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Abstract

Preference learning in large language models
(LLMs) has primarily followed two approaches:
(1) fine-tuning-based methods that optimize
models using human preference signals and
(2) inference-phase techniques that regulate
outputs through decoding-time interventions.
While these methods effectively mitigate harm-
ful content generation, they remain vulnera-
ble to adversarial jailbreak attacks and suffer
from limitations such as high computational
costs, sensitivity to hyperparameters, and in-
sufficient consideration of global token-level
relationships. This paper introduces PLOT, a
method that enhances the Preference Learning
capability of fine-tuning-based alignment tech-
niques through a token-level loss term derived
from Optimal Transport. By modeling prefer-
ence learning as an Optimal Transport Prob-
lem, PLOT aligns model outputs with human
preferences while preserving the model’s origi-
nal distribution, thereby ensuring stability and
robustness. Additionally, PLOT incorporates
token embeddings to capture rich semantic re-
lationships, enabling a more globally informed
optimization process. Our experimental evalua-
tions demonstrate that PLOT significantly re-
duces attack success rates (ASR) across var-
ious red-teaming adversarial attacks while
maintaining general model performance. Com-
pared to baseline fine-tuning methods, PLOT
achieves a reduction of up to 8.83% in ASR
while preserving fluency and coherence in gen-
eral tasks. These results establish optimal trans-
port as a principled and effective approach to
preference learning, offering a robust frame-
work for enhancing model alignment, safety,
and adversarial robustness.

1 Introduction

Large language models (LLMs) have demonstrated
increasingly remarkable capabilities and are being
increasingly used to construct powerful Al systems
that have a growing, sustained impact on the devel-
opment of humanity (Kaplan et al., 2020; Bubeck

et al., 2023; Brown et al., 2020; Achiam et al.,
2023; Wei et al., 2021; Dubey et al., 2024; Liu
et al., 2024a; Guo et al., 2025). In this context,
human alignment for LLMs is crucial, as it ensures
that models learn human preferences, producing
outputs that are safe, reliable, and suitable for real-
world applications (Christian, 2021; Gabriel, 2020;
Kenton et al., 2021). This process is progressive,
beginning with the need for safety and reliability as
prerequisites for widespread accessibility (Gabriel
and Ghazavi, 2021). Given the vast and sometimes
overly comprehensive capabilities acquired dur-
ing pre-training, controlling model outputs during
real-world usage is essential (Ziegler et al., 2019;
Ouyang et al., 2022; Peng et al., 2023). Numer-
ous methods have been proposed to control the
generation of safe content in model outputs. Con-
currently, various jailbreak methods have emerged
to assess and challenge the core safety aspects of
model behavior, exploiting model vulnerabilities
to evaluate their ability to generate harmless con-
tent (Deng et al., 2023; Shen et al., 2024; Yi et al.,
2024). These developments collectively contribute
to advancing safer and more reliable Al systems.

After meeting basic safety requirements, efforts
have also been directed toward aligning models
with a broader range of human preferences. Due
to the substantial variability in human subjectiv-
ity, this alignment is currently constrained to more
general conditions, such as the length of generated
content (Gu et al., 2024), text quality (Stiennon
et al., 2020), and the prevalence of hallucinations
(Perkovi¢ et al., 2024). In the domain of code
generation, the focus is on producing correct ex-
ecutable code and addressing issues such as time
and space complexity (Xu et al., 2022; Zhuo et al.,
2024; Yang et al., 2024). Collectively, these as-
pects can be referred to as human preferences, and
the process by which models learn to align with
these preferences is termed preference learning, or
alternatively, preference modeling.



While inference-phase alignment methods regu-
late outputs during decoding, fine-tuning-based ap-
proaches allow the model to internalize preferences,
leading to more stable performance and a closer
match to human behavior during skill acquisition.
Building upon the superficial alignment hypothesis
(Zhou et al., 2023), some works have attempted to
enhance the quality of fine-tuning data to activate a
preference subdistribution, thereby achieving im-
proved performance (Chen et al., 2023; Liu et al.,
2024b). Other approaches have focused on the
distributional perspective, designing different loss
functions based on token positions or probabili-
ties in the output distribution to achieve preference
learning (Zheng et al., 2023; Qi et al., 2024; Zhu
et al., 2024). However, these approaches primarily
focus on specific positions or independently con-
sider individual tokens, without taking into account
global information or the semantic relationships
between tokens. As a result, they face several key
challenges:

* High computational cost: Many existing
methods require substantial computational re-
sources due to complex loss functions and
optimization constraints.

* Limited performance improvements: Current
approaches often rely on localized token mod-
ifications rather than optimizing preferences
holistically across the output distribution.

* Sensitivity to hyperparameters: Fine-tuning-
based alignment methods are highly depen-
dent on hyperparameter selection, limiting
their robustness across diverse datasets and
preference tasks.

To address these limitations, we propose a gen-
eral, stable preference learning loss that integrates
Optimal Transport (Villani et al., 2009) to enhance
the preference learning capacity of existing fine-
tuning alignment methods. Specifically, we com-
pute the output distribution of the model and select
a distribution that represents the target preference.
By using optimal transport to calculate the minimal
transportation distance between these distributions,
we can stably measure the preference difference
while preserving the model’s original distribution
(Arjovsky et al., 2017). Additionally, this approach
incorporates the embedding of each token, captur-
ing semantic information within the embedding
space. Experimental results demonstrate that this

loss significantly improves the preference learning
performance of the original fine-tuning methods
without compromising the model’s general capabil-
ities.

In summary, the contributions of this work are
as follows:

1. We reformulate token-level preference learn-
ing as an optimal transport problem, intro-
ducing a novel preference learning loss that
incorporates the semantic structure of the out-
put distribution, providing a new perspective
for model alignment.

2. Through extensive experiments, we demon-
strate that integrating the proposed loss func-
tion into fine-tuning methods leads to better
preference learning without compromising the
model’s general capabilities.

2 Related Works

2.1 Human Alignment

One of the most established approaches to human
alignment in LLMs is Reinforcement Learning
with Human Feedback (RLHF) (Bai et al., 2022a;
Christiano et al., 2017), which is typically imple-
mented with Proximal Policy Optimization (PPO)
(Schulman et al., 2017). Although RLHF has been
widely adopted in the training of advanced LLMs
such as GPT-4 and Claude, it presents several chal-
lenges, including reward hacking, high sample
complexity, and training instability, which limit its
effectiveness in large-scale real-world applications.

Current alignment methods can be categorized
into two primary approaches: fine-tuning align-
ment methods, which adjust model parameters, and
inference-phase alignment methods, which con-
strain outputs without modifying parameters.

Fine-tuning alignment methods aim to internal-
ize human preferences within the model’s learned
representations. These approaches can be further
divided into:

* Reinforcement learning-based (RL-based) op-
timization: This category includes methods
that integrate reinforcement learning tech-
niques to optimize reward-based alignment
strategies. Notable examples include Consti-
tutional Al (Bai et al., 2022b), reinforcement
learning with adversarially filtered datasets
(Lee et al., 2023), and other self-improving
fine-tuning methods that leverage large-scale



preference signals (Hu et al., 2023; Li et al.,
2023c; Shao et al., 2024). While reinforce-
ment learning provides a powerful mechanism
for alignment, it is computationally expensive,
sensitive to reward model design, and prone
to instability.

* Fine-tuning-only approaches: Unlike RLHF,
these methods rely entirely on supervised
preference learning without the need for
RL-based reward optimization. Fine-tuning-
only strategies have been explored in mod-
els such as SteerLM (Dong et al., 2023),
Ranked Reward Hyperparameter-Free Fine-
tuning (RRHF) (Yuan et al., 2023), and Sta-
tistical Preference Optimization (SPO) (Liu
et al., 2023). More recently, Direct Preference
Optimization (DPO) (Rafailov et al., 2024)
and its extensions (Morimura et al., 2024,
Singhal et al., 2024; Pal et al., 2024) have been
proposed to optimize LLMs directly from
preference rankings without the complexity
of reward models. These fine-tuning-only ap-
proaches generally offer greater stability and
efficiency compared to RL-based optimiza-
tion but may require high-quality preference
datasets to generalize effectively.

On the other hand, inference-phase alignment
methods apply constraints during decoding to reg-
ulate model behavior without modifying its pa-
rameters such as controlled decoding techniques,
prompt-based filtering, and output rejection sam-
pling (Guo et al., 2023; Li et al., 2023b; Zou et al.,
2024) to obtain desired output. They suffer from
several limitations such as increased computational
overhead during inference, susceptibility to adver-
sarial attacks and less reliable for long-term align-
ment compared to fine-tuning-based approaches.

2.2 Token-level Preference Learning

Preference learning is conventionally applied at
the sequence level, where alignment strategies op-
timize entire model outputs based on high-level
human preferences. However, several studies have
demonstrated that preference adherence is highly
dependent on token-level interactions, which in-
fluence factors such as fluency, coherence, factual
consistency, and adversarial robustness.

To address this, several approaches have incor-
porated token-level loss functions into fine-tuning-
based preference learning. These approaches aim

to improve alignment by optimizing token distribu-
tions rather than full-sequence outputs. PPO-max
(Zheng et al., 2023) introduces a token-level KL
penalty to control model divergence from preferred
outputs. Deep alignment (Qi et al., 2024) shows
that LLMs exhibit sensitivity to the placement of
harmful prefixes and suffixes, which can signifi-
cantly alter their response behavior. DEFT (Zhu
et al., 2024) adjusts the model’s output distribution
through weighted token selection which is formu-
lated as a dictionary-based preference represen-
tation by computing token frequency differences
across preferred and non-preferred outputs.

Despite these advancements, existing token-level
preference learning approaches still face several
limitations: (1) They focus on local token proba-
bilities but fail to model global semantic relation-
ships across sequences. (2) Many methods depend
on handcrafted heuristic functions, introducing bi-
ases that require extensive hyperparameter tuning.
(3) Token-level constraints often lack distributional
perspective, limiting their effectiveness in gener-
alizing to structured preferences over longer con-
texts.

These challenges highlight the need for a prin-
cipled, distribution-aware approach that integrates
token-level alignment with global preference mod-
eling. Optimal Transport (OT) offers a promis-
ing direction by enabling fine-tuning-based prefer-
ence learning that aligns full-sequence distributions
while preserving semantic consistency.

3 Methodology

In this section, we formulate the fine-tuning-based
preference learning problem as an Optimal Trans-
port problem. Preliminaries about Optimal Trans-
port can be found in Appendix A .

3.1 Problem Definition

In general, the preference dataset is as follows:

D= {(x(i),ysz),y(_i))}]v (D

=1

where z(?) represents the user query, y(j)

sents the preferred answer, y@ represents the non-
preferred answer, and NV is the total number of sam-
ples. Such data can be used for reward modeling
or directly fine-tuned via various methods.

We assume that the model output distribution
during the fine-tuning process is Qp, and there

exists a distribution P that represents the target

repre-



preference information. In order for the model to
conduct preference learning from the perspective of
distribution, we aim to preserve the original form
of the model’s distribution while considering the
semantic relationships between tokens to achieve
global optimization. To do this, we quantify the
gap between Qp and P, which is defined as the op-
timal transport problem from Qy to P, as shown in
Equation 15. The preference difference is the mini-
mum transport distance between them, denoted as
Lp1or, which is incorporated into the fine-tuning
methods’ loss function Lygpiia as follows:

L = Lyanilla + aLpLoT ()

where « is a hyperparameter that controls the
weight of Lpror in the overall loss. Before this,
we first need to derive the target preference distri-
bution P and the elements c;; used to construct the
cost matrix C.

3.2 Preference Distribution

We denote the distribution containing preference
information as the target preference distribution P;.
This is the object that the model’s output distribu-
tion is transported to, and it serves as the target
for the model to learn the preference gap between
them. It can be the output distribution Q. of a
reward model, or, as in previous work (Zhu et al.,
2024), a dictionary Qgis consisting of the differ-
ence between the token frequencies of positive and
negative examples. In essence, we require a distri-
bution that embodies preference information and
apply the following operations ®(-):

o(P) = nT(ipl) )

> =1 T(pj)
where p; represents the value of P at token;, 1" is
an arbitrary non-negative function, and n denotes
the dimension of P, typically the size of the vocab-
ulary. The purpose of this step is to transform P
into a strict mathematical distribution, enabling its
participation in subsequent OT calculations.

T:-R—R. (3)

3.3 Token Embedding

Once the two distributions, Oy and P, for the OT
problem are obtained, the default cost matrix C
can be used to solve the problem, where the cost
of tokens in the same position is 0, and the cost of
tokens in different positions is 1. This approach
computes the minimal cost, where the distance be-
tween tokens is not considered, and the cost is cal-
culated solely based on the token values in Qg and

‘P.. However, in preference learning tasks, tokens
carry rich semantic information. Since OT calcula-
tions provide the cost matrix C' to incorporate such
information, we extract the model’s embedding ta-
ble E of all tokens in the semantic space:

s €n) )

where each sub-vector e; represents the embedding
of the i-th token, and n denotes the size of the vo-
cabulary. To simplify the computational complex-
ity and unify the dimensions, we apply an /-norm
mapping to each sub-vector e; in the embedding
space, bringing them into a specific distance space:

E = [el,ez,...

cij = llleill: — [lejlli (5)

in which the distance metric [ can be arbitrarily
chosen. This results in a cost matrix C' that incor-
porates rich semantic information, enabling us to
account for the semantic relationships between to-
kens. This ultimately leads to improved preference
learning.

3.4 Minimal Distance

Given Q, P, and C, we can proceed with solving
the OT problem from Equation 15: Q represents
the model output distribution Qy; the selection of
P is considered based on previous work (Zhu et al.,
2024) that constructs Qg from preference data,
which effectively extracts preference information.
We use it as a candidate for P;:

Q. o
29+ Yo
where Q) /_ is the token frequency of all y,_,
respectively. However, considering that the dif-
ference between the two distributions lies in the
range [—1, 1] and is not a strict mathematical dis-
tribution, to preserve the token-wise differences
in values and maintain the form of Qg itself, we
apply a non-negative transformation by subtracting
the minimum value as 7"

T(Qaitr) = Quaift — min(Quifr) 7

then the range of values for Qgif becomes
[0, max(Qaifr) — min(Quif)]. After normalization
via Equation 3, a strict target preference distribu-
tion P is obtained. For the cost matrix, we set
[ = 2, which corresponds to the L norm, to ob-
tain the Euclidean distance of each token from the
origin:

Qdift =

(6)

(®)




where d is the dimension of embedding vectors.
We then transform E into a one-dimensional vector
with the same length as Qpy and P, and compute
all the elements of the cost matrix using Equation
5. Thus, Equation 15 can be written as the new loss
item Lpror:

Lpror(Qg, Pr)

= Fel‘?lénﬂ Z llleill2 — llejll2]yig
= min (C,F) ©)
rell(Qg,P)
st. T1=0Qy, TT1="7,
vij >0 Vi, j.

By solving this constrained linear programming
problem, we can obtain the minimum transport cost
between Qg and P at each step by I'. However, in
practice, the vocabulary size of LLMs is typically
large and the cost matrix and constraints make the
problem difficult to solve. Based on the previous
derivation, we have obtained one-dimensional dis-
crete vectors Qg, P;, and E of equal length. There-
fore, the solution to Equation 9 is equivalent to the
computation of the one-dimensional Wasserstein
distance, defined as W1 (Q, P) (Villani et al., 2009;
Peyré et al., 2019):

Wi(Q,P) = / |Fy(z) — Fy(a)| da
e (10)
—Z|F x;) — Fp(x;)|Aw;

where Fi1(z) represents the Cumulative Distribu-
tion Function (CDF) of distribution Q:

x;) = Z QX =

tSLBi

1D

Ax represents the difference between adjacent x
values:

(12)

In our case, this corresponds to the distance be-
tween two tokens. Thus, the final calculation for
Lpror becomes:

EPLOT(QGaPt) =
= Z | Foy ()

The minimal distance between Qg and P, causes
the model’s overall output distribution to align

Aac,- = Tij4+1 — X4

Wl(QGa Pt)

13
pt<$1)|sz (1

more closely with the preference distribution, es-
pecially for those tokens that most align with or
deviate from the preference. Additionally, by con-
sidering the embedding vectors, PLOT prioritizes
transportation between tokens that are close in the
semantic space, making the model consider not just
the transport distance between individual tokens,
but also all tokens in the semantic space, achieving
a form of global optimization.

4 Experiments

This paper focuses on aligning the model with pref-
erences for Harmless content and employs a series
of jailbreak methods to assess the model’s resis-
tance to attacks. Additionally, we conducted evalu-
ations to measure the model’s general capabilities.

4.1 Training Details

Data We used the previously refined HH-RLHF
dataset (Bai et al., 2022a) from the prior work PRO
(Song et al., 2024) which includes higher-quality
ChatGPT ! responses added to all samples as our
training data. We extracted the Harmlessp,ge sub-
set which contains 42,536 samples from it and con-
structed the preference distribution P; using the
positive and negative examples from the enhanced
dataset. Considering training costs, we randomly
selected 4,000 of the data for training.

Method Considering training costs and the rigor
of the method, we selected the classic DPO method
to validate the effectiveness of Lpior.

Model We use the latest Llama3.2-3B-Instruct 2
as our base model, denoted as Instruct. The model
trained on the training set with DPO is referred to as
DPO. Since this paper only conducts enhancement
experiments using the DPO method, for clarity, we
refer to the model trained with PLOT added on top
of DPO as PLOT.

Setup All experiments were conducted on 4
NVIDIA A100 80GB GPUs, with a batch size of 1
per GPU and a total batch size of 4. The training
was performed for 1 epoch with the hyperparameter
B = 0.1 for DPO and o = 8 for PLOT. The train-
ing duration of DPO was approximately 487.03
seconds, while for PLOT, it was approximately
500.80 seconds.

"https://chat.openai.com/
“https://huggingface.co/meta-llama/Llama-3.2-3B-
Instruct
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Behaviors

Methods Standard Copyright Contextual Total
Instruct DPO PLOT Instruct DPO PLOT Instruct DPO PLOT Instruct DPO PLOT
1 26.33 4.17 1.00 13.00 6.00 5.00 50.00 18.00 8.00 28.92 8.08 3.75
7S n= +3.06 +0.85 +£0.41 +1.41 +0.82 +0.82 +4.55 +1.41 +0.82 +£2.54 +0.85 +0.41
— 500 2728 3.50 047 1297 9.20 6.33 57.22 17.63 10.30 31.18 846 4.39
n= +1.41 +0.43 +0.05 +0.21 +0.37 +0.66 +1.88 +2.09 +1.56 +1.12 +0.81 =40.20
PEZ "= 5 21.87 537 4.73 2260 7.13 4.20 20.27 393 3.27 21.65 545 4.23
T =500 4090 #0.33 40.12 +0.16 +0.98 +043 +1.64 +0.52 +0.62 +0.54 +0.25 =40.20
GBDA "~ 5 22.33 5.03 4.87 2027 6.33 4.53 16.60 7.00 3.00 20.38 5.85 4.32
T =500 4066 +0.54 +0.21 £1.09 #1.91 +0.34 +1.23 +1.45 40.71 +0.53 +0.37 =£0.13
UAT Zf; 20.00 7.67 5.17 21.00 833 7.00 17.67 3.33 233 19.67 6.75 4.92
T; 100 +2.04 +1.43 £0.24 +1.63 £1.70 +0.82 +0.47 +0.94 +0.47 +0.51 +0.20 +0.24
SFS k=5 39.22  25.00 16.67 42.33 31.00 17.67 32.67 22.00 16.67 38.42 25.75 16.92
T =50 +1.84 £2.04 +£1.55 +3.86 +0.00 +£1.25 +6.24 +2.16 +1.25 +£1.36 +1.24 =+0.51
cce "= 1 48.50 30.67 26.67 51.00 31.67 27.67 40.67 27.33 26.33 47.17 30.08 26.83
T =500 4430 +2.87 +1.70 +3.56 +0.94 +1.25 +4.19 +1.70 +0.94 +1.43 +0.82 +0.42

Table 1: The experimental results for the red reaming attack. Attack Success Rate (ASR) is used to assess the
defense capability of different models under various attack methods. PLOT demonstrates significant performance
enhancements over DPO across all attack methods, showing improvements in each test data subset as well as the

overall performance with better stability.

4.2 Red Teaming Attack

We used HarmBench (Mazeika et al., 2024), which
is a standardized evaluation framework for various
automated red teaming attack methods, to supports
a multidimensional evaluation of the model’s de-
fense capabilities through both functional and se-
mantic classification. In terms of the testing data,
it integrates current harmful content datasets and
manually designs harmful behaviors to ensure that
they violate legal or widely accepted norms. It
includes seven categories of harmful content, and
excluding multimodal data, the pure text data can
be categorized into three types, as shown in Table
2. Attack Success Rate (ASR) was used as the
evaluation metric, with a fine-tuned Llama2-13B-
Chat * model serving as the classifier to determine
whether an attack was successful.

Methods We selected a subset of red-team attack
methods to test the model’s defense capabilities
against harmful content under various conditions.
Zero-Shot (Perez et al., 2022) or ZS directly gen-
erates n cases for each behavior, resulting in a to-
tal of 400 x n test samples. For each behavior,
PEZ (Wen et al., 2024) generates n cases with an
optimized embedding vector to induce harmful con-
tent, totaling 400 X n, iterated for 7" rounds, using

*https://huggingface.co/cais/HarmBench-Llama-2-13b-
cls

Behaviors #Samples Source & Description
Standard 200 Based on AdvBench (2023) and
TDC 2023 (2023)
Copyright 100 Manually crafted requests for
copyrighted content
Contextual 100 Manually crafted complex re-
quests with context
Manually filtered to ensure
Total 400 clearly harmful with no legiti-

mate use

Table 2: Distribution and description of the HarmBench
evaluation dataset.

only the target model. GBDA (Guo et al., 2021)
uses the Gumbel-Softmax technique for the target
model to convert discrete token selection into a dif-
ferentiable operation, with n cases generated for
each behavior, iterating for T" steps. UAT (Wallace
et al., 2019) generates adversarial trigger tokens
via gradient-based optimization for each behavior.
Each case is iterated for 7" rounds, selecting tokens
from the top k candidates, n cases are generated,
totaling 400 x n. Sophistic Few-Shot (Perez et al.,
2022) or SFS generates candidate prompts per iter-
ation using updated k-shot examples, refining over
T iterations, with the best candidate selected as
the final prompt. For each behavior, GCG (Zou
et al., 2023) optimizes an adversarial suffix at the
token level, with n cases generated, iterating for T’
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rounds, resulting in a total of 400 x n cases, and
only the target model needs to be loaded.

Main Result To fully validate the effectiveness
of PLOT, for each red team attack method, we con-
ducted 3 times of experiment on each fine-tuned
model and under each hyperparameter setting, av-
eraged the results, and calculated the standard de-
viation. The default Mixtral-8x7B-Instruct-v0.1 4
from HarmBench was chosen as the attack model
for some of the methods.

As shown in Table 1, we compared the ASR of
the Instruct model, the DPO fine-tuned model, and
the PLOT enhanced model under each method. Un-
der each experimental setting and for every method,
PLOT achieved varying degrees of reduction in
ASR compared to DPO: it reduced ASR by 1.22-
1.83% for the PEZ, GBDA, and UAT methods; by
3.25-4.33% for the Zero-shot and GCG methods;
and by a significant 8.83% for the SFS method. Ex-
cept for the slightly higher standard deviation (0.24)
for the UAT method compared to DPO (0.20), the
standard deviations for other methods are lower
than those of Instruct and DPO. This demonstrates
that the model under PLOT optimization exhibits
significantly enhanced defense capabilities and sta-
bility against various attack methods.

In addition, we also plotted the line charts of
ASR variations for different values of n in Zero-
Shot and for different update steps 1" in GCG, as
shown in Figure 1. It can be seen that PLOT further
enhances the defense capability over DPO while
exhibiting stronger stability against attacks, consis-
tent with the conclusions from Table 1.

4.3 General Capabilities

While the model demonstrates improved prefer-
ence learning, it is crucial to assess the impact on
the model’s general capabilities. Therefore, we
employed AlpacaEval (Li et al., 2023a) to com-
prehensively evaluate the effect of Lpror on the
model’s general output quality. We followed the
AlpacaEval 2.0 setup, with GPT-4 as the reference
for comparing response quality and scoring, and
utilized Length-controlled (LC) Win Rate (Dubois
et al., 2024) as the evaluation metric, as shown in
Figure 2.

As shown, after DPO fine-tuning, the overall
response quality of the model declined to some
extent, with the LC Win Rate dropping from

“https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1
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Figure 1: The ASR curves of three models under dif-
ferent case counts for the Zero-Shot method (Up) and
varying update steps of GCG (Down). PLOT consis-
tently demonstrates superior defense capabilities and
stability compared to DPO.

17.93% =+ 1.24% to 13.64% =+ 1.11%, which may
be due to the random sampling of the training data.
However, after incorporating PLOT with DPO, the
model’s response quality did not worsen, increasing
slightly 14.06% 4 1.09%, indicating that PLOT did
not exacerbate the negative impact of the original
fine-tuning method on response quality. In other
words, the distribution-based loss term did not in-
terfere with the model’s normal output distribution,
thereby preserving the quality of the model’s re-
sponses under fine-tuning, which corresponds to its
general capabilities.

4.4 Ablation and Analysis

In this section, we conduct jailbreak experiments
under the same setup as Section 4 and experiments
are performed three times, with the average values
and standard deviations computed. We compare
the ASR results of different methods and settings
to validate and analyze the effectiveness of Lpr or.
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7S PEZ GBDA UAT SFS GCG
Methods
n=500 n=5,T=500 n=5,T=500 n=1, k=3, T=100 k=5, T=50 n=1, T=500
DPO 846 £0.81 5.45+0.25 5.854+0.37 6.75 £ 0.20 25.75+1.24 30.08 +0.82
+Ro (DEFT) 5.654+0.61 5.08+0.51 5.27+0.41 5.25 +0.20 19.25 +£1.27 28.42+1.12
+LprorwoE 4.91+030 4.83+0.17 4.40+0.12 5.17 £0.12 17.83 £0.31 27.25+0.54
+LpLor 4.39+0.20 4.23+0.20 4.32 +0.13 4.92 +0.24 16.92 £0.51 26.83 +£0.42

Table 3: A comparison of ASR across different loss components and experimental settings under various attack
methods reveals that transitioning from DEFT to OT-formulated problem yields performance improvements, which
are further enhanced by the inclusion of token embeddings.
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Figure 2: Comparison of the Length-controlled (LC)
Win Rate across the three models shows that Lp;or
preserves the general capabilities of the model under the
original fine-tuning method.

Effectiveness of OT Formulation Previous
work DEFT (Zhu et al., 2024) introduced the dis-
tribution reward R o, where the term Qgis, derived
from Equation 6, is element-wise multiplied by
the model output Qy at the token level and then
summed as follows:

Ro = Z Quirr © log Qp (14)

and this reward is subsequently incorporated as a
new loss term in the fine-tuning procedure. As
previously noted, the value range for each token
position lies within [—1, 1] and it does not satisfy
the conditions of a true mathematical distribution.
As illustrated in Table 3, although the inclusion of
‘R o leads to promising results, particularly in the
context of Qg effectively extracting preference
information, its performance in defending against
various red team attack methods remains inferior
compared to the approach we propose. This high-
lights the effectiveness of reformulating the prefer-
ence learning problem at the distribution level as an
optimal transport (OT) problem for its resolution.
Since the operation in Equation 14 is an empirical

approach, it essentially focuses on local optimiza-
tion of individual tokens, whereas the solution to
the OT problem offers a global optimization from
the perspective of the entire distribution.

Efficacy of Embedding In order to investigate
the practical effect of extracting token embeddings
for computing the cost matrix C, we discarded
the embedding vector E and replaced the cost ma-
trix with the default O-1 cost matrix as described
in Section 3.3. The new loss term is denoted as
LpLor w/o E, and DPO training was conducted
under the same setup. As shown in Table 3, the
model excluding token embeddings consistently
achieved higher ASR across multiple red teaming
attack methods compared to the standard Lppor.
This clearly demonstrates that incorporating to-
ken embeddings for inter-token distance compu-
tation inherently leverages semantic space relation-
ships, which, in theory, enables more sophisticated
distribution-level optimization through richer infor-
mation. These performance improvements are in
line with the theoretical derivations.

5 Conclusion

In this paper, we introduce PLOT, a novel loss term
designed to enhance the effectiveness of preference
learning in fine-tuning alignment methods. By for-
mulating token-level preference learning as an Op-
timal Transport (OT) problem at the distribution
level, PLOT effectively captures both the prefer-
ence discrepancies between distributions and the
rich semantic information encoded in the tokens.
Experimental results on preferences for harmless
content demonstrate that PLOT significantly im-
proves the preference learning performance of the
baseline method, while preserving the overall re-
sponse quality of the model. This work contributes
a new approach to enhancing preference learning
in fine-tuning methods, offering both theoretical
insights and practical improvements in the field.



Limitations

First, we introduce a preference learning en-
hancement loss based on fine-tuning methods.
However, considering the challenges in testing
and quantifying preferences, we selected the
Harmful/Harmless preference, which is both fun-
damental and widely adopted in current evalua-
tion practices, to demonstrate the effectiveness of
our approach. Future work will involve testing
Lprot on other types of preferences, such as log-
ical reasoning in mathematical sciences and cor-
rectness and complexity in code-related tasks, to
further establish its generalizability. Second, due to
time and cost constraints, our baseline fine-tuning
method only considers DPO, with the base model
being Llama-3.2-3B-Instruct. The training data
consists of 4,000 randomly selected samples from
the Harmlesspase subset of the HH-RLHF dataset.
Further experiments with larger and more diverse
datasets, methods, and models are necessary for
enhanced comparative analysis. Finally, several
custom components in our method, such as the se-
lection of the preference distribution P, the choice
of the non-negativity function 7", and the selection
of the embedding norm [, offer potential points for
further experimental investigation.
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A Preliminary

A.1 Optimal Transport

Optimal Transport (OT) provides a principled way
to compare probability distributions by comput-
ing the minimum cost required to transform one
distribution into another. Unlike traditional diver-
gence measures such as Kullback-Leibler (KL) di-
vergence, which compares probability distributions
in terms of relative entropy, OT explicitly models
the movement of probability mass, making it partic-
ularly effective for structured alignment problems.

Given two probability distributions, Q and P,
the Optimal Transport (OT) Problem is defined
as follows (Peyré et al., 2019):

OT(Q,P)= min_ (C,T)
Tell(Q,P)
= FE{'IH(IQD,’P) ; J; Cij7ij
ry, =9,
SLI(QP) =P ey [

15)

Here, C represents the cost matrix, where each

element c¢;; quantifies the transport cost between

point g; in Q and point p; in P. The transport plan

I" is a joint probability matrix, where each element

7vi;j represents the amount of mass transported from
gi to p;. The constraints enforce that:

* The total transported mass from each point in
©Q must equal its original mass.

* The total mass arriving at each point in P must
match its target distribution.

* Each element v;; in I' must be non-negative.

The objective is to determine an optimal transport
plan I' that minimizes the overall transport cost.

A.2 Relevance of Optimal Transport to
Preference Learning

Optimal Transport has been widely used in dis-
tributional alignment tasks, including generative
modeling and domain adaptation (Arjovsky et al.,
2017). In the context of preference learning, OT
provides a natural way to measure the discrepancy
between a model’s predicted distribution and an
ideal preference distribution. Unlike token-level
objectives, which optimize local probability assign-
ments independently, OT considers global structure
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within the output distribution, ensuring more stable
and context-aware preference learning.

While OT is a powerful framework, solving it
exactly is computationally expensive, typically re-
quiring O(n?logn) operations. To address this,
regularized OT variants such as entropy-regularized
OT (Cuturi, 2013) have been proposed, which in-
troduce an entropy penalty to encourage smoother
transport plans and reduce computational complex-
ity to O(n?). These approximations make OT feasi-
ble for large-scale preference learning applications.

By leveraging OT in fine-tuning-based prefer-
ence learning, models can learn to align with hu-
man preferences more robustly while preserving
semantic coherence across generated outputs.
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