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ABSTRACT

In response to critiques of existing evaluation methods for temporal link prediction
(TLP) models, we propose a novel approach to verify if these models truly capture
temporal patterns in the data. Our method involves a sanity check formulated
as a counterfactual question: “What if a TLP model is tested on a temporally
distorted version of the data instead of the real data?” Ideally, a TLP model that
effectively learns temporal patterns should perform worse on temporally distorted
data compared to real data. We analyse this hypothesis and introduce two temporal
distortion techniques to assess six well-known TLP models.

1 INTRODUCTION

In static graphs, link prediction refers to the task of predicting whether an edge exists between two
nodes after having observed other edges in the graph. Temporal link prediction (TLP) is a dynamic
extension of link prediction wherein the task is to predict whether a link (edge) exists between any
two nodes in the future based on the historical observations (Qin and Yeung]| [2023)). The predictive
capability of TLP models make them useful in applications pertaining to dynamic graphs, such as
product recommendations (Qin et al.| [2024{ [Fan et al. 2021), social network content or account
recommendation (Fan et al.| 2019} |Daud et al.l [2020), fraud detection in financial networks (Kim
et al.,|2024), and resource allocation, to name a few.

In the TLP literature (Kumar et al. 2019; Trivedi et al., 2019} | Xu et al.| [2020; [Ross1 et al., [2020;
Wang et al., [2020; (Cong et al.,|[2023; | Yu et al.,|2023), the TLP task is treated as a binary classification
problem where the query

q; : “Does an edge exist between the nodes u and v at time £?”

is processed by a model and then compared with the ground truth following which metrics such as
area under the receiver operating characteristic curve (AU-ROC), and average precision (AP) are
reported. The ground truth consists of positive samples, and a fixed number of random negative
samples. There are a couple of issues in the binary classification approach. Firstly, the timestamps in
the query are restricted to the timestamps present in the ground truth, which makes the evaluation
biased and does not test the model’s performance in the continuous time range. Secondly, checking
for the existence of an edge at a specific timestamp is an ill-posed question, and instead the existence
of an edge should be queried within a finite time-interval. Lastly, the negative edge sampling strategy,
and the number of negative samples per positive sample impact the performance metrics as seen in
EXH (Poursafaei and Rabbany, [2023)).

Alternatively, in a rank-based approach, the query is formulated as:
gz : “Which nodes are likely to have an edge with node u at time ¢?”

In this case, the model returns an ordered list of nodes arranged from most likely to least likely.
Then, the rank of the ground truth edge is returned if a match is found, and if not, a high number is
reported. For all the edges in the test data, metrics such as Mean Average Rank (MAR) or Mean
Reciprocal Rank (MRR) can be reported to assess the performance of the model (Huang et al., [2024).
While the rank-based metrics are more intuitive than AU-ROC and AP, the issues regarding binary
classification mentioned above still remain unaddressed. To give a true picture of the predictive power
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of the TLP models, a penalty term should be introduced to account for the nodes that are incorrectly
estimated to form an edge with node w at time ¢.

In a recent work, |[Poursafaei et al.| (2022)) highlighted that the state-of-the-art (SoTA) performance
of some TLP models on the standard benchmark datasets is near-perfect. This is counterintuitive
because TLP is a challenging task, even more challenging than link prediction of static graphs, due
to the additional degree of freedom in the data induced by the temporal dimension. The flaw in the
evaluation method is attributed to the limited negative sampling strategy, and the authors propose a
new negative edge sampling strategy which results in a different ranking of the baselines.

Inspired by the critique of the evaluation method, we propose a method to conduct sanity check of
the TLP models to determine if they truly capture the temporal patterns in the data. The sanity check
is formulated as the counterfactual question (Pearl, [2009):

“What if a TLP model which is trained on a temporal graph is tested on temporally
distorted version of the data instead of the real data?”

Ideally, a TLP model which is capable of learning the temporal patterns should perform worse on
temporally distorted data compared to the real data. We conduct an in-depth analysis of this argument
and introduce various data distortion techniques to assess well-known TLP models.

2 COUNTERFACTUAL ANALYSIS

Definition 2.1. A temporal graph with m € N instantaneous edges formed between nodes in ¢/ and
Vis defined as G = (U, V, E), where € £ {(u;,v;,t;) i € [m],u; € U,v; € V,t; € R} denotes
the set of edges. The triple (u, v, t) is referred to as an edge event.

Definition 2.2. The slice of edges in £ with timestamps in the range (¢1,?2) is denoted as E(t1, t2),
and defined as £(t1,t2) = {(u,v,1) : (u,v,t) € E,t € (t1,12)}.

A temporal graph is characterized by (1) the order in which the edges appear, (2) the frequency
with which edges appear over time, and (3) the time gap between any two edge events. In this
work, we refer to these characteristics as temporal patterns. Furthermore, if temporal patterns
observed in the past enable predictions of future temporal patterns that outperform naive estimates on
a specific performance metric, then the temporal data is considered learnable. This does not require
the temporal pattern to remain consistent over time; rather, it suggests that future changes can be
estimated from past observations.

Experiment Setup A model f is trained on a temporal graph &;,.i, and tested on Eeg¢ through the
binary classification approach resulting in a performance metric such as AP. The train and test data
are chronologically split from the same temporal graph which is assumed to be generated through a
common causal mechanism, i.e., Eain = £(0, 70), and Eiest = £ (70, T). In light of the experimental
setup, we ask the following question:

Would the model f which is trained on &5, perform well if tested on a distorted
version of &gt instead of Eegt ?

To formalise the question in the counterfactual framework (Pearl, [2019)), consider the following
statements. =’ : The model f is tested on Eyest, ¥’ : The performance metric is «, = : The model f
is tested on a temporally distorted version of Eiest, and y : The performance metric is less than a.
Additionally, y,. is read as y when . The counterfactual question is framed as P (y. | 2’,v’), i.e.,

The probability that the performance metric would be less than « had the test data
been a temporally distorted version of Eiest, given the performance metric was
observed to be at least & when the model was tested on E; gt .

To answer the question above, we design the intervention as graphically depicted in Fig.[I] The TLP
model f is trained on the data &, ,i,. The true test data &g is temporally distorted through some
function D(+) resulting in & = D (&est ). Finally, we test the model f on the true data ;s and the
temporally distorted data £’ and compare the metrics which may result in either of the two scenarios
shown in the figure based on which we can comment on the effectiveness of f.
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Figure 1: The intervention setup to verify the counterfactual question above.

Consider the following statements,

s1 : The model f is capable of discerning temporal patterns in (Eqrains Etest)

so : The function © generates temporally distorted test data &' = D (Eqest)

s3 : The data (Eirain, Etest) 18 learnable

s4 : The performance metric reported by the model f on true test data .t is always higher than
that reported on the distorted test data &', i.e., P(y,, | 2’,vy') = 1.

We start with 57 A so A s3 = s4. Assuming that the data is learnable, i.e., s3 = 1, we get
$1 A ss = s4. Through contraposition, we arrive at =s4 = =81 V —82, where =84 = P(ys |
2',y") # 1. Further, we impose that D satisfies —sy = 0, allowing us to conclude —s; = —s;
which reads as P(y, | #’,y’) # 1 = model f is incapable of discerning the temporal patterns
distorted by ©.

)
I
|

Figure 2: Visual rep-
resentation of INTENSE
and SHUFFLE.

Temporal Distortion Techniques We devise distortion functions D(-)
which enable us to investigate the counterfactual question posed earlier.
We propose two distortion techniques Dyyrense (-, ) which creates K
time-perturbed copies of each edge event, and D syypee(-) Wherein the
timestamps of different edge events are shuffled. |

&

Dnrense(£, 5

|
)

The operations of D yrense and Dsyyurr e are described in Algorithms |I|
and [2] respectively (see Appendix [B). Moreover, a visual example is
provided in Fig. 2| In ®rense(€,5), 5 edge events are created in the
vicinity of the true edge event in £. This increases the frequency with
which edges appear in an interval, thereby distorting the temporal pattern.
In Dspurre(€), as the name suggests, the order in which the edges appear
is shuffled and thus the temporal pattern is distorted, the edges now appear
where they should not be. The source code of the distortion methods is available here,

DsuurrLe(E

3 RESULTS

We evaluate the performance of the following TLP models in light of our counterfactual question:
JODIE (Kumar et al.,[2019), TGAT (Xu et al.}2020), TGN (Rossi et al.,2020), CAWN (Wang et al.,
2020), GraphMixer (Cong et al.}[2023), DyGFormer (Yu et al.| 2023)

The models are evaluated under two settings: transductive and inductive. In transductive TLP, the
nodes u, v in the positive sample (u,v,t) € st Were observed during training. In contrast, in
inductive TLP, at least one node in u, v is novel, and was not observed during training.

In Table[T] we have arranged the datasets in increasing order of their size. We notice that all the TLP
models pass the counterfactual test for SHUFFLE distortion on the smallest dataset: uci, and some
of them {TGAT, GraphMixer, DyGFormer} pass for SHUFFLE on the second-smallest dataset
wikipedia, and only GraphMixer and TGN pass on reddit. Surprisingly, JODIE passes on
INTENSE distortion for two of the largest datasets last fm and mooc. And overall, none of the
TLP models pass the counterfactual test on the INTENSE distortions. This allows us to conclude the
following: (1) The TLP models are able to discern the temporal order of edge occurrence, however
this capability worsens for larger datasets, and (2) the TLP models do not use the frequencies at
which the edges appear over time.


https://github.com/Aniq55/TLPCF
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Table 1: Performance of the models JODIE, TGAT, TGN, CAWN, GraphMixer, and DyGFormer
on five datasets, and their temporally distorted versions denoted as INTENSE, and SHUFFLE. For each
metric, we report the mean, and the 95% confidence interval (CTI) as mean + CI. We have marked
the metrics in blue when the counterfactual test fails, and orange when it passes for a given model on
a particular dataset.

| AP AU-ROC
‘ uci wikipedia reddit lastfm mooc uci wikipedia reddit lastfm mooc
transductive | 0.8726 £5e3 09137 £5e3  0.9654 +5e3  0.7036 £2¢3  0.8068 +6e4 | 0.8950 £3e3  0.9170 £33 0.9679 £4e3  0.6798 +3e3  0.8178 £4e3
= INTENSE 09129 £5e3 09078 £1e2  0.9567 +1e2  0.7090 £3e4  0.75560 +4es | 0.9244 £2e3 09177 £73  0.9619 £9e3  0.7124 £4e3  0.6014 +2e3
a SHUFFLE 0.8509 £3e3  0.8962 +4e2  0.9613 £ae2  0.7036 £1e3  0.8072 £5e4 | 0.8852 £3e3  0.9097 £2e2  0.9661 £1e2  0.6798 £4e3  0.8177 £5e3
o
=] inductive 0.7310 £2¢2  0.8970 £5e3  0.9138 £2e2  0.8431 £4e3  0.7931 £1e3 | 0.7546 £5e3  0.8941 £4e3 0.9343 £9e3  0.8091 £2e3  0.8363 13
INTENSE 0.8332 £8¢3  0.8972 12 0.9308 £4e2  0.8361 £5e4  0.7658 £3e4 | 0.8384 £3e3  0.9036 £1e2  0.9457 £3e2  0.8302 £1e3  0.6912 £ 6e3
SHUFFLE 0.6994 £33 09078 £2e2  0.9251 £6e3  0.8431 £2e3  0.7931 £7e4 | 0.7368 £5e3 09157 £1e2 0.9419 £3e2  0.8091 £2e3  0.8363 £ 1e3
transductive | 0.7694 £7e3  0.9528 £2¢3  0.9818 £6ea  0.7309 £3e4  0.8458 £5e4 | 0.7885 £1e2 0.9499 £2e3  0.9806 +6e4  0.7139 +4ea 0.8587 +2e4
INTENSE 0.8637 £2e2  0.9691 £2e3  0.9825 +6e4 09840+ 1e4  0.9610 £ 1e4 | 0.8707 £1e2  0.9680 +2e3  0.9821 £eed  0.9835 £ 1e4 0.9627 +1ea
; SHUFFLE 0.7336 £2¢2  0.9532 +5e3  0.9826 £6e3  0.7308 £3e4  0.8458 £4ed | 0.7719 £1e2 0.9492 £5e3  0.9814 £7e3  0.7139 £2e4  0.8588 £ 4e4
]
= inductive 0.7008 £i1c2 09401 £2¢3  0.9658 +£1e3  0.7817 £2e4  0.8430 £3e4 | 0.7020 £5e3 09353 £2c3  0.9641 £1e3  0.7661 £1es  0.8563 +2¢4
INTENSE 0.8095 £2e2  0.9621 £2e3  0.9676 £1e3 09841 £1e4  0.9621 £1ed4 | 0.8019 £2e2  0.9604 £2e3  0.9676 £8e4  0.9837 £2e4  0.9628 & 1e4
SHUFFLE 0.6324 £1e2 09304 £7e3  0.9664 £3e3  0.7817 £2e4  0.8430 £3e4 | 0.6558 £7e3  0.9257 £7e3 09644 £7e3  0.7661 £2e4  0.8563 +2e4
transductive | 0.7975 12 09472 £1e3  0.9578 £1e3  0.7764 £5e3  0.8855 £4e3 | 0.7826 £1e2 09370 £1e3  0.9545 +1e3  0.6246 63 0.8196 +7e4
INTENSE 0.9709 £3e3 09911 £6ed 09744 23 09916 £1e5  0.9629 +6e-d | 09653 £3e3  0.9898 13 09723 £2e3  0.9260 +5e4  0.9222 +2e4
8 SHUFFLE 0.6520 £4e2 0.8487 +3e2  0.9563 23  0.7764 £9e4  0.8848 £1e3 | 0.6722 £6e2  0.8310 £3e2  0.9533 £2e3  0.6246 £5e3  0.8197 +2e3
&
inductive 0.7948 £6e3 09463 £1e3  0.9346 £1e3  0.8336 £4c3  0.8873 £1e3 | 0.7714 £6e3 09374 £1e3 0.9299 +1e3 0.6935 £4e3  0.8033 £33
INTENSE 0.9650 £2e3  0.9908 £6e4  0.9645 £3e3 09927 £2e5  0.9641 £2e-4 | 09592 £3e3  0.9903 £1e3 09617 £3e3  0.9374 £4e4 09144 £2e4
SHUFFLE 0.6193 +9e3 0.8376 +3e2 0.9299 +3¢3  0.8337 £6e-3  0.8872 £2¢3 | 0.6245 + 202 0.8194 £ 22 0.9266 £ 4¢3 0.6936 +4e-3 0.8033 +3¢3
transductive | 0.9397 £se4 09901 £i1c4 09884 +3e3  0.8755 £3e4  0.8667 £2c4 | 0.9162 £9e4  0.9886 £1c4 09864 £4c3  0.8494 £3e4  0.8653 £ 204
INTENSE 0.9889 £7¢4  0.9975 +8es  0.9942 £7-5  0.9879 £2e4  0.9719 +1e4 | 0.9848 £6e4  0.9977 £9e5  0.9931 +8es 09871 £1e4  0.9734 +1e4
% SHUFFLE 0.8866 £2e3  0.9887 +£3e4  0.9880 £2¢3  0.8755 £3e4 0.8666 £3e4 | 0.8495 £7e3  0.9868 +£3e4  0.9859 +6e4 0.8494 £3e4  0.8653 +4e4
=
© inductive 0.9273 £2¢3 09896 +4e4 0.9859 +3e3  0.9031 £5e4  0.8543 £4e4 | 0.9052 £1e2 09877 £5e4 09833 £5e3  0.8822 £4e4  0.8519 +3e4
INTENSE 09857 £2e3 09971 £1es  0.9938 £8e5 09889 £3e4  0.9731 £2e4 | 09810 £3e3  0.9972 £6e4 09929 £8es  0.9882 £1e4  0.9737 £ 1e4
SHUFFLE 0.8783 £3e2  0.9896 £6e3  0.9851 £1e3  0.9030 £5e4  0.8541 +4es | 0.8383 £3e2  0.9876 £1e2  0.9826 £8e4  0.8822 £4eda  0.8518 £2e4
H transductive | 0.9323 £2¢3 09690 £4e4 09738 £3e4  0.7630 £1e4  0.8233 £3¢4 | 0.9176 £2¢3  0.9654 £7e4 09727 £3e4  0.7406 £ 1e4  0.8363 £ 204
X INTENSE 0.9923 £6e4 0.9966 £2e4  0.9965 £1e4 09858 £1e4  0.9537 £1e4 | 0.9916 £5e4  0.9968 £1e4  0.9969 £1e4  0.9856 £1e4  0.9590 % 1e4
E SHUFFLE 0.8553 £3e3  0.9096 £1e3  0.9725 £2e4  0.7630 £1e4  0.8230 £2e-4 | 0.8476 £3e3  0.9062 £3e4  0.9712 +£3e4  0.7406 £ 1e4  0.8361 +2e4
<
& inductive 09133 £1e3  0.9639 +1e4 09517 84  0.8261 £3e4  0.8077 +2e4 | 0.8960 £2e-3  0.9600 +2e4  0.9489 +9e4  0.8065 204  0.8224 +2e4
S INTENSE 09771 £5e4 09939 £1e4 09937 £2e4 09867 £1e4  0.9555 £ 1e4 | 0.9779 £1e4  0.9946 £1e4 0.9947 £2e4  0.9864 £1e4  0.9592 £ 1e4
SHUFFLE 0.7945 £3e4  0.8900 £2e3  0.9477 £7e4  0.8261 £3e4  0.8072 £3e4 | 0.7869 £3e4  0.88315 £2e3  0.9447 £1e3  0.8065 £2e4  0.8222 +3e4
o transductive | 0.9596 +3e4 09901 £2¢4  0.9921 + 14 0.9096 +1c4  0.8622 +2e4 | 0.9478 £5c4  0.9890 +3e4 09913 +£1e4  0.8959 +3e4  0.8622 + 1e4
QE’ INTENSE 09938 £1e4 09983 £1e4 09984 £1e4 09912 £1e4  0.9709 £1ed | 09924 £1e4  0.9986 £1e4 09988 £1e4 0.9911 £1e4  0.9728 £ 1e4
5 SHUFFLE 09515 £1e3 09892 £1e4 09924 £ 14 0.9096 £2e4  0.8620 +4e-a | 09391 £8e4 09875 14 09915 £1e4  0.8959 £3e4  0.8622 +3e4
[
o inductive 0.9437 £1e4 0.9854 +5c4  0.9880 +3e4 09293 £1e4  0.8509 +3e4 | 09241 £1e4  0.9845 +4ed 0.9866 +3e4 09180 £2e4  0.8529 +2e4
a INTENSE 0.9854 14 0.9965 £4es 09973 £1es 09918 £2e4  0.9723 £1e4 | 0.9831 £1e4  0.9976 £2e4  0.9981 £1e4  0.9916 14 0.9734 £ 1e4
SHUFFLE 0.9291 +4ea 09833 £3e4 09878 +3e4 09293 £1ed  0.8500 +5e4 | 0.9057 £6ed  0.9812 £2e4 09866 £3e4  0.9180 £2e4  0.8528 +3e4

Discussion Some of the TLP models used in this work such as GraphMixer, and DyGFormer
are considered the SOTA on most datasets, with near-perfect performance. However, as we showed
earlier, a higher metric alone is not indicative of good performance without sanity checks. The
counterfactual question helps make the evaluation more explainable, as models that perform worse on
temporally distorted data can claim superiority over models that do not. An ideal TLP model should
be able to capture the difference in the count of edge events, their order, and the temporal shifts in the
edge events.

To reiterate, if the performance of the model on the temporally distorted test data is similar or better
than the performance on the original test data, then it implies one the following: (a) the model has not
made use of the temporal information in the training set, (b) there is no useful temporal information
in the dataset, or (c) the temporal distortion is weak. In the absence of a guarantee that the dataset has
useful temporal information that can aid prediction, we can compare different models through the
performance gaps.

Future Work Moving away from the binary classification approach to assess the performance of
temporal link prediction, future research should explore a generative approach where after observing
a temporal graph from time ¢ € (0, 79 ), the model can generate a temporal graph in ¢ € (79, T’). This
generated temporal graph can then be compared with the ground truth to measure similarity and
assess the performance of the model.

Conclusion In this work, instead of introducing novel datasets, we present techniques for generating
temporally distorted versions of any temporal graph dataset. This makes the contribution relevant
even for datasets which will be introduced in the future. To the best of our knowledge, we are the
first to apply counterfactual analysis to TLP and hope that it can help standardize the assessment of
TLP models.
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A DATASETS & MODELS

A.1 TEMPORAL GRAPH DATASETS

We use the following dataset to perform counterfactual analysi

wikipedia (Kumar et al.,[2019) describes a dynamic graph of interaction between the
editors and Wikipedia pages over a span of one month. The entries consist of the user ID,
page ID, and timestamp. The edge features are LIWC-feature vectors (Pennebaker et al.,
2001) of the edit text. The edge feature dimension is 172.

reddit (Kumar et al.l 2019) describes a bipartite interaction graph between the users
and subreddits. The interaction event is recorded with the IDs of the user, subreddit and
timestamp. Similar to wikipedia, the post content is converted into a LIWC-feature
vector of dimension 172 which serves as the edge feature.

uci (Panzarasa et al., [2009)) is a dynamic graph describing message-exchange among
the students at University of California at Irvine (UCI) from April to October 2004. The
interaction event consists of the user IDs, and timestamp.

lastfm (Kumar et al.,|2019) is also a bipartite graph depicting the interactions between
1000 users and 1000 most listened songs over a span of one month.

mooc (Kumar et al.||2019) as the name suggests is a student interaction network enrolled in
the same online course.

Table 2: The scale of different datasets.

Dataset Total nodes (10%)  Total Edges (10%) Unique Edges (10%)
uci 1.89 59.84 20.29
wikipedia 9.23 157.47 18.25
reddit 10.98 672.45 78.52
lastfm 1.98 1293.10 154.99
mooc 7.14 411.75 178.44

A.2 TEMPORAL LINK PREDICTION MODELS

‘We make use of the following modelﬂ to test the counterfactual framework:

JODIE (Kumar et al., 2019) uses a recurrent neural network (RNN) to generate node
embeddings for each interaction event. The future embedding of a node is estimated through
a novel projection operator which is turn in used to predict future edge events.

TGAT (Xu et al.,[2020) relies on self-attention mechanism to generate node embeddings to
capture the temporal evolution of the graph structure.

TGN (Rossi et al., [2020) combine memory modules with graph-based operators to create an
encoder-decoder pair capable of creating temporal node embeddings.

CAWN (Wang et al., 2020) propose a novel strategy based on the law of triadic closure,
where temporal walks retrieve the dynamic graph motifs without explicitly counting and
selecting the motifs. The node IDs are replaced with the hitting counts to facilitate inductive
inference.

GraphMixer (Cong et al}2023) use a simple architecture where the encoder and decoder
are designed using multi-layer perceptrons (MLPs).

DyGFormer (Yu et al[2023)) use a transformer to learn from nodes’ first-hop interactions
and report SoTA results on most of the datasets.

'The datasets can be downloaded from https://zenodo.org/records/7213796
’The datasets are chronologically split in the ratio 0.7 : 0.15 : 0.15 into train, validation, and test sets.
3The optimal hyper-parameters reported by the models are used.


https://zenodo.org/records/7213796
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B TEMPORAL DISTORTION ALGORITHMS

Algorithm 1 D yrense Algorithm 2 D gyypp e
Input £, K € N,7 € Rt Input &
Output &’ Output &’
L& =0 & =0
2: for (u,v,t) € £do 2T« T(€)
3:  fork e [K]do 3: for (u,v,t) € £do
4: T ~ Uniform(—7, 7) 4 T~T
5 &+ & U{(u,v,t+71)} 50 &« & U{(u,v,71)}
6: end for 6: T« T\{r}
7: end for 7: end for
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