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Abstract001

Preference learning in large language models002
(LLMs) has primarily followed two approaches:003
(1) fine-tuning-based methods that optimize004
models using human preference signals and005
(2) inference-phase techniques that regulate006
outputs through decoding-time interventions.007
While these methods effectively mitigate harm-008
ful content generation, they remain vulnera-009
ble to adversarial jailbreak attacks and suffer010
from limitations such as high computational011
costs, sensitivity to hyperparameters, and in-012
sufficient consideration of global token-level013
relationships. This paper introduces PLOT, a014
method that enhances the Preference Learning015
capability of fine-tuning-based alignment tech-016
niques through a token-level loss term derived017
from Optimal Transport. By modeling prefer-018
ence learning as an Optimal Transport Prob-019
lem, PLOT aligns model outputs with human020
preferences while preserving the model’s origi-021
nal distribution, thereby ensuring stability and022
robustness. Additionally, PLOT incorporates023
token embeddings to capture rich semantic re-024
lationships, enabling a more globally informed025
optimization process. Our experimental evalua-026
tions demonstrate that PLOT significantly re-027
duces attack success rates (ASR) across var-028
ious red-teaming adversarial attacks while029
maintaining general model performance. Com-030
pared to baseline fine-tuning methods, PLOT031
achieves a reduction of up to 8.83% in ASR032
while preserving fluency and coherence in gen-033
eral tasks. These results establish optimal trans-034
port as a principled and effective approach to035
preference learning, offering a robust frame-036
work for enhancing model alignment, safety,037
and adversarial robustness.038

1 Introduction039

Large language models (LLMs) have demonstrated040

increasingly remarkable capabilities and are being041

increasingly used to construct powerful AI systems042

that have a growing, sustained impact on the devel-043

opment of humanity (Kaplan et al., 2020; Bubeck044

et al., 2023; Brown et al., 2020; Achiam et al., 045

2023; Wei et al., 2021; Dubey et al., 2024; Liu 046

et al., 2024a; Guo et al., 2025). In this context, 047

human alignment for LLMs is crucial, as it ensures 048

that models learn human preferences, producing 049

outputs that are safe, reliable, and suitable for real- 050

world applications (Christian, 2021; Gabriel, 2020; 051

Kenton et al., 2021). This process is progressive, 052

beginning with the need for safety and reliability as 053

prerequisites for widespread accessibility (Gabriel 054

and Ghazavi, 2021). Given the vast and sometimes 055

overly comprehensive capabilities acquired dur- 056

ing pre-training, controlling model outputs during 057

real-world usage is essential (Ziegler et al., 2019; 058

Ouyang et al., 2022; Peng et al., 2023). Numer- 059

ous methods have been proposed to control the 060

generation of safe content in model outputs. Con- 061

currently, various jailbreak methods have emerged 062

to assess and challenge the core safety aspects of 063

model behavior, exploiting model vulnerabilities 064

to evaluate their ability to generate harmless con- 065

tent (Deng et al., 2023; Shen et al., 2024; Yi et al., 066

2024). These developments collectively contribute 067

to advancing safer and more reliable AI systems. 068

After meeting basic safety requirements, efforts 069

have also been directed toward aligning models 070

with a broader range of human preferences. Due 071

to the substantial variability in human subjectiv- 072

ity, this alignment is currently constrained to more 073

general conditions, such as the length of generated 074

content (Gu et al., 2024), text quality (Stiennon 075

et al., 2020), and the prevalence of hallucinations 076

(Perković et al., 2024). In the domain of code 077

generation, the focus is on producing correct ex- 078

ecutable code and addressing issues such as time 079

and space complexity (Xu et al., 2022; Zhuo et al., 080

2024; Yang et al., 2024). Collectively, these as- 081

pects can be referred to as human preferences, and 082

the process by which models learn to align with 083

these preferences is termed preference learning, or 084

alternatively, preference modeling. 085
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While inference-phase alignment methods regu-086

late outputs during decoding, fine-tuning-based ap-087

proaches allow the model to internalize preferences,088

leading to more stable performance and a closer089

match to human behavior during skill acquisition.090

Building upon the superficial alignment hypothesis091

(Zhou et al., 2023), some works have attempted to092

enhance the quality of fine-tuning data to activate a093

preference subdistribution, thereby achieving im-094

proved performance (Chen et al., 2023; Liu et al.,095

2024b). Other approaches have focused on the096

distributional perspective, designing different loss097

functions based on token positions or probabili-098

ties in the output distribution to achieve preference099

learning (Zheng et al., 2023; Qi et al., 2024; Zhu100

et al., 2024). However, these approaches primarily101

focus on specific positions or independently con-102

sider individual tokens, without taking into account103

global information or the semantic relationships104

between tokens. As a result, they face several key105

challenges:106

• High computational cost: Many existing107

methods require substantial computational re-108

sources due to complex loss functions and109

optimization constraints.110

• Limited performance improvements: Current111

approaches often rely on localized token mod-112

ifications rather than optimizing preferences113

holistically across the output distribution.114

• Sensitivity to hyperparameters: Fine-tuning-115

based alignment methods are highly depen-116

dent on hyperparameter selection, limiting117

their robustness across diverse datasets and118

preference tasks.119

To address these limitations, we propose a gen-120

eral, stable preference learning loss that integrates121

Optimal Transport (Villani et al., 2009) to enhance122

the preference learning capacity of existing fine-123

tuning alignment methods. Specifically, we com-124

pute the output distribution of the model and select125

a distribution that represents the target preference.126

By using optimal transport to calculate the minimal127

transportation distance between these distributions,128

we can stably measure the preference difference129

while preserving the model’s original distribution130

(Arjovsky et al., 2017). Additionally, this approach131

incorporates the embedding of each token, captur-132

ing semantic information within the embedding133

space. Experimental results demonstrate that this134

loss significantly improves the preference learning 135

performance of the original fine-tuning methods 136

without compromising the model’s general capabil- 137

ities. 138

In summary, the contributions of this work are 139

as follows: 140

1. We reformulate token-level preference learn- 141

ing as an optimal transport problem, intro- 142

ducing a novel preference learning loss that 143

incorporates the semantic structure of the out- 144

put distribution, providing a new perspective 145

for model alignment. 146

2. Through extensive experiments, we demon- 147

strate that integrating the proposed loss func- 148

tion into fine-tuning methods leads to better 149

preference learning without compromising the 150

model’s general capabilities. 151

2 Related Works 152

2.1 Human Alignment 153

One of the most established approaches to human 154

alignment in LLMs is Reinforcement Learning 155

with Human Feedback (RLHF) (Bai et al., 2022a; 156

Christiano et al., 2017), which is typically imple- 157

mented with Proximal Policy Optimization (PPO) 158

(Schulman et al., 2017). Although RLHF has been 159

widely adopted in the training of advanced LLMs 160

such as GPT-4 and Claude, it presents several chal- 161

lenges, including reward hacking, high sample 162

complexity, and training instability, which limit its 163

effectiveness in large-scale real-world applications. 164

Current alignment methods can be categorized 165

into two primary approaches: fine-tuning align- 166

ment methods, which adjust model parameters, and 167

inference-phase alignment methods, which con- 168

strain outputs without modifying parameters. 169

Fine-tuning alignment methods aim to internal- 170

ize human preferences within the model’s learned 171

representations. These approaches can be further 172

divided into: 173

• Reinforcement learning-based (RL-based) op- 174

timization: This category includes methods 175

that integrate reinforcement learning tech- 176

niques to optimize reward-based alignment 177

strategies. Notable examples include Consti- 178

tutional AI (Bai et al., 2022b), reinforcement 179

learning with adversarially filtered datasets 180

(Lee et al., 2023), and other self-improving 181

fine-tuning methods that leverage large-scale 182
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preference signals (Hu et al., 2023; Li et al.,183

2023c; Shao et al., 2024). While reinforce-184

ment learning provides a powerful mechanism185

for alignment, it is computationally expensive,186

sensitive to reward model design, and prone187

to instability.188

• Fine-tuning-only approaches: Unlike RLHF,189

these methods rely entirely on supervised190

preference learning without the need for191

RL-based reward optimization. Fine-tuning-192

only strategies have been explored in mod-193

els such as SteerLM (Dong et al., 2023),194

Ranked Reward Hyperparameter-Free Fine-195

tuning (RRHF) (Yuan et al., 2023), and Sta-196

tistical Preference Optimization (SPO) (Liu197

et al., 2023). More recently, Direct Preference198

Optimization (DPO) (Rafailov et al., 2024)199

and its extensions (Morimura et al., 2024;200

Singhal et al., 2024; Pal et al., 2024) have been201

proposed to optimize LLMs directly from202

preference rankings without the complexity203

of reward models. These fine-tuning-only ap-204

proaches generally offer greater stability and205

efficiency compared to RL-based optimiza-206

tion but may require high-quality preference207

datasets to generalize effectively.208

On the other hand, inference-phase alignment209

methods apply constraints during decoding to reg-210

ulate model behavior without modifying its pa-211

rameters such as controlled decoding techniques,212

prompt-based filtering, and output rejection sam-213

pling (Guo et al., 2023; Li et al., 2023b; Zou et al.,214

2024) to obtain desired output. They suffer from215

several limitations such as increased computational216

overhead during inference, susceptibility to adver-217

sarial attacks and less reliable for long-term align-218

ment compared to fine-tuning-based approaches.219

2.2 Token-level Preference Learning220

Preference learning is conventionally applied at221

the sequence level, where alignment strategies op-222

timize entire model outputs based on high-level223

human preferences. However, several studies have224

demonstrated that preference adherence is highly225

dependent on token-level interactions, which in-226

fluence factors such as fluency, coherence, factual227

consistency, and adversarial robustness.228

To address this, several approaches have incor-229

porated token-level loss functions into fine-tuning-230

based preference learning. These approaches aim231

to improve alignment by optimizing token distribu- 232

tions rather than full-sequence outputs. PPO-max 233

(Zheng et al., 2023) introduces a token-level KL 234

penalty to control model divergence from preferred 235

outputs. Deep alignment (Qi et al., 2024) shows 236

that LLMs exhibit sensitivity to the placement of 237

harmful prefixes and suffixes, which can signifi- 238

cantly alter their response behavior. DEFT (Zhu 239

et al., 2024) adjusts the model’s output distribution 240

through weighted token selection which is formu- 241

lated as a dictionary-based preference represen- 242

tation by computing token frequency differences 243

across preferred and non-preferred outputs. 244

Despite these advancements, existing token-level 245

preference learning approaches still face several 246

limitations: (1) They focus on local token proba- 247

bilities but fail to model global semantic relation- 248

ships across sequences. (2) Many methods depend 249

on handcrafted heuristic functions, introducing bi- 250

ases that require extensive hyperparameter tuning. 251

(3) Token-level constraints often lack distributional 252

perspective, limiting their effectiveness in gener- 253

alizing to structured preferences over longer con- 254

texts. 255

These challenges highlight the need for a prin- 256

cipled, distribution-aware approach that integrates 257

token-level alignment with global preference mod- 258

eling. Optimal Transport (OT) offers a promis- 259

ing direction by enabling fine-tuning-based prefer- 260

ence learning that aligns full-sequence distributions 261

while preserving semantic consistency. 262

3 Methodology 263

In this section, we formulate the fine-tuning-based 264

preference learning problem as an Optimal Trans- 265

port problem. Preliminaries about Optimal Trans- 266

port can be found in Appendix A . 267

3.1 Problem Definition 268

In general, the preference dataset is as follows: 269

D =
{(

x(i), y
(i)
+ , y

(i)
−

)}N

i=1
(1) 270

where x(i) represents the user query, y(i)+ repre- 271

sents the preferred answer, y(i)− represents the non- 272

preferred answer, and N is the total number of sam- 273

ples. Such data can be used for reward modeling 274

or directly fine-tuned via various methods. 275

We assume that the model output distribution 276

during the fine-tuning process is Qθ, and there 277

exists a distribution P that represents the target 278
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preference information. In order for the model to279

conduct preference learning from the perspective of280

distribution, we aim to preserve the original form281

of the model’s distribution while considering the282

semantic relationships between tokens to achieve283

global optimization. To do this, we quantify the284

gap between Qθ and P , which is defined as the op-285

timal transport problem from Qθ to P , as shown in286

Equation 15. The preference difference is the mini-287

mum transport distance between them, denoted as288

LPLOT, which is incorporated into the fine-tuning289

methods’ loss function Lvanilla as follows:290

L = Lvanilla + αLPLOT (2)291

where α is a hyperparameter that controls the292

weight of LPLOT in the overall loss. Before this,293

we first need to derive the target preference distri-294

bution P and the elements cij used to construct the295

cost matrix C.296

3.2 Preference Distribution297

We denote the distribution containing preference298

information as the target preference distribution Pt.299

This is the object that the model’s output distribu-300

tion is transported to, and it serves as the target301

for the model to learn the preference gap between302

them. It can be the output distribution Qrm of a303

reward model, or, as in previous work (Zhu et al.,304

2024), a dictionary Qdiff consisting of the differ-305

ence between the token frequencies of positive and306

negative examples. In essence, we require a distri-307

bution that embodies preference information and308

apply the following operations Φ(·):309

Φ(Pt) =
T (pi)∑n
j=1 T (pj)

, T : R → R+ (3)310

where pi represents the value of Pt at tokeni, T is311

an arbitrary non-negative function, and n denotes312

the dimension of Pt, typically the size of the vocab-313

ulary. The purpose of this step is to transform Pt314

into a strict mathematical distribution, enabling its315

participation in subsequent OT calculations.316

3.3 Token Embedding317

Once the two distributions, Qθ and Pt, for the OT318

problem are obtained, the default cost matrix C319

can be used to solve the problem, where the cost320

of tokens in the same position is 0, and the cost of321

tokens in different positions is 1. This approach322

computes the minimal cost, where the distance be-323

tween tokens is not considered, and the cost is cal-324

culated solely based on the token values in Qθ and325

Pt. However, in preference learning tasks, tokens 326

carry rich semantic information. Since OT calcula- 327

tions provide the cost matrix C to incorporate such 328

information, we extract the model’s embedding ta- 329

ble E of all tokens in the semantic space: 330

E = [e1, e2, . . . , en] (4) 331

where each sub-vector ei represents the embedding 332

of the i-th token, and n denotes the size of the vo- 333

cabulary. To simplify the computational complex- 334

ity and unify the dimensions, we apply an l-norm 335

mapping to each sub-vector ei in the embedding 336

space, bringing them into a specific distance space: 337

cij = |∥ei∥l − ∥ej∥l| (5) 338

in which the distance metric l can be arbitrarily 339

chosen. This results in a cost matrix C that incor- 340

porates rich semantic information, enabling us to 341

account for the semantic relationships between to- 342

kens. This ultimately leads to improved preference 343

learning. 344

3.4 Minimal Distance 345

Given Q, P , and C, we can proceed with solving 346

the OT problem from Equation 15: Q represents 347

the model output distribution Qθ; the selection of 348

P is considered based on previous work (Zhu et al., 349

2024) that constructs Qdiff from preference data, 350

which effectively extracts preference information. 351

We use it as a candidate for Pt: 352

Qdiff =
Q+∑
Q+

− Q−∑
Q−

(6) 353

where Q+/− is the token frequency of all y+/−, 354

respectively. However, considering that the dif- 355

ference between the two distributions lies in the 356

range [−1, 1] and is not a strict mathematical dis- 357

tribution, to preserve the token-wise differences 358

in values and maintain the form of Qdiff itself, we 359

apply a non-negative transformation by subtracting 360

the minimum value as T : 361

T (Qdiff) = Qdiff −min(Qdiff) (7) 362

then the range of values for Qdiff becomes 363

[0,max(Qdiff)−min(Qdiff)]. After normalization 364

via Equation 3, a strict target preference distribu- 365

tion Pt is obtained. For the cost matrix, we set 366

l = 2, which corresponds to the L2 norm, to ob- 367

tain the Euclidean distance of each token from the 368

origin: 369

∥e∥2 =

√√√√ d∑
i=1

e2i (8) 370
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where d is the dimension of embedding vectors.371

We then transform E into a one-dimensional vector372

with the same length as Qθ and Pt, and compute373

all the elements of the cost matrix using Equation374

5. Thus, Equation 15 can be written as the new loss375

item LPLOT:376

LPLOT(Qθ,Pt)

= min
Γ∈Π(Qθ,Pt)

∑
i,j

|∥ei∥2 − ∥ej∥2|γij

= min
Γ∈Π(Qθ,Pt)

⟨C,Γ⟩

s.t. Γ1 = Qθ, Γ⊤1 = Pt,

γij ≥ 0 ∀i, j.

(9)377

By solving this constrained linear programming378

problem, we can obtain the minimum transport cost379

between Qθ and Pt at each step by Γ. However, in380

practice, the vocabulary size of LLMs is typically381

large and the cost matrix and constraints make the382

problem difficult to solve. Based on the previous383

derivation, we have obtained one-dimensional dis-384

crete vectors Qθ, Pt, and E of equal length. There-385

fore, the solution to Equation 9 is equivalent to the386

computation of the one-dimensional Wasserstein387

distance, defined as W1(Q,P) (Villani et al., 2009;388

Peyré et al., 2019):389

W1(Q,P) =

∫ ∞

−∞
|Fq(x)− Fp(x)| dx

=
n−1∑
i

|Fq(xi)− Fp(xi)|∆xi

(10)390

where F⨿(x) represents the Cumulative Distribu-391

tion Function (CDF) of distribution Q:392

Fq(xi) =
∑
t≤xi

Q(X = t) (11)393

∆x represents the difference between adjacent x394

values:395

∆xi = xi+1 − xi (12)396

In our case, this corresponds to the distance be-397

tween two tokens. Thus, the final calculation for398

LPLOT becomes:399

LPLOT(Qθ,Pt) = W1(Qθ,Pt)

=
n−1∑
i

|Fqθ(xi)− Fpt(xi)|∆xi.
(13)400

The minimal distance between Qθ and Pt causes401

the model’s overall output distribution to align402

more closely with the preference distribution, es- 403

pecially for those tokens that most align with or 404

deviate from the preference. Additionally, by con- 405

sidering the embedding vectors, PLOT prioritizes 406

transportation between tokens that are close in the 407

semantic space, making the model consider not just 408

the transport distance between individual tokens, 409

but also all tokens in the semantic space, achieving 410

a form of global optimization. 411

4 Experiments 412

This paper focuses on aligning the model with pref- 413

erences for Harmless content and employs a series 414

of jailbreak methods to assess the model’s resis- 415

tance to attacks. Additionally, we conducted evalu- 416

ations to measure the model’s general capabilities. 417

4.1 Training Details 418

Data We used the previously refined HH-RLHF 419

dataset (Bai et al., 2022a) from the prior work PRO 420

(Song et al., 2024) which includes higher-quality 421

ChatGPT 1 responses added to all samples as our 422

training data. We extracted the Harmlessbase sub- 423

set which contains 42,536 samples from it and con- 424

structed the preference distribution Pt using the 425

positive and negative examples from the enhanced 426

dataset. Considering training costs, we randomly 427

selected 4,000 of the data for training. 428

Method Considering training costs and the rigor 429

of the method, we selected the classic DPO method 430

to validate the effectiveness of LPLOT. 431

Model We use the latest Llama3.2-3B-Instruct 2 432

as our base model, denoted as Instruct. The model 433

trained on the training set with DPO is referred to as 434

DPO. Since this paper only conducts enhancement 435

experiments using the DPO method, for clarity, we 436

refer to the model trained with PLOT added on top 437

of DPO as PLOT. 438

Setup All experiments were conducted on 4 439

NVIDIA A100 80GB GPUs, with a batch size of 1 440

per GPU and a total batch size of 4. The training 441

was performed for 1 epoch with the hyperparameter 442

β = 0.1 for DPO and α = 8 for PLOT. The train- 443

ing duration of DPO was approximately 487.03 444

seconds, while for PLOT, it was approximately 445

500.80 seconds. 446

1https://chat.openai.com/
2https://huggingface.co/meta-llama/Llama-3.2-3B-

Instruct
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Methods

Behaviors
Total

Standard Copyright Contextual

Instruct DPO PLOT Instruct DPO PLOT Instruct DPO PLOT Instruct DPO PLOT

ZS
n = 1

26.33
±3.06

4.17
±0.85

1.00
±0.41

13.00
±1.41

6.00
±0.82

5.00
±0.82

50.00
±4.55

18.00
±1.41

8.00
±0.82

28.92
±2.54

8.08
±0.85

3.75
±0.41

n = 500
27.28
±1.41

3.50
±0.43

0.47
±0.05

12.97
±0.21

9.20
±0.37

6.33
±0.66

57.22
±1.88

17.63
±2.09

10.30
±1.56

31.18
±1.12

8.46
±0.81

4.39
±0.20

PEZ n = 5 21.87
±0.90

5.37
±0.33

4.73
±0.12

22.60
±0.16

7.13
±0.98

4.20
±0.43

20.27
±1.64

3.93
±0.52

3.27
±0.62

21.65
±0.54

5.45
±0.25

4.23
±0.20T = 500

GBDA n = 5 22.33
±0.66

5.03
±0.54

4.87
±0.21

20.27
±1.09

6.33
±1.91

4.53
±0.34

16.60
±1.23

7.00
±1.45

3.00
±0.71

20.38
±0.53

5.85
±0.37

4.32
±0.13T = 500

UAT
n = 1

20.00
±2.04

7.67
±1.43

5.17
±0.24

21.00
±1.63

8.33
±1.70

7.00
±0.82

17.67
±0.47

3.33
±0.94

2.33
±0.47

19.67
±0.51

6.75
±0.20

4.92
±0.24

k = 3
T = 100

SFS k = 5 39.22
±1.84

25.00
±2.04

16.67
±1.55

42.33
±3.86

31.00
±0.00

17.67
±1.25

32.67
±6.24

22.00
±2.16

16.67
±1.25

38.42
±1.36

25.75
±1.24

16.92
±0.51T = 50

GCG n = 1 48.50
±4.30

30.67
±2.87

26.67
±1.70

51.00
±3.56

31.67
±0.94

27.67
±1.25

40.67
±4.19

27.33
±1.70

26.33
±0.94

47.17
±1.43

30.08
±0.82

26.83
±0.42T = 500

Table 1: The experimental results for the red reaming attack. Attack Success Rate (ASR) is used to assess the
defense capability of different models under various attack methods. PLOT demonstrates significant performance
enhancements over DPO across all attack methods, showing improvements in each test data subset as well as the
overall performance with better stability.

4.2 Red Teaming Attack447

We used HarmBench (Mazeika et al., 2024), which448

is a standardized evaluation framework for various449

automated red teaming attack methods, to supports450

a multidimensional evaluation of the model’s de-451

fense capabilities through both functional and se-452

mantic classification. In terms of the testing data,453

it integrates current harmful content datasets and454

manually designs harmful behaviors to ensure that455

they violate legal or widely accepted norms. It456

includes seven categories of harmful content, and457

excluding multimodal data, the pure text data can458

be categorized into three types, as shown in Table459

2. Attack Success Rate (ASR) was used as the460

evaluation metric, with a fine-tuned Llama2-13B-461

Chat 3 model serving as the classifier to determine462

whether an attack was successful.463

Methods We selected a subset of red-team attack464

methods to test the model’s defense capabilities465

against harmful content under various conditions.466

Zero-Shot (Perez et al., 2022) or ZS directly gen-467

erates n cases for each behavior, resulting in a to-468

tal of 400 × n test samples. For each behavior,469

PEZ (Wen et al., 2024) generates n cases with an470

optimized embedding vector to induce harmful con-471

tent, totaling 400× n, iterated for T rounds, using472

3https://huggingface.co/cais/HarmBench-Llama-2-13b-
cls

Behaviors #Samples Source & Description

Standard 200 Based on AdvBench (2023) and
TDC 2023 (2023)

Copyright 100 Manually crafted requests for
copyrighted content

Contextual 100 Manually crafted complex re-
quests with context

Total 400
Manually filtered to ensure
clearly harmful with no legiti-
mate use

Table 2: Distribution and description of the HarmBench
evaluation dataset.

only the target model. GBDA (Guo et al., 2021) 473

uses the Gumbel-Softmax technique for the target 474

model to convert discrete token selection into a dif- 475

ferentiable operation, with n cases generated for 476

each behavior, iterating for T steps. UAT (Wallace 477

et al., 2019) generates adversarial trigger tokens 478

via gradient-based optimization for each behavior. 479

Each case is iterated for T rounds, selecting tokens 480

from the top k candidates, n cases are generated, 481

totaling 400×n. Sophistic Few-Shot (Perez et al., 482

2022) or SFS generates candidate prompts per iter- 483

ation using updated k-shot examples, refining over 484

T iterations, with the best candidate selected as 485

the final prompt. For each behavior, GCG (Zou 486

et al., 2023) optimizes an adversarial suffix at the 487

token level, with n cases generated, iterating for T 488

6

https://huggingface.co/cais/HarmBench-Llama-2-13b-cls
https://huggingface.co/cais/HarmBench-Llama-2-13b-cls


rounds, resulting in a total of 400 × n cases, and489

only the target model needs to be loaded.490

Main Result To fully validate the effectiveness491

of PLOT, for each red team attack method, we con-492

ducted 3 times of experiment on each fine-tuned493

model and under each hyperparameter setting, av-494

eraged the results, and calculated the standard de-495

viation. The default Mixtral-8x7B-Instruct-v0.1 4496

from HarmBench was chosen as the attack model497

for some of the methods.498

As shown in Table 1, we compared the ASR of499

the Instruct model, the DPO fine-tuned model, and500

the PLOT enhanced model under each method. Un-501

der each experimental setting and for every method,502

PLOT achieved varying degrees of reduction in503

ASR compared to DPO: it reduced ASR by 1.22-504

1.83% for the PEZ, GBDA, and UAT methods; by505

3.25-4.33% for the Zero-shot and GCG methods;506

and by a significant 8.83% for the SFS method. Ex-507

cept for the slightly higher standard deviation (0.24)508

for the UAT method compared to DPO (0.20), the509

standard deviations for other methods are lower510

than those of Instruct and DPO. This demonstrates511

that the model under PLOT optimization exhibits512

significantly enhanced defense capabilities and sta-513

bility against various attack methods.514

In addition, we also plotted the line charts of515

ASR variations for different values of n in Zero-516

Shot and for different update steps T in GCG, as517

shown in Figure 1. It can be seen that PLOT further518

enhances the defense capability over DPO while519

exhibiting stronger stability against attacks, consis-520

tent with the conclusions from Table 1.521

4.3 General Capabilities522

While the model demonstrates improved prefer-523

ence learning, it is crucial to assess the impact on524

the model’s general capabilities. Therefore, we525

employed AlpacaEval (Li et al., 2023a) to com-526

prehensively evaluate the effect of LPLOT on the527

model’s general output quality. We followed the528

AlpacaEval 2.0 setup, with GPT-4 as the reference529

for comparing response quality and scoring, and530

utilized Length-controlled (LC) Win Rate (Dubois531

et al., 2024) as the evaluation metric, as shown in532

Figure 2.533

As shown, after DPO fine-tuning, the overall534

response quality of the model declined to some535

extent, with the LC Win Rate dropping from536

4https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1
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Figure 1: The ASR curves of three models under dif-
ferent case counts for the Zero-Shot method (Up) and
varying update steps of GCG (Down). PLOT consis-
tently demonstrates superior defense capabilities and
stability compared to DPO.

17.93%± 1.24% to 13.64%± 1.11%, which may 537

be due to the random sampling of the training data. 538

However, after incorporating PLOT with DPO, the 539

model’s response quality did not worsen, increasing 540

slightly 14.06%±1.09%, indicating that PLOT did 541

not exacerbate the negative impact of the original 542

fine-tuning method on response quality. In other 543

words, the distribution-based loss term did not in- 544

terfere with the model’s normal output distribution, 545

thereby preserving the quality of the model’s re- 546

sponses under fine-tuning, which corresponds to its 547

general capabilities. 548

4.4 Ablation and Analysis 549

In this section, we conduct jailbreak experiments 550

under the same setup as Section 4 and experiments 551

are performed three times, with the average values 552

and standard deviations computed. We compare 553

the ASR results of different methods and settings 554

to validate and analyze the effectiveness of LPLOT. 555
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Methods ZS PEZ GBDA UAT SFS GCG

n=500 n=5, T=500 n=5, T=500 n=1, k=3, T=100 k=5, T=50 n=1, T=500

DPO 8.46± 0.81 5.45± 0.25 5.85± 0.37 6.75± 0.20 25.75± 1.24 30.08± 0.82
+RQ (DEFT) 5.65± 0.61 5.08± 0.51 5.27± 0.41 5.25± 0.20 19.25± 1.27 28.42± 1.12
+LPLOT w/o E 4.91± 0.30 4.83± 0.17 4.40± 0.12 5.17± 0.12 17.83± 0.31 27.25± 0.54
+LPLOT 4.39± 0.20 4.23± 0.20 4.32± 0.13 4.92± 0.24 16.92± 0.51 26.83± 0.42

Table 3: A comparison of ASR across different loss components and experimental settings under various attack
methods reveals that transitioning from DEFT to OT-formulated problem yields performance improvements, which
are further enhanced by the inclusion of token embeddings.

Instruct DPO PLOT
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Figure 2: Comparison of the Length-controlled (LC)
Win Rate across the three models shows that LPLOT
preserves the general capabilities of the model under the
original fine-tuning method.

Effectiveness of OT Formulation Previous556

work DEFT (Zhu et al., 2024) introduced the dis-557

tribution reward RQ, where the term Qdiff, derived558

from Equation 6, is element-wise multiplied by559

the model output Qθ at the token level and then560

summed as follows:561

RQ =
∑

Qdiff ⊙ log Qθ (14)562

and this reward is subsequently incorporated as a563

new loss term in the fine-tuning procedure. As564

previously noted, the value range for each token565

position lies within [−1, 1] and it does not satisfy566

the conditions of a true mathematical distribution.567

As illustrated in Table 3, although the inclusion of568

RQ leads to promising results, particularly in the569

context of Qdiff effectively extracting preference570

information, its performance in defending against571

various red team attack methods remains inferior572

compared to the approach we propose. This high-573

lights the effectiveness of reformulating the prefer-574

ence learning problem at the distribution level as an575

optimal transport (OT) problem for its resolution.576

Since the operation in Equation 14 is an empirical577

approach, it essentially focuses on local optimiza- 578

tion of individual tokens, whereas the solution to 579

the OT problem offers a global optimization from 580

the perspective of the entire distribution. 581

Efficacy of Embedding In order to investigate 582

the practical effect of extracting token embeddings 583

for computing the cost matrix C, we discarded 584

the embedding vector E and replaced the cost ma- 585

trix with the default 0-1 cost matrix as described 586

in Section 3.3. The new loss term is denoted as 587

LPLOT w/o E, and DPO training was conducted 588

under the same setup. As shown in Table 3, the 589

model excluding token embeddings consistently 590

achieved higher ASR across multiple red teaming 591

attack methods compared to the standard LPLOT. 592

This clearly demonstrates that incorporating to- 593

ken embeddings for inter-token distance compu- 594

tation inherently leverages semantic space relation- 595

ships, which, in theory, enables more sophisticated 596

distribution-level optimization through richer infor- 597

mation. These performance improvements are in 598

line with the theoretical derivations. 599

5 Conclusion 600

In this paper, we introduce PLOT, a novel loss term 601

designed to enhance the effectiveness of preference 602

learning in fine-tuning alignment methods. By for- 603

mulating token-level preference learning as an Op- 604

timal Transport (OT) problem at the distribution 605

level, PLOT effectively captures both the prefer- 606

ence discrepancies between distributions and the 607

rich semantic information encoded in the tokens. 608

Experimental results on preferences for harmless 609

content demonstrate that PLOT significantly im- 610

proves the preference learning performance of the 611

baseline method, while preserving the overall re- 612

sponse quality of the model. This work contributes 613

a new approach to enhancing preference learning 614

in fine-tuning methods, offering both theoretical 615

insights and practical improvements in the field. 616
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Limitations617

First, we introduce a preference learning en-618

hancement loss based on fine-tuning methods.619

However, considering the challenges in testing620

and quantifying preferences, we selected the621

Harmful/Harmless preference, which is both fun-622

damental and widely adopted in current evalua-623

tion practices, to demonstrate the effectiveness of624

our approach. Future work will involve testing625

LPLOT on other types of preferences, such as log-626

ical reasoning in mathematical sciences and cor-627

rectness and complexity in code-related tasks, to628

further establish its generalizability. Second, due to629

time and cost constraints, our baseline fine-tuning630

method only considers DPO, with the base model631

being Llama-3.2-3B-Instruct. The training data632

consists of 4,000 randomly selected samples from633

the Harmlessbase subset of the HH-RLHF dataset.634

Further experiments with larger and more diverse635

datasets, methods, and models are necessary for636

enhanced comparative analysis. Finally, several637

custom components in our method, such as the se-638

lection of the preference distribution Pt, the choice639

of the non-negativity function T , and the selection640

of the embedding norm l, offer potential points for641

further experimental investigation.642
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A Preliminary929

A.1 Optimal Transport930

Optimal Transport (OT) provides a principled way931

to compare probability distributions by comput-932

ing the minimum cost required to transform one933

distribution into another. Unlike traditional diver-934

gence measures such as Kullback-Leibler (KL) di-935

vergence, which compares probability distributions936

in terms of relative entropy, OT explicitly models937

the movement of probability mass, making it partic-938

ularly effective for structured alignment problems.939

Given two probability distributions, Q and P ,940

the Optimal Transport (OT) Problem is defined941

as follows (Peyré et al., 2019):942

OT(Q,P) = min
Γ∈Π(Q,P)

⟨C,Γ⟩

= min
Γ∈Π(Q,P)

n∑
i=1

m∑
j=1

cijγij

s.t. Π(Q,P) =

{
Γ ∈ Rn×m

+

∣∣∣∣∣ Γ1m = Q,

Γ⊤1n = P

}
.

(15)943

Here, C represents the cost matrix, where each944

element cij quantifies the transport cost between945

point qi in Q and point pj in P . The transport plan946

Γ is a joint probability matrix, where each element947

γij represents the amount of mass transported from948

qi to pj . The constraints enforce that:949

• The total transported mass from each point in950

Q must equal its original mass.951

• The total mass arriving at each point in P must952

match its target distribution.953

• Each element γij in Γ must be non-negative.954

The objective is to determine an optimal transport955

plan Γ that minimizes the overall transport cost.956

A.2 Relevance of Optimal Transport to957

Preference Learning958

Optimal Transport has been widely used in dis-959

tributional alignment tasks, including generative960

modeling and domain adaptation (Arjovsky et al.,961

2017). In the context of preference learning, OT962

provides a natural way to measure the discrepancy963

between a model’s predicted distribution and an964

ideal preference distribution. Unlike token-level965

objectives, which optimize local probability assign-966

ments independently, OT considers global structure967

within the output distribution, ensuring more stable 968

and context-aware preference learning. 969

While OT is a powerful framework, solving it 970

exactly is computationally expensive, typically re- 971

quiring O(n3 log n) operations. To address this, 972

regularized OT variants such as entropy-regularized 973

OT (Cuturi, 2013) have been proposed, which in- 974

troduce an entropy penalty to encourage smoother 975

transport plans and reduce computational complex- 976

ity to O(n2). These approximations make OT feasi- 977

ble for large-scale preference learning applications. 978

By leveraging OT in fine-tuning-based prefer- 979

ence learning, models can learn to align with hu- 980

man preferences more robustly while preserving 981

semantic coherence across generated outputs. 982
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