off between the34

complexity and the performance of the learned tree. In our work, complexity takes the meaning of35

simulatability [Lipton, 2018], i.e. the average number of splits the tree will perform on the train dataset.36

The MDP reward is parameterized by α, trading-off between train accuracy and regularization. One37
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of the main benefits of our formulation is that the biggest share of the computational cost is due to38

the construction of the MDP transition function which is completely independent of α, allowing us to39

find optimal policies for a large choice of values of α at virtually no additional cost.40

Branch-and-Bound (BnB) algorithms similarly optimize a complexity performance trade-off41

[Demirovic et al., 2022, Mazumder et al., 2022] but require the user to provide the maximum42

number of test nodes as an input to their algorithm. Providing such a value a priori is difficult43

since a smaller tree (e.g. with 3 test nodes) might be only marginally worse on a given dataset than44

a larger tree (e.g. with 15 test nodes) with respect to the training accuracy but might generalize45

better or be deemed more interpretable a posteriori by the user. As such, it is critical to consider46

the multi-objective nature of the optimization problem and seek algorithms returning a set of trees47

that are located on the Pareto front of the complexity-performance trade-off. To the best of our48

knowledge, this has been so far neglected by BnB approaches. None of the BnB implementations49

return a set of trees for different regularizer weights unlike greedy algorithms like CART or C4.550

that can return trees with different complexity-performance trade-offs using minimal complexity51

post-pruning [Breiman et al., 1984], making it a more useful machine learning tool in practice.52

2 Related Work53

2.1 Optimal Decision Trees.54

Decision tree learning has been formulated as an optimization problem in which the goal is to55

construct a tree that correctly fits the data while using a minimal number of splits. In [Bertsimas56

and Dunn, 2017, Aghaei et al., 2020, Verwer and Zhang, 2019], decision tree learning is formulated57

as a Mixed Integer Program (MIP). Instead of using a generic MIP solver, [Demirovic et al., 2022,58

Mazumder et al., 2022] design specialized solvers based on the Branch-and-Bound (BnB) principle.59

Quant-BnB [Mazumder et al., 2022] is currently the latest work in this line of research for datasets60

with continuous attributes and is considered state-of-the-art. However, direct optimization is not a61

convenient approach since finding the optimal tree is known to be NP-Hard [Hyafil and Rivest, 1976].62

Despite hardware improvements, Quant-BnB does not scale beyond trees depth of 3. To reduce the63

search space, optimal decision tree algorithms on binary datasets, such as MurTree, Blossom and64

Pystreed [Demirovic et al., 2022, Demirović et al., 2023, van der Linden et al., 2023], employ65

heuristics to binarize a dataset with continuous attributes during a pre-processing step following66

for example the Minimum Description Length Principle [Rissanen, 1978]. The tests generating67

function of our MDP formulation is similar in principle except that it is state-dependent, which, as68

demonstrated experimentally, greatly improves the performance of our solver.69

2.2 Greedy approaches.70

Greedy approaches like CART iteratively partition the training dataset by taking the most informative71

splits in the sense of the Gini index or the entropy gain. CART is only one-step optimal but can72

scale to very deep trees. This might lead to overfitting and algorithms such as Minimal Complexity73

Post-Pruning (see Section 3.3 from [Breiman et al., 1984]) iteratively prune the deep tree, returning74

a set of smaller trees with decreasing complexity and potentially improved generalization. The75

trees returned by our algorithms provably dominate—in the multi-objective optimization sense—all76

the above smaller trees in terms of train accuracy vs. average number of tests performed, and we77

experimentally show that they often generalize better than the trees returned by CART.78

2.3 Markov Decision Problem formulations.79

In [Topin et al., 2021], a base MDP is extended to an Iterative Bounding MDP (IBMDP) allowing80

the use of any Deep Reinforcement Learning (DRL) algorithm to learn DT policies solving the81

base MDP. While more general and scalable, this method is not state-of-the-art for learning DTs for82

supervised learning tasks. Prior to IBMDPs, [Garlapati et al., 2015] formulated the learning of DTs83

for classification tasks with ordinal attributes as an MDP. To be able to handle continuous features,84

[Nunes et al., 2020] used Monte-Carlo tree search [Kocsis and Szepesvári, 2006] in combination85

with a tests generating function that limits the branching factor of the tree. Our MDP formulation is86

different as it considers a regularized objective while [Nunes et al., 2020] optimize accuracy on a87

validation set. Our tests generating function is also different and dramatically improves scaling as88
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shown in the comparison of Sec. 5.1.1, making our algorithm competitive with BnB solvers, while89

[Nunes et al., 2020] only compared their algorithm against greedy approaches. A comparison of our90

method with other MDP approaches is presented in the supplementary material.91

2.4 Interpretability of Decision Trees.92

The interpretability of a decision tree is usually associated with its complexity, e.g. its depth or its93

total number of nodes. For trees with 3 to 12 leaves, [Piltaver et al., 2016] observed a strong negative94

correlation between the number of leaves in a tree and a “comprehensibility” score given by users.95

Most of the literature considers the total number of test nodes as its complexity measure, but other96

definitions of complexity exist. [Lipton, 2018] coined the term simulatability, which is related to the97

average number of tests performed before taking a decision. This quantity naturally arises in our98

MDP formulation. We show in a qualitative study that both criteria are often correlated but on some99

datasets, DPDT returns an unbalanced tree with more test nodes that are only traversed by a few100

samples.101

3 Decision Trees for Supervised Learning102

Let us consider a training dataset D = {(xi, yi)}i∈{1,...,N}, made of (data, label) pairs, (xi, yi) ∈103

(X,Y ), where X ⊆ Rp. A decision tree T sequentially applies tests to xi ∈ X before assigning it a104

value in Y , which we denote T (xi) ∈ Y . The tree has two types of nodes: test nodes that apply a105

test and leaf nodes that assign a value in Y . A test compares the value of an attribute with a given106

threshold value, x.,2 ≤ 3". In this paper, we focus on binary decision trees, where decision nodes107

split into a left and a right child with axis aligned splits as in [Breiman et al., 1984]. However, all our108

results generalize straitghforwardly to tests involving functions of multiple attributes. Furthermore,109

we look for trees with a maximum depth D, where D is the maximum number of tests a tree can110

apply to classify a single xi ∈ X . We let TD be the set of all binary decision trees of depth ≤ D.111

Given a loss ℓ defined on Y × Y we look for trees in TD satisfying112

T ∗ = argmin
T∈TD

Lα(T ), (1)

= argmin
T∈TD

1

N

N∑
i=0

ℓ(yi, T (xi)) + αC(T ), (2)

where C : T → R is a function that quantifies the complexity of a tree. It could be the number113

of nodes as in [Mazumder et al., 2022]. In our work, we are interested in the expected number of114

tests a tree applies on any arbitrary data x ∈ D. As for ℓ, in a regression problem Y ⊂ R and115

ℓ(yi, T (xi)) can be (yi−T (xi))
2. For supervised classification problems, Y = {1, ...,K}, where K116

is the number of class labels, and ℓ(yi, T (xi)) = 1{yi ̸=T (xi)}. In our work, we focus on supervised117

classification but the MDP formulation extends naturally to regression.118

4 Decision Tree Learning as an MDP119

Our approach encodes the decision tree learning problem expressed by Eq. (2) as a finite horizon120

Markov Decision Problem (MDP) ⟨S,A,Rα, P,D⟩. We present this MDP for a supervised clas-121

sification problem with continuous features, but again, our method extends to regression and to122

other types of features. The state space of this MDP is made of subsets X of the dataset D as well123

as a depth value d: S = {(X, d) ∈ P (D) × {0, ..., D}}, where P (D) is the power set of D. Let124

F = {f : f(.) = 1{.≤xij},∀i ∈ {1, ..., N},∀j ∈ {1, ..., p}} be a set of binary functions. We125

consider only tests that compare attributes to values within the dataset because comparing attributes to126

other values cannot further reduce the training objective. The action space A of the MDP is then the set127

of all possible binary tests as well as class assignments: A = F ∪ {1, ...,K}. When taking an action128

a ∈ F , the MDP will transit from state (X, d) to either its “left" state sl = (Xl, d+ 1) or its “right"129

state sr = (Xr, d+1). In particular the MDP will transit to sl = ({(xi, yi) ∈ X : a(xi) = 1}, d+1)130

with probability pl =
|Xl|
|X| or to sr = (X \Xl, d + 1) with probability pr = 1 − pl. Furthermore,131

to enforce a maximum tree depth of D, whenever a state is s = (., D) then only class assignment132

actions are possible in s. When taking an action in {1, ...,K} the MDP will transit to a terminal state133
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denoted sdone that is absorbing and has null rewards. The reward of taking an action a in state s is134

given by the parameterized mapping Rα : S ×A→ R that enforces a trade-off between the expected135

number of tests and the classification accuracy. It is defined by:136

Rα(s, a) = Rα((X, d), a),

=

−α, if a ∈ F ,
− 1

|X|
∑

yi∈X

1yi ̸=a if a ∈ {1, ...,K}.

The complexity-performance trade-off is encoded by the value 0 ≤ α ≤ 1, which is the price to137

pay to obtain more information by testing a feature. A more detailed study of the trade-off is given138

in section 6.4. The maximum depth parameter D is a time horizon, i.e. the number of actions it is139

possible to take in one episode. An algorithm solving such an MDP can always return a deterministic140

policy [L. Puterman, 1994] of the form: π : S → A that maximizes the expected sum of rewards141

during an episode:142

π = argmax
π

Jα(π), (3)

Jα(π) = E

[
D∑
t=0

Rα(st, π(st))

]
, (4)

where the expectation is w.r.t. random variables st+1 ∼ P (st, π(at)) with initial state s0 = (D, 0).143

From deterministic policy to binary DT. One can transform any deterministic policy π of the above144

MDP into a binary decision tree T with a simple extraction routine E(π, s), where s ∈ S is a state.145

E is defined recursively in the following manner. If π(s) is a class assignment then E(π, s) returns a146

leaf node with class assignment π(s). Otherwise E(π, s) returns a binary decision tree that has a test147

node π(s) at its root, and E(π, sl) and E(π, sr) as, respectively, the left and right sub-trees of the148

root node. To obtain T from π, we call E(π, s0) on the initial state s0 = (D, 0).149

Equivalence of objectives. When the complexity measure C of Lα is the expected number of tests150

performed by a decision tree, the key property of our MDP formulation is that finding the optimal151

policy in the MDP is equivalent to finding T ∗, as given by the following proposition152

Proposition 1: Let π be a deterministic policy of the MDP and π∗ one of its optimal deterministic153

policies, then Jα(π) = −Lα(E(π, s0)) and T ∗ = E(π∗, s0).154

The proof is given in the Appendix H.155

5 Algorithm156

We now present the Dynamic Programming Decision Tree (DPDT) algorithm. The algorithm is made157

of two essential steps. The first and most computationally expensive step constructs the MDP of158

Section 4. The second step is to solve it to obtain policies maximizing Eq.(4) for different values of159

α. Both steps are now detailed.160

5.1 Constructing the MDP161

An algorithm constructing the MDP of Section 4 essentially computes the set of all possible decision162

trees of maximum depth D whose decision nodes are in F . This specific MDP is a directed acyclic163

graph. Each node of this graph corresponds to a state for which one computes the transition and164

reward functions. To limit memory usage of non-terminal nodes, instead of storing all the samples165

in (X, d), we only store d and the binary vector of size N , xbin = (1{xi∈X})i∈{1,...,N}. Even then,166

considering all possible splits in F will not scale. We thus introduce a state-dependent action space167

As, much smaller than A and populated by the tests generating function.168

5.1.1 Tests generating functions169

A tests generating function is any function ϕ of the form ϕ : S → P (F), where P (F) is the power170

set of all possible data splits F . For a state s ∈ S, the state-dependent action space is defined by171

As = ϕ(s) ∪ {1, ...,K}. Because for a given state s we might have that ϕ(s) ̸= F , solving the172
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Figure 1: Comparison of DPDT algorithm on the Iris dataset in
terms of the number of states in the MDP when using different
tests generating functions. “TOP B” are tests function return-
ing the B most informative splits for each state. “Exhaustive”
returns all possible states (equivalent to the search space of
Quant-BnB). DPDT-Dcart are the tests functions that make
calls to the CART algorithm.

MDP with state-dependent actions As is not guaranteed to yield the minimizing tree in Eq. (2), as173

optimization is now carried on a subset of TD. In this section, we compare different choices of ϕ on a174

sufficiently small dataset such that ϕ(s) = F ,∀s ∈ S remains tractable. As a baseline, we use a tests175

generating function proposed in [Nunes et al., 2020], and compare with our proposed ϕ in terms of176

quality of the best tree vs. size of the MDP.177

Algorithm 1: DPDT-K MDP generation
Data: Dataset D,max depth D
Result: Decision Tree Search MDP
d← 0
s0 ← [D, d]
MDP.AddState(s0) # MDP of Sec. 4
while d < D do

# For all states at the current
depth d

for s = (Ds, ds) ∈ MDP s.t. ds = d do
# Test generating function
follwing Sec. 5.1.1

Tcart ← CART(Ds,maxdepth=K)
As ← ExtractSplits(Tcart)
for a ∈ As do

# MDP expansion
follwoing Sec. 4

MDP.AddRewardAndTransition(s, a)
MDP.AddStates(NextStates(s, a))

end
end
d← d+ 1;

end

Exhaustive function. When ϕ(s) = F ,∀s ∈ S, the178

MDP contains all possible data splits. In this case,179

the MDP ‘spans’ all trees of depth at most D and the180

solution to Eq. (4) will be the optimal decision tree of181

Eq. (2). In this case, the number of states in the MDP182

would be of the order of
D−1∑
d=0

K(2Np)d which scales183

exponentially with the maximum depth of the tree:184

this limits the learning to very shallow trees (D ≤ 3)185

as discussed in [Mazumder et al., 2022]. The goal186

of a more heuristic choice of ϕ is to have a maximal187

number of splits B = maxs∈S |ϕ(s)| that is orders188

of magnitude smaller than that of the exhaustive case189

|F| = Np such that the size of the MDP, which is190

now in the order of
D−1∑
d=0

K(2B)d, remains tractable191

for deeper trees.192

Top B most informative splits. [Nunes et al., 2020]193

proposed to generate tests with a function that returns194

for any state s = (X, d) the B most informative splits195

over X in the sense of entropy gain. In practice, we196

noticed that the returned set of splits lacked diversity197

and often consists of splits on the same attribute with minor changes to the threshold value. While198

this still leads to improvements over greedy methods—as shown in the study presented next—it is at199

the expense of a much larger MDP, i.e., search space.200

Top B most discriminative splits. Instead of returning the most informative splits, we propose at201

every state s = (X, d), to find the most discriminative splits, i.e. the attribute comparisons with which202

one can best predict the class of data points in X . This is similar to the minimum description length203

principle used in [Demirovic et al., 2022] that transforms a dataset with continuous attributes to a204

binary dataset. However, we perform this transformation dynamically at every state while building205

the MDP. In practice, this amounts to calling CART with a maximum depth Dcart (a hyperparameter206

of DPDT) on every state s, and using the test nodes of the tree returned by CART as ϕ(s).207

While restricting the action space at a given state s to the actions of the tests generating function ϕ(s)208

loses the guarantees of finding T ∗, we are still guaranteed to find trees better than those of CART:209

Proposition 2: Let π∗ be an optimal deterministic policy of the MDP, where the action space at every210

state is restricted to the top B most informative or discriminative splits. Let T0 be the tree learned by211

CART and {T1, . . . , TM} be the set of trees returned by postprocessing pruning on T0, then for any212

α > 0, Lα(E(π∗, s0)) ≤ min0≤i≤M Lα(Ti).213
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The proof for Prop. 5.1.1 follows from the fact that policies generating the tree returned by CART214

and all of its sub-trees (which is a superset of the trees returned by the pruning procedure) are215

representable in the MDP and by virtue of the optimality of π∗ and the equivalence in Prop. 4, are216

worse in terms of regularized loss Lα than the tree E(π∗, s0). The consequences of Prop. 5.1.1217

are clearly observed experimentally in Fig. 3. While this proposition holds for the latter two test218

generating functions, in practice, the tests returned by our proposed function are of much higher219

quality as discussed next.220

Comparing tests generating functions. We conduct a small study comparing the exhaustive ϕ221

(labeled “Exhaustive”) against the ϕ proposed in [Nunes et al., 2020] (labeled “Top B”) and the one222

used in our algorithm (labeled “DPDT-K”, where K is the maximum depth given to CART), on the Iris223

dataset. Figure 1 shows that while the latter two ϕ generalize the greedy approach (labeled “CART”),224

DPDT scales much more gracefully than when using the ϕ of [Nunes et al., 2020]. With Dcart = 4,225

DPDT-4 finds the optimal tree in an MDP having several orders of magnitude less states (a few226

hundreds vs a few millions) than the one built using the exhaustive ϕ. This favorable comparison227

against exhaustive methods also holds for larger datasets as shown in Sec. 6.2.228

The MDP construction of DPDT-K using the tests generating function is explained in Alg. 1. Starting229

from s0, the state containing the whole dataset, CART with a maximum depth of K is called which230

generates a tree with up to 2K − 1 split nodes. These splits are what constitutes As0 , the set of binary231

tests admissible at s0. For every such action, we compute the reward and transition probabilities to a232

set of new states at depth 1. This process is then iterated for every state at depth 1, calling CART with233

the same maximum depth of K on each of the states at depth 1, generating a new set of binary tests As234

for each of these states s and so on until reaching the maximum depth. Upon termination of Alg. 1,235

we compute the rewards for labelling actions at every state and we call the dynamic programming236

routine below to extract the optimal policy.237

5.2 Dynamic Programming238

Having built the MDP, we backpropagate using dynamic programming the best optimal actions from239

the terminal states to the initial states. We use Bellman’s optimality equation to compute the value of240

the best actions recursively:241

Q∗(s, a) = E
[
rd+1 +max

a′
Q∗(sd+1, a

′)|sd = s, ad = a
]
,

=
∑
s′

P (s, a, s′)
[
R(s, a) + max

a′
Q∗(s′, a′)

]
.

Pareto front. As our reward function is a linear combination of the complexity and performance242

measures, we can reach any tree “spanned” by the MDP that lies on the convex hull of the Pareto243

front of the complexity-performance trade-off. In DPDT, we compute the optimal policy for several244

choices of α using a vectorial representation of the Q-function that now depends on α:245

Q∗(s, a, α) =
∑
s′

P (s, a, s′)
[
Rα(s, a) + max

a′
Q∗(s′, a′, α)

]
.

We can then find all policies greedy w.r.t. Q∗π∗(s, α) = argmax
a∈A

Q∗(s, a, α). Such policies satisfy246

Eq. (4) for any value of α. Given a set of values of α in [0, 1], we can compute in a single backward247

pass Q∗(s, a, α) and π∗(s, α) and return a set of trees, optimal for different values of α (see Fig.7 for248

an illustrative example). In practice, the computational cost is dominated by the construction of the249

MDP 1 and one can promptly back-propagate the Q-values of over 103 values of α.250

6 Experiments251

In this section we study DPDT from different perspectives. First, in Sec. 6.2, we study DPDT in252

terms of its performance as a solver for the combinatorial optimization problem of Eq. (2). Here, we253

focus on smaller problems (maximum depth ≤ 3) in which the optimal solution can be computed254

by Branch-and-Bound (BnB) algorithms. In this first set of experiments, we only report the training255

accuracy vs. the wall-clock time as done in prior work [Mazumder et al., 2022]. Then we study DPDT256
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for model selection (Sec. 6.3). From the perspective of the end user, a decision tree algorithm may257

be used for selecting either a tree that generalizes well to unseen data or a tree that is interpretable.258

We compare classification of unseen data of trees obtained by DPDT to other baselines described259

below. Then, we plot the train accuracy of trees learned by CART and DPDT as a function of their260

complexity to observe how a user can choose the complexity-performance trade-off. We use the 16261

classification datasets with continuous attributes experimented with in [Mazumder et al., 2022].262

When considering other optimal BnB baselines [Demirovic et al., 2022, van der Linden et al., 2023],263

two problems arise for fair comparison with DPDT in terms of model selection. First, to obtain a set264

of tree from such baselines, the optmization algorithms need to be ran as many times as trees wanted265

by the user. For example, one can obtain a set of trees of depth ≤ 5 by running MurTree 25 times266

with different maximum number of test nodes allowed in the learned trees. This could require up267

to 25 times the runtime of a single optimization. Second, MurTree and Pystreed [Demirovic et al.,268

2022, van der Linden et al., 2023] require binary attributes. Learned trees are not comparable directly269

with trees trained on continuous attributes because each tree node testing a binary feature actually270

does at least two tests on the original continuous feature (see Appendix F.1 or Appendix D1 from271

[Mazumder et al., 2022]). DPDT is coded in Python and the code is available in the supplementary272

material. All experiments are run on a single core from a Intel i7-8665U CPU. All the links to273

code used for the baselines are given in the Appenix A274

6.1 Baselines275

Quant-BnB. [Mazumder et al., 2022] propose a scalable BnB algorithm that returns optimal trees.276

We emphasize that Quant-BnB is not meant to scale beyond tree depths of 3 (explicitly stated in the277

Quant-BnB paper) and the authors’ implementation of Quant-BnB does not support learning trees of278

depth > 3.279

MurTree, Pystreed. To use [Demirovic et al., 2022, van der Linden et al., 2023] with continuous280

features datasets, the minimum length description principle is used to obtain bins in a continuous281

feature domain, then a one hot encoding is applied to binarize the binned dataset. This can result in282

datasets with more than 500 features. As MurTree and Pystreed memory scales with the square of283

number of binary attributes, using those algorithms to find trees of depths greater than 3 often results284

in Out Of Memory (OOM) errors.285

Deep Reinforcement Learning. We use Custard [Topin et al., 2021] as a DRL baseline. Custard286

has two hyperparameters: the DRL algorithm to learn a policy in the IBMDP and a tests generating287

function that gives p tests per feature. In our experiments, Custard-5 and Custard-3 correspond to288

DQN agents [Mnih et al., 2015] that can test each dataset attribute against 5 or 3 values respectively.289

CART [Breiman et al., 1984] is a greedy algorithm that can build suboptimal trees for any dataset.290

6.2 Optimality gap291

Because we use a tests generating function that heuristically reduces the search space, a first question292

we want to investigate is how good is our solver for the combinatorial problem of decision tree search.293

To do so, we focus on max depth 3 problems for which T ∗ can be computed exactly using Quant-BnB294

[Mazumder et al., 2022]. As Quant-BnB has a different complexity regularization (number of nodes in295

the tree) than DPDT (average number of tests per classified data), we set the complexity regularizing296

term α to 0 to allow direct comparisons. This does not create an artificial learning and on 14 out of297

16 datasets, trees with α = 0 generalize best, and second best on the remaining 2. That is because at298

depth 3 the risk of overfitting is small.299

We run DPDT with calls to CART with maximum depth 4 or 5 as a tests generating function (DPDT-4300

and DPDT-5 respectively). Quant-BnB is first run without a time limit to obtain optimal decision trees301

w.r.t. Eq.(2). Quant-BnB is also run a second time with a time limit equal to DPDT-5’s runtime (we302

also added in the supplementary material results for Quant-BnB-T+5 and Quant-BnB-T+50 that add303

extra seconds to Quant-BnB-T ). CART is run with the maximum depth set to 3 and the information304

gain based on entropy. All algorithms are run on the same hardware. Custard is run 5 times per dataset305

because it is a stochastic algorithm. We use stable-baselines3 implementation of DQN [Raffin et al.,306

2021] with default hyperparameters. A Custard run usually takes 10 minutes. We provide learning307

curves in Fig. 4. The key result from Table 1 is that DPDT-5 has better train accuracies than the308
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Figure 2: Performance gain of DTs over CART trees. Left, accuracy on unseen data gain of trees
with depth ≤ 5 selected with procedure of Sec. 6.3. Right, average number of tests of those trees.

other non-greedy methods when run in similar runtimes across all classification tasks. Furthermore,309

the train accuracy gaps between the optimal decision trees obtained from Quant-BnB, in sometimes310

several hours, and DPDT are usually small (the maximum gap is 1.5% for the bean dataset).311

Table 1: Train accuracy of decision tree algorithms. The “Quant-BnB” columns correspond to
results for Quant-BnB with no time limit, i.e returing the optimal tree. The “Quant-BnB-T ” column
corresponds to results for Quant-BnB run for as long as DPDT-5. The “Greedy” columns correspond
to CART with maximum depth of 3.

Datasets Accuracy (train %) of depth-3 trees Runtime in seconds
Names Samples p Classes Quant-BnB Quant-BnB-T DPDT-5 DPDT-4 Custard-5 Custard-3 Greedy Quant-BnB DPDT-5 DPDT-4 Custard-5 Custard-3 Greedy
avila 10430 10 12 58.5 57.3 58.5∗ 58 40.9± 0.6 41± 0.3 53.8 4188 5.645 2.14 553 632 0.031
bank 1097 4 2 98.3 97.1 98 98 49.6± 1.6 35.5± 20.9 95.3 4.4 0.158 0.142 648 661 0.003
bean 10888 16 7 87.1 85.3 85.6 85 18.2± 2.3 19.2± 4.1 80.5 1014 16.194 5.836 697 687 0.114

bidding 5056 9 2 99.3 98.6 99.3∗ 99.3∗ 81± 4.4 79.4± 2.1 98.2 30 0.545 0.377 693 671 0.006
eeg 11984 14 2 70.8 68.3 70.3 70 54.9± 0.1 54.8± 0.5 66.6 4042 8.927 3.032 692 682 0.023
fault 1552 27 7 68.2 64.6 68 65.7 30.3± 1.4 27.5± 8.6 55.3 − 2.46 1.243 720 711 0.015
htru 14318 8 2 98.1 98 98 98 86± 0.9 59.4± 31.7 97.9 10303 11.316 4.246 690 684 0.055

magic 15216 10 2 83.1 82.6 83 82.7 58.1± 4.3 58.5± 3.0 79.3 1090 14.838 5.443 685 675 0.069
occupancy 8143 5 2 99.4 99.3 99.4∗ 99.3 64.7± 0.5 65.1± 8.3 99.1 106 1.458 0.786 687 664 0.008

page 4378 10 5 97.1 96.5 97 97.0 90.2± 0.4 88.3± 4.8 96.3 471 2.859 1.29 708 687 0.01
raisin 720 7 2 89.4 88.1 88.5 88.3 50.9± 2.2 49.7± 1.0 86.9 167 0.501 0.3 668 667 0.003
rice 3048 7 2 93.8 93.7 93.7 93.6 51.9± 0.9 48.1± 3.4 93.0 1340 2.004 0.809 668 666 0.01

room 8103 16 4 99.2 98.8 99.2∗ 99.2∗ 71.5± 3.4 67.6± 5.6 97.7 180 2.714 1.884 1362 1389 0.01
segment 1848 18 7 88.7 79.1 88.2 88.2 13.7± 0.5 13.9± 0.5 81.6 153 0.771 0.397 812 761 0.009

skin 196045 3 2 96.9 96.7 96.7 96.7 61.2± 2.2 62.2± 8.7 96.6 350 48.894 19.239 752 745 0.082
wilt 4339 5 2 99.6 99.4 99.5 99.5 98.4± 0.2 98.3± 0.1 99.1 67 0.582 0.352 663 610 0.008

6.3 Selecting the best tree for unseen data312

We now investigate whether DPDT is suited for model selection i.e. whether DPDT can identify an313

accurate decision tree that will generalize well to unseen data for a given classification task. We used314

the following model selection procedure for each classification task. First, we learn a set of decision315

trees of depth D ≤ 5 with DPDT-3, DPDT-2, and CART on a training set using different values of316

α for DPDT or minimal complexity post-pruning for CART. Because Quant-BnB simply cannot317

compute trees of depth > 3, we only report the accuracy on unseen data of Quant-BnB trees from318

Table 1. Because the BnB baselines MurTree and Pystreed are not designed to return a set of trees,319

we brute force the computation of at most 25 trees from each by setting the maximum tree nodes320

parameter to 0, ..., 25 − 1. Then, for each baseline we evaluate each learned tree (only one tree for321

Quant-BnB) on a test set and select the tree with highest test accuracy. Fig 2 reports the number of322

datasets for which each baseline has better generalization performances than CART, and the number323

of datasets for which DPDT-K returned trees performing less tests on average than CART trees. A324

table with accuracies of the selected trees on a validation set, the runtime in seconds to obtain the set325

of trees to select from, and the average number of tests performed on data in Appendix. All BnB326

baselines required more than 5 minutes to generate a single tree. As such, the runtime for BnB to327

obtain the whole set of trees is order of magnitudes higher than CART and DPDT. DPDT learns a set328

of trees of at most depth 5 on the complexity-performance convex-hull in seconds which highlights329

its ability to scale to non-shallow trees. For that purpose, DPDT built the MDP of possible solution330

trees of at most depth 5 using CART as a tests generating function, and backpropagated state-action331

values for 1000 different α.332

After applying the above selection procedure, we see on Table 2 that DPDT generalized better than333

CART on 10 out of 16 datasets while CART outperformed DPDT on only one dataset. When accuracy334

on test data for CART is already close to 100%, our approach can of course not largely outperform it.335

However, the benefits of our method have to also be appreciated in terms of gains in average number336
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of tests. We can see that when CART does not generalize well, our method can have clear gains in337

generalization (e.g. avila, eeg and fault). Otherwise, when CART is close to 100% accuracy, our338

method can achieve similar results with less tests. In raisin, rice and room we need two fewer tests339

which is substantial when tests are expensive, e.g. an MRI scan when testing patients.340

6.4 Selecting the most interpretable tree341
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Figure 3: Complexity-performance trade-offs of CART and DPDT on two different classification
datasets. CART returns a set of trees with the minimal complexity post-pruning algorithm. DPDT
returns a set of trees by returning policies for 1000 different α.

In this section, we show how a user can use DPDT to select a tree with complexity preferences. In342

Figure 3, we plot the trade-offs of trees returned by CART and DPDT. The trade-off is between343

accuracy and average number of tests. Because this is the trade-off that DPDT optimizes and because344

the trees of CART are “spanned” by the MDP created by DPDT, all trees returned by DPDT will345

dominate in the multi-objective sense trees returned by CART. This is well demonstrated in practice by346

Figure 3 where the curve of DPDT is always above that of CART. Learned trees and their accuracies347

as functions of number of nodes and tests are presented in Appendices 5 8 9. Finally, decision tree348

search being a combinatorial problem, there are always limits to scalability. In Appendix 6 we scale349

up to a tree depth of 10 by running DPDT-2 up to a depth of 6 then switch to DPTD-1 (i.e. greedy)350

thereafter. The rationale is that a non-greedy approach is more critical closer to the root.351

7 Limitations, Future Work, and Conclusion352

Limitations. In our opinion, both the strength and the weakness of DPDT come from the choice of353

the tests generating function. If the tests generating function generates too much tests in each MDP354

state, the runtime will grow and there is a risk for out-of-memory errors. This can be alleviated with355

parallelizing (expanding MDP states on different processes) and caching (only expand unseen MDP356

states), similar to [Demirovic et al., 2022]. A rule of thumb for running DPDT on personal CPUs is357

to choose a tests generating function resulting in an MDP with at most 106 states.358

Future Work. DPDT could scale to bigger datasets by combining Custard [Topin et al., 2021] with359

tests generating functions and tabular deep learning techniques [Kossen et al., 2021]. The latter is a360

promising research avenue. The transformer-based architecture from [Kossen et al., 2021] takes a361

whole train dataset as input and learns representations taking in account relationships between all362

training samples and all labels. Test actions are then the output of such a neural architecture: the tests363

generating function is learned.364

Conclusion. In this work we solve MDPs whose optimal policies are decision trees optimizing a trade-365

off between tree accuracy and complexity. We introduced the Dynamic Programming Decision Tree366

algorithm that returns several optimal policies for different reward functions. DPDT has reasonable367

runtimes and is able to scale to trees with depth greater than 3 using information-theoretic tests368

generating functions. To the best of our knowledge, DPDT is the first scalable decision tree search369

algorithm that runs fast enough on continuous attributes to be an alternative to CART for model370

selection of any-depth trees. DPDT is a promising research avenue for new algorithms offering371

human users a greater control than CART over tree selection in terms of generalization performance372

and interpretability.373
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A Code links450

Quant-BnB. The Julia code for Quant-BnB is available at https://github.com/451

mengxianglgal/Quant-BnB.452

CART. We use the scikit-learn Cython implementation of CART available at https://453

scikit-learn.org/stable/modules/tree.html#tree-classification with the criterion454

parameter fixed to “entropy”.455

MurTree, Pystreed. Codes are available at https://github.com/MurTree/pymurtree and at456

https://github.com/AlgTUDelft/pystreed.457

B On the failure of deep reinforcement learning.458

For the dataset X = {(1, 2), (2, 1), (3, 4), (4, 3)}, Y = {0, 1, 2, 3} both our MDP and IBMDP are459

equivalent for learning the optimal decision tree of depth 2. We show on Fig. 4 that two different460

DRL algorithms exhibit opposite performance: DQN can learn the optimal decision tree while PPO461

[Schulman et al., 2017] cannot. For that reason, we only trained Custard using DQN as the DRL agent.462

We see on Fig. 4 and Table 1 that Custard-5 converged to trees worst than CART for all classification463

datasets. This shows that while more scalable, DRL approaches are still not competitive on these464

types of problems. [Kohler et al., 2023] studied potential failure modes of DRL in our setting.465
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Figure 4: Left, DRL to learn the optimal depth 2 tree. Right, Custard-5 to learn depth 3 decision trees
on classification datasets
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Figure 5: Trees for the fault dataset. Top: trees from DPDT. Bottom: trees from CART. A is accuracy,
N the number of nodes, T the average number of tests.

D Schematics DTDP467

E Detailed res of model selection468

F Comparisons with baselines operating on binary datasets469

F.1 Why comparisons with baselines that binarize datasets is not fair in our favor?470

Algorithms finding optimal DTs for binary datasets such as MurTree [Demirovic et al., 2022] use471

a binarization method to transform a dataset with continuous attributes to a dataset with binary472

attributes. However, a DT learned on the binary dataset, whenever it tests the value of a binary473

attribute, can lead to up to two tests on the respective continuous attribute. Hence, DTs of a given474

maximum depth on the binary dataset are actually deeper if transformed into DTs on the original475

dataset with continuous attributes. Despite this, we show in Table 1 of this supplementary material476
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Figure 6: MDP for a training dataset made of three samples (illustrated with an oval and 2 diamonds),
two continuous attributes (x and y), and two classes. The tests generating function generated three
possible tests. There is an initial state (D, 0) (the training dataset at depth 0), and six non-terminal
states (three tests times two children states). Rewards are either α or the misclassification, and
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Table 2: Trees of depth ≤ 5 selected with the procedure described in Sec. 6.3.
Datasets Accuracy (%) on unseen data Runtime (s.) Average Nb.Tests
Names DPDT-3 DPDT-2 CART Quant-BnB MurTree Pystreed DPDT-3 DPDT-2 CART DPDT-3 DPDT-2 CART
avila 66.9 65.7 60.5 57.3 OOM OOM 51.625 2.701 1.031 4.9 4.9 4.8
bank 99.3 97.8 99.3 97.8 48.6 48.6 2.054 0.353 0.031 3.2 3.7 3.4
bean 91.1 91.1 89.9 84.7 OOM OOM 88.142 7.571 5.369 4.6 4.9 5.0

bidding 99.2 99.2 99.2 98.5 97.5 97.5 2.963 0.545 0.081 1.4 1.4 2.3
eeg 78.0 74.6 73.0 73.0 OOM OOM 57.038 4.347 0.892 4.6 4.8 5.0
fault 71.8 72.8 57.9 61.2 OOM OOM 35.185 2.611 0.536 5.0 4.5 4.9
htru 98.0 98.3 98.3 97.9 OOM 91.2 63.519 5.189 2.174 1.1 2.4 4.7

magic 84.5 84.8 82.5 82.1 OOM OOM 98.623 7.06 3.189 5.0 4.8 5.0
occupancy 99.5 99.5 99.5 96.3 OOM 82.3 11.113 1.263 0.162 1.0 1.0 1.4

page 97.1 97.1 96.7 95.8 OOM 93.4 26.596 2.547 0.369 3.5 5.0 4.8
raisin 87.8 91.1 90.0 89.0 45.6 45.6 7.756 1.775 0.069 3.1 2.3 4.5
rice 93.7 94.2 93.4 93.9 87.1 87.1 17.915 1.693 0.356 1.6 1.7 3.6

room 99.2 99.4 99.4 98.6 OOM OOM 19.134 1.574 0.247 2.5 2.3 4.1
segment 93.5 93.1 87.4 82.7 OOM OOM 6.488 0.879 0.184 3.7 3.9 3.9

skin 99.5 99.2 98.6 98.6 OOM OOM 265.243 18.066 1.985 3.8 3.8 4.2
wilt 87.2 84.8 87.6 81.3 70.4 70.4 3.898 0.462 0.125 4.1 3.2 3.9

that DPDT typically finds better solutions (in terms of training accuracy) than MurTree + binarization477

even though the comparison is not fair in our favor since MurTree is considering deeper trees.478

To illustrate this unbalance with an example, we present a dataset with 3 samples, 2 classes, and 1479

continuous attribute. After binning the continuous attribute and binarizing the dataset into 3 binary480

attributes, we compute the optimal depth 1 tree like [Demirovic et al., 2022] or [Verwer and Zhang,481

13



2019] would do. To apply this depth 1 tree to the original continuous attribute dataset, the root node482

"a ∈ [0.2, 0.22]" should be decomposed in two decision nodes "a ≤ 0.19" and "a ≤ 0.22" before483

making a label assignment. So the corresponding tree that can be applied on the continuous attribute484

is actually of depth 2.485

a y
x1 0.1 1
x2 0.2 2
x3 0.22 2
x4 0.3 1

→

[0, 0.19] [0.2, 0.22] [0.23, 0.3] y
x1 1 0 0 1
x2 0 1 0 2
x3 0 1 0 2
x3 0 0 1 1

486

←487

F.2 Experiments488

Comparing baselines such as [Verwer and Zhang, 2019] or [Demirovic et al., 2022] to DPDT or489

Quant-BnB [Mazumder et al., 2022] that operate directly on continuous attributes with the same490

maximum depth is not fair in favor of the latter algorithms as discussed above. Still, for the sake of491

curiosity we performed comparisons on datasets of prior works. These can be split into two groups.492

1) MurTree: Demirovic et al. [2022] propose an algorithm that retrieves optimal trees for large493

datasets with binary features using dynamic programming. They also propose a binarization method494

to retrieve suboptimal shallow trees for large datasets with continuous features. We do not run495

MurTree but use of the results in Table 6 from Mazumder et al. [2022] (see the “approx” column)496

which previously compared Quant-BnB to MurTree.497

2) OCT, MFOCT, BinOCT: Bertsimas and Dunn [2017], Aghaei et al. [2020], Verwer and498

Zhang [2019] propose optimal tree algorithms which formulate the learning problem as a MIP.499

OCT and MFOCT can produce optimal trees for small datasets with continuous features. BinOCT500

can also produce optimal trees for small datasets with continuous features after they have been501

binarized. We make use of the results available at https://github.com/LucasBoTang/Optimal_502

Classification_Trees.503

Reproducibility: as mentioned above, we did not run the additional baselines but instead used504

available results. As such runtimes were provided only when available. OCT, MFOCT, BinOCT were505

run on a single core of an Intel(R) Core(TM) CPU i7-7700HQ @ 2.80GHz. MurTree was run506

on a single core of a Intel Xeon 2.30GHz. According to online benchmarks the performances of507

those machines are similar to our Laptopt CPU Intel® Core™ i7-8665U CPU.508

G Markov Decision Problem formulations of the Decision Tree Learning509

Problem510

In this section we compare our Markov Decision Problem (MDP) formulation of decision tree511

learning from Section 4 to that of prior work, namely [Garlapati et al., 2015] and [Topin et al.,512

2021]. In a nutshell, prior work viewed the task as a deterministic and Partially Observable MDP513

[Sigaud and Buffet, 2013] and used algorithms such as Q-learning [Garlapati et al., 2015] or deep514

Q-learning [Topin et al., 2021] to solve them in an online fashion one datum from the dataset at a515

time. Our approach is different in that it builds a stochastic and fully observable MDP. Our MDP516

makes it possible to perform two operations that are critical for DPDT: i) being able to call the517

tests generating function which does not operate online but needs full offline access of the dataset518

ii) being able to efficiently compute through dynamic programming optimal policies for different519

complexity-performance trade-offs, which is critical in practice as our improved training accuracy520

compared to greedy methods would otherwise quickly lead to overfitting. High level differences521
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Datasets Accuracy of depth-3 trees
Names Samples Features Classes Opt. DPDT-5 DPDT-4 MurTree CART
avila 10430 10 12 58.5% 58.5∗% 58 % 58.5∗% 53.2%
bank 1097 4 2 98.3% 98% 98% 97.3% 93.3%
bean 10888 16 7 87.1% 85.6% 85% 86.9% 77.7%

bidding 5056 9 2 99.3% 99.3∗% 99.3% 98.1% 98.1%
eeg 11984 14 2 70.8% 70.3% 70% 68.8% 66.6%
fault 1552 27 7 68.2% 68% 65.7% 67.3% 55.3%
htru 14318 8 2 98.1% 98% 98% 97.9% 97.9%

magic 15216 10 2 83.1% 83% 82.7% 81.1% 80.1%
occupancy 8143 5 2 99.4% 99.4∗% 99.3% 99.1% 98.9%

page 4378 10 5 97.1% 97% 97% 96.6% 96.4%
raisin 720 7 2 89.4% 88.5% 88.3% 87.5% 86.9%
rice 3048 7 2 93.8% 93.7% 93.6% 93.4% 93.3%

room 8103 16 4 99.2% 99.2∗% 99.2% 99.2∗% 96.8%
segment 1848 18 7 88.7% 88.2% 88.2% 88.1% 57.4%

skin 196045 3 2 96.9% 96.7% 96.7% 96.8% 96.6%
wilt 4339 5 2 99.6% 99.5% 99.5% 98.7% 99.3%

Table 3: Training accuracy of different decision tree learning algorithms. All algorithms learn trees
of depth at most 3 on 16 classification datasets. MurTree returns decision trees for datasets binarized
using using the minimum description length principle. Results for MurTree are taken from Tables 2
and 6 from [Mazumder et al., 2022].

Datasets Train Accuracy depth-5 Test Accuracy depth-5 Runtime depth-5
Names Samples Features Classes DPDT-4 DPDT-5 OCT MFOCT BinOCT CART DPDT-4 DPDT-5 OCT MFOCT BinOCT CART DPDT-4 DPDT-5 OCT MFOCT BinOCT CART

balance-scale 624 4 3 90.9% 91.0% 71.8% 82.6% 67.5% 86.5% 77.1% 74.8% 66.9% 71.3% 61.6% 76.4% 68.34 401.71 605.51 600.1 603.95 < 0.001
breast-cancer 276 9 2 94.2% 94.7% 88.6% 91.1% 75.4% 87.9% 66.4% 67.6% 67.1% 73.8% 62.4% 70.3% 19.09 62.36 603.39 600.25 603.67 0.001
car-evaluation 1728 6 4 92.2% 92.2% 70.1% 80.4% 84.0% 87.1% 90.3% 90.3% 69.5% 79.8% 82.3% 87.1% 5.39 38.07 618.09 600.49 613.14 < 0.001

hayes-roth 160 9 3 93.3% 94.2% 82.9% 95.4% 64.6% 76.7% 75.4% 71.2% 77.5% 77.5% 54.2% 69.2% 0.91 2.58 602.02 600.19 601.83 0.001
house-votes-84 232 16 2 100.0% 100.0% 100.0% 100.0% 100.0% 99.4% 95.4% 95.4% 93.7% 94.3% 96.0% 95.1% 0.44 0.65 105.72 10.74 6.6 < 0.001
soybean-small 46 50 4 100.0% 100.0% 100.0% 100.0% 76.8% 100.0% 93.1% 93.1% 94.4% 91.7% 72.2% 93.1% 0.01 0.01 4.18 0.41 1.84 < 0.001

spect 266 22 2 93.0% 93.0% 92.5% 93.0% 92.2% 88.5% 73.1% 73.9% 75.6% 74.6% 73.1% 75.1% 6.32 16.78 604.87 600.33 605.57 0.001
tic-tac-toe 958 24 2 90.8% 91.1% 68.5% 76.1% 85.7% 85.8% 82.1% 82.5% 69.6% 73.6% 79.6% 81.0% 107.94 626.34 615.28 600.45 621.81 0.001

Table 4: Train/test accuracies and runtimes of different decision tree learning algorithms. Note that
we are not using any regularization in this experiment (in order for all solvers to optimize the same
objective function) and as such we might overfit compared to CART that does not optimize the
training error as intensively. All algorithms learn trees of depth at most 5 on 8 classification datasets.
A time limit of 10 minutes is set for OCT-type algorithms. DPDT is used with two different test
generating functions: CART with a maximum depth of 4 and CART with a maximum depth of 5.
The values in this table are averaged over 3 seeds giving 3 different train/test datasets.

between MDPs are summarized in Table 5. For the sake of self-completeness we then detail both522

MDPs of [Topin et al., 2021] and [Garlapati et al., 2015] which are to be contrasted with our MDP523

formulation in Section 4.524

Table 5: MDP formulations of the decision tree learning problem
MDP properties IBMDP [Topin et al., 2021] [Garlapati et al., 2015] Ours

Training samples attributes Any Categorical Any
Discounted Yes Yes No

Horizon Infinite Finite Finite
States Partial information about a single training sample Partial information about a single training sample A full dataset in P(D)

Actions Tests and label assignments State dependent tests and label assignments State dependent tests and label assignments
Transitions Deterministic Deterministic Stochastic

G.1 Iteratvie Bounding MDPs525

An IBMDP [Topin et al., 2021] is an episodic, infinite horizon, discounted MDP. IBMDPs can be526

used for learning decision trees of any base MDP. We discuss here the case where the base MDP is a527

classification task. In this case, during each episode, an agent has to classify a hidden training sample528

xi drawn uniformly from a training dataset with continuous attributes. We assume whiteout loss of529

generality that the training dataset X ⊂ [0, 1]N×p has continuous attributes in [0, 1]. On the other530

hand, the set of labels is Y = {1, ...,K}. An IBMDP is defined as follows.531

State space: the state space is the hypercube [0, 1]3·p. A IBMDP state has two parts. The continuous532

attributes of the hidden training sample xi = (xi1, ..., xip) to classify, and a lower and upper533

bound (Lk, Uk) for each of the p attributes. For each attribute xik, (Lk, Uk) represents the current534

agent knowledge about its hidden value. Initially, (Lk, Uk) = (0, 1) for all k, which are iteratively535

refined by taking tests actions.536

Action space: an agent in an IBMDP can either take an assignment action a ∈ Y , or a test action537

1{xik≤v·(Uk−Lk)+Lk} with k ∈ {1, . . . , p} and v ∈ { 1
d+1 , ...,

d
d+1}, with d ∈ N a hyperparameter of538

the IBMDP.539
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Transition function: if an agent takes a label assignment action, the IBMDP transits to a ter-540

minal state, a new training sample x is drawn at random from X , and the attributes bounds541

(L1, ..., Lp, U1, .., Up) are reset to 0 or 1. If an agent takes a test action, the attributes bounds542

are refined. Let xik be the value of the k-th attribute of the hidden training sample xi, and (Lk, Uk)543

be the current bounds of xik. If 1{xik≤v·(Uk−Lk)+Lk} is true, then Lk is updated to v ·(Uk−Lk)+Lk,544

else, it is Uk that is updated to v · (Uk − Lk) + Lk.545

Reward function: the reward for assigning the label yi ∈ Y to the hidden training sample xi is546

1a=yi
· r+ + 1a̸=yi

· r−, with r+ > 0 and r− < 0. The reward for taking a test action is α < 0.547

G.2 MDP formulation of [Garlapati et al., 2015]548

MDP formulations based on [Garlapati et al., 2015] assume categorical attributes, i.e, the training549

dataset D is in ZN×p. The MDP is episodic with a discount factor and a finite horizon p + 1. An550

episode of this MDP consists of costly queries of a training sample’s attributes until a label assignment551

is made.552

State space: a state of the above MDP has partial information about a training sample to classify.553

At every step of the MDP, an agent queries a hidden attribute and updates its knowledge about the554

training sample by concatenating all revealed attributes.555

Acion space: at every step t in the MDP, an agent can either assign a class label in Y = {1, ...,K},556

or, make a query at of a hidden attribute of a training sample: At = ({1, ..., p} \
t−1⋃
h=0

ah) ∪ Y .557

Transition function: the current state of the MDP contains values of previously queried attributes.558

At t = 0, s = {}. Assuming the hidden training sample to be classified during the current episode559

is xi = (xi1, ..., xip), then the deterministic transition function is: T (s, a = xij) = s ∪ xij or560

T (s, a ∈ Y) = sterminal. At the start of a new episode, a new training sample is drawn uniformly561

from D.562

Reward function: at time t, when the hidden training sample to classify is xi, if the an agent takes563

an assignment action a ∈ D, the reward is 1a=yi
· r+ + 1a̸=yi

· r−, with r+ > 0 and r− < 0. So an564

agent gets a positive signal for making a correct label assignment and negative signal otherwise. If565

the agent takes a query action, the reward is a negative value α in order to discourage taking to much566

queries and control the tree complexity.567

H Proof of equivalence of learning objectives568

In this section, we prove the equivalence between learning an optimal policy in the MDP of Section569

4 and finding the minimizing tree of Eq. (2). We first define C(T ), the expected number of tests570

performed by tree T on dataset D. Here T is induced by policy π, i.e. T = E(π, s0). C(T ) can be571

defined recursively as C(T ) = 0 if T is a leaf node, and C(T ) = 1 + plC(Tl) + prC(Tr), where572

Tl = E(π, sl) and Tr = E(π, sr). In words, when the root of T is a test node, the expected number573

of tests is one plus the expected number of tests of the left and right sub-trees of the root node.574

For the purpose of the proof, we overload the definition of Jα andLα, to make explicit the dependency575

on the dataset and the maximum depth. As such, Jα(π) becomes Jα(π,D, D) and Lα(T ) becomes576

Lα(T,D). Let us first show that the relation Jα(π,D, 0) = −Lα(T,D) is true. If the maximum577

depth is D = 0 then π(s0) is necessarily a class assignment, in which case the expected number of578

tests is zero and the relation is obviously true since the reward is minus the average classification loss.579

Now assume it is true for any dataset and tree of depth at most D with D ≥ 0 and let us prove that it580

holds for all trees of depth D + 1. For a tree T of depth D + 1 the root is necessarily a test node.581

Let Tl = E(π, sl) and Tr = E(π, sr) be the left and right sub-trees of the root node of T . Since582

both sub-trees are of depth at most D, the relation holds and we have Jα(π,Xl, D) = Lα(Tl, Xl)583

and Jα(π,Xr, D) = Lα(Tr, Xr), where Xl and Xr are the datasets of the “right" and “left" states584

to which the MDP transitions—with probabilities pl and pr—upon application of π(s0) in s0, as585
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described in the MDP formulation. Moreover, from the definition of the policy return we have586

Jα(π,D, D + 1) = −α+ pl ∗ Jα(π,Xl, D) + pr ∗ Jα(π,Xr, D)

= −α− pl ∗ Lα(Tl, Xl)− pr ∗ Lα(Tr, D)

= −α− pl ∗

(
1

|Xl|
∑

(xi,yi)∈Xl

ℓ(yi, Tl(xi)) + αC(Tl)

)

− pr ∗

(
1

|Xr|
∑

(xi,yi)∈Xr

ℓ(yi, Tr(xi)) + αC(Tr)

)

= − 1

N

∑
(xi,yi)∈X

ℓ(yi, T (xi))− α(1 + plC(Tl) + prC(Tr))

= −L(T,D)

I Deeper trees experiments587

In this section, we push the limits of DPDT to learn trees of at most depth 10. We run two instances588

of DPDT. The first one will generate a MDP using a depth dependant tests generating function.589

DPDT-2... generates a MDP where actions availabe at states corresponding to depth ≤ 5 are given by590

running CART with a maximum depth of 2, and actions for other states are given by CART with a591

maximum depth of 1 (the maximum information gain splits given the dataset X in the state ((X, d))).592

DPDT-2+1... generates a bigger MDP than DPDT-2... as actions available to states with depths up to593

6 are given by CART run with a maximum depth of 2. On Table 6 we observe that deep trees learnt594

by CART and DPDT perform similarly well on unseen data of different classificiation problems.595

CART runs way faster than DPDT to compute deep trees. However, DPDT learns more interpretable596

trees with respect to the average number of tests performed on data which is a very useful feature597

for real-life applications such as medicine where each additional test before a diagnostic can be very598

expensive (for example performing an addition MRI scan).

Table 6: Test accuracy of trees of depth ≤ 10 selected with the procedure described in Sec. 6.2.
Datasets Accuracy (%) on unseen data Runtime (s.) Average Nb.Tests
Names DPDT-2... DPDT-2+1... CART DPDT-2... DPDT-2+1... CART DPDT-2... DPDT-2+1... CART
avila 94.3 95.1 87.8 86.476 187.313 1.579 8.4 8.4 8.8
bank 99.3 99.3 99.3 1.664 2.174 0.028 3.3 3.3 3.4
bean 91.3 90.9 91.2 102.796 309.981 8.287 5.2 4.0 6.1

bidding 99.4 99.4 99.4 1.833 3.226 0.095 2.4 2.4 2.4
eeg 83.6 83.5 82.0 85.198 229.49 2.386 8.1 8.2 9.3
fault 73.3 73.8 68.7 35.09 108.265 1.148 5.6 5.6 6.9
htru 97.6 98.0 98.1 45.941 123.689 4.234 2.2 1.2 3.4

magic 85.4 84.9 84.8 146.253 391.594 7.021 5.8 5.9 8.1
occupancy 99.5 99.5 99.5 6.847 15.608 0.226 1.0 1.0 1.4

page 96.5 96.9 96.5 22.526 58.102 0.713 4.5 6.2 7.7
raisin 85.6 86.7 88.9 8.717 19.652 0.115 2.1 2.1 6.5
rice 93.4 93.2 93.7 20.18 44.867 0.626 1.8 1.8 3.0

room 99.3 99.6 99.6 5.186 8.55 0.318 2.3 4.1 4.1
segment 97.0 97.0 94.8 9.796 22.562 0.286 5.1 5.1 5.0

skin 99.9 99.9 99.8 120.576 308.577 2.94 6.3 6.2 5.4
wilt 86.0 86.0 84.8 2.274 3.583 0.151 4.3 4.4 4.4

599

J Additional comparisons with Quant-BnB600

In Table 7 we compare DPDT with Quant-BnB on train and test sets of different classification601

problems. Quant-BnB has a time limit equal to DPDT-5’ runtime on each problem. We also run602

Quant-BnB with bonuses of 5 and 50 seconds to see if the latter can outperform DPDT with just a603

little more time or if it would require almost twice the time (see Table 7 for DPDT-5’ runtimes). We604

observe that for both train and test accuracies, Quant-BnB-t+50 (DPDT-5 runtime plus 50 seconds605

bonus) outperforms DPDT most often.606
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Table 7: Train and Tests accuracies of DPDT and Quant-BnB for Trees of maximum depth 3
Datasets Train Accuracies Test Accuracies
Names DPDT-3 DPDT-4 DPDT-5 Quant-BnB-T Quant-BnB-t+5 Quant-BnB-t+50 DPDT-3 DPDT-4 DPDT-5 Quant-BnB-T Quant-BnB-t+5 Quant-BnB-t+50
avila 58 58 58.5 57.3 57.3 57.3 57.9 57.9 58.2 57.1 57.1 57.1
bank 98 98 98 97.1 98.3 98.3 97.8 97.8 97.8 97.8 97.8 97.8
bean 85 85 85.6 85.3 85.3 85.3 85.1 85.1 84.9 85.6 85.6 85.6

bidding 99.3 99.3 99.3 98.6 98.7 99.3 99 99 99 98.6 98.7 99
eeg 69.4 70 70.3 68.3 68.3 68.9 71 69.8 70 69.8 69.8 68.5
fault 65.7 65.7 68 64.6 64.6 66.9 64.8 64.8 65.3 63.2 63.2 64.3
htru 98 98 98 98 98 98 98.2 97.9 97.9 98.1 98.1 98.1

magic 82.7 82.7 82.9 82.6 82.6 82.7 82 82 82.2 82.2 82.2 82.3
occupancy 99.3 99.3 99.4 99.3 99.3 99.4 93.4 93.4 93.9 89.6 89.6 91

page 97 97 97 96.5 96.7 97 96 96 96.1 96.7 95.9 95.9
raisin 88.3 88.3 88.5 88.1 88.6 89 87.2 87.2 88.3 88.9 88.3 89.4
rice 93.5 93.6 93.7 93.7 93.7 93.7 92.1 92.1 92.7 92 92 92

room 99.2 99.2 99.2 98.8 98.8 99 99 99 99 98.6 98.6 98.8
segment 88.2 88.2 88.2 79.1 87.8 87.8 84 84 84 76.8 84.2 84.2

skin 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.6 96.6 96.6
wilt 99.5 99.5 99.5 99.4 99.4 99.6 80.4 79.2 79.2 77.6 81.2 78.8

K Additional figures for different complexity measures607

We show here the complexity-performance trade-offs for all 16 datasets. We show the plot for two608

complexity measures: average number of tests (what DPDT optimize) and total number of nodes609

(what the post-process prunning of CART optimizes). On the first measure, the trees that DPDT finds610

dominate those of CART, which matches the theory. On the second measure, even though we do not611

optimize for the total number of nodes, we are still able to find better trade-offs w.r.t. this metric than612

CART for several datasets.613

K.1 Average number of tests vs accuracy614
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Figure 8: Average number of tests-accuracies trade-offs of CART and DPDT-3 on classification
training datasets. Both algorithms learn trees of depths at most 5. CART makes a trade-off with the
minimal complexity post-pruning algorithm. DPDT-3 makes a trade-off by returning policies for
1000 different α.
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L Codes to reproduce experiments616

Anonymized github for DPDT code: https://anonymous.4open.science/r/617

reproduce-E9BD/README.md618

Anonymized github of our clone of Quant-BnB code: https://anonymous.4open.science/r/619

reproduce-quant-bnb-80ED/README.md620
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Figure 9: Nodes-accuracies trade-offs of CART and DPDT-3 on classification training datasets. Both
algorithms learn trees of depths at most 5. CART makes a trade-off with the minimal complexity
post-pruning algorithm. DPDT-3 makes a trade-off by returning policies for 1000 different α. Even
though we do not optimize for this complexity metric, we are still able to find better trade-offs than
CART with post-pruning in several cases.
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