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Figure 1: DeRaDiff re-approximates a model aligned from scratch. Top row consists of images
generated by an SDXL model aligned from scratch at β = 5000 KL regularization strength. Bottom
row consists of images obtained via DeRaDiff sampling via an anchoring SDXL model aligned at a
KL regularization strength of β = 2000 with no further retraining.

ABSTRACT

Recent advances align diffusion models with human preferences to increase aes-
thetic appeal and mitigate artifacts and biases. Such methods aim to maximize a
conditional output distribution aligned with higher rewards whilst not drifting far
from a pretrained prior. This is commonly enforced by KL (Kullback–Leibler)
regularization. As such, a central issue still remains: how does one choose the
right regularization strength? Too high of a strength leads to limited alignment and
too low of a strength leads to “reward hacking”. This renders the task of choosing
the correct regularization strength highly non-trivial. Existing approaches sweep
over this hyperparameter by aligning a pretrained model at multiple regularization
strengths and then choose the best strength. Unfortunately, this is prohibitively
expensive. We introduce DeRaDiff, a denoising-time realignment procedure that,
after aligning a pretrained model once, modulates the regularization strength dur-
ing sampling to emulate models trained at other regularization strengths—without
any additional training or fine-tuning. Extending decoding-time realignment from
language to diffusion models, DeRaDiff operates over iterative predictions of con-
tinuous latents by replacing the reverse-step reference distribution by a geomet-
ric mixture of an aligned and reference posterior, thus giving rise to a closed-
form update under common schedulers and a single tunable parameter, λ, for on-
the-fly control. Our experiments show that across multiple text–image alignment
and image-quality metrics, our method consistently provides a strong approxima-
tion for models aligned entirely from scratch at different regularization strengths.
Thus, our method yields an efficient way to search for the optimal strength, elimi-
nating the need for expensive alignment sweeps and thereby substantially reducing
computational costs.

1 INTRODUCTION

Text-to-image (T2I) diffusion models (Ho et al. (2020); Rombach et al. (2022)) now underpin state-
of-the-art image generation. Sampling has been made efficient by techniques such as classifier-free
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guidance and latent diffusion, unlocking applications like style transfer, image-to-image translation,
and inpainting (Dhariwal & Nichol (2021); Saharia et al. (2022)). Most modern systems are trained
in two stages: (i) pretraining, which optimizes the diffusion objective on large-scale data; and (ii)
alignment, which adapts behavior to tasks or human preferences via supervised fine-tuning (SFT)
(Lee et al. (2023)) or reinforcement learning (Black et al. (2023), Clark et al. (2023) ).

A persistent challenge in alignment is balancing adaptation with fidelity to the pretrained prior. This
trade-off is typically controlled by a proximity penalty—most commonly a Kullback–Leibler (KL)
divergence—between the aligned and reference distributions. The associated regularization strength
is pivotal: if too strong, the model under-adapts; if too weak, it drifts and risks reward hacking
(Amodei et al. (2016); Stiennon et al. (2020); Bai et al. (2022); Lewis et al. (2020) ). Unfortunately,
identifying the right hyperparameter generally requires expensive sweeps that are prohibitive for
large diffusion models (Ho et al. (2020); Rombach et al. (2022)).

To this end, we propose DeRaDiff, a denoising-time realignment procedure. In the context of lan-
guage modeling, realignment is defined as the post-hoc adjustment of the regularization strength
β—effectively modulating the proximity to the reference model—by geometrically mixing the ref-
erence and aligned distributions at inference time (Liu et al. (2024)). While this enables LLMs to
vary alignment intensity via discrete logit manipulation, applying this principle to generative art
presents a distinct challenge: diffusion models do not output single-step probabilities over a finite
vocabulary, but rather operate via the iterative denoising of continuous latents. Our key insight is a
derivation of a tractable, closed form formula for the geometric mixture of a reference and aligned
diffusion models’ distribution that is parameterized by λ that adjusts the effective regularization
strength relative to the aligned model’s regularization strength, β. Crucially, λ is tunable on-the-fly
during inference.

As such, the closed-form update is presented in theorem 1 for the realigned reverse process, pro-
viding both a theoretical basis and an efficient implementation (see Algorithm 1). Quantitative
(Section 5) and qualitative results (Figure 8, Figure 3) show that DeRaDiff preserves downstream
performance while obviating retraining. Moreover, we achieve substantial compute savings, as de-
scribed in section 6. Our contributions can be summarized as three-fold:

• A theoretical extension of decoding-time realignment to diffusion processes, yielding a
closed-form stepwise realignment posterior integrated into the reverse diffusion process.

• DeRaDiff, a denoising-time realignment method that approximates models aligned at dif-
ferent regularization strength without additional training by modulating alignment during
sampling.

• Experimental evidence that DeRaDiff enables precise control of alignment strength and
accelerates RLHF-style hyperparameter exploration, substantially reducing compute while
preserving downstream performance.

2 RELATED WORK

Alignment of diffusion models. A growing body of work aligns diffusion models using prefer-
ence signals or task rewards, including DDPO (Black et al., 2023) , DRaFT (Clark et al., 2023) ,
DPOK (Fan et al., 2023), AlignProp (Prabhudesai et al., 2023) , and Diffusion DPO (Wallace et al.,
2023) . These methods chiefly study the effectiveness and training efficiency of alignment proce-
dures. Central to their stability is the choice of regularization strength toward a reference model:
insufficient regularization permits distributional drift and reward hacking, whereby models score
high rewards but fail on the intended task. (Amodei et al. (2016); Stiennon et al. (2020); Bai et al.
(2022); Lewis et al. (2020) ).

Decoding-time alignment of sampling distributions. To avoid retraining for each task or pref-
erence setting, recent work has considered decoding-time control of the sampling distribution. One
line of work leverages unconditionally pretrained diffusion models together with pretrained neural
networks to enable diverse conditional generation tasks (He et al. (2024)). Another line of work em-
ploys Sequential Monte Carlo to sample from reward-aligned target distributions at inference-time
(Kim et al. (2025); Wu et al. (2023a)). While effective, these approaches generally do not exploit
the presence of a conditional model that has undergone alignment.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) λ = 0 (b) λ = 0.75 (c) λ = 1 (d) λ = 2.5 (e) λ = 7.5

(a) λ = 0 (b) λ = 0.5 (c) λ = 1 (d) λ = 7.5 (e) λ = 10

Figure 3: On-the-fly modulation with DeRaDiff. Applied to SDXL (Podell et al., 2023), DeRaDiff
adjusts alignment at inference via a scalar λ. Increasing λ decreases the effective regularization
(more alignment to human preferences) and increases the aesthetic quality and increases prompt
adherence as expected, while maintaining λ ∈ [0, 1]. (Top: “Typhoon in a teacup. . . ”, bottom:
“A smiling beautiful sorceress. . . ”). However, increasing λ beyond 1 pushes the model beyond the
aligned regime, resulting in degradation in aesthetics and inducing reward-hacking-like artifacts as
is expected for models trained on too low a regularization strength.

Decoding-time realignment in language models. In language modeling, Liu et al. (2024) in-
troduced decoding-time realignment, offering a theoretical framework and empirical validation for
decoding-time realignment of discrete next-token distributions. Our work differs by developing an
analogous realignment mechanism for continuous diffusion trajectories, adapting realignment to the
iterative denoising process and thereby enabling inference-time control of regularization strength
without additional alignment for diffusion models.

Decoding-time realignment in diffusion models. Diffusion Blend (Cheng et al., 2025) intro-
duced a decoding-time realignment for diffusion models under the score-based SDE (Song et al.,
2020) paradigm. Our work differs by providing a decoding-time realignment approach under the
DDPM paradigm (Sohl-Dickstein et al., 2015). Although (Karras et al., 2022) established a theo-
retical equivalence between DDPM and SDE paradigms, our approach establishes the theoretical
foundation for an exact closed-form Gaussian update on the stepwise realigned posterior under mild
assumptions. To the best of our knowledge, our work is the first to introduce realignment under the
DDPM paradigm and provide a theoretical foundation for the stepwise posterior.

3 BACKGROUND

Diffusion models. We follow the common latent diffusion formulation (Rombach et al., 2022):
given noise schedule parameters {αt, σt}Tt=0, a denoising diffusion model (Ho et al. (2020), Sohl-
Dickstein et al. (2015)) defines a Markovian reverse process. Here,

pθ(x0:T ) =

T∏
t=1

pθ(xt−1 |xt), pθ(xt−1 |xt) = N
(
xt−1;µθ(xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)
, (1)

KL-regularized RL fine-tuning. Following Jaques et al. (2017) and Jaques et al. (2020), alignment
is commonly cast as reward maximization with a KL penalty to keep the fine-tuned model near a
pretrained reference:

max
pθ

Ec∼Dc,x0∼pθ(x0|c)[r(c,x0)]− βDKL[pθ(x0|c)∥pref(x0|c)] (2)
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Here,Dc is a distribution of prompts and β > 0 controls the trade-off between reward and proximity
to the reference model. Sweeping β is the standard way to find the desired alignment strength but
is computationally expensive; our method provides an inference-time tool to cheaply explore this
space for Diffusion Models. The unique global optimum of Equation 2 for the discrete case was
explored by Ziegler et al. (2019), Korbak et al. (2022), Rafailov et al. (2023). We provide a natural
extension of the unique global optimum for the continuous case (see appendix A.2 for details):

p∗θ[β](x0|c) =
pref(x0|c)e

1
β r(c,x0)∫

pref(x′
0|c)e

1
β r(c,x′

0) dx′
0

(3)

Realignment at decoding time Decoding-time realignment (Liu et al. (2024)) blends a reference
and an aligned model at sampling time. Extending this idea to diffusion models requires handling
continuous per-step posteriors rather than discrete next-token distributions. In the next section,
we derive a closed-form per-step Gaussian interpolation and give a complete sampling procedure
(algorithm 1). Full technical derivations are provided in appendix A.

4 METHOD

4.1 REALIGNMENT & STEPWISE APPROXIMATION

We follow the formulation of decoding-time realignment (Liu et al. (2024)) which expresses the
realigned model as a geometric mixture of the reference and aligned densities. Concretely, the
full-sample posterior is given by (see appendix A.1 for details):

p∗θ[β/λ](x0 |c) =
pref(x0 |c)1−λ p∗θ[β](x0 |c)λ∫
pref(x

′
0 |c)1−λ p∗θ[β](x

′
0 |c)λdx′

0

, (4)

which is the normalized version of p1−λ
ref p∗θ[β]

λ. Direct evaluation of Equation 4 is intractable for
diffusion models as it requires marginalizing all intermediate latents. We therefore apply a stepwise
denoising approximation and apply the same geometric mixture of the densities at each step:

p̂θ[β/λ](xt−1 |xt, c) =
pref(xt−1 |xt, c)

1−λ p∗θ[β](xt−1 |xt, c)
λ∫

pref(x
′
t−1 |xt, c)

1−λ p∗θ[β](x
′
t−1 |xt, c)

λ dx′
t−1

. (5)

Interpretation. Equation 4 blends reference and aligned densities by raising each to complementary
powers. Equation 5 applies an analogous idea at each denoising step, enabling sampling with the
effect of alignment without retraining. The parameter λ controls the KL regularization strength.
When λ = 0, the regularization strength β/λ is infinite, thus recovering the original pref model (as
seen in Equation 4). When λ = 1, we have β/λ = β, which recovers the aligned model pθ[β].
When 0 < λ < 1, the new model p̂θ[β/λ] is an interpolation between the two models, which is the
most stable and yields the best performance (see Figure 3) as it is a convex combination between
the log densities. When λ > 1, then p̂θ[β/λ] uses a lower regularization strength than the strength
with which the anchoring model pθ[β] has been trained with. However, this extrapolation process
is no longer a convex combination and may cause the new covariance matrix (see theorem 1) to be
non-positive definite and ill-conditioned, which can lead to deterioration in performance.

Assumptions. For the statements used in Theorem 1, we assume that the following are true: (i)
per-step posteriors are well-approximated by Gaussians (scalar or diagonal variance) and (ii) the
interpolation weight λ is in the range of [0, 1] (because if λ > 1, this corresponds to extrapolation and
may cause performance degradation due to absence of positive definiteness of the new covariance
matrix).
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4.2 DENOISING TIME REALIGNMENT

Theorem 1 (Closed-form per-step denoising realignment). Denoting µ1 = µθ(xt, t, c), µ2 =

µ∗
θ[β](xt, t, c)

1 and σ2
1 = σ2

t|t−1

σ2
t−1

σ2
t

I = σ2
2

2 for brevity, Let

pref(xt−1|xt, c) = N (xt−1;µ1, σ
2
1I) p∗θ[β](xt−1|xt, c) = N (xt−1;µ2, σ

2
2I)

Then, for any interpolation weight λ ∈ [0, 1] the stepwise realigned posterior

p̂θ[β/λ](xt−1 | xt, c) =
pref(xt−1 | xt, c)

1−λ p∗θ[β](xt−1 | xt, c)
λ∫

pref(x
′
t−1 | xt, c)

1−λ p∗θ[β](x
′
t−1 | xt, c)

λ dx′
t−1

(6)

is Gaussian with closed-form parameters:

Σnew =

(
1− λ

σ2
1

+
λ

σ2
2

)−1

I µnew = Σnew

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
(7)

Moreover, deterministic scheduler posterior transform (including schedulers used by DDIM/DDPM
samplers) preserves the Gaussian form of p̂θ[β/λ], allowing the closed-form update above to be
applied at each denoising step.

Proof sketch. Note that pref(xt−1|xt, c)
1−λ pθ[β](xt−1|xt, c)

λ ∝ exp (− 1
2 (

1−λ
σ2
1
∥xt−1 − µ1∥2 +

λ
σ2
2
∥xt−1 − µ2∥2)). We then define Σnew = ( 1−λ

σ2
1

+ λ
σ2
2
)−1I and µnew = Σnew(

(1−λ)
σ2
1

µ1 +
λ
σ2
2
µ2).

Following this, one sees that the product can be written as an unnormalized Gaussian. Finally, using
algebraic manipulation with respect to the integral, we arrive at a normalized Gaussian from which
we can sample. We note that Σnew is guaranteed to be positive definite for λ ∈ [0, 1] and σ2

1 , σ
2
2 > 0.

Moreover, this same closed form update applies iteratively at each denoising step. We provide a full
and detailed derivation which is available at appendix A.3.

Corollary 1 (Positivity and scalar simplification). If σ2
1 , σ

2
2 > 0 and λ ∈ [0, 1], then σ2

new > 0 and
the interpolated posterior is a valid Gaussian. In the isotropic (scalar) case, the σ2

new and µnew are
as follows

σ2
new =

σ2
1σ

2
2

σ2
2(1− λ) + σ2

1λ
µnew = σ2

new

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
(8)

which is implemented in algorithm 1.

Remark As seen in eq. (7), λ > 1 forces a non convex combination, as such, since 1 − λ < 0, it
may cause the new covariance matrix to not be positive definite and ill-conditioned. But empirically,
DeRaDiff continues to approximate a model with lesser effective regularization for moderate λ > 1
before instability occurs (see fig. 3).
Multi-reward extension We also prove that DeRaDiff can be extended to the very general case of
multi-reward modelling (Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023)). A full proof
is given at appendix A.4.

1xt, xt−1, µt, µt−1 ∈ RD

2Note that σ2
1 need not be equal to σ2

2–our derivation handles this more general case.
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4.3 ALGORITHM

Algorithm 1 DeRaDiff Sampling

Require: Reference model Eθref , Aligned model Eθtuned , interpolation weight λ ∈ [0, 1], prompt p,
guidance scale γ, number of inference steps N , scheduler with timesteps {ti}Ni=0 and corre-
sponding noise levels {σi}Ni=0.

1: c← Encode(p)
2: cnull ← Encode(“”) ▷ Get unconditional embedding
3: xtN ∼ N (0, I) ▷ Sample initial latent from a standard Gaussian distribution
4: for i = N, . . . , 1 do
5: t← ti, tprev ← ti−1

6: σt ← σi

7: ϵref ← Eθref(xt, σt, cnull) + γ (Eθref(xt, σt, c)− Eθref(xt, σt, cnull))
8: ϵtuned ← Eθtuned(xt, σt, cnull) + γ (Eθtuned(xt, σt, c)− Eθtuned(xt, σt, cnull)) ▷ Compute

Classifier-Free Guidance predictions for both models.
9: µ1, σ

2
1 ← SchedulerPosterior(xt, ϵ

ref, t, tprev)
10: µ2, σ

2
2 ← SchedulerPosterior(xt, ϵ

tuned, t, tprev) ▷ Calculate posterior mean µ and variance
σ2 for the distribution at tprev.

11: σ2
new ←

(
1−λ
σ2
1

+ λ
σ2
2

)−1

12: µnew ← σ2
new

(
1−λ
σ2
1
µ1 +

λ
σ2
2
µ2

)
13: z ∼ N (0, I)

14: xtprev ← µnew + z ·
√
σ2

new
15: end for
16: Iout ← VAE.decode(xt0)
17: return Iout

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our experiments constitute the following steps:

1. Obtain reference and realigned models. We obtain public releases of model checkpoints
(SDXL 1.0) and initialize the reference model pref. Then, we use an arbitrary alignment
method (eg: DiffusionDPO, Wallace et al. (2023)) to align the reference model while mini-
mizing the KL divergence where the regularization strength is β, which yields the realigned
model pθ[β]. We also perform experiments on Stable Diffusion 1.5, which can be found in
appendix A.8.

2. Obtain outputs from Denoising Time Realignment. For given prompts c, we apply algo-
rithm 1 with varying λ values to obtain samples from p̂θ[β/λ], allowing us to approximate
various different regularization strengths without alignment from scratch.

3. Compare denoising time realignment samples against retrained models. We compare
the downstream reward achieved by samples generated from p̂θ[β/λ] to those of pθ[β/λ]
which is a model that is aligned completely from scratch.

To comprehensively assess DeRaDiff’s ability to approximate the performance of models aligned
from scratch, we sample a batch of 500 prompts from a union of the Pick-a-Pic v1 and HPS datasets
and test DeRaDiff’s approximation capability on three metrics which cover various aspects of image
generation, namely PickScore, HPS v2 and CLIP. The SDXL 1.0 model is aligned at a wide range
of regularization strengths β ∈ {500, 1000, 2000, 5000, 8000, 10000}, and at a time, one aligned
model at a particular β is used as an anchor model to approximate other alignment strengths. We do
the same for SD1.5, whose results are provided in detail in appendix A.8.
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PickScore errors, λ ∈ [0, 1]

n (pairs) 15
MAE 3.55× 10−4

Median |∆| 2.83× 10−4

75th / 90th 3.31× 10−4 / 6.95× 10−4

Max 1.10× 10−3

Frac ≤ 5×10−4 86.7%
Frac ≤ 10−3 93.3%

PickScore mean 0.230509
PickScore std 0.001434

Figure 4: ECDF of absolute PickScore errors |∆| = |PickScoreapprox − PickScoreorig|, when
DeRaDiff is used on aligned SDXL models.

Figure 5: Line graphs for the average PickScore rewards gained by SDXL models realigned from
scratch along with line graphs for the average PickScore rewards gained from DeRaDiff using an-
chor SDXL models with β = 500 (left plot), β = 1000 (middle plot) and β = 2000 (right plot)
regularization strengths.

5.1.1 PICKSCORE

PickScore (Kirstain et al., 2023) is a caption-aware image reward model trained under a Bradley–
Terry objective on pairwise preferences. Given a tuple (c, IA, IB , y), where c is the prompt, IA and
IB are candidate images, and y ∈ {0, 1} indicates whether IA is preferred, a CLIP-based encoder
with an MLP head produces a real-valued score sθ(c, I). The induced preference probability is
Pr(IA ≻ IB | c) = σ

(
sθ(c, IA) − sθ(c, IB)

)
with σ(·) the logistic sigmoid. We use PickScore

as a learned reward targeting human-perceived quality under the provided caption; unless otherwise
stated, higher indicates stronger preference.

As seen in fig. 4, the typical approximation error is extremely small (median = 2.83×10−4,≈ 20%
of the PickScore std) when DeRaDiff approximates human appeal to images on aligned SDXL
models. Roughly 87% of approximations have errors ≤ 5 × 10−4, so DeRaDiff produces near-
identical PickScore ratings for the vast majority of cases, meaning the human appeal of images
produced by DeRaDiff and models aligned entirely from scratch are near-identical.

As seen in fig. 5, DeRaDiff is able to meaningfully control the regularization strength on the fly
without retraining by closely matching the SDXL models that were aligned entirely from scratch.
Thus DeRaDiff enables testing of various regularization strengths without training, allowing one to
search for the optimal strength, eliminating the need for expensive alignment sweeps. Moreover,
using DeRaDiff, one can identify a promising range of regularization strengths and only align at
these strengths, substantially reducing computational costs.

5.1.2 HPS V2

Human Preference Score v2 (HPS v2) (Wu et al., 2023b) is a caption-aware preference model trained
on the Human Preference Dataset v2 (HPD v2), a large-scale corpus of pairwise judgments designed
to approximate human ratings of text-to-image outputs. HPD v2 comprises on the order of 7.9×105

binary choices over ∼ 4.3 × 105 prompt–image pairs spanning real photographs and generations
from diverse T2I models. To this end, we test how well DeRaDiff matches human-preference be-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Scatter plot of approximated HPS Mean
vs. original HPS (target) shows DeRaDiff
approximations closely match human pref-
erence scores.

(b) Bland–Altman plot of DeRaDiff approximations for
mean CLIP scores showing no systematic semantic fi-
delity approximation bias.

Figure 6: Graphical plots of statistical analysis of DeRaDiff’s approximations.

haviours of models realigned from scratch by presenting and analyzing a scatter plot. As seen in
fig. 6a, each point (x, y), corresponds to a a specific approximation of a βtarget SDXL model using
a specific βanchor anchoring SDXL model using DeRaDiff where x corresponds to the mean HPS
score obtained by the DeRaDiff approximation of the βtarget model and y corresponds to the mean
HPS score obtained by the βtarget model. Moreover, we colour code each point (x, y) with its re-
spective log2(βtarget/βanchor) value with the goal of encoding the gap between the regularization
strengths of βanchor and βtarget. Here we see that points lie around the identity line and the linear fit
is close to it. This indicates that DeRaDiff is able to match and recover the human-preference scores
of images from models aligned entirely from scratch. Moreover, inferring from the color scale, this
indicates that approximations is near-identical or even better when an anchor β approximates a tar-
get β that is close-by, but performance degrades smoothly with increasing anchor-to-target distance.
Overall, this figure provides a faithfulness check: DeRaDiff enables low-cost, inference-time align-
ment that is able to preserve human preference outcomes of models aligned entirely from scratch.
Detailed statistical analysis is provided in appendix A.8.

5.1.3 CLIP

CLIP (Hessel et al., 2021) provides a general-purpose text–image relevance score without explicit
training on human preference pairs. For a caption–image pair (p, x), we compute the cosine
similarity of normalized embeddings, sCLIP(p, x) =

Enctext(p)·Encimg(x)
∥Enctext(p)∥ ∥Encimg(x)∥ . In our evaluations,

CLIP is treated as a semantic fidelity baseline to complement preference-trained metrics (HPS v2,
PickScore), helping to disentangle prompt adherence from aesthetic appeal. To demonstrate how
DeRaDiff maintains semantic fidelity and that DeRaDiff has no systematic semantic approximation
bias when considering the preservation of semantic-fidelity, we present a Bland-Altman comparison
for DeRaDiff approximations on SDXL models in fig. 6b. In this Bland-Altman plot, for each point
(x, y) with label βanchor → βtarget, x refers to the average of (a) the CLIP score gained by the
DeRaDiff approximation of a βtarget reference model using a βanchor SDXL model as the anchor
and (b) the original CLIP score gained by the target βtarget SDXL model. And y refers to the dif-
ference between (a) and (b), i.e. the difference between the CLIP score gained by the DeRaDiff
approximation and the CLIP score gained by the target model that was aligned from scratch. We
use a similar colour scheme for each point as was described in section 5.1.2. Here, fig. 6b demon-
strates that DeRaDiff approximations have negligible average bias and show very small absolute
differences (maximum |∆| ≈ 4.5 × 10−3, 1.2% of µorig, where µorig is the mean of all CLIP
values generated by models aligned completely from scratch) and that the Bland-Altman mean dif-
ference is -0.001018, which is -0.273% of µorig. Furthermore, the 95% limits of agreement is
[−0.004496, 0.002461]. Further analysis is provided in appendix A.8. These results indicate that

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: DeRaDiff undoes reward hacking. For each panel, left = image from SDXL model
aligned at β = 500 (reward-hacked), center = DeRaDiff approximating an SDXL model aligned at
β = 2000 using an SDXL anchor aligned at β = 500, right = reference image from an SDXL model
aligned at β = 2000. The image details and style are successfully recovered by DeRaDiff.

DeRaDiff preserves prompt-to-image semantic fidelity with no systematic bias, particularly when
λ ∈ [0, 1]. Taken together, these results show that DeRaDiff preserves prompt-to-image semantic
fidelity to within measurement noise in CLIP, thus rendering DeRaDiff once more capable of tuning
the regularization strength on the fly during inference accurately preserving semantics all the while
obviating the need to perform multiple costly retrainings.

5.2 QUALITATIVE ANALYSIS

As seen in table 1, DeRaDiff is capable of producing highly accurate training-free approximations
particularly in the case for λ ∈ [0, 1], and is able to meaningfully control the regularization strength
at inference time on the fly. We provide further detailed statistical analysis in appendix A.8. Across
both SDXL and SD1.5, mean absolute errors are extremely small (all < 0.02 in absolute terms) and
remain well below 0.5% when taken with respect to the respective means. The results show that
DeRaDiff reproduces the average behavior of models aligned entirely from scratch for the case λ ∈
[0, 1]. In table 2, we show the performance of DeRaDiff on an arbitrary anchor aligned at β = 2000.
We observe that the performance of DeRaDiff is generally stronger when applied to approximating
models aligned with regularization strengths that are higher than that of the anchor model. This is
explained by the fact that when 0 ≤ λ ≤ 1, DeRaDiff performs a convex combination, as seen in
Equation 5. The experiments show that this interpolation is stable and is thus a reliable surrogate
to approximate the performance of models aligned at such regularization strengths. When λ >
1, the combination is not convex as discussed in theorem 1. This leads to slightly less accurate
approximations. Furthermore, as seen in fig. 5 and fig. 7, our experiments demonstrate that DeRaDiff
can provide an accurate approximation of models aligned from scratch even when using a reward
hacked model as the anchor. As reward hacked models have small β values, we can undo the effect
of reward hacking by using the reward hacked model as an anchor and utilise a small λ value to
reverse the effect of reward hacking (as seen in fig. 7). We further provide detailed evaluations of
DeRaDiff’s capability to undo reward hacking in appendix A.6.2.

6 COMPUTE SAVINGS

In our experimental setup detailed in appendix A.7, aligning a SDXL model at a single β takes
≈ 336 GPU hours, which is ≈ 52, 416 TFLOP-hours (FP16 Tensor-core equivalent) at a sustained
load of 50%, or ≈ 1.887 × 1020 floating point operations (≈ 188.7 EFLOPs). If a naive pipeline
aligns a single SDXL model at N regularization strengths, the costs scale to N × 336 GPU hours
(or N × 188.7 EFLOPs). DeRaDiff requires aligning only once, thus cumulative wall-time and
FLOPs are reduced by a factor of N . For instance, using DeRaDiff instead of naively aligning of

9
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Table 1: Training-free approximation errors of DeRaDiff when λ ∈ [0, 1]

Model CLIP HPS PickScore

MAE MAE (% of µ) MAE MAE (% of µ) MAE MAE (% of µ)

SDXL 0.001 604 0.430 000 0.000 770 0.265 000 0.000 355 0.154 000
SD1.5 0.001 557 0.448 000 0.001 175 0.425 000 0.000 718 0.332 000

Notes: MAE = mean absolute error between DeRaDiff outputs and images generated by models aligned from
scratch across all regularization strength anchors. For each metric and model, µ is the evaluated mean metric
value when aligned from scratch across all evaluated regularization strengths; reported percentages are MAE
divided by µ. A very detailed statistical analysis is provided in

Tasks (Anchor β = 2000) Target Model β-values

500 1000 2000 5000 8000 10000

PickScore
Actual 0.2273 0.2314 0.2313 0.2311 0.2312 0.2308
Approximated 0.2243 0.2296 0.2313 0.2312 0.2309 0.2305
Absolute Difference (%) 1.3451 0.7831 0.0000 0.0611 0.1399 0.0987

HPS
Actual 0.2869 0.2919 0.2921 0.2916 0.2910 0.2903
Approximated 0.2852 0.2918 0.2921 0.2911 0.2902 0.2897
Absolute Difference (%) 0.5890 0.0299 0.0000 0.1701 0.2688 0.2061

CLIP
Actual 0.3628 0.3757 0.3752 0.3763 0.3751 0.3752
Approximated 0.3643 0.3738 0.3752 0.3751 0.3752 0.3751
Absolute Difference (%) 0.4022 0.5077 0.0000 0.3041 0.0310 0.0282

Table 2: Comparison of mean rewards achieved on various metrics by using an aligned β = 2000 SDXL
model as an anchor. DeRaDiff closely matches the models that were aligned completely from scratch. In
particular, when λ ≤ 1, the largest absolute percentage difference for PickScore, HPS and CLIP are 0.1399%,
0.2688%, 0.3041% respectively, thus demonstrating the accuracy of DeRaDiff’s approximations.

N = 3, 5, 10 yields approximate GPU-hour savings of 66.7%, 80%, and 90% (respectively), and
EFLOP savings of ≈ 377.4 EFLOPs (N=3), 754.8 EFLOPs (N=5), and 1,698.3 EFLOPs (N=10).
Thus, by using DeRaDiff in place of a naive alignment sweep at N β’s, one can reduce run-time
and FLOPs by ≈ 1 − 1

N . However, DeRaDiff requires two forward passes at inference, but taken
in totality, this overhead is still always smaller compared to full alignment sweeps. Moreover, this
inference overhead can still be reduced by using prompt encoding caching or parallelized inference.

7 CONCLUSION

In this work, we introduced DeRaDiff, a theoretical expansion of decoding time realignment to dif-
fusion models, a framework enabling one to modulate the regularization strength of any aligned
model on the fly without any additional training. We also showed empirical evidence that DeRaDiff
enables precise and meaningful control of the alignment strength and consistently provides a strong
approximation for models aligned entirely from scratch. We also demonstrated the substantial com-
pute savings that DeRaDiff brings about. Thus, DeRaDiff yields an efficient way to search for the
optimal regularization strength, eliminating the need for expensive alignment sweeps.

8 ETHICAL STATEMENT

The authors have read the ICLR Code of Ethics and are committed to complying and upholding
them. We only note two potential concerns: (1) pretrained image models and their training data
might contain copyrighted content and also it may include societal biases, and (2) by lowering
the computational costs involved in alignment, this can reduce the barrier to deployment and may
increase the risk of misuse. The authors wish to inform that they are strictly against such misuse and
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encourage responsible and safe use at all times without question. Furthermore, the authors only use
pretrained models and datasets that are available to the public and are committed to strictly adhering
to all model and dataset license restrictions.

9 REPRODUCIBILITY STATEMENT

The authors make every effort to make their work fully reproducible. To this end, the authors
freely share the source code required to run our experiments in the supplemental section of this
submission. We also detail our experimental setup in appendix A.7. Furthermore, we have used
publicly available SDXL and SD1.5 checkpoints. We also provide a README file and also provide
all evaluation scripts along with the core DeRaDiff implementation code.
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A APPENDIX

A.1 RE-EXPRESSION OF REALIGNED MODEL

This concerns the re-expression of the realigned model in terms of a model that was aligned from
scratch. Thus, this shows a way to feasibly approximate an aligned model without training from
scratch. From equation 3 we see that e

1
β r(c,x0) = Z(c)p∗θ[β](x0|c)/pref(x0|c) and hence

p∗θ[β/λ](x0|c) =
pref(x0|c)e

λ
β r(c,x0)∫

pref(x′
0|c)e

λ
β r(c,x′

0) dx′
0

=
pref(x0|c)

[
e

1
β r(c,x0)

]λ
∫
pref(x′

0|c)
[
e

1
β r(c,x′

0)
]λ

dx′
0

=
Pref(x0|c) [Z(c)P ∗

θ [β](x0|c)/Pref(x0|c)]λ∫
Pref(x′

0|c) [Z(c)P ∗
θ [β](x

′
0|c)/Pref(x′

0|c)]
λ
dx′

0

=
Pref(x0|c) [P ∗

θ [β](x0|c)/Pref(x0|c)]λ∫
Pref(x′

0|c) [P ∗
θ [β](x

′
0|c)/Pref(x′

0|c)]
λ
dx′

0

(9)

A.2 UNIQUE GLOBAL OPTIMUM FOR THE CONTINUOUS CASE

This concerns the finding of the unique global optimum for equation 2. This proof is as seen in
Rafailov et al. (2023), but where the partition function is for the continuous case. Using the definition
of the KL divergence, equation 2 simplifies to:

P ∗
θ = max

ρθ

Ec∼Dc

[
Ex0∼pθ(x0|c)

[
r(c, x0)− β log

pθ(x0|c)
pref(x0|c)

]]
= min

ρθ

Ec∼Dc

[
Ex0∼pθ(x0|c)

[
log

pθ(x0|c)
pref(x0|c)

− 1

β
r(c, x0)

]]

= min
ρθ

Ec∼Dc

Ex0∼pθ(x0|c)

log pθ(x0|c)
1

Z(c)pref(x0|c)e
1
β r(c,x0)

− logZ(c)

 (10)

Here, the partition function is:

Z(c) =

∫
pref(x

′
0|c)e

1
β r(c,x′

0)dx′
0 (11)

Now, define p∗(x0|c) = 1
Z(c)pref(x0|c)e

1
β r(c,x0) which is a valid probability distribution as

p∗(x0|c) ≥ 0 for all x0 and
∫
p∗(x0|c)dx0 = 1.

Then, since Z(c) is not a function of x0, bring the expectation inside:

P ∗
θ = min

ρθ

Ec∼Dc

Ex0∼pθ(x0|c)

log pθ(x0|c)
1

Z(c)pref(x0|c)e
1
β r(c,x0)

− logZ(c)


= min

ρθ

Ec∼Dc
[DKL(pθ(x0|c)||p∗(x0|c))− logZ(c)] (12)

Since the second term doesn’t depend on on pθ, the minimum is achieved by the pθ that minimizes
the first term. Thus,

pθ = p∗θ =
1

Z(c)
pref(x0|c)e

1
β r(c,x0) (13)

More specifically,
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p
[β]
θ (x0|c) =

pref(x0|c)e
1
β r(c,x0)∫

pref(x′
0|c)e

1
β r(c,x′

0)dx′
0

(14)

is a diffusion model that is aligned with a regularization strength β(̸= 0).

A.3 PROOF OF DENOISING TIME REALIGNMENT

This proof concerns the finding of a closed-form formula for

p∗θ[β/λ](xt−1|xt, c) =
pref(xt−1|xt, c)

1−λp∗θ[β](xt−1|xt, c)
λ∫

pref(x′
t−1|xt, c)1−λp∗θ[β](x

′
t−1|xt, c)λdx′

t−1

. (15)

As noted previously, we have that

pref(xt−1|xt, c) = N
(
xt−1;µθ(xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)

and

p∗θ[β](xt−1|xt, c) = N
(
xt−1;µ

∗
θ[β](xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)
.

For ease of notation, denote µ1 = µθ(xt, t, c), µ2 = µ∗
θ[β](xt, t, c)

3 and σ2
1 = σ2

t|t−1

σ2
t−1

σ2
t

= σ2
2 .

4

Using the closed form of the isotropic multivariate gaussian distribution we have that,

pref(xt−1|xt, c) = N (xt−1;µ1, σ
2
1I) =

exp
{
− 1

2σ2
1
∥xt−1 − µ1∥2

}
(2πσ2

1)
D/2

and

p∗θ[β](xt−1|xt, c) = N (xt−1;µ2, σ
2
2I) =

exp
{
− 1

2σ2
2
∥xt−1 − µ2∥2

}
(2πσ2

2)
D/2

.

Define

Σnew =

(
1− λ

σ2
1

+
λ

σ2
2

)−1

I, (16)

µnew = Σnew

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
. (17)

Now considering the numerator of equation 15 , we obtain

pref(xt−1|xt, c)
1−λp∗θ[β](xt−1|xt, c)

λ =
exp

{
−α

2

}
(2πσ2

1)
(1−λ)D/2(2πσ2

2)
λD/2

(18)

where through the application of equation 16 and equation 17,

α =
(1− λ)

σ2
1

∥xt−1 − µ1∥2 +
λ

σ2
2

∥xt−1 − µ2∥2

=

(
1− λ

σ2
1

+
λ

σ2
2

)
∥xt−1∥2 − 2

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
· xt−1 +

(
(1− λ)

σ2
1

∥µ1∥2 +
λ

σ2
2

∥µ2∥2
)

= (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)− µT
newΣ

−1
newµnew +

(
(1− λ)

σ2
1

∥µ1∥2 +
λ

σ2
2

∥µ2∥2
)
.

(19)

3xt, xt−1, µt, µt−1 ∈ RD

4Note that σ2
1 need not be equal to σ2

2–our derivation handles this more general case.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Recalling equation 18 we now see that,

pref(xt−1|xt, c)
1−λp∗θ[β](xt−1|xt, c)

λ =
exp

{
− 1

2α
}

(2πσ2
1)

(1−λ)D/2(2πσ2
2)

λD/2

= φ exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
,

(20)
where

φ =
exp

{
− 1

2

[
µT
newΣ

−1
newµnew −

(
(1−λ)
σ2
1
∥µ1∥2 + λ

σ2
2
∥µ2∥2

)]}
(2πσ2

1)
(1−λ)D/2(2πσ2

2)
λD/2

. (21)

Note that expression φ is a constant with respect to xt−1. Similarly, we can also rewrite the denom-
inator of equation 15 in the same way to arrive at

p∗θ[β/λ](xt−1|xt, c) =
φ · exp

{
− 1

2 (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)
}∫

φ · exp
{
− 1

2 (x
′
t−1 − µnew)TΣ

−1
new(x′

t−1 − µnew)
}
dx′

t−1

=
1

(2π)D/2|Σnew|1/2
exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
.

(22)

And thus we see that
p∗θ[β/λ](xt−1|xt, c) = N (xt−1;µnew,Σnew) (23)

A.4 PROOF OF DENOISING TIME REALIGNMENT WHEN CONSIDERING A LINEAR
COMBINATION OF MULTIPLE REWARDS

We also consider the natural extension of decoding time realignment to DeRaDiff in the case of
multi-reward RLHF as proposed by Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023).
Multi reward methods combine multiple models aligned independently using different rewards.
Thus, consider the case of a linear combination of rewards rλ⃗ defined by

rλ⃗(c, x0) =

K∑
i=1

λi ∗ ri(c, x0), (24)

where we have K reward functions and where λ⃗ = (λ1, ..., λK) ∈ RK . Then, considering the
aligned model, p∗θ[β, λ⃗] under λ⃗,

p∗θ[β, λ⃗](x0|c) =
pref(x0|c) exp

{
1
β rλ⃗(c,x0)

}
∫
pref(x′

0|c) exp
{

1
β rλ⃗(c,x

′
0)
}

dx′
0

=
pref(x0|c) exp

{
1
β

∑K
i=1 λiri(c,x0)

}
∫
pref(x′

0|c) exp
{

1
β

∑K
i=1 λiri(c,x′

0)
}
dx′

0

. (25)

Now, denoting p∗i,θ[β](x0|c) as the model obtained by aligned a reference model entirely from
scratch using the ith reward, we have (as before) that,

exp

{
1

β
ri(c,x0)

}
= Z(c)p∗i,θ[β](x0|c)/pref(x0|c). (26)

Then, we note that,

exp

{
k∑

i=1

λi
ri(c, x0)

β

}
=

k∏
i=1

exp

{
λi

ri(c, x0)

β

}

=

k∏
i=1

(
Z(c)

p∗i,θ[β](x0 | c)
pref(x0 | c)

)λi

.

(27)
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In a similar fashion,

exp

{
k∑

i=1

λi
ri(c, x

′
0)

β

}
=

k∏
i=1

(
Z(c)

p∗i,θ[β](x
′
0 | c)

pref(x′
0 | c)

)λi

. (28)

Finally, we have that

p∗θ[β, λ⃗](x0|c) =
pref(x0|c)

∏k
i=1

(
Z(c)

p∗
i,θ[β](x0|c)
pref (x0|c)

)λi

∫
pref(x′

0|c)
∏k

i=1

(
Z(c)

p∗
i,θ[β](x

′
0|c)

pref (x′
0|c)

)λi

dx′
0

. (29)

Then, letting λs =
∑K

i=1 λi, we have that,

p∗θ[β, λ⃗](x0|c) =
pref(x0|c)1−λs

∏k
i=1

(
Z(c)p∗i,θ[β](x0 | c)

)λi

∫
pref(x′

0|c)1−λs
∏k

i=1

(
Z(c)p∗i,θ[β](x

′
0 | c)

)λi

dx′
0

(30)

=
pref(x0|c)1−λs

∏k
i=1

(
p∗i,θ[β](x0 | c)

)λi

∫
pref(x′

0|c)1−λs
∏k

i=1

(
p∗i,θ[β](x

′
0 | c)

)λi

dx′
0

. (31)

In a similar fashion, due to the intractability of eq. (32), consider the stepwise approximation:

p∗θ[β, λ⃗](xt−1|xt, c) =
pref(xt−1|xt, c)

1−λs
∏k

i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

∫
pref(xt−1|xt, c)1−λs

∏k
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

dx′
0

. (32)

Now, the DeRaDiff proof follows almost immediately noting that

p∗i,θ[β](xt−1|xt, c) = N (xt−1;µi, σ
2
i I) =

1

(2πσ2
i )

D/2
exp

{
− 1

2σ2
i

∥xt−1 − µi∥2
}
.

Now considering the numerator of equation 32, we have

pref(xt−1|xt, c)
1−λs

k∏
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi
=

exp
{
−
∑K

i=1
λi

2σ2
i
∥xt−1 − µi∥2

}
∏K

i=1(2πσ
2
i )

D/2
. (33)

Define

Σnew =

(
K∑
i=1

λi

σ2
i

)−1

I, (34)

µnew = Σnew

(
K∑
i=1

λi

σ2
i

µi

)
. (35)

To simplify the exponent in the numerator of eq. (33), by defining α =
∑K

i=1
λi

σ2
i
||xt−1 − µi||2 and

applying equation 34 and equation 35, we have

α =

K∑
i=1

λi

σ2
i

||xt−1 − µi||2

=

(
K∑
i=1

λi

σ2
1

)
∥xt−1∥2 − 2

(
K∑
i=1

λi

σ2
i

µi

)
· xt−1 +

(
K∑
i=1

λi

σ2
i

∥µi∥2
)

= (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)− µT
newΣ

−1
newµnew +

(
K∑
i=1

λi

σ2
i

∥µi∥2
)
. (36)
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Substituting the result above into equation 33, we yield

pref(xt−1|xt, c)
1−λs

k∏
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

=
exp

{
− 1

2α
}∏K

i=1(2πσ
2
i )

D/2

= φ · exp
{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
, (37)

where

φ =
exp

{
− 1

2

[
µT
newΣ

−1
newµnew −

(∑K
i=1

λi

σ2
i
∥µi∥2

)]}
∏K

i=1(2πσ
2
i )

D/2
.

Finally, we have that

p∗θ[β, λ⃗](xt−1|xt, c) =
φ · exp

{
− 1

2 (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)
}∫

φ · exp
{
− 1

2 (x
′
t−1 − µnew)TΣ

−1
new(x′

t−1 − µnew)
}
dx′

t−1

=
1

(2π)D/2|Σnew|1/2
exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
.

(38)

A.5 AN END-TO-END PROCESS OF FINDING THE GLOBALLY OPTIMAL λ∗

One can even extend DeRaDiff by employing Bayesian optimization to find the globally optimum
λ∗ (and thus, the best regularization strength) that gives rise to the best downstream rewards. Here,
we constrain λ ∈ [0, 1]. Here, we outline the major ideas required to implement this.

We denote pλ(x) as the generative distribution arising from using denoising time parameter λ. Given
a reward function (eg.the downstream Pickscore by Kirstain et al. (2023)), our goal is:

λ∗ = arg max
λ∈[0,1]

J(λ), where J(λ) = Ex∼pλ
[R(x)]. (39)

Because J(λ) is expensive to evaluate (since this requires running the model on a large batch of
images and scoring using a reward function), we treat it as a black-box function and use gaussian
process optimization to find λ∗ in as few evaluations as possible.

A.5.1 GAUSSIAN PROCESS SURROGATE

We model the unkown objective f(λ) ≈ J(λ) via a gaussian process prior:

f(λ) ∼ GP(m(λ), k(λ, λ′)). (40)

For simplicity, we let m(λ) = 0. Next, we use the RBF kernel k(λ, λ′) = σ2
f exp

(
− (λ−λ′)2

2ℓ2

)
with

l being the length-scale parameter and σ2
f being the signal variance. After n− many evaluations at

points {λi}ni=1 yielding noisy estimates R̂i ≈ J(λi), conditioning yields the exact posterior

µn(λ) = k(λ,λ)[K+ σ2
nI]

−1R̂ (41)

σ2
n(λ) = k(λ, λ)− k(λ,λ)[K+ σ2

nI]
−1k(λ, λ), (42)

where λ = [λ1, . . . , λn], R̂ = [R̂1, . . . , R̂n]
⊤, and Kij = k(λi, λj).
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A.5.2 ACQUISITION FUNCTION

To decide on which lambda value to evaluate next, λn+1, we maximize an acquisition function a(λ)
that balances exploration of the search space (high σn) and exploitation (high µn):

1. Expected Improvement (EI):
Let f+

n = maxj≤n R̂j . Then

EI(λ) = Ef∼N (µn,σ2
n)
[max{f − f+

n , 0}] = (µn − f+
n )Φ(z) + σnϕ(z), (43)

where z = (µn − f+
n )/σn, and Φ, ϕ are the standard Normal CDF/PDF.

2. Upper Confidence Bound (UCB):

UCB(λ) = µn(λ) + βnσn(λ),

with βn chosen (e.g. βn =
√

2 log(n2π2/6δ)) to guarantee sublinear regret.

We demonstrate a run using SDXL aligned at β = 500 below. We leave this as an interesting avenue
to work on in the future.

Figure 8: DeRaDiff + Bayesian optimization used to find the optimal regularization strength using
an SDXL anchor model aligned at β = 500
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Algorithm 2 1D Bayesian Optimization for Global λ Selection

Require: Domain Λ = [0, 1], budget T , initial design size n0, reward evaluator R(·)
Ensure: Best weight λ∗ and estimate J(λ∗)

1: Initial Design:
2: Sample {λi}n0

i=1∼Uniform(Λ)
3: for i = 1 . . . n0 do
4: Generate batch {xi,j} from pλi

5: Compute R̂i=
1

|{xi,j}|
∑

j R(xi,j)

6: end for
7: Fit GP surrogate on {(λi, R̂i)}n0

i=1
8: for t = n0 + 1 . . . T do
9: Compute posterior mean µt−1(λ) and variance σ2

t−1(λ)
10: Select next point via 1-D line search

λt = argmax
λ∈Λ

EI(λ | µt−1, σt−1)︸ ︷︷ ︸
or UCB

11: Generate batch from pλt
, compute R̂t

12: Append (λt, R̂t) to data and update GP
13: end for
14: return λ∗ = argmax

i≤T
R̂i

A.6 ADDITIONAL EXPERIMENTS

A.6.1 A FINE GRAINED EXAMINATION

In this section, we train further β values in the interesting region of 100 ≤ β ≤
1500 where the human appeal rises fastest. Formally, we sample the following β values:
250, 500, 750, 1000, 1250, 1500, 2000 and evaluate the performance of DeRaDiff on PickScore us-
ing the experimental method detailed in section 5.1:

Figure 9: Line graphs for the average PickScore rewards gained by SDXL models realigned from
scratch and also from DeRaDiff using anchor SDXL models with β = 750 (left plot) and β = 1000
(right plot) regularization strengths.
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We see that this demonstrates a consistent increase in the perceived human appeal (measured via
PickScore) for both DeRaDiff approximations and as well as for models that were realigned entirely
scratch showing that DeRaDiff can faithfully re-approximate models realigned entirely from scratch.

A.6.2 UNDOING REWARD HACKING

To demonstrate the capability of undoing reward hacking we use three reward hacked models.
Namely, we use the SDXL models aligned at β = 250 (severely reward hacked), β = 500 (moder-
ately reward hacked), β = 750 (mildly reward hacked). We use a β = 2000 model as our reference
model that is healthy (i.e. not reward hacked). Since reward hacking manifests itself as drastic dis-
tributional changes in contrast, vibrancy, colour, we use the Fréchet Inception Distance to measure
the degree of reward hacking and the extent to which DeRaDiff undoes reward hacking. To this end,
we sample a batch of 1000 prompts from a combined dataset of HPSv2 and Partiprompts. Next,
we measure the FID score between the outputs of the reward hacked models on these 1000 prompts
giving rise to an average FID score for each reward-hacked model (in comparison to the healthy
β = 2000 model). Next, for each reward hacked model, we use it as an anchor to re-approximate
the β = 2000 model and measure the average FID score. For each model, the difference in its
respective FID scores will measure the extent of undoing reward hacking.

Figure 10: DeRaDiff successfully undoes reward hacking

Table 3: DeRaDiff undoes reward-hacking measured by FID (lower is better).

Model (reward-hacked) FID (reward hacked model
against β = 2000)

FID (DeRaDiff approx.
against β = 2000)

∆
(abs)

∆
(%)

Severely reward-hacked (β = 250) 72.98 50.71 22.27 30.50
Moderately reward-hacked (β = 500) 61.61 47.13 14.48 23.50
Mildly reward-hacked (β = 750) 50.04 48.43 1.61 3.20

Thus we see that DeRaDiff is capable of undoing reward hacking and this effect of reward hacking
is much more pronounced in models that are severely reward hacked. In fig. 11 we also provide
more qualitative examples of how DeRaDiff can even undo extreme reward hacking.

A.7 DETAILED EXPERIMENTAL SETUP

For our experiments, we obtain public releases of Stable Diffusion 1.5 (SD1.5) from
runwayml/stable-diffusion-v1-5 and Stable Diffusion XL 1.0 (SDXL) from
stabilityai/stable-diffusion-xl-base-1.0 . We align them using DiffusionDPO
(Wallace et al., 2023) on the Pick-a-Pic v1 dataset (Kirstain et al., 2023). Each alignment is per-
formed on 2x NVIDIA A-100 80GB GPUs. The exact hyperparameters we used are as follows:
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Figure 11: DeRaDiff undoes reward hacking For each panel, left = image from SDXL model
aligned at β = 250 (severely reward-hacked), center = DeRaDiff approximating an SDXL model
aligned at β = 2000 using the reward hacked SDXL anchor aligned at β = 250, right = reference
image from an SDXL model aligned at β = 2000. The image details and style are successfully
recovered by DeRaDiff.

Table 4: Aligning Hyperparameters for SDXL and SD1.5)

Parameter SDXL SD1.5

Pretrained VAE madebyollin/sdxl-vae-fp16-fix —
GPUs 2 1
Per-device batch size 1 1
Gradient accumulation 64 64
Effective global batch sizea 128 64
Dataloader workers 16 16
Max train steps 30000 2000
LR scheduler constant with warmup constant with warmup
LR warmup steps 200 500
Learning rate 1× 10−8 1× 10−8

a Effective global batch size = NGPUs × train batch size × gradient accumulation steps. Thus SDXL:
2× 1× 64 = 128, SD1.5: 1× 1× 64 = 64.

Moreover, we use the Euler Ancestral Discrete scheduler for both SDXL and SD1.5. We use 50
denoising steps for both SDXL and SD1.5. Moreover, we use a guidance scale of 5 for SDXL and
7.5 for SD1.5
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A.8 METRICS USED FOR DETAILED STATISTICAL ANALYSIS

In this section, we provide all numerical values of original and approximated metrics and we also
give a detailed statistical analysis for each.

Metric Formula Meaning / interpretation

Mean absolute error
(MAE)

MAE =
1

n

n∑
i=1

|yi − xi| Average magnitude of the errors (un-
signed). Provides a simple, easy-to-
interpret measure of typical error size.

MAE (bootstrap
mean)

MAEboot =
1

B

B∑
b=1

MAE(b) Average of MAE computed across
bootstrap resamples; indicates stability
of the MAE estimate under resampling.

MAE 95% CI (boot-
strap)

[
MAE2.5%, MAE97.5%

]
2.5th and 97.5th percentiles of the boot-
strap MAE distribution; a 95% interval
expressing sampling uncertainty.

Root mean squared
error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)2 Similr to the MAE but squares errors
first, so it penalizes larger errors more
strongly (sensitive to outliers).

Median absolute er-
ror

MedAbs = median
(
|yi −

xi|
) The median of absolute errors; a robust

measure of a “typical” error that is less
sensitive to outliers.

Bland–Altman mean
difference (bias)

d̄ =
1

n

n∑
i=1

di, di = yi − xi Mean signed difference between pre-
diction and truth.

Bland–Altman SD of
differences

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 Sample standard deviation of the differ-
ences; this simply quantifies the vari-
ability of the errors.

Limits of agreement
(LoA)

LoA = d̄± 1.96 sd Approximate interval containing
∼95% of individual differences (under
approximate normality of differences).
Useful to see practical worst-case error
bounds.

Relative to mean
(original) (%)

Rel(M) = 100 ×
M

x̄orig
, x̄orig =

1

m

m∑
j=1

xorig
j

Expresses a metric M (on the original
scale) as a percentage of the mean of
the original signal. This will help give
n intuitive context for magnitude.

Table 5: Definitions and their interpretations. Here xi denotes the true/original value, yi the approximated
value, n the number of pairs, B bootstrap resamples, and m the number of original observations whose mean
is used for scaling.
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A.9 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON CLIP

A.9.1 SDXL

Figure 12: Approximated CLIP Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 13: Delta (∆) Between Approximated
CLIP Mean and Actual PickScore Mean

Table 6: Summary error metrics for DeRaDiff approximations for CLIP scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 604 0.430 000 %
MAE (bootstrap mean) 0.001 608 0.431 000 %
MAE 95% CI (bootstrap) 0.001 038 – 0.002 226 0.278 000 – 0.596 000 %
Root mean squared error (RMSE) 0.001 994 0.534 000 %
Median absolute error 0.001 772 0.475 000 %
Bland–Altman mean difference (mean of y − x) −0.001 018 −0.273 000 %
Bland–Altman SD of differences 0.001 775 0.475 000 %
Limits of agreement (mean ± 1.96 SD) −0.004 496 – 0.002 461 −1.204 000 – 0.659 000 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.

Table 7: Summary error metrics for DeRaDiff approximations for CLIP scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.005 014 1.342 690 %
MAE (bootstrap mean) 0.005 069 1.357 464 %
MAE 95% CI (bootstrap) 0.002 202 – 0.008 347 0.589 843 – 2.235 382 %
Root mean squared error (RMSE) 0.007 937 2.125 601 %
Median absolute error 0.001 593 0.426 633 %
Bland–Altman mean difference (mean of y − x) −0.003 733 −0.999 878 %
Bland–Altman SD of differences 0.007 250 1.941 581 %
Limits of agreement (mean ± 1.96 SD) −0.017 943 – 0.010 476 −4.805 378 – 2.805 622 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.
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A.9.2 SD1.5

Figure 14: Approximated CLIP Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 15: Delta (∆) Between Approximated
CLIP Mean and Actual CLIP Mean

Table 8: Summary error metrics for DeRaDiff approximations for CLIP scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 557 0.447 532 %
MAE (bootstrap mean) 0.001 553 0.446 387 %
MAE 95% CI (bootstrap) 0.000 934 – 0.002 268 0.268 478 – 0.651 936 %
Root mean squared error (RMSE) 0.002 070 0.594 985 %
Median absolute error 0.001 137 0.326 711 %
Bland–Altman mean difference (mean of y − x) −0.000 399 −0.114 728 %
Bland–Altman SD of differences 0.002 103 0.604 310 %
Limits of agreement (mean ± 1.96 SD) −0.004 520 – 0.003 722 −1.299 176 – 1.069 720 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.347 938. Limits of agreement are computed as mean difference ±1.96×SD.

Table 9: Summary error metrics for DeRaDiff approximations for CLIP scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.007 215 2.073 730 %
MAE (bootstrap mean) 0.007 302 2.098 770 %
MAE 95% CI (bootstrap) 0.002 903 – 0.013 009 0.834 311 – 3.738 885 %
Root mean squared error (RMSE) 0.012 594 3.619 573 %
Median absolute error 0.002 391 0.687 314 %
Bland–Altman mean difference (mean of y − x) −0.006 824 −1.961 343 %
Bland–Altman SD of differences 0.010 956 3.148 884 %
Limits of agreement (mean ± 1.96 SD) −0.028 298 – 0.014 650 −8.133 156 – 4.210 469 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.347 938. Limits of agreement are computed as mean difference ±1.96×SD.
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A.10 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON HPS

A.10.1 SDXL

Figure 16: Approximated HPS Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 17: Delta (∆) Between Approximated
HPS Mean and Actual HPS Mean

Table 10: Summary error metrics for DeRaDiff approximations for HPS scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 770 0.264 808 %
MAE (bootstrap mean) 0.000 770 0.265 098 %
MAE 95% CI (bootstrap) 0.000 501 – 0.001 053 0.172 547 – 0.362 301 %
Root mean squared error (RMSE) 0.000 949 0.326 627 %
Median absolute error 0.000 680 0.233 938 %
Bland–Altman mean difference (mean of y − x) −0.000 640 −0.220 152 %
Bland–Altman SD of differences 0.000 726 0.249 753 %
Limits of agreement (mean ± 1.96 SD) −0.002 063 – 0.000 783 −0.709 668 – 0.269 364 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.290 636. Limits of agreement are computed as mean difference ±1.96×SD.

Table 11: Summary error metrics for DeRaDiff approximations for HPS scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.004 041 1.390 437 %
MAE (bootstrap mean) 0.004 079 1.403 635 %
MAE 95% CI (bootstrap) 0.001 746 – 0.006 886 0.600 884 – 2.369 320 %
Root mean squared error (RMSE) 0.006 582 2.264 714 %
Median absolute error 0.001 539 0.529 484 %
Bland–Altman mean difference (mean of y − x) −0.003 481 −1.197 693 %
Bland–Altman SD of differences 0.005 782 1.989 560 %
Limits of agreement (mean ± 1.96 SD) −0.014 814 – 0.007 853 −5.097 232 – 2.701 845 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.290 636. Limits of agreement are computed as mean difference ±1.96×SD.
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A.10.2 SD1.5

Figure 18: Approximated HPS Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 19: Delta (∆) Between Approximated
HPS Mean and Actual CLIP Mean

Table 12: Summary error metrics for DeRaDiff approximations for HPS scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 175 0.425 179 %
MAE (bootstrap mean) 0.001 172 0.424 093 %
MAE 95% CI (bootstrap) 0.000 654 – 0.001 781 0.236 744 – 0.644 486 %
Root mean squared error (RMSE) 0.001 625 0.587 958 %
Median absolute error 0.000 744 0.269 095 %
Bland–Altman mean difference (mean of y − x) −0.001 175 −0.425 179 %
Bland–Altman SD of differences 0.001 161 0.420 353 %
Limits of agreement (mean ± 1.96 SD) −0.003 451 – 0.001 102 −1.249 071 – 0.398 713 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.276 300. Limits of agreement are computed as mean difference ±1.96×SD.

Table 13: Summary error metrics for DeRaDiff approximations for HPS scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.002 386 0.863 447 %
MAE (bootstrap mean) 0.002 415 0.873 887 %
MAE 95% CI (bootstrap) 0.000 986 – 0.004 310 0.356 733 – 1.560 056 %
Root mean squared error (RMSE) 0.004 179 1.512 308 %
Median absolute error 0.000 824 0.298 315 %
Bland–Altman mean difference (mean of y − x) −0.001 569 −0.567 982 %
Bland–Altman SD of differences 0.004 009 1.450 790 %
Limits of agreement (mean ± 1.96 SD) −0.009 426 – 0.006 287 −3.411 531 – 2.275 566 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.276 300. Limits of agreement are computed as mean difference ±1.96×SD.
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A.11 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON PICKSCORE

A.11.1 SDXL

Figure 20: Approximated PickScore Means with
all (Row Anchor β → Column Target β) with
Delta (∆)

Figure 21: Delta (∆) Between Approximated
PickScore Mean and Actual PickScore Mean

Table 14: Summary error metrics for DeRaDiff approximations for PickScore scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 355 0.153 864 %
MAE (bootstrap mean) 0.000 353 0.153 119 %
MAE 95% CI (bootstrap) 0.000 238 – 0.000 498 0.103 446 – 0.216 058 %
Root mean squared error (RMSE) 0.000 441 0.191 478 %
Median absolute error 0.000 283 0.122 888 %
Bland–Altman mean difference (mean of y − x) 0.000 063 0.027 498 %
Bland–Altman SD of differences 0.000 452 0.196 144 %
Limits of agreement (mean ± 1.96 SD) −0.000 823 – 0.000 950 −0.356 944 – 0.411 939 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.230 509. Limits of agreement are computed as mean difference ±1.96×SD.

Table 15: Summary error metrics for DeRaDiff approximations for PickScore scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.004 903 2.126 836 %
MAE (bootstrap mean) 0.004 939 2.142 507 %
MAE 95% CI (bootstrap) 0.002 544 – 0.007 666 1.103 610 – 3.325 670 %
Root mean squared error (RMSE) 0.007 102 3.080 951 %
Median absolute error 0.003 058 1.326 521 %
Bland–Altman mean difference (mean of y − x) −0.004 644 −2.014 716 %
Bland–Altman SD of differences 0.005 562 2.412 729 %
Limits of agreement (mean ± 1.96 SD) −0.015 545 – 0.006 257 −6.743 664 – 2.714 232 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.
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A.11.2 SD1.5

Figure 22: Approximated PickScore Means with
all (Row Anchor β → Column Target β) with
Delta (∆)

Figure 23: Delta (∆) Between Approximated
PickScore Mean and Actual PickScore Mean

Table 16: Summary error metrics for DeRaDiff approximations for PickScore scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 718 0.331 616 %
MAE (bootstrap mean) 0.000 717 0.331 069 %
MAE 95% CI (bootstrap) 0.000 336 – 0.001 163 0.155 070 – 0.537 347 %
Root mean squared error (RMSE) 0.001 097 0.506 768 %
Median absolute error 0.000 331 0.153 080 %
Bland–Altman mean difference (mean of y − x) −0.000 709 −0.327 547 %
Bland–Altman SD of differences 0.000 867 0.400 259 %
Limits of agreement (mean ± 1.96 SD) −0.002 408 – 0.000 989 −1.112 055 – 0.456 961 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.216 494. Limits of agreement are computed as mean difference ±1.96×SD.

Table 17: Summary error metrics for DeRaDiff approximations for PickScore scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.002 255 1.041 818 %
MAE (bootstrap mean) 0.002 281 1.053 707 %
MAE 95% CI (bootstrap) 0.000 973 – 0.003 959 0.449 230 – 1.828 517 %
Root mean squared error (RMSE) 0.003 786 1.748 630 %
Median absolute error 0.000 787 0.363 318 %
Bland–Altman mean difference (mean of y − x) −0.001 573 −0.726 613 %
Bland–Altman SD of differences 0.003 564 1.646 340 %
Limits of agreement (mean ± 1.96 SD) −0.008 559 – 0.005 413 −3.953 440 – 2.500 213 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.216 494. Limits of agreement are computed as mean difference ±1.96×SD.

A.12 LLM USAGE

This research idea was conceived solely and only by the authors by identifying gaps in the existing
research literature. LLMs were NOT used for any research ideation. LLMs were only used to polish
writing, help in plotting graphs, retrieve known facts and fix any grammatical errors that the authors
missed.
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