

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DERADIFF: DENOISING TIME REALIGNMENT OF DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

Figure 1: **DeRaDiff re-approximates a model aligned from scratch.** Top row consists of images generated by an SDXL model aligned from scratch at $\beta = 5000$ KL regularization strength. Bottom row consists of images obtained via DeRaDiff sampling via an anchoring SDXL model aligned at a KL regularization strength of $\beta = 2000$ with no further retraining.

ABSTRACT

Recent advances align diffusion models with human preferences to increase aesthetic appeal and mitigate artifacts and biases. Such methods aim to maximize a conditional output distribution aligned with higher rewards whilst not drifting far from a pretrained prior. This is commonly enforced by KL (Kullback–Leibler) regularization. As such, a central issue still remains: how does one choose the right regularization strength? Too high of a strength leads to limited alignment and too low of a strength leads to “reward hacking”. This renders the task of choosing the correct regularization strength highly non-trivial. Existing approaches sweep over this hyperparameter by aligning a pretrained model at multiple regularization strengths and then choose the best strength. Unfortunately, this is prohibitively expensive. We introduce *DeRaDiff*, a *denoising-time realignment procedure* that, after aligning a pretrained model once, modulates the regularization strength *during sampling* to emulate models trained at other regularization strengths—*without any additional training or fine-tuning*. Extending decoding-time realignment from language to diffusion models, DeRaDiff operates over iterative predictions of continuous latents by replacing the reverse-step reference distribution by a geometric mixture of an aligned and reference posterior, thus giving rise to a closed-form update under common schedulers and a single tunable parameter, λ , for on-the-fly control. Our experiments show that across multiple text–image alignment and image-quality metrics, our method consistently provides a strong approximation for models aligned entirely from scratch at different regularization strengths. Thus, our method yields an efficient way to search for the optimal strength, eliminating the need for expensive alignment sweeps and thereby substantially reducing computational costs.

1 INTRODUCTION

Text-to-image (T2I) diffusion models (Ho et al. (2020); Rombach et al. (2022)) now underpin state-of-the-art image generation. Sampling has been made efficient by techniques such as classifier-free

guidance and latent diffusion, unlocking applications like style transfer, image-to-image translation, and inpainting (Dhariwal & Nichol (2021); Saharia et al. (2022)). Most modern systems are trained in two stages: (i) pretraining, which optimizes the diffusion objective on large-scale data; and (ii) alignment, which adapts behavior to tasks or human preferences via supervised fine-tuning (SFT) (Lee et al. (2023)) or reinforcement learning (Black et al. (2023), Clark et al. (2023)).

A persistent challenge in alignment is balancing adaptation with fidelity to the pretrained prior. This trade-off is typically controlled by a proximity penalty—most commonly a Kullback–Leibler (KL) divergence—between the aligned and reference distributions. The associated regularization strength is pivotal: if too strong, the model under-adapts; if too weak, it drifts and risks reward hacking (Amodei et al. (2016); Stiennon et al. (2020); Bai et al. (2022); Lewis et al. (2020)). Unfortunately, identifying the right hyperparameter generally requires expensive sweeps that are prohibitive for large diffusion models (Ho et al. (2020); Rombach et al. (2022)).

To this end, we propose **DeRaDiff**, a *denoising-time realignment procedure*. In the context of language modeling, *realignment* is defined as the post-hoc adjustment of the regularization strength β —effectively modulating the proximity to the reference model—by geometrically mixing the reference and aligned distributions at inference time (Liu et al. (2024)). While this enables LLMs to vary alignment intensity via discrete logit manipulation, applying this principle to generative art presents a distinct challenge: diffusion models do not output single-step probabilities over a finite vocabulary, but rather operate via the iterative denoising of *continuous* latents. Our key insight is a derivation of a tractable, closed form formula for the geometric mixture of a reference and aligned diffusion models’ distribution that is parameterized by λ that adjusts the effective regularization strength relative to the aligned model’s regularization strength, β . Crucially, λ is tunable *on-the-fly* during inference.

As such, the closed-form update is presented in theorem 1 for the realigned reverse process, providing both a theoretical basis and an efficient implementation (see Algorithm 1). Quantitative (Section 5) and qualitative results (Figure 8, Figure 3) show that DeRaDiff preserves downstream performance while obviating retraining. Moreover, we achieve substantial compute savings, as described in section 6. Our contributions can be summarized as three-fold:

- A theoretical extension of decoding-time realignment to diffusion processes, yielding a closed-form stepwise realignment posterior integrated into the reverse diffusion process.
- **DeRaDiff**, a denoising-time realignment method that approximates models aligned at different regularization strength *without additional training* by modulating alignment during sampling.
- Experimental evidence that DeRaDiff enables precise control of alignment strength and accelerates RLHF-style hyperparameter exploration, substantially reducing compute while preserving downstream performance.

2 RELATED WORK

Alignment of diffusion models. A growing body of work aligns diffusion models using preference signals or task rewards, including DDPO (Black et al., 2023), DRaFT (Clark et al., 2023), DPOK (Fan et al., 2023), AlignProp (Prabhudesai et al., 2023), and Diffusion DPO (Wallace et al., 2023). These methods chiefly study the effectiveness and training efficiency of alignment procedures. Central to their stability is the choice of regularization strength toward a reference model: insufficient regularization permits distributional drift and reward hacking, whereby models score high rewards but fail on the intended task. (Amodei et al. (2016); Stiennon et al. (2020); Bai et al. (2022); Lewis et al. (2020)).

Decoding-time alignment of sampling distributions. To avoid retraining for each task or preference setting, recent work has considered decoding-time control of the sampling distribution. One line of work leverages unconditionally pretrained diffusion models together with pretrained neural networks to enable diverse conditional generation tasks (He et al. (2024)). Another line of work employs Sequential Monte Carlo to sample from reward-aligned target distributions at inference-time (Kim et al. (2025); Wu et al. (2023a)). While effective, these approaches generally do not exploit the presence of a *conditional* model that has undergone alignment.

Figure 3: **On-the-fly modulation with DeRaDiff.** Applied to SDXL (Podell et al., 2023), DeRaDiff adjusts alignment at inference via a scalar λ . Increasing λ decreases the effective regularization (more alignment to human preferences) and increases the aesthetic quality and increases prompt adherence as expected, while maintaining $\lambda \in [0, 1]$. (Top: “*Typhoon in a teacup...*”, bottom: “*A smiling beautiful sorceress...*”). However, increasing λ beyond 1 pushes the model beyond the aligned regime, resulting in degradation in aesthetics and inducing reward-hacking-like artifacts as is expected for models trained on too low a regularization strength.

Decoding-time realignment in language models. In language modeling, Liu et al. (2024) introduced decoding-time realignment, offering a theoretical framework and empirical validation for decoding-time realignment of *discrete* next-token distributions. Our work differs by developing an analogous realignment mechanism for *continuous* diffusion trajectories, adapting realignment to the iterative denoising process and thereby enabling inference-time control of regularization strength without additional alignment for diffusion models.

Decoding-time realignment in diffusion models. Diffusion Blend (Cheng et al., 2025) introduced a decoding-time realignment for diffusion models under the score-based SDE (Song et al., 2020) paradigm. Our work differs by providing a decoding-time realignment approach under the DDPM paradigm (Sohl-Dickstein et al., 2015). Although (Karras et al., 2022) established a theoretical equivalence between DDPM and SDE paradigms, our approach establishes the theoretical foundation for an *exact* closed-form Gaussian update on the stepwise realigned posterior under mild assumptions. To the best of our knowledge, our work is the first to introduce realignment under the DDPM paradigm and provide a theoretical foundation for the stepwise posterior.

3 BACKGROUND

Diffusion models. We follow the common latent diffusion formulation (Rombach et al., 2022): given noise schedule parameters $\{\alpha_t, \sigma_t\}_{t=0}^T$, a denoising diffusion model (Ho et al. (2020), Sohl-Dickstein et al. (2015)) defines a Markovian reverse process. Here,

$$p_\theta(x_{0:T}) = \prod_{t=1}^T p_\theta(x_{t-1} | x_t), \quad p_\theta(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t, c), \sigma_{t|t-1}^2 \frac{\sigma_{t-1}^2}{\sigma_t^2} I), \quad (1)$$

KL-regularized RL fine-tuning. Following Jaques et al. (2017) and Jaques et al. (2020), alignment is commonly cast as reward maximization with a KL penalty to keep the fine-tuned model near a pretrained reference:

$$\max_{p_\theta} \mathbb{E}_{\mathbf{c} \sim \mathcal{D}_c, \mathbf{x}_0 \sim p_\theta(\mathbf{x}_0 | \mathbf{c})} [r(\mathbf{c}, \mathbf{x}_0)] - \beta \mathbb{D}_{\text{KL}}[p_\theta(\mathbf{x}_0 | \mathbf{c}) \| p_{\text{ref}}(\mathbf{x}_0 | \mathbf{c})] \quad (2)$$

162 Here, \mathcal{D}_c is a distribution of prompts and $\beta > 0$ controls the trade-off between reward and proximity
 163 to the reference model. Sweeping β is the standard way to find the desired alignment strength but
 164 is computationally expensive; our method provides an inference-time tool to cheaply explore this
 165 space for Diffusion Models. The unique global optimum of Equation 2 for the discrete case was
 166 explored by Ziegler et al. (2019), Korbak et al. (2022), Rafailov et al. (2023). We provide a natural
 167 extension of the unique global optimum for the continuous case (see appendix A.2 for details):
 168

$$p_\theta^*[\beta](\mathbf{x}_0|\mathbf{c}) = \frac{p_{\text{ref}}(\mathbf{x}_0|\mathbf{c})e^{\frac{1}{\beta}r(\mathbf{c}, \mathbf{x}_0)}}{\int p_{\text{ref}}(\mathbf{x}'_0|\mathbf{c})e^{\frac{1}{\beta}r(\mathbf{c}, \mathbf{x}'_0)} d\mathbf{x}'_0} \quad (3)$$

172
 173 **Realignment at decoding time** Decoding-time realignment (Liu et al. (2024)) blends a reference
 174 and an aligned model at sampling time. Extending this idea to diffusion models requires handling
 175 continuous per-step posteriors rather than discrete next-token distributions. In the next section,
 176 we derive a closed-form per-step Gaussian interpolation and give a complete sampling procedure
 177 (algorithm 1). Full technical derivations are provided in appendix A.
 178

179 4 METHOD

182 4.1 REALIGNMENT & STEPWISE APPROXIMATION

184 We follow the formulation of decoding-time realignment (Liu et al. (2024)) which expresses the
 185 *realigned* model as a geometric mixture of the reference and aligned densities. Concretely, the
 186 full-sample posterior is given by (see appendix A.1 for details):
 187

$$p_\theta^*[\beta/\lambda](x_0|c) = \frac{p_{\text{ref}}(x_0|c)^{1-\lambda} p_\theta^*[\beta](x_0|c)^\lambda}{\int p_{\text{ref}}(x'_0|c)^{1-\lambda} p_\theta^*[\beta](x'_0|c)^\lambda dx'_0}, \quad (4)$$

192 which is the normalized version of $p_{\text{ref}}^{1-\lambda} p_\theta^*[\beta]^\lambda$. Direct evaluation of Equation 4 is intractable for
 193 diffusion models as it requires marginalizing all intermediate latents. We therefore apply a *stepwise*
 194 *denoising approximation* and apply the same geometric mixture of the densities at each step:
 195

$$\hat{p}_\theta[\beta/\lambda](x_{t-1}|x_t, c) = \frac{p_{\text{ref}}(x_{t-1}|x_t, c)^{1-\lambda} p_\theta^*[\beta](x_{t-1}|x_t, c)^\lambda}{\int p_{\text{ref}}(x'_{t-1}|x_t, c)^{1-\lambda} p_\theta^*[\beta](x'_{t-1}|x_t, c)^\lambda dx'_{t-1}}. \quad (5)$$

201 **Interpretation.** Equation 4 blends reference and aligned densities by raising each to complementary
 202 powers. Equation 5 applies an analogous idea at each denoising step, enabling sampling with the
 203 effect of alignment without retraining. The parameter λ controls the KL regularization strength.
 204 When $\lambda = 0$, the regularization strength β/λ is infinite, thus recovering the original p_{ref} model (as
 205 seen in Equation 4). When $\lambda = 1$, we have $\beta/\lambda = \beta$, which recovers the aligned model $p_\theta[\beta]$.
 206 When $0 < \lambda < 1$, the new model $\hat{p}_\theta[\beta/\lambda]$ is an interpolation between the two models, which is the
 207 most stable and yields the best performance (see Figure 3) as it is a convex combination between
 208 the log densities. When $\lambda > 1$, then $\hat{p}_\theta[\beta/\lambda]$ uses a lower regularization strength than the strength
 209 with which the anchoring model $p_\theta[\beta]$ has been trained with. However, this extrapolation process
 210 is no longer a convex combination and may cause the new covariance matrix (see theorem 1) to be
 211 non-positive definite and ill-conditioned, which can lead to deterioration in performance.

212 **Assumptions.** For the statements used in Theorem 1, we assume that the following are true: (i)
 213 per-step posteriors are well-approximated by Gaussians (scalar or diagonal variance) and (ii) the
 214 interpolation weight λ is in the range of $[0, 1]$ (because if $\lambda > 1$, this corresponds to extrapolation and
 215 may cause performance degradation due to absence of positive definiteness of the new covariance
 matrix).

216 4.2 DENOISING TIME REALIGNMENT
217218 **Theorem 1** (Closed-form per-step denoising realignment). Denoting $\mu_1 = \mu_\theta(x_t, t, c)$, $\mu_2 =$
219 $\mu_\theta^*[\beta](x_t, t, c)$ ¹ and $\sigma_1^2 = \sigma_{t|t-1}^2 \frac{\sigma_2^2}{\sigma_t^2} I = \sigma_2^2$ for brevity, Let
220
221

222
$$p_{\text{ref}}(x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_1, \sigma_1^2 I) \quad p_\theta^*[\beta](x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_2, \sigma_2^2 I)$$

223
224

225 Then, for any interpolation weight $\lambda \in [0, 1]$ the stepwise realigned posterior
226

227
$$\hat{p}_\theta[\beta/\lambda](x_{t-1} | x_t, c) = \frac{p_{\text{ref}}(x_{t-1} | x_t, c)^{1-\lambda} p_\theta^*[\beta](x_{t-1} | x_t, c)^\lambda}{\int p_{\text{ref}}(x'_{t-1} | x_t, c)^{1-\lambda} p_\theta^*[\beta](x'_{t-1} | x_t, c)^\lambda dx'_{t-1}} \quad (6)$$

228
229
230

231 is Gaussian with closed-form parameters:
232

233
$$\Sigma_{\text{new}} = \left(\frac{1-\lambda}{\sigma_1^2} + \frac{\lambda}{\sigma_2^2} \right)^{-1} I \quad \mu_{\text{new}} = \Sigma_{\text{new}} \left(\frac{(1-\lambda)}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2 \right) \quad (7)$$

234
235

236 Moreover, deterministic scheduler posterior transform (including schedulers used by DDIM/DDPM
237 samplers) preserves the Gaussian form of $\hat{p}_\theta[\beta/\lambda]$, allowing the closed-form update above to be
238 applied at each denoising step.
239240 **Proof sketch.** Note that $p_{\text{ref}}(x_{t-1}|x_t, c)^{1-\lambda} p_\theta^*[\beta](x_{t-1}|x_t, c)^\lambda \propto \exp(-\frac{1}{2}(\frac{1-\lambda}{\sigma_1^2}\|x_{t-1} - \mu_1\|^2 +$
241 $\frac{\lambda}{\sigma_2^2}\|x_{t-1} - \mu_2\|^2))$. We then define $\Sigma_{\text{new}} = (\frac{1-\lambda}{\sigma_1^2} + \frac{\lambda}{\sigma_2^2})^{-1} I$ and $\mu_{\text{new}} = \Sigma_{\text{new}}(\frac{(1-\lambda)}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2)$.
242 Following this, one sees that the product can be written as an unnormalized Gaussian. Finally, using
243 algebraic manipulation with respect to the integral, we arrive at a normalized Gaussian from which
244 we can sample. We note that Σ_{new} is guaranteed to be positive definite for $\lambda \in [0, 1]$ and $\sigma_1^2, \sigma_2^2 > 0$.
245 Moreover, this same closed form update applies iteratively at each denoising step. We provide a full
246 and detailed derivation which is available at appendix A.3.
247248
249 **Corollary 1** (Positivity and scalar simplification). If $\sigma_1^2, \sigma_2^2 > 0$ and $\lambda \in [0, 1]$, then $\sigma_{\text{new}}^2 > 0$ and
250 the interpolated posterior is a valid Gaussian. In the isotropic (scalar) case, the σ_{new}^2 and μ_{new} are
251 as follows
252

253
$$\sigma_{\text{new}}^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_2^2(1-\lambda) + \sigma_1^2} \quad \mu_{\text{new}} = \sigma_{\text{new}}^2 \left(\frac{(1-\lambda)}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2 \right) \quad (8)$$

254
255

256 which is implemented in algorithm 1.
257258 **Remark** As seen in eq. (7), $\lambda > 1$ forces a non convex combination, as such, since $1 - \lambda < 0$, it
259 may cause the new covariance matrix to not be positive definite and ill-conditioned. But empirically,
260 DeRaDiff continues to approximate a model with lesser effective regularization for moderate $\lambda > 1$
261 before instability occurs (see fig. 3).
262263 **Multi-reward extension** We also prove that DeRaDiff can be extended to the very general case of
264 multi-reward modelling (Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023)). A full proof
265 is given at appendix A.4.
266267
268
269 ¹ $x_t, x_{t-1}, \mu_t, \mu_{t-1} \in \mathbb{R}^D$
270 Note that σ_1^2 need not be equal to σ_2^2 —our derivation handles this more general case.

270 4.3 ALGORITHM
271272
273 **Algorithm 1** DeRaDiff Sampling

274 **Require:** Reference model $\mathcal{E}_{\theta_{\text{ref}}}$, Aligned model $\mathcal{E}_{\theta_{\text{tuned}}}$, interpolation weight $\lambda \in [0, 1]$, prompt p ,
275 guidance scale γ , number of inference steps N , scheduler with timesteps $\{t_i\}_{i=0}^N$ and corre-
276 sponding noise levels $\{\sigma_i\}_{i=0}^N$.

277 1: $c \leftarrow \text{Encode}(p)$
278 2: $c_{\text{null}} \leftarrow \text{Encode}(\text{"")}$ ▷ Get unconditional embedding
279 3: $\mathbf{x}_{t_N} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ▷ Sample initial latent from a standard Gaussian distribution
280 4: **for** $i = N, \dots, 1$ **do**
281 5: $t \leftarrow t_i, t_{\text{prev}} \leftarrow t_{i-1}$
282 6: $\sigma_t \leftarrow \sigma_i$
283 7: $\epsilon^{\text{ref}} \leftarrow \mathcal{E}_{\theta_{\text{ref}}}(\mathbf{x}_t, \sigma_t, c_{\text{null}}) + \gamma (\mathcal{E}_{\theta_{\text{ref}}}(\mathbf{x}_t, \sigma_t, c) - \mathcal{E}_{\theta_{\text{ref}}}(\mathbf{x}_t, \sigma_t, c_{\text{null}}))$
284 8: $\epsilon^{\text{tuned}} \leftarrow \mathcal{E}_{\theta_{\text{tuned}}}(\mathbf{x}_t, \sigma_t, c_{\text{null}}) + \gamma (\mathcal{E}_{\theta_{\text{tuned}}}(\mathbf{x}_t, \sigma_t, c) - \mathcal{E}_{\theta_{\text{tuned}}}(\mathbf{x}_t, \sigma_t, c_{\text{null}}))$ ▷ Compute
285 Classifier-Free Guidance predictions for both models.
286 9: $\mu_1, \sigma_1^2 \leftarrow \text{SchedulerPosterior}(\mathbf{x}_t, \epsilon^{\text{ref}}, t, t_{\text{prev}})$
287 10: $\mu_2, \sigma_2^2 \leftarrow \text{SchedulerPosterior}(\mathbf{x}_t, \epsilon^{\text{tuned}}, t, t_{\text{prev}})$ ▷ Calculate posterior mean μ and variance
288 σ^2 for the distribution at t_{prev} .
289 11: $\sigma_{\text{new}}^2 \leftarrow \left(\frac{1-\lambda}{\sigma_1^2} + \frac{\lambda}{\sigma_2^2} \right)^{-1}$
290 12: $\mu_{\text{new}} \leftarrow \sigma_{\text{new}}^2 \left(\frac{1-\lambda}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2 \right)$
291 13: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
292 14: $\mathbf{x}_{t_{\text{prev}}} \leftarrow \mu_{\text{new}} + \mathbf{z} \cdot \sqrt{\sigma_{\text{new}}^2}$
293 15: **end for**
294 16: $\mathbf{I}_{\text{out}} \leftarrow \text{VAE.decode}(\mathbf{x}_{t_0})$
295 17: **return** \mathbf{I}_{out}

296 5 EXPERIMENTS

300 301 5.1 EXPERIMENTAL SETUP

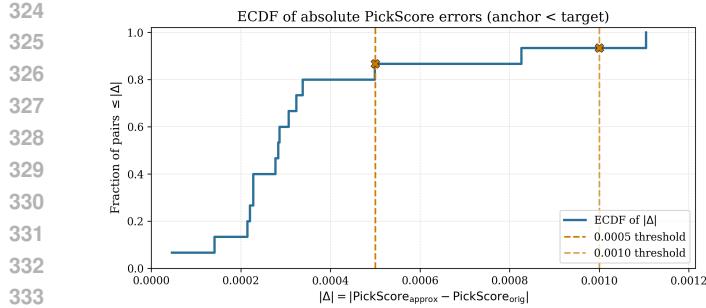
303 Our experiments constitute the following steps:

305 1. **Obtain reference and realigned models.** We obtain public releases of model checkpoints
306 (SDXL 1.0) and initialize the reference model p_{ref} . Then, we use an arbitrary alignment
307 method (eg: DiffusionDPO, Wallace et al. (2023)) to align the reference model while mini-
308 mizing the KL divergence where the regularization strength is β , which yields the realigned
309 model $p_{\theta}[\beta]$. We also perform experiments on Stable Diffusion 1.5, which can be found in
310 appendix A.8.

311 2. **Obtain outputs from Denoising Time Realignment.** For given prompts c , we apply algo-
312 rithm 1 with varying λ values to obtain samples from $\hat{p}_{\theta}[\beta/\lambda]$, allowing us to approximate
313 various different regularization strengths without alignment from scratch.

314 3. **Compare denoising time realignment samples against retrained models.** We compare
315 the downstream reward achieved by samples generated from $\hat{p}_{\theta}[\beta/\lambda]$ to those of $p_{\theta}[\beta]$
316 which is a model that is aligned completely from scratch.

318 To comprehensively assess DeRaDiff’s ability to approximate the performance of models aligned
319 from scratch, we sample a batch of 500 prompts from a union of the Pick-a-Pic v1 and HPS datasets
320 and test DeRaDiff’s approximation capability on three metrics which cover various aspects of image
321 generation, namely PickScore, HPS v2 and CLIP. The SDXL 1.0 model is aligned at a wide range
322 of regularization strengths $\beta \in \{500, 1000, 2000, 5000, 8000, 10000\}$, and at a time, one aligned
323 model at a particular β is used as an anchor model to approximate other alignment strengths. We do
the same for SD1.5, whose results are provided in detail in appendix A.8.

PickScore errors, $\lambda \in [0, 1]$

n (pairs)	15
MAE	3.55×10^{-4}
Median $ \Delta $	2.83×10^{-4}
75th / 90th	$3.31 \times 10^{-4} / 6.95 \times 10^{-4}$
Max	1.10×10^{-3}
Frac $\leq 5 \times 10^{-4}$	86.7%
Frac $\leq 10^{-3}$	93.3%
PickScore mean	0.230509
PickScore std	0.001434

338

339 Figure 4: ECDF of absolute PickScore errors $|\Delta| = |\text{PickScore}_{\text{approx}} - \text{PickScore}_{\text{orig}}|$, when

340 DeRaDiff is used on aligned SDXL models.

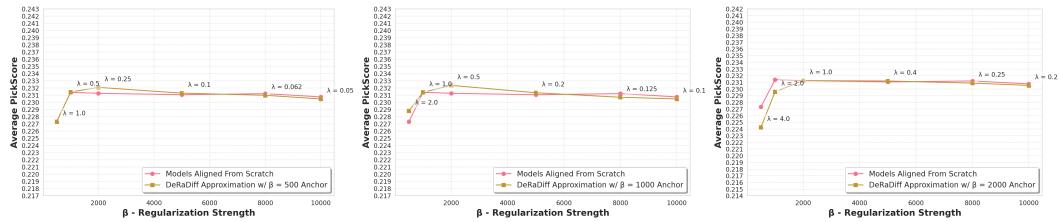
341

342

343

344

345



360 Figure 5: Line graphs for the average PickScore rewards gained by SDXL models realigned from

361 scratch along with line graphs for the average PickScore rewards gained from DeRaDiff using

362 anchor SDXL models with $\beta = 500$ (left plot), $\beta = 1000$ (middle plot) and $\beta = 2000$ (right plot)

363 regularization strengths.

364

5.1.1 PICKSCORE

365 PickScore (Kirstain et al., 2023) is a caption-aware image reward model trained under a Bradley–

366 Terry objective on pairwise preferences. Given a tuple $(\mathbf{c}, I_A, I_B, y)$, where \mathbf{c} is the prompt, I_A and

367 I_B are candidate images, and $y \in \{0, 1\}$ indicates whether I_A is preferred, a CLIP-based encoder

368 with an MLP head produces a real-valued score $s_\theta(\mathbf{c}, I)$. The induced preference probability is

369 $\Pr(I_A \succ I_B \mid \mathbf{c}) = \sigma(s_\theta(\mathbf{c}, I_A) - s_\theta(\mathbf{c}, I_B))$ with $\sigma(\cdot)$ the logistic sigmoid. We use PickScore

370 as a learned reward targeting human-perceived quality under the provided caption; unless otherwise

371 stated, higher indicates stronger preference.

372 As seen in fig. 4, the typical approximation error is extremely small (median = 2.83×10^{-4} , $\approx 20\%$

373 of the PickScore std) when DeRaDiff approximates human appeal to images on aligned SDXL

374 models. Roughly 87% of approximations have errors $\leq 5 \times 10^{-4}$, so DeRaDiff produces near-

375 identical PickScore ratings for the vast majority of cases, meaning the human appeal of images

376 produced by DeRaDiff and models aligned entirely from scratch are near-identical.

377 As seen in fig. 5, DeRaDiff is able to meaningfully control the regularization strength on the fly

378 without retraining by closely matching the SDXL models that were aligned entirely from scratch.

379 Thus DeRaDiff enables testing of various regularization strengths without training, allowing one to

380 search for the optimal strength, eliminating the need for expensive alignment sweeps. Moreover,

381 using DeRaDiff, one can identify a promising range of regularization strengths and *only align at*

382 *these strengths*, substantially reducing computational costs.

5.1.2 HPS v2

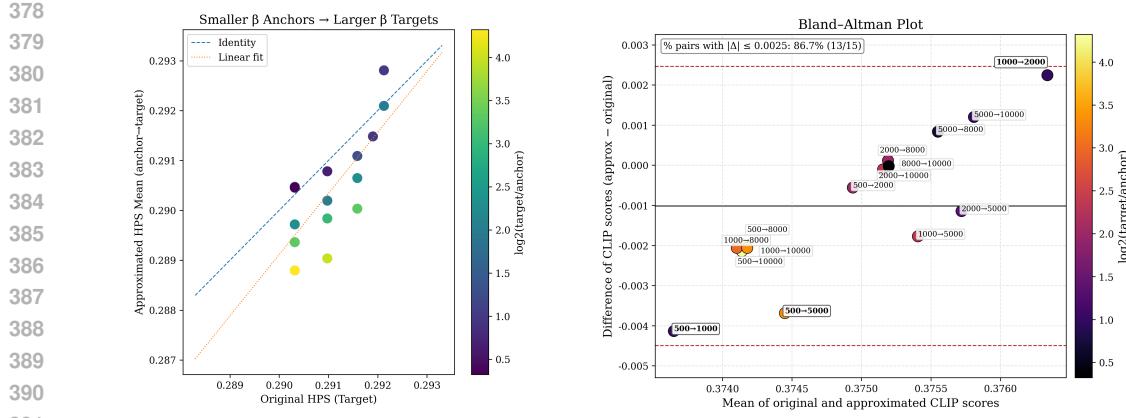
383 Human Preference Score v2 (HPS v2) (Wu et al., 2023b) is a caption-aware preference model trained

384 on the Human Preference Dataset v2 (HPD v2), a large-scale corpus of pairwise judgments designed

385 to approximate human ratings of text-to-image outputs. HPD v2 comprises on the order of 7.9×10^5

386 binary choices over $\sim 4.3 \times 10^5$ prompt–image pairs spanning real photographs and generations

387 from diverse T2I models. To this end, we test how well DeRaDiff matches human-preference be-



(a) Scatter plot of approximated HPS Mean vs. original HPS (target) shows DeRaDiff approximations closely match human preference scores.

(b) Bland-Altman plot of DeRaDiff approximations for mean CLIP scores showing no systematic semantic fidelity approximation bias.

Figure 6: Graphical plots of statistical analysis of DeRaDiff’s approximations.

haviours of models realigned from scratch by presenting and analyzing a scatter plot. As seen in fig. 6a, each point (x, y) , corresponds to a specific approximation of a β_{target} SDXL model using a specific β_{anchor} anchoring SDXL model using DeRaDiff where x corresponds to the mean HPS score obtained by the DeRaDiff approximation of the β_{target} model and y corresponds to the mean HPS score obtained by the β_{target} model. Moreover, we colour code each point (x, y) with its respective $\log_2(\beta_{target}/\beta_{anchor})$ value with the goal of encoding the gap between the regularization strengths of β_{anchor} and β_{target} . Here we see that points lie around the identity line and the linear fit is close to it. This indicates that DeRaDiff is able to match and recover the human-preference scores of images from models aligned entirely from scratch. Moreover, inferring from the color scale, this indicates that approximations are near-identical or even better when an anchor β approximates a target β that is close-by, but performance degrades smoothly with increasing anchor-to-target distance. Overall, this figure provides a faithfulness check: DeRaDiff enables low-cost, inference-time alignment that is able to preserve human preference outcomes of models aligned entirely from scratch. Detailed statistical analysis is provided in appendix A.8.

5.1.3 CLIP

CLIP (Hessel et al., 2021) provides a general-purpose text–image relevance score without explicit training on human preference pairs. For a caption–image pair (p, x) , we compute the cosine similarity of normalized embeddings, $s_{\text{CLIP}}(p, x) = \frac{\text{Enc}_{\text{text}}(p) \cdot \text{Enc}_{\text{img}}(x)}{\|\text{Enc}_{\text{text}}(p)\| \|\text{Enc}_{\text{img}}(x)\|}$. In our evaluations, CLIP is treated as a semantic fidelity baseline to complement preference-trained metrics (HPS v2, PickScore), helping to disentangle prompt adherence from aesthetic appeal. To demonstrate how DeRaDiff maintains semantic fidelity and that DeRaDiff has no systematic semantic approximation bias when considering the preservation of semantic-fidelity, we present a Bland-Altman comparison for DeRaDiff approximations on SDXL models in fig. 6b. In this Bland-Altman plot, for each point (x, y) with label $\beta_{anchor} \rightarrow \beta_{target}$, x refers to the average of (a) the CLIP score gained by the DeRaDiff approximation of a β_{target} reference model using a β_{anchor} SDXL model as the anchor and (b) the original CLIP score gained by the target β_{target} SDXL model. And y refers to the difference between (a) and (b), i.e. the difference between the CLIP score gained by the DeRaDiff approximation and the CLIP score gained by the target model that was aligned from scratch. We use a similar colour scheme for each point as was described in section 5.1.2. Here, fig. 6b demonstrates that DeRaDiff approximations have negligible average bias and show very small absolute differences (maximum $|\Delta| \approx 4.5 \times 10^{-3}$, 1.2% of μ_{orig} , where μ_{orig} is the mean of all CLIP values generated by models aligned completely from scratch) and that the Bland-Altman mean difference is -0.001018 , which is -0.273% of μ_{orig} . Furthermore, the 95% limits of agreement is $[-0.004496, 0.002461]$. Further analysis is provided in appendix A.8. These results indicate that

Figure 7: **DeRaDiff undoes reward hacking.** For each panel, left = image from SDXL model aligned at $\beta = 500$ (reward-hacked), center = DeRaDiff approximating an SDXL model aligned at $\beta = 2000$ using an SDXL anchor aligned at $\beta = 500$, right = reference image from an SDXL model aligned at $\beta = 2000$. The image details and style are successfully recovered by DeRaDiff.

DeRaDiff preserves prompt-to-image semantic fidelity with no systematic bias, particularly when $\lambda \in [0, 1]$. Taken together, these results show that DeRaDiff preserves prompt-to-image semantic fidelity to within measurement noise in CLIP, thus rendering DeRaDiff once more capable of tuning the regularization strength on the fly during inference accurately preserving semantics all the while obviating the need to perform multiple costly retrainings.

5.2 QUALITATIVE ANALYSIS

As seen in table 1, DeRaDiff is capable of producing highly accurate training-free approximations particularly in the case for $\lambda \in [0, 1]$, and is able to meaningfully control the regularization strength at inference time on the fly. We provide further detailed statistical analysis in appendix A.8. Across both SDXL and SD1.5, mean absolute errors are extremely small (all < 0.02 in absolute terms) and remain well below 0.5% when taken with respect to the respective means. The results show that DeRaDiff reproduces the average behavior of models aligned entirely from scratch for the case $\lambda \in [0, 1]$. In table 2, we show the performance of DeRaDiff on an arbitrary anchor aligned at $\beta = 2000$. We observe that the performance of DeRaDiff is generally stronger when applied to approximating models aligned with regularization strengths that are higher than that of the anchor model. This is explained by the fact that when $0 \leq \lambda \leq 1$, DeRaDiff performs a convex combination, as seen in Equation 5. The experiments show that this interpolation is stable and is thus a reliable surrogate to approximate the performance of models aligned at such regularization strengths. When $\lambda > 1$, the combination is not convex as discussed in theorem 1. This leads to slightly less accurate approximations. Furthermore, as seen in fig. 5 and fig. 7, our experiments demonstrate that DeRaDiff can provide an accurate approximation of models aligned from scratch even when using a reward hacked model as the anchor. As reward hacked models have small β values, we can undo the effect of reward hacking by using the reward hacked model as an anchor and utilise a small λ value to reverse the effect of reward hacking (as seen in fig. 7). We further provide detailed evaluations of DeRaDiff’s capability to undo reward hacking in appendix A.6.2.

6 COMPUTE SAVINGS

In our experimental setup detailed in appendix A.7, aligning a SDXL model at a single β takes ≈ 336 GPU hours, which is $\approx 52,416$ TFLOP-hours (FP16 Tensor-core equivalent) at a sustained load of 50%, or $\approx 1.887 \times 10^{20}$ floating point operations (≈ 188.7 EFLOPs). If a naive pipeline aligns a single SDXL model at N regularization strengths, the costs scale to $N \times 336$ GPU hours (or $N \times 188.7$ EFLOPs). DeRaDiff requires aligning only *once*, thus cumulative wall-time and FLOPs are reduced by a factor of N . For instance, using DeRaDiff instead of naively aligning of

Table 1: Training-free approximation errors of DeRaDiff when $\lambda \in [0, 1]$

Model	CLIP		HPS		PickScore	
	MAE	MAE (% of μ)	MAE	MAE (% of μ)	MAE	MAE (% of μ)
SDXL	0.001 604	0.430 000	0.000 770	0.265 000	0.000 355	0.154 000
SD1.5	0.001 557	0.448 000	0.001 175	0.425 000	0.000 718	0.332 000

Notes: MAE = mean absolute error between DeRaDiff outputs and images generated by models aligned from scratch across all regularization strength anchors. For each metric and model, μ is the evaluated mean metric value when aligned from scratch across all evaluated regularization strengths; reported percentages are MAE divided by μ . A very detailed statistical analysis is provided in

Tasks (Anchor $\beta = 2000$)	Target Model β -values					
	500	1000	2000	5000	8000	10000
PickScore						
Actual	0.2273	0.2314	0.2313	0.2311	0.2312	0.2308
Approximated	0.2243	0.2296	0.2313	0.2312	0.2309	0.2305
Absolute Difference (%)	1.3451	0.7831	0.0000	0.0611	0.1399	0.0987
HPS						
Actual	0.2869	0.2919	0.2921	0.2916	0.2910	0.2903
Approximated	0.2852	0.2918	0.2921	0.2911	0.2902	0.2897
Absolute Difference (%)	0.5890	0.0299	0.0000	0.1701	0.2688	0.2061
CLIP						
Actual	0.3628	0.3757	0.3752	0.3763	0.3751	0.3752
Approximated	0.3643	0.3738	0.3752	0.3751	0.3752	0.3751
Absolute Difference (%)	0.4022	0.5077	0.0000	0.3041	0.0310	0.0282

Table 2: Comparison of mean rewards achieved on various metrics by using an aligned $\beta = 2000$ SDXL model as an anchor. DeRaDiff closely matches the models that were aligned completely from scratch. In particular, when $\lambda \leq 1$, the largest absolute percentage difference for PickScore, HPS and CLIP are 0.1399%, 0.2688%, 0.3041% respectively, thus demonstrating the accuracy of DeRaDiff's approximations.

$N = 3, 5, 10$ yields approximate GPU-hour savings of 66.7%, 80%, and 90% (respectively), and EFLOP savings of ≈ 377.4 EFLOPs ($N=3$), 754.8 EFLOPs ($N=5$), and $1,698.3$ EFLOPs ($N=10$). Thus, by using DeRaDiff in place of a naive alignment sweep at $N \beta$'s, one can reduce run-time and FLOPs by $\approx 1 - \frac{1}{N}$. However, DeRaDiff requires two forward passes at inference, but taken in totality, this overhead is still always smaller compared to full alignment sweeps. Moreover, this inference overhead can still be reduced by using prompt encoding caching or parallelized inference.

7 CONCLUSION

In this work, we introduced DeRaDiff, a theoretical expansion of decoding time realignment to diffusion models, a framework enabling one to modulate the regularization strength of any aligned model on the fly without any additional training. We also showed empirical evidence that DeRaDiff enables precise and meaningful control of the alignment strength and consistently provides a strong approximation for models aligned entirely from scratch. We also demonstrated the substantial compute savings that DeRaDiff brings about. Thus, DeRaDiff yields an efficient way to search for the optimal regularization strength, eliminating the need for expensive alignment sweeps.

8 ETHICAL STATEMENT

The authors have read the ICLR Code of Ethics and are committed to complying and upholding them. We only note two potential concerns: (1) pretrained image models and their training data might contain copyrighted content and also it may include societal biases, and (2) by lowering the computational costs involved in alignment, this can reduce the barrier to deployment and may increase the risk of misuse. The authors wish to inform that they are strictly against such misuse and

540 encourage responsible and safe use at all times without question. Furthermore, the authors only use
 541 pretrained models and datasets that are available to the public and are committed to strictly adhering
 542 to all model and dataset license restrictions.

544 9 REPRODUCIBILITY STATEMENT

545
 546 The authors make every effort to make their work fully reproducible. To this end, the authors
 547 freely share the source code required to run our experiments in the supplemental section of this
 548 submission. We also detail our experimental setup in appendix A.7. Furthermore, we have used
 549 publicly available SDXL and SD1.5 checkpoints. We also provide a README file and also provide
 550 all evaluation scripts along with the core DeRaDiff implementation code.

551 REFERENCES

552 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
 553 problems in ai safety, 2016. URL <https://arxiv.org/abs/1606.06565>.

554 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 555 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
 556 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
 557 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
 558 Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
 559 Training a helpful and harmless assistant with reinforcement learning from human feedback,
 560 2022. URL <https://arxiv.org/abs/2204.05862>.

561 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
 562 models with reinforcement learning, 2023. URL <https://arxiv.org/abs/2305.13301>.

563 Min Cheng, Fatemeh Doudi, Dileep Kalathil, Mohammad Ghavamzadeh, and Panganamala R. Kumar.
 564 Diffusion blend: Inference-time multi-preference alignment for diffusion models, 2025.
 565 URL <https://arxiv.org/abs/2505.18547>.

566 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
 567 on differentiable rewards, 2023. URL <https://arxiv.org/abs/2309.17400>.

568 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
 569 <https://arxiv.org/abs/2105.05233>.

570 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
 571 Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement
 572 learning for fine-tuning text-to-image diffusion models. In A. Oh, T. Nau-
 573 man, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 574 Information Processing Systems*, volume 36, pp. 79858–79885. Curran Associates, Inc.,
 575 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf.

576 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
 577 Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
 578 preserving guided diffusion. In *The Twelfth International Conference on Learning Representa-
 579 tions*, 2024. URL <https://openreview.net/forum?id=o3BxOLoxm1>.

580 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 581 reference-free evaluation metric for image captioning. 2021. doi: 10.48550/ARXIV.2104.08718.
 582 URL <https://arxiv.org/abs/2104.08718>.

583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 584 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 585 ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 586 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

594 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Han-
 595 naneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personal-
 596 ized large language model alignment via post-hoc parameter merging, 2023. URL <https://arxiv.org/abs/2310.11564>.
 597

598 Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E.
 599 Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
 600 els with kl-control. In *Proceedings of the 34th International Conference on Machine Learning*
 601 (*ICML*), volume 70 of *Proceedings of Machine Learning Research*, pp. 1645–1654. PMLR, Au-
 602 gust 2017. URL <http://proceedings.mlr.press/v70/jaques17a.html>.
 603

604 Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
 605 Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement
 606 learning. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020*
 607 *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 3985–4003,
 608 Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 609 emnlp-main.327. URL <https://aclanthology.org/2020.emnlp-main.327>.
 610

611 Tero Karras, Miika Aittala, Samuli Laine, and Timo Aila. Elucidating the design space of diffusion-
 612 based generative models. In *Proceedings of the 36th International Conference on Neural Infor-
 613 mation Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
 9781713871088.
 614

615 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
 616 reward over-optimization. In *The Thirteenth International Conference on Learning Representa-
 617 tions*, 2025. URL <https://openreview.net/forum?id=vi3DjUhFVm>.
 618

619 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 620 a-pic: An open dataset of user preferences for text-to-image generation, 2023. URL <https://arxiv.org/abs/2305.01569>.
 621

622 Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better viewed as
 623 bayesian inference, 2022. URL <https://arxiv.org/abs/2205.11275>.
 624

625 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 626 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 627 feedback, 2023. URL <https://arxiv.org/abs/2302.12192>.
 628

629 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 630 Goyal, Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
 631 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
 632 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 633 ral Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 634 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.
 635

636 Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
 637 Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time
 638 realignment of language models, 2024. URL <https://arxiv.org/abs/2402.02992>.
 639

640 Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D. Manning. An
 641 emulator for fine-tuning large language models using small language models, 2023. URL
 642 <https://arxiv.org/abs/2310.12962>.
 643

644 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 645 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 646 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.
 647

648 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
 649 image diffusion models with reward backpropagation, 2023. URL <https://arxiv.org/abs/2310.03739>.
 650

648 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 649 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
 650 2023. URL <https://arxiv.org/abs/2305.18290>.

651

652 Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
 653 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by in-
 654 terpolating weights fine-tuned on diverse rewards, 2023. URL <https://arxiv.org/abs/2306.04488>.

655

656 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
 657 resolution image synthesis with latent diffusion models. In *2022 IEEE/CVF Conference on*
 658 *Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685. IEEE, June 2022. doi:
 659 [10.1109/cvpr52688.2022.01042](https://doi.org/10.1109/cvpr52688.2022.01042). URL <http://dx.doi.org/10.1109/CVPR52688.2022.01042>.

660

661 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
 662 yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
 663 imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
 664 fusion models with deep language understanding, 2022. URL <https://arxiv.org/abs/2205.11487>.

665

666 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 667 learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Pro-
 668 ceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings
 669 of Machine Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
 670 <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

671

672 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 673 Poole. Score-based generative modeling through stochastic differential equations, 2020. URL
 674 <https://arxiv.org/abs/2011.13456>.

675

676 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
 677 Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
 678 back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in*
 679 *Neural Information Processing Systems*, volume 33, pp. 3008–3021. Curran Associates, Inc.,
 680 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

681

682 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 683 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 684 direct preference optimization, 2023. URL <https://arxiv.org/abs/2311.12908>.

685

686 Luhuan Wu, Brian L. Trippe, Christian A Naesseth, John Patrick Cunningham, and David Blei.
 687 Practical and asymptotically exact conditional sampling in diffusion models. In *Thirty-seventh*
 688 *Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=eWKqr1zcRv>.

689

690 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 691 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 692 image synthesis, 2023b. URL <https://arxiv.org/abs/2306.09341>.

693

694 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
 695 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
 696 URL <https://arxiv.org/abs/1909.08593>.

697

698

699

700

701

702 CONTENTS
703

704	A Appendix	15
705	A.1 Re-expression of Realigned model	15
706	A.2 Unique Global Optimum for the Continuous Case	15
707	A.3 Proof of Denoising Time Realignment	16
708	A.4 Proof of Denoising Time Realignment when considering a Linear Combination of 711 Multiple Rewards	17
709	A.5 An End-to-End process of finding the globally optimal λ^*	19
710	A.5.1 Gaussian Process Surrogate	19
711	A.5.2 Acquisition Function	20
712	A.6 Additional Experiments	21
713	A.6.1 A fine grained examination	21
714	A.6.2 Undoing Reward Hacking	22
715	A.7 Detailed Experimental Setup	22
716	A.8 Metrics used for Detailed Statistical Analysis	24
717	A.9 Statistical analysis of DeRaDiff’s performance on CLIP	25
718	A.9.1 SDXL	25
719	A.9.2 SD1.5	26
720	A.10 Statistical analysis of DeRaDiff’s performance on HPS	27
721	A.10.1 SDXL	27
722	A.10.2 SD1.5	28
723	A.11 Statistical analysis of DeRaDiff’s performance on PickScore	29
724	A.11.1 SDXL	29
725	A.11.2 SD1.5	30
726	A.12 LLM Usage	30
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

A APPENDIX

A.1 RE-EXPRESSION OF REALIGNED MODEL

This concerns the re-expression of the realigned model in terms of a model that was aligned from scratch. Thus, this shows a way to feasibly approximate an aligned model without training from scratch. From equation 3 we see that $e^{\frac{1}{\beta}r(\mathbf{c}, \mathbf{x}_0)} = \mathcal{Z}(\mathbf{c})p_\theta^*[\beta](\mathbf{x}_0|\mathbf{c})/p_{\text{ref}}(\mathbf{x}_0|\mathbf{c})$ and hence

$$\begin{aligned}
 p_\theta^*[\beta/\lambda](\mathbf{x}_0|\mathbf{c}) &= \frac{p_{\text{ref}}(\mathbf{x}_0|\mathbf{c})e^{\frac{\lambda}{\beta}r(\mathbf{c}, \mathbf{x}_0)}}{\int p_{\text{ref}}(\mathbf{x}'_0|\mathbf{c})e^{\frac{\lambda}{\beta}r(\mathbf{c}, \mathbf{x}'_0)} d\mathbf{x}'_0} = \frac{p_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) \left[e^{\frac{1}{\beta}r(\mathbf{c}, \mathbf{x}_0)} \right]^\lambda}{\int p_{\text{ref}}(\mathbf{x}'_0|\mathbf{c}) \left[e^{\frac{1}{\beta}r(\mathbf{c}, \mathbf{x}'_0)} \right]^\lambda d\mathbf{x}'_0} \\
 &= \frac{P_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) [\mathcal{Z}(\mathbf{c})P_\theta^*[\beta](\mathbf{x}_0|\mathbf{c})/P_{\text{ref}}(\mathbf{x}_0|\mathbf{c})]^\lambda}{\int P_{\text{ref}}(\mathbf{x}'_0|\mathbf{c}) [\mathcal{Z}(\mathbf{c})P_\theta^*[\beta](\mathbf{x}'_0|\mathbf{c})/P_{\text{ref}}(\mathbf{x}'_0|\mathbf{c})]^\lambda d\mathbf{x}'_0} \\
 &= \frac{P_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) [P_\theta^*[\beta](\mathbf{x}_0|\mathbf{c})/P_{\text{ref}}(\mathbf{x}_0|\mathbf{c})]^\lambda}{\int P_{\text{ref}}(\mathbf{x}'_0|\mathbf{c}) [P_\theta^*[\beta](\mathbf{x}'_0|\mathbf{c})/P_{\text{ref}}(\mathbf{x}'_0|\mathbf{c})]^\lambda d\mathbf{x}'_0} \tag{9}
 \end{aligned}$$

A.2 UNIQUE GLOBAL OPTIMUM FOR THE CONTINUOUS CASE

This concerns the finding of the unique global optimum for equation 2. This proof is as seen in Rafailov et al. (2023), but where the partition function is for the continuous case. Using the definition of the KL divergence, equation 2 simplifies to:

$$\begin{aligned}
 P_\theta^* &= \max_{\rho_\theta} \mathbb{E}_{c \sim \mathcal{D}_c} \left[\mathbb{E}_{x_0 \sim p_\theta(x_0|c)} \left[r(c, x_0) - \beta \log \frac{p_\theta(x_0|c)}{p_{\text{ref}}(x_0|c)} \right] \right] \\
 &= \min_{\rho_\theta} \mathbb{E}_{c \sim \mathcal{D}_c} \left[\mathbb{E}_{x_0 \sim p_\theta(x_0|c)} \left[\log \frac{p_\theta(x_0|c)}{p_{\text{ref}}(x_0|c)} - \frac{1}{\beta}r(c, x_0) \right] \right] \\
 &= \min_{\rho_\theta} \mathbb{E}_{c \sim \mathcal{D}_c} \left[\mathbb{E}_{x_0 \sim p_\theta(x_0|c)} \left[\log \frac{p_\theta(x_0|c)}{\frac{1}{Z(c)}p_{\text{ref}}(x_0|c)e^{\frac{1}{\beta}r(c, x_0)}} - \log Z(c) \right] \right] \tag{10}
 \end{aligned}$$

Here, the partition function is:

$$Z(c) = \int p_{\text{ref}}(x'_0|c)e^{\frac{1}{\beta}r(c, x'_0)} dx'_0 \tag{11}$$

Now, define $p^*(x_0|c) = \frac{1}{Z(c)}p_{\text{ref}}(x_0|c)e^{\frac{1}{\beta}r(c, x_0)}$ which is a valid probability distribution as $p^*(x_0|c) \geq 0$ for all x_0 and $\int p^*(x_0|c)dx_0 = 1$.

Then, since $Z(c)$ is not a function of x_0 , bring the expectation inside:

$$\begin{aligned}
 P_\theta^* &= \min_{\rho_\theta} \mathbb{E}_{c \sim \mathcal{D}_c} \left[\mathbb{E}_{x_0 \sim p_\theta(x_0|c)} \left[\log \frac{p_\theta(x_0|c)}{\frac{1}{Z(c)}p_{\text{ref}}(x_0|c)e^{\frac{1}{\beta}r(c, x_0)}} \right] - \log Z(c) \right] \\
 &= \min_{\rho_\theta} \mathbb{E}_{c \sim \mathcal{D}_c} [\mathcal{D}_{KL}(p_\theta(x_0|c)||p^*(x_0|c)) - \log Z(c)] \tag{12}
 \end{aligned}$$

Since the second term doesn't depend on p_θ , the minimum is achieved by the p_θ that minimizes the first term. Thus,

$$p_\theta = p_\theta^* = \frac{1}{Z(c)}p_{\text{ref}}(x_0|c)e^{\frac{1}{\beta}r(c, x_0)} \tag{13}$$

More specifically,

810
 811
 812

$$p_{\theta}^{[\beta]}(x_0|c) = \frac{p_{\text{ref}}(x_0|c)e^{\frac{1}{\beta}r(c, x_0)}}{\int p_{\text{ref}}(x'_0|c)e^{\frac{1}{\beta}r(c, x'_0)}dx'_0} \quad (14)$$

 813
 814

is a diffusion model that is aligned with a regularization strength $\beta (\neq 0)$.

A.3 PROOF OF DENOISING TIME REALIGNMENT

This proof concerns the finding of a closed-form formula for

820
 821

$$p_{\theta}^{*}[\beta/\lambda](x_{t-1}|x_t, c) = \frac{p_{\text{ref}}(x_{t-1}|x_t, c)^{1-\lambda} p_{\theta}^{*}[\beta](x_{t-1}|x_t, c)^{\lambda}}{\int p_{\text{ref}}(x'_{t-1}|x_t, c)^{1-\lambda} p_{\theta}^{*}[\beta](x'_{t-1}|x_t, c)^{\lambda} dx'_{t-1}}. \quad (15)$$

 822

As noted previously, we have that

825
 826

$$p_{\text{ref}}(x_{t-1}|x_t, c) = \mathcal{N}\left(x_{t-1}; \mu_{\theta}(x_t, t, c), \sigma_{t|t-1}^2 \frac{\sigma_{t-1}^2}{\sigma_t^2} \mathbf{I}\right)$$

 827

and

829
 830

$$p_{\theta}^{*}[\beta](x_{t-1}|x_t, c) = \mathcal{N}\left(x_{t-1}; \mu_{\theta}^{*}[\beta](x_t, t, c), \sigma_{t|t-1}^2 \frac{\sigma_{t-1}^2}{\sigma_t^2} \mathbf{I}\right).$$

832 For ease of notation, denote $\mu_1 = \mu_{\theta}(x_t, t, c)$, $\mu_2 = \mu_{\theta}^{*}[\beta](x_t, t, c)$ ³ and $\sigma_1^2 = \sigma_{t|t-1}^2 \frac{\sigma_{t-1}^2}{\sigma_t^2} = \sigma_2^2$. ⁴

834 Using the closed form of the isotropic multivariate gaussian distribution we have that,

835
 836

$$p_{\text{ref}}(x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_1, \sigma_1^2 \mathbf{I}) = \frac{\exp\left\{-\frac{1}{2\sigma_1^2} \|x_{t-1} - \mu_1\|^2\right\}}{(2\pi\sigma_1^2)^{D/2}}$$

 837

and

839
 840

$$p_{\theta}^{*}[\beta](x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_2, \sigma_2^2 \mathbf{I}) = \frac{\exp\left\{-\frac{1}{2\sigma_2^2} \|x_{t-1} - \mu_2\|^2\right\}}{(2\pi\sigma_2^2)^{D/2}}.$$

 841

842 Define

843
 844

$$\Sigma_{\text{new}} = \left(\frac{1-\lambda}{\sigma_1^2} + \frac{\lambda}{\sigma_2^2}\right)^{-1} \mathbf{I}, \quad (16)$$

 845

846
 847

$$\mu_{\text{new}} = \Sigma_{\text{new}} \left(\frac{(1-\lambda)}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2\right). \quad (17)$$

 848

849 Now considering the numerator of equation 15, we obtain

850
 851

$$p_{\text{ref}}(x_{t-1}|x_t, c)^{1-\lambda} p_{\theta}^{*}[\beta](x_{t-1}|x_t, c)^{\lambda} = \frac{\exp\left\{-\frac{\alpha}{2}\right\}}{(2\pi\sigma_1^2)^{(1-\lambda)D/2} (2\pi\sigma_2^2)^{\lambda D/2}} \quad (18)$$

 852

853 where through the application of equation 16 and equation 17,

854

$$\alpha = \frac{(1-\lambda)}{\sigma_1^2} \|x_{t-1} - \mu_1\|^2 + \frac{\lambda}{\sigma_2^2} \|x_{t-1} - \mu_2\|^2$$

 855

$$= \left(\frac{1-\lambda}{\sigma_1^2} + \frac{\lambda}{\sigma_2^2}\right) \|x_{t-1}\|^2 - 2 \left(\frac{(1-\lambda)}{\sigma_1^2} \mu_1 + \frac{\lambda}{\sigma_2^2} \mu_2\right) \cdot x_{t-1} + \left(\frac{(1-\lambda)}{\sigma_1^2} \|\mu_1\|^2 + \frac{\lambda}{\sigma_2^2} \|\mu_2\|^2\right)$$

 856

$$= (x_{t-1} - \mu_{\text{new}})^T \Sigma_{\text{new}}^{-1} (x_{t-1} - \mu_{\text{new}}) - \mu_{\text{new}}^T \Sigma_{\text{new}}^{-1} \mu_{\text{new}} + \left(\frac{(1-\lambda)}{\sigma_1^2} \|\mu_1\|^2 + \frac{\lambda}{\sigma_2^2} \|\mu_2\|^2\right).$$

 857
 858
 859
 860
 861
 862
 863

³ $x_t, x_{t-1}, \mu_t, \mu_{t-1} \in \mathbb{R}^D$

⁴Note that σ_1^2 need not be equal to σ_2^2 —our derivation handles this more general case.

864 Recalling equation 18 we now see that,

$$\begin{aligned}
 866 \quad p_{\text{ref}}(x_{t-1}|x_t, c)^{1-\lambda} p_{\theta}^{*}[\beta](x_{t-1}|x_t, c)^{\lambda} &= \frac{\exp \left\{-\frac{1}{2} \alpha\right\}}{(2 \pi \sigma_1^2)^{(1-\lambda) D / 2}(2 \pi \sigma_2^2)^{\lambda D / 2}} \\
 867 \quad &= \varphi \exp \left\{-\frac{1}{2}\left(x_{t-1}-\mu_{\text {new }}\right)^T \Sigma_{\text {new }}^{-1}\left(x_{t-1}-\mu_{\text {new }}\right)\right\}, \\
 868 \quad & \\
 869 \quad & \\
 870 \quad & \quad (20)
 \end{aligned}$$

871 where

$$\varphi=\frac{\exp \left\{-\frac{1}{2}\left[\mu_{\text {new }}^T \Sigma_{\text {new }}^{-1} \mu_{\text {new }}-\left(\frac{(1-\lambda)}{\sigma_1^2}\|\mu_1\|^2+\frac{\lambda}{\sigma_2^2}\|\mu_2\|^2\right)\right]\right\}}{(2 \pi \sigma_1^2)^{(1-\lambda) D / 2}(2 \pi \sigma_2^2)^{\lambda D / 2}} . \quad (21)$$

872 Note that expression φ is a constant with respect to x_{t-1} . Similarly, we can also rewrite the denominator of equation 15 in the same way to arrive at

$$\begin{aligned}
 879 \quad p_{\theta}^{*}[\beta / \lambda](x_{t-1}|x_t, c) &= \frac{\varphi \cdot \exp \left\{-\frac{1}{2}\left(x_{t-1}-\mu_{\text {new }}\right)^T \Sigma_{\text {new }}^{-1}\left(x_{t-1}-\mu_{\text {new }}\right)\right\}}{\int \varphi \cdot \exp \left\{-\frac{1}{2}\left(x_{t-1}'-\mu_{\text {new }}\right)^T \Sigma_{\text {new }}^{-1}\left(x_{t-1}'-\mu_{\text {new }}\right)\right\} d x_{t-1}'} \\
 880 \quad & \\
 881 \quad & \\
 882 \quad = \frac{1}{(2 \pi)^{D / 2}\left|\Sigma_{\text {new }}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{t-1}-\mu_{\text {new }}\right)^T \Sigma_{\text {new }}^{-1}\left(x_{t-1}-\mu_{\text {new }}\right)\right\} . \\
 883 \quad & \\
 884 \quad & \quad (22)
 \end{aligned}$$

885 And thus we see that

$$\boxed{p_{\theta}^{*}[\beta / \lambda](x_{t-1}|x_t, c)=\mathcal{N}\left(x_{t-1} ; \mu_{\text {new }}, \Sigma_{\text {new }}\right)} \quad (23)$$

888 A.4 PROOF OF DENOISING TIME REALIGNMENT WHEN CONSIDERING A LINEAR 889 COMBINATION OF MULTIPLE REWARDS 890

891 We also consider the natural extension of decoding time realignment to DeRaDiff in the case of
892 multi-reward RLHF as proposed by Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023).
893 Multi reward methods combine multiple models aligned independently using different rewards.
894 Thus, consider the case of a linear combination of rewards $r_{\vec{\lambda}}$ defined by

$$\begin{aligned}
 895 \quad r_{\vec{\lambda}}(c, x_0) &= \sum_{i=1}^K \lambda_i * r_i(c, x_0), \\
 896 \quad & \\
 897 \quad & \quad (24)
 \end{aligned}$$

898 where we have K reward functions and where $\vec{\lambda}=(\lambda_1, \ldots, \lambda_K) \in \mathbb{R}^K$. Then, considering the
899 aligned model, $p_{\theta}^{*}[\beta, \vec{\lambda}]$ under $\vec{\lambda}$,
900

$$\begin{aligned}
 901 \quad p_{\theta}^{*}[\beta, \vec{\lambda}](\mathbf{x}_0|\mathbf{c}) &= \frac{p_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) \exp \left\{\frac{1}{\beta} r_{\vec{\lambda}}(\mathbf{c}, \mathbf{x}_0)\right\}}{\int p_{\text{ref}}\left(\mathbf{x}_0'|\mathbf{c}\right) \exp \left\{\frac{1}{\beta} r_{\vec{\lambda}}(\mathbf{c}, \mathbf{x}_0')\right\} d \mathbf{x}_0'} \\
 902 \quad & \\
 903 \quad & \\
 904 \quad = \frac{p_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) \exp \left\{\frac{1}{\beta} \sum_{i=1}^K \lambda_i r_i(c, \mathbf{x}_0)\right\}}{\int p_{\text{ref}}\left(\mathbf{x}_0'|\mathbf{c}\right) \exp \left\{\frac{1}{\beta} \sum_{i=1}^K \lambda_i r_i(c, \mathbf{x}_0')\right\} d \mathbf{x}_0'} . \\
 905 \quad & \\
 906 \quad & \\
 907 \quad & \quad (25)
 \end{aligned}$$

908 Now, denoting $p_{i, \theta}^{*}[\beta](\mathbf{x}_0|\mathbf{c})$ as the model obtained by aligned a reference model entirely from
909 scratch using the i^{th} reward, we have (as before) that,

$$\exp \left\{\frac{1}{\beta} r_i(\mathbf{c}, \mathbf{x}_0)\right\}=\mathcal{Z}(\mathbf{c}) p_{i, \theta}^{*}[\beta](\mathbf{x}_0|\mathbf{c}) / p_{\text{ref}}(\mathbf{x}_0|\mathbf{c}) . \quad (26)$$

910 Then, we note that,

$$\begin{aligned}
 911 \quad \exp \left\{\sum_{i=1}^k \lambda_i \frac{r_i(c, x_0)}{\beta}\right\} &= \prod_{i=1}^k \exp \left\{\lambda_i \frac{r_i(c, x_0)}{\beta}\right\} \\
 912 \quad & \\
 913 \quad = \prod_{i=1}^k\left(Z(c) \frac{p_{i, \theta}^{*}[\beta](x_0 \mid c)}{p_{\text{ref}}(x_0 \mid c)}\right)^{\lambda_i} . \\
 914 \quad & \\
 915 \quad & \\
 916 \quad & \\
 917 \quad & \quad (27)
 \end{aligned}$$

918 In a similar fashion,
919

$$920 \quad \exp \left\{ \sum_{i=1}^k \lambda_i \frac{r_i(c, x'_0)}{\beta} \right\} = \prod_{i=1}^k \left(Z(c) \frac{p_{i,\theta}^*[\beta](x'_0 | c)}{p_{\text{ref}}(x'_0 | c)} \right)^{\lambda_i}. \quad (28)$$

923 Finally, we have that
924

$$925 \quad p_{\theta}^*[\beta, \vec{\lambda}](\mathbf{x}_0 | \mathbf{c}) = \frac{p_{\text{ref}}(\mathbf{x}_0 | \mathbf{c}) \prod_{i=1}^k \left(Z(c) \frac{p_{i,\theta}^*[\beta](x_0 | c)}{p_{\text{ref}}(x_0 | c)} \right)^{\lambda_i}}{\int p_{\text{ref}}(\mathbf{x}'_0 | \mathbf{c}) \prod_{i=1}^k \left(Z(c) \frac{p_{i,\theta}^*[\beta](x'_0 | c)}{p_{\text{ref}}(x'_0 | c)} \right)^{\lambda_i} d\mathbf{x}'_0}. \quad (29)$$

929 Then, letting $\lambda_s = \sum_{i=1}^K \lambda_i$, we have that,
930

$$931 \quad p_{\theta}^*[\beta, \vec{\lambda}](\mathbf{x}_0 | \mathbf{c}) = \frac{p_{\text{ref}}(\mathbf{x}_0 | \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(Z(c) p_{i,\theta}^*[\beta](x_0 | c) \right)^{\lambda_i}}{\int p_{\text{ref}}(\mathbf{x}'_0 | \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(Z(c) p_{i,\theta}^*[\beta](x'_0 | c) \right)^{\lambda_i} d\mathbf{x}'_0} \quad (30)$$

$$935 \quad = \frac{p_{\text{ref}}(\mathbf{x}_0 | \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(p_{i,\theta}^*[\beta](x_0 | c) \right)^{\lambda_i}}{\int p_{\text{ref}}(\mathbf{x}'_0 | \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(p_{i,\theta}^*[\beta](x'_0 | c) \right)^{\lambda_i} d\mathbf{x}'_0}. \quad (31)$$

938 In a similar fashion, due to the intractability of eq. (32), consider the stepwise approximation:
939

$$940 \quad p_{\theta}^*[\beta, \vec{\lambda}](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) = \frac{p_{\text{ref}}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(p_{i,\theta}^*[\beta](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) \right)^{\lambda_i}}{\int p_{\text{ref}}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(p_{i,\theta}^*[\beta](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) \right)^{\lambda_i} d\mathbf{x}'_0}. \quad (32)$$

944 Now, the DeRaDiff proof follows almost immediately noting that
945

$$946 \quad p_{i,\theta}^*[\beta](x_{t-1} | x_t, c) = \mathcal{N}(x_{t-1}; \mu_i, \sigma_i^2 \mathbf{I}) = \frac{1}{(2\pi\sigma_i^2)^{D/2}} \exp \left\{ -\frac{1}{2\sigma_i^2} \|x_{t-1} - \mu_i\|^2 \right\}.$$

948 Now considering the numerator of equation 32, we have
949

$$950 \quad p_{\text{ref}}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c})^{1-\lambda_s} \prod_{i=1}^k \left(p_{i,\theta}^*[\beta](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) \right)^{\lambda_i} = \frac{\exp \left\{ -\sum_{i=1}^K \frac{\lambda_i}{2\sigma_i^2} \|x_{t-1} - \mu_i\|^2 \right\}}{\prod_{i=1}^K (2\pi\sigma_i^2)^{D/2}}. \quad (33)$$

953 Define
954

$$955 \quad \Sigma_{\text{new}} = \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \right)^{-1} \mathbf{I}, \quad (34)$$

$$958 \quad \mu_{\text{new}} = \Sigma_{\text{new}} \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \mu_i \right). \quad (35)$$

961 To simplify the exponent in the numerator of eq. (33), by defining $\alpha = \sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \|x_{t-1} - \mu_i\|^2$ and
962 applying equation 34 and equation 35, we have
963

$$964 \quad \alpha = \sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \|x_{t-1} - \mu_i\|^2$$

$$965 \quad = \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \right) \|x_{t-1}\|^2 - 2 \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \mu_i \right) \cdot x_{t-1} + \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \|\mu_i\|^2 \right)$$

$$966 \quad = (x_{t-1} - \mu_{\text{new}})^T \Sigma_{\text{new}}^{-1} (x_{t-1} - \mu_{\text{new}}) - \mu_{\text{new}}^T \Sigma_{\text{new}}^{-1} \mu_{\text{new}} + \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \|\mu_i\|^2 \right). \quad (36)$$

972 Substituting the result above into equation 33, we yield
 973

$$\begin{aligned}
 974 \quad p_{\text{ref}}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) &= 1 - \lambda_s \prod_{i=1}^k (p_{i,\theta}^*[\beta](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}))^{\lambda_i} \\
 975 \quad &= \frac{\exp\left\{-\frac{1}{2}\alpha\right\}}{\prod_{i=1}^K (2\pi\sigma_i^2)^{D/2}} \\
 976 \quad &= \varphi \cdot \exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{new})^T \Sigma_{new}^{-1} (x_{t-1} - \mu_{new})\right\}, \tag{37}
 \end{aligned}$$

982 where
 983

$$\varphi = \frac{\exp\left\{-\frac{1}{2}\left[\mu_{new}^T \Sigma_{new}^{-1} \mu_{new} - \left(\sum_{i=1}^K \frac{\lambda_i}{\sigma_i^2} \|\mu_i\|^2\right)\right]\right\}}{\prod_{i=1}^K (2\pi\sigma_i^2)^{D/2}}. \tag{37}$$

987 Finally, we have that
 988

$$\begin{aligned}
 989 \quad p_{\theta}^*[\beta, \vec{\lambda}](\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) &= \frac{\varphi \cdot \exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{new})^T \Sigma_{new}^{-1} (x_{t-1} - \mu_{new})\right\}}{\int \varphi \cdot \exp\left\{-\frac{1}{2}(x'_{t-1} - \mu_{new})^T \Sigma_{new}^{-1} (x'_{t-1} - \mu_{new})\right\} dx'_{t-1}} \\
 990 \quad &= \frac{1}{(2\pi)^{D/2} |\Sigma_{new}|^{1/2}} \exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{new})^T \Sigma_{new}^{-1} (x_{t-1} - \mu_{new})\right\}. \tag{38}
 \end{aligned}$$

997 A.5 AN END-TO-END PROCESS OF FINDING THE GLOBALLY OPTIMAL λ^*

999 One can even extend DeRaDiff by employing Bayesian optimization to find the globally optimum
 1000 λ^* (and thus, the best regularization strength) that gives rise to the best downstream rewards. Here,
 1001 we constrain $\lambda \in [0, 1]$. Here, we outline the major ideas required to implement this.

1003 We denote $p_{\lambda}(x)$ as the generative distribution arising from using denoising time parameter λ . Given
 1004 a reward function (eg. the downstream Pickscore by Kirstain et al. (2023)), our goal is:

$$1006 \quad \lambda^* = \arg \max_{\lambda \in [0,1]} J(\lambda), \quad \text{where } J(\lambda) = \mathbb{E}_{\mathbf{x} \sim p_{\lambda}}[R(\mathbf{x})]. \tag{39}$$

1009 Because $J(\lambda)$ is expensive to evaluate (since this requires running the model on a large batch of
 1010 images and scoring using a reward function), we treat it as a black-box function and use gaussian
 1011 process optimization to find λ^* in as few evaluations as possible.

1012 A.5.1 GAUSSIAN PROCESS SURROGATE

1015 We model the unknown objective $f(\lambda) \approx J(\lambda)$ via a gaussian process prior:

$$1016 \quad f(\lambda) \sim \mathcal{GP}(m(\lambda), k(\lambda, \lambda')). \tag{40}$$

1018 For simplicity, we let $m(\lambda) = 0$. Next, we use the RBF kernel $k(\lambda, \lambda') = \sigma_f^2 \exp\left(-\frac{(\lambda - \lambda')^2}{2\ell^2}\right)$ with
 1019 ℓ being the length-scale parameter and σ_f^2 being the signal variance. After n many evaluations at
 1020 points $\{\lambda_i\}_{i=1}^n$ yielding noisy estimates $\hat{R}_i \approx J(\lambda_i)$, conditioning yields the exact posterior
 1021

$$1022 \quad \mu_n(\lambda) = k(\lambda, \boldsymbol{\lambda}) [\mathbf{K} + \sigma_n^2 \mathbf{I}]^{-1} \hat{\mathbf{R}} \tag{41}$$

$$1023 \quad \sigma_n^2(\lambda) = k(\lambda, \lambda) - k(\lambda, \boldsymbol{\lambda}) [\mathbf{K} + \sigma_n^2 \mathbf{I}]^{-1} k(\boldsymbol{\lambda}, \lambda), \tag{42}$$

1025 where $\boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_n]$, $\hat{\mathbf{R}} = [\hat{R}_1, \dots, \hat{R}_n]^T$, and $K_{ij} = k(\lambda_i, \lambda_j)$.

1026 A.5.2 ACQUISITION FUNCTION
10271028 To decide on which lambda value to evaluate next, λ_{n+1} , we maximize an acquisition function $a(\lambda)$
1029 that balances exploration of the search space (high σ_n) and exploitation (high μ_n):
10301031 1. Expected Improvement (EI):
1032 Let $f_n^+ = \max_{j \leq n} \hat{R}_j$. Then

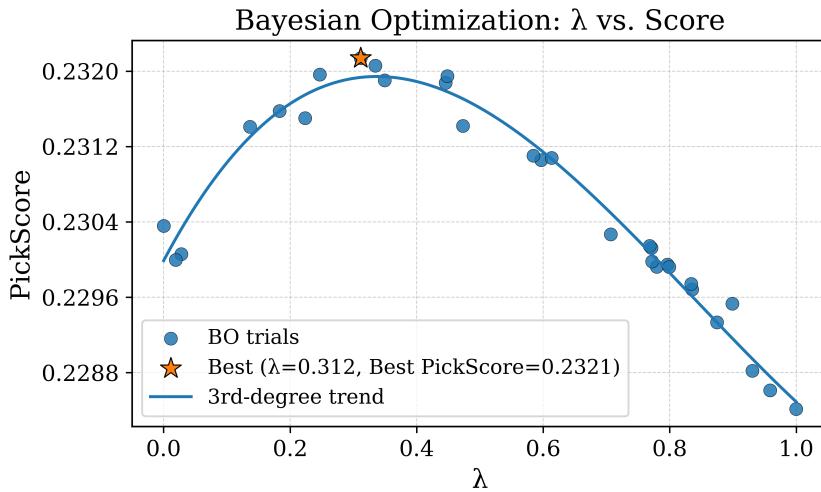
1033
$$\text{EI}(\lambda) = \mathbb{E}_{f \sim \mathcal{N}(\mu_n, \sigma_n^2)} [\max\{f - f_n^+, 0\}] = (\mu_n - f_n^+) \Phi(z) + \sigma_n \phi(z), \quad (43)$$

1034

1035 where $z = (\mu_n - f_n^+)/\sigma_n$, and Φ, ϕ are the standard Normal CDF/PDF.
10362. Upper Confidence Bound (UCB):
1037

1038
$$\text{UCB}(\lambda) = \mu_n(\lambda) + \beta_n \sigma_n(\lambda),$$

1039

1040 with β_n chosen (e.g. $\beta_n = \sqrt{2 \log(n^2 \pi^2 / 6\delta)}$) to guarantee sublinear regret.
10411042 We demonstrate a run using SDXL aligned at $\beta = 500$ below. We leave this as an interesting avenue
1043 to work on in the future.
10441061 Figure 8: DeRaDiff + Bayesian optimization used to find the optimal regularization strength using
1062 an SDXL anchor model aligned at $\beta = 500$
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 2 1D Bayesian Optimization for Global λ Selection

Require: Domain $\Lambda = [0, 1]$, budget T , initial design size n_0 , reward evaluator $R(\cdot)$

Ensure: Best weight λ^* and estimate $J(\lambda^*)$

- 1: **Initial Design:**
- 2: Sample $\{\lambda_i\}_{i=1}^{n_0} \sim \text{Uniform}(\Lambda)$
- 3: **for** $i = 1 \dots n_0$ **do**
- 4: Generate batch $\{x_{i,j}\}$ from p_{λ_i}
- 5: Compute $\hat{R}_i = \frac{1}{|\{x_{i,j}\}|} \sum_j R(x_{i,j})$
- 6: **end for**
- 7: Fit GP surrogate on $\{(\lambda_i, \hat{R}_i)\}_{i=1}^{n_0}$
- 8: **for** $t = n_0 + 1 \dots T$ **do**
- 9: Compute posterior mean $\mu_{t-1}(\lambda)$ and variance $\sigma_{t-1}^2(\lambda)$
- 10: Select next point via 1-D line search
- 11: $\lambda_t = \arg \max_{\lambda \in \Lambda} \underbrace{\text{EI}(\lambda \mid \mu_{t-1}, \sigma_{t-1})}_{\text{or UCB}}$
- 12: Generate batch from p_{λ_t} , compute \hat{R}_t
- 13: Append (λ_t, \hat{R}_t) to data and update GP
- 14: **end for**
- 15: **return** $\lambda^* = \arg \max_{i \leq T} \hat{R}_i$

A.6 ADDITIONAL EXPERIMENTS

A.6.1 A FINE GRAINED EXAMINATION

In this section, we train further β values in the interesting region of $100 \leq \beta \leq 1500$ where the human appeal rises fastest. Formally, we sample the following β values: 250, 500, 750, 1000, 1250, 1500, 2000 and evaluate the performance of DeRaDiff on PickScore using the experimental method detailed in section 5.1:

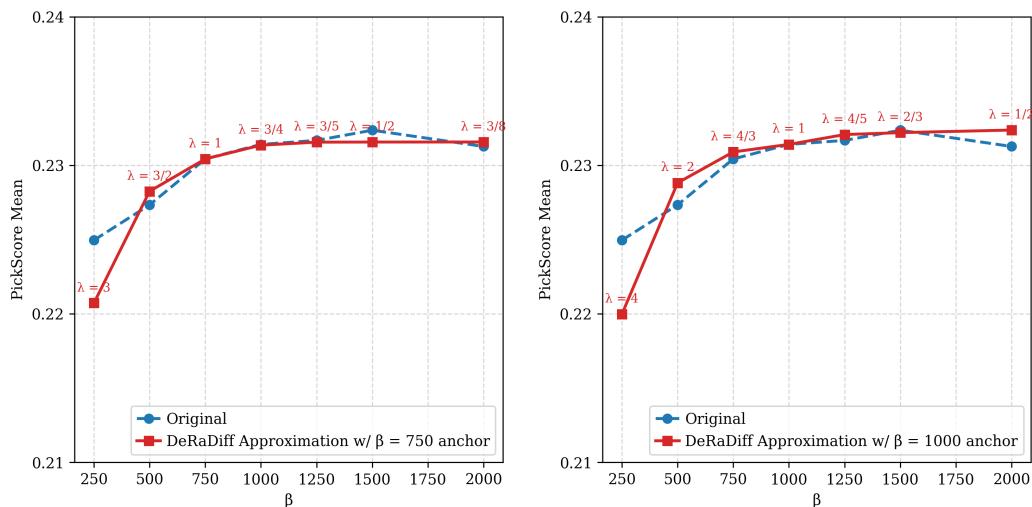


Figure 9: Line graphs for the average PickScore rewards gained by SDXL models realigned from scratch and also from DeRaDiff using anchor SDXL models with $\beta = 750$ (left plot) and $\beta = 1000$ (right plot) regularization strengths.

We see that this demonstrates a consistent increase in the perceived human appeal (measured via PickScore) for both DeRaDiff approximations and as well as for models that were realigned entirely scratch showing that DeRaDiff can faithfully re-approximate models realigned entirely from scratch.

A.6.2 UNDOING REWARD HACKING

To demonstrate the capability of undoing reward hacking we use three reward hacked models. Namely, we use the SDXL models aligned at $\beta = 250$ (severely reward hacked), $\beta = 500$ (moderately reward hacked), $\beta = 750$ (mildly reward hacked). We use a $\beta = 2000$ model as our reference model that is healthy (i.e. not reward hacked). Since reward hacking manifests itself as drastic distributional changes in contrast, vibrancy, colour, we use the Fréchet Inception Distance to measure the degree of reward hacking and the extent to which DeRaDiff undoes reward hacking. To this end, we sample a batch of 1000 prompts from a combined dataset of HPSv2 and Partiprompts. Next, we measure the FID score between the outputs of the reward hacked models on these 1000 prompts giving rise to an average FID score for each reward-hacked model (in comparison to the healthy $\beta = 2000$ model). Next, for each reward hacked model, we use it as an anchor to re-approximate the $\beta = 2000$ model and measure the average FID score. For each model, the difference in its respective FID scores will measure the extent of undoing reward hacking.

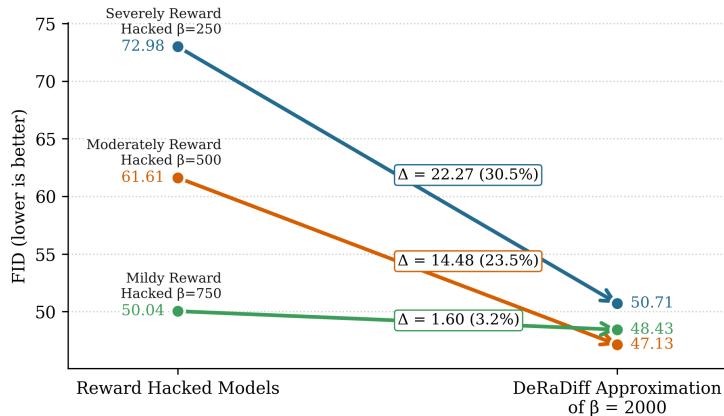


Figure 10: DeRaDiff successfully undoes reward hacking

Table 3: DeRaDiff undoes reward-hacking measured by FID (lower is better).

Model (reward-hacked)	FID (reward hacked model against $\beta = 2000$)	FID (DeRaDiff approx. against $\beta = 2000$)	Δ (abs)	Δ (%)
Severely reward-hacked ($\beta = 250$)	72.98	50.71	22.27	30.50
Moderately reward-hacked ($\beta = 500$)	61.61	47.13	14.48	23.50
Mildly reward-hacked ($\beta = 750$)	50.04	48.43	1.60	3.20

Thus we see that DeRaDiff is capable of undoing reward hacking and this effect of reward hacking is much more pronounced in models that are severely reward hacked. In fig. 11 we also provide more qualitative examples of how DeRaDiff can even undo extreme reward hacking.

A.7 DETAILED EXPERIMENTAL SETUP

For our experiments, we obtain public releases of Stable Diffusion 1.5 (SD1.5) from runwayml/stable-diffusion-v1-5 and Stable Diffusion XL 1.0 (SDXL) from stabilityai/stable-diffusion-xl-base-1.0. We align them using DiffusionDPO (Wallace et al., 2023) on the Pick-a-Pic v1 dataset (Kirstain et al., 2023). Each alignment is performed on 2x NVIDIA A-100 80GB GPUs. The exact hyperparameters we used are as follows:

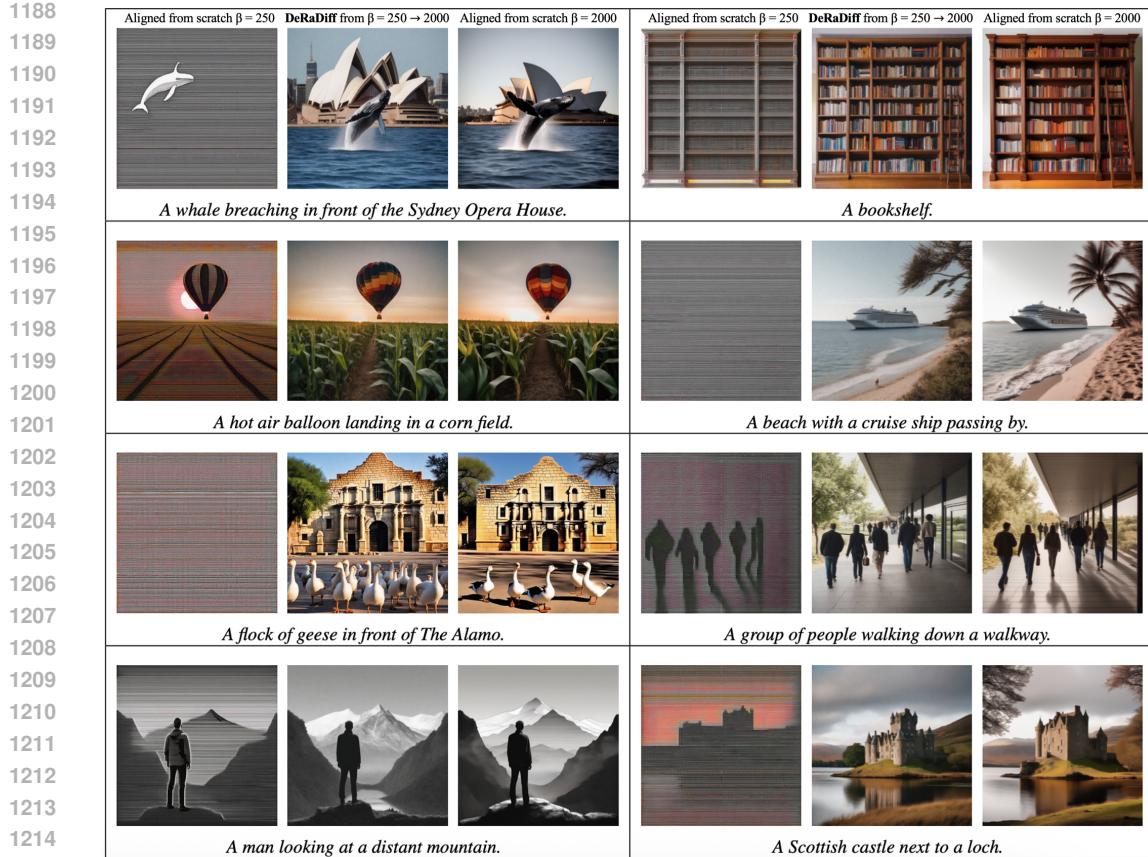


Figure 11: **DeRaDiff undoes reward hacking** For each panel, left = image from SDXL model aligned at $\beta = 250$ (severely reward-hacked), center = DeRaDiff approximating an SDXL model aligned at $\beta = 2000$ using the reward hacked SDXL anchor aligned at $\beta = 250$, right = reference image from an SDXL model aligned at $\beta = 2000$. The image details and style are successfully recovered by DeRaDiff.

Table 4: Aligning Hyperparameters for SDXL and SD1.5)

Parameter	SDXL	SD1.5
Pretrained VAE	madebyollin/sdxl-vae-fp16-fix	—
GPUs	2	1
Per-device batch size	1	1
Gradient accumulation	64	64
Effective global batch size^a	128	64
Dataloader workers	16	16
Max train steps	30000	2000
LR scheduler	constant_with_warmup	constant_with_warmup
LR warmup steps	200	500
Learning rate	1×10^{-8}	1×10^{-8}

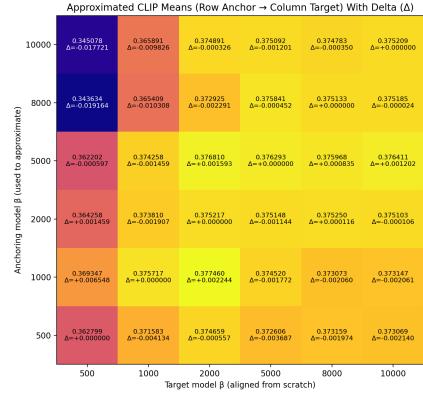
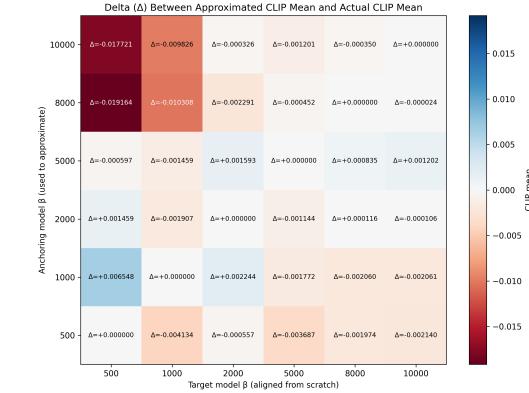
^a Effective global batch size = $N_{\text{GPUs}} \times \text{train_batch_size} \times \text{gradient_accumulation_steps}$. Thus SDXL: $2 \times 1 \times 64 = 128$, SD1.5: $1 \times 1 \times 64 = 64$.

Moreover, we use the Euler Ancestral Discrete scheduler for both SDXL and SD1.5. We use 50 denoising steps for both SDXL and SD1.5. Moreover, we use a guidance scale of 5 for SDXL and 7.5 for SD1.5

1242 A.8 METRICS USED FOR DETAILED STATISTICAL ANALYSIS
1243
1244
12451246 In this section, we provide all numerical values of original and approximated metrics and we also
1247 give a detailed statistical analysis for each.
1248
1249
1250
1251
1252
1253

Metric	Formula	Meaning / interpretation
Mean absolute error (MAE)	$MAE = \frac{1}{n} \sum_{i=1}^n y_i - x_i $	Average magnitude of the errors (unsigned). Provides a simple, easy-to-interpret measure of typical error size.
MAE (bootstrap mean)	$\overline{MAE}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^B MAE^{(b)}$	Average of MAE computed across bootstrap resamples; indicates stability of the MAE estimate under resampling.
MAE 95% CI (bootstrap)	$[\text{MAE}_{2.5\%}, \text{MAE}_{97.5\%}]$	2.5th and 97.5th percentiles of the bootstrap MAE distribution; a 95% interval expressing sampling uncertainty.
Root mean squared error (RMSE)	$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - x_i)^2}$	Similar to the MAE but squares errors first, so it penalizes larger errors more strongly (sensitive to outliers).
Median absolute error	$MedAbs = \text{median}(y_i - x_i)$	The median of absolute errors; a robust measure of a “typical” error that is less sensitive to outliers.
Bland–Altman mean difference (bias)	$\bar{d} = \frac{1}{n} \sum_{i=1}^n d_i, \quad d_i = y_i - x_i$	Mean signed difference between prediction and truth.
Bland–Altman SD of differences	$s_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2}$	Sample standard deviation of the differences; this simply quantifies the variability of the errors.
Limits of agreement (LoA)	$LoA = \bar{d} \pm 1.96 s_d$	Approximate interval containing ~95% of individual differences (under approximate normality of differences). Useful to see practical worst-case error bounds.
Relative to mean (original) (%)	$Rel(M) = \frac{M}{\bar{x}_{\text{orig}}}, \quad \bar{x}_{\text{orig}} = \frac{1}{m} \sum_{j=1}^m x_j^{\text{orig}}$	Expresses a metric M (on the original scale) as a percentage of the mean of the original signal. This will help give an intuitive context for magnitude.

1288 **Table 5:** Definitions and their interpretations. Here x_i denotes the true/original value, y_i the approximated
1289 value, n the number of pairs, B bootstrap resamples, and m the number of original observations whose mean
1290 is used for scaling.
1291
1292
1293
1294
1295

1296 A.9 STATISTICAL ANALYSIS OF DERADIFF'S PERFORMANCE ON CLIP
12971298 A.9.1 SDXL
12991300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
Figure 12: Approximated CLIP Means with all (Row Anchor β → Column Target β) with Delta (Δ)1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
Figure 13: Delta (Δ) Between Approximated CLIP Mean and Actual PickScore Mean (Δ)Table 6: Summary error metrics for DeRaDiff approximations for CLIP scores when $\lambda \in [0, 1]$

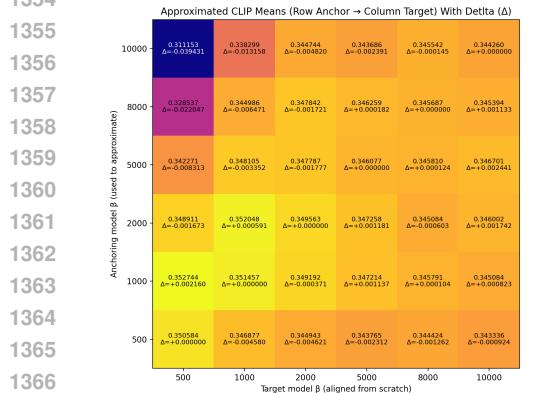
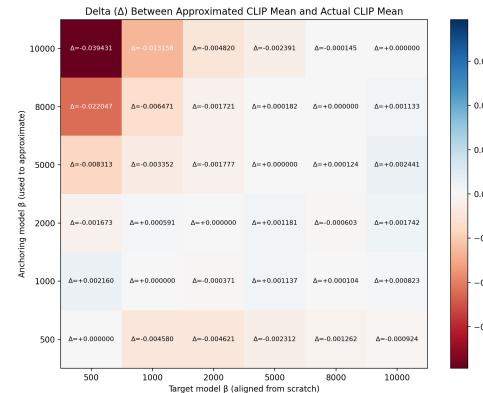
Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.001 604	0.430 000 %
MAE (bootstrap mean)	0.001 608	0.431 000 %
MAE 95% CI (bootstrap)	0.001 038 – 0.002 226	0.278 000 – 0.596 000 %
Root mean squared error (RMSE)	0.001 994	0.534 000 %
Median absolute error	0.001 772	0.475 000 %
Bland–Altman mean difference (mean of $y - x$)	-0.001 018	-0.273 000 %
Bland–Altman SD of differences	0.001 775	0.475 000 %
Limits of agreement (mean \pm 1.96 SD)	-0.004 496 – 0.002 461	-1.204 000 – 0.659 000 %

1333 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
1334 mean(original) = 0.373 395. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

1335
1336
1337
1338 Table 7: Summary error metrics for DeRaDiff approximations for CLIP scores when $\lambda > 1$
1339

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.005 014	1.342 690 %
MAE (bootstrap mean)	0.005 069	1.357 464 %
MAE 95% CI (bootstrap)	0.002 202 – 0.008 347	0.589 843 – 2.235 382 %
Root mean squared error (RMSE)	0.007 937	2.125 601 %
Median absolute error	0.001 593	0.426 633 %
Bland–Altman mean difference (mean of $y - x$)	-0.003 733	-0.999 878 %
Bland–Altman SD of differences	0.007 250	1.941 581 %
Limits of agreement (mean \pm 1.96 SD)	-0.017 943 – 0.010 476	-4.805 378 – 2.805 622 %

1340 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
1341 mean(original) = 0.373 395. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

1350 A.9.2 SD1.5
1351
1352
1353
13541355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376Figure 14: Approximated CLIP Means with all
(Row Anchor β → Column Target β) with Delta
(Δ)Figure 15: Delta (Δ) Between Approximated CLIP Mean and Actual CLIP MeanTable 8: Summary error metrics for DeRaDiff approximations for CLIP scores when $\lambda \in [0, 1]$

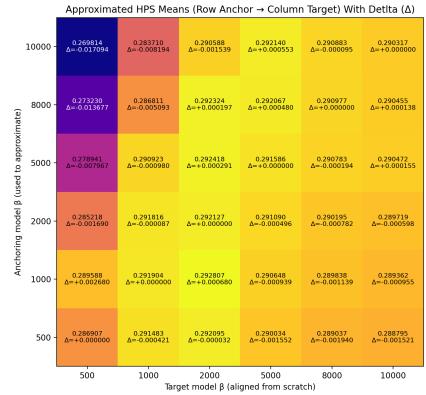
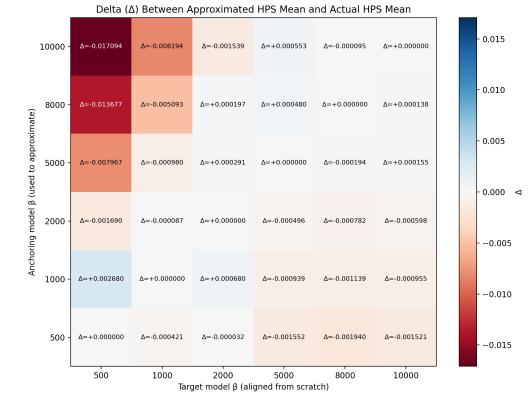
Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.001 557	0.447 532 %
MAE (bootstrap mean)	0.001 553	0.446 387 %
MAE 95% CI (bootstrap)	0.000 934 – 0.002 268	0.268 478 – 0.651 936 %
Root mean squared error (RMSE)	0.002 070	0.594 985 %
Median absolute error	0.001 137	0.326 711 %
Bland–Altman mean difference (mean of $y - x$)	-0.000 399	-0.114 728 %
Bland–Altman SD of differences	0.002 103	0.604 310 %
Limits of agreement (mean \pm 1.96 SD)	-0.004 520 – 0.003 722	-1.299 176 – 1.069 720 %

1386 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
1387 mean(original) = 0.347 938. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

Table 9: Summary error metrics for DeRaDiff approximations for CLIP scores when $\lambda > 1$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.007 215	2.073 730 %
MAE (bootstrap mean)	0.007 302	2.098 770 %
MAE 95% CI (bootstrap)	0.002 903 – 0.013 009	0.834 311 – 3.738 885 %
Root mean squared error (RMSE)	0.012 594	3.619 573 %
Median absolute error	0.002 391	0.687 314 %
Bland–Altman mean difference (mean of $y - x$)	-0.006 824	-1.961 343 %
Bland–Altman SD of differences	0.010 956	3.148 884 %
Limits of agreement (mean \pm 1.96 SD)	-0.028 298 – 0.014 650	-8.133 156 – 4.210 469 %

1403 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
mean(original) = 0.347 938. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

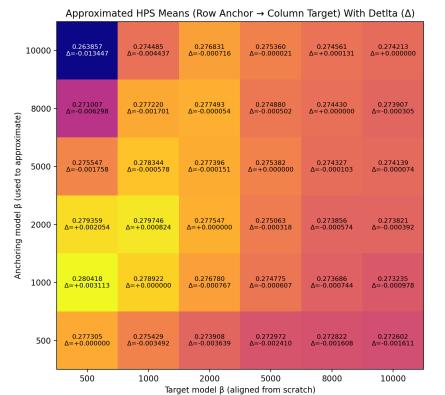
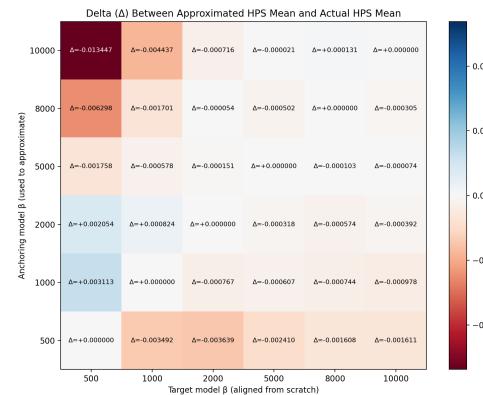
1404 A.10 STATISTICAL ANALYSIS OF DERADIFF'S PERFORMANCE ON HPS
14051406 A.10.1 SDXL
14071408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
Figure 16: Approximated HPS Means with all (Row Anchor β → Column Target β) with Delta (Δ)1424 Figure 17: Delta (Δ) Between Approximated HPS Mean and Actual HPS Mean
14251430 Table 10: Summary error metrics for DeRaDiff approximations for HPS scores when $\lambda \in [0, 1]$
1431

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.000 770	0.264 808 %
MAE (bootstrap mean)	0.000 770	0.265 098 %
MAE 95% CI (bootstrap)	0.000 501 – 0.001 053	0.172 547 – 0.362 301 %
Root mean squared error (RMSE)	0.000 949	0.326 627 %
Median absolute error	0.000 680	0.233 938 %
Bland–Altman mean difference (mean of $y - x$)	-0.000 640	-0.220 152 %
Bland–Altman SD of differences	0.000 726	0.249 753 %
Limits of agreement (mean \pm 1.96 SD)	-0.002 063 – 0.000 783	-0.709 668 – 0.269 364 %

1441 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
1442 mean(original) = 0.290 636. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.
1443
1444
1445
1446
1447Table 11: Summary error metrics for DeRaDiff approximations for HPS scores when $\lambda > 1$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.004 041	1.390 437 %
MAE (bootstrap mean)	0.004 079	1.403 635 %
MAE 95% CI (bootstrap)	0.001 746 – 0.006 886	0.600 884 – 2.369 320 %
Root mean squared error (RMSE)	0.006 582	2.264 714 %
Median absolute error	0.001 539	0.529 484 %
Bland–Altman mean difference (mean of $y - x$)	-0.003 481	-1.197 693 %
Bland–Altman SD of differences	0.005 782	1.989 560 %
Limits of agreement (mean \pm 1.96 SD)	-0.014 814 – 0.007 853	-5.097 232 – 2.701 845 %

1448 Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses
1449 mean(original) = 0.290 636. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.
1450
1451
1452
1453
1454
1455
1456
1457

1458 A.10.2 SD1.5
1459
1460
1461
14621463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
Figure 18: Approximated HPS Means with all
(Row Anchor β → Column Target β) with Delta
(Δ)1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
Figure 19: Delta (Δ) Between Approximated
HPS Mean and Actual CLIP MeanTable 12: Summary error metrics for DeRaDiff approximations for HPS scores when $\lambda \in [0, 1]$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.001 175	0.425 179 %
MAE (bootstrap mean)	0.001 172	0.424 093 %
MAE 95% CI (bootstrap)	0.000 654 – 0.001 781	0.236 744 – 0.644 486 %
Root mean squared error (RMSE)	0.001 625	0.587 958 %
Median absolute error	0.000 744	0.269 095 %
Bland–Altman mean difference (mean of $y - x$)	-0.001 175	-0.425 179 %
Bland–Altman SD of differences	0.001 161	0.420 353 %
Limits of agreement (mean \pm 1.96 SD)	-0.003 451 – 0.001 102	-1.249 071 – 0.398 713 %

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses mean(original) = 0.276 300. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.Table 13: Summary error metrics for DeRaDiff approximations for HPS scores when $\lambda > 1$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.002 386	0.863 447 %
MAE (bootstrap mean)	0.002 415	0.873 887 %
MAE 95% CI (bootstrap)	0.000 986 – 0.004 310	0.356 733 – 1.560 056 %
Root mean squared error (RMSE)	0.004 179	1.512 308 %
Median absolute error	0.000 824	0.298 315 %
Bland–Altman mean difference (mean of $y - x$)	-0.001 569	-0.567 982 %
Bland–Altman SD of differences	0.004 009	1.450 790 %
Limits of agreement (mean \pm 1.96 SD)	-0.009 426 – 0.006 287	-3.411 531 – 2.275 566 %

Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses mean(original) = 0.276 300. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

1512

A.11 STATISTICAL ANALYSIS OF DERADIFF'S PERFORMANCE ON PICKSCORE

1513

1514

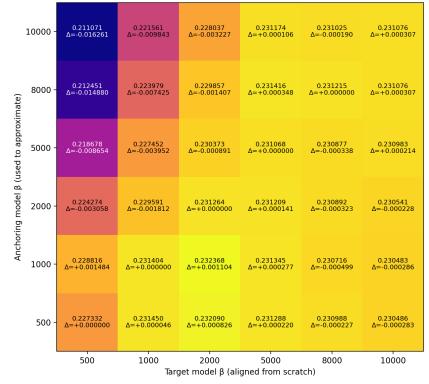
A.11.1 SDXL

1515

1516

1517

1518

Approximated PickScore Means (Row Anchor β \rightarrow Column Target β) With Delta (Δ)Figure 20: Approximated PickScore Means with all (Row Anchor β \rightarrow Column Target β) with Delta (Δ)

1531

1532

1533

1534

1535

1536

1537

1538

1539

Table 14: Summary error metrics for DeRaDiff approximations for PickScore scores when $\lambda \in [0, 1]$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.000 355	0.153 864 %
MAE (bootstrap mean)	0.000 353	0.153 119 %
MAE 95% CI (bootstrap)	0.000 238 – 0.000 498	0.103 446 – 0.216 058 %
Root mean squared error (RMSE)	0.000 441	0.191 478 %
Median absolute error	0.000 283	0.122 888 %
Bland–Altman mean difference (mean of $y - x$)	0.000 063	0.027 498 %
Bland–Altman SD of differences	0.000 452	0.196 144 %
Limits of agreement (mean \pm 1.96 SD)	-0.000 823 – 0.000 950	-0.356 944 – 0.411 939 %

Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses $\text{mean}(\text{original}) = 0.230\ 509$. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

1550

1551

1552

1553

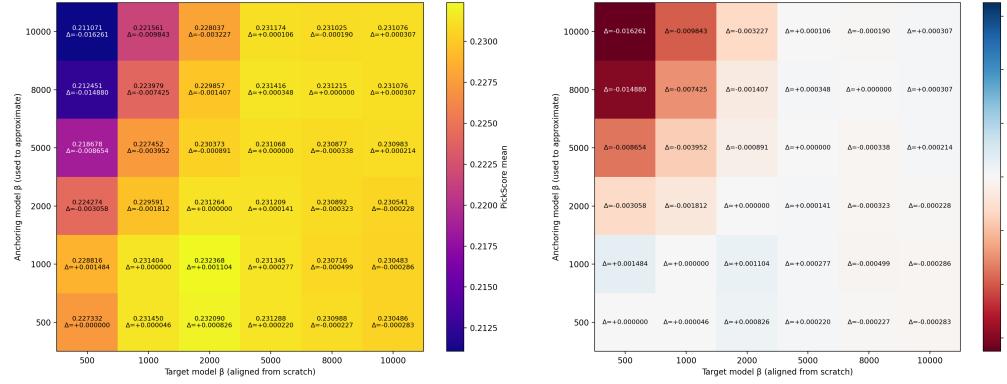
1554

1555

Table 15: Summary error metrics for DeRaDiff approximations for PickScore scores when $\lambda > 1$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.004 903	2.126 836 %
MAE (bootstrap mean)	0.004 939	2.142 507 %
MAE 95% CI (bootstrap)	0.002 544 – 0.007 666	1.103 610 – 3.325 670 %
Root mean squared error (RMSE)	0.007 102	3.080 951 %
Median absolute error	0.003 058	1.326 521 %
Bland–Altman mean difference (mean of $y - x$)	-0.004 644	-2.014 716 %
Bland–Altman SD of differences	0.005 562	2.412 729 %
Limits of agreement (mean \pm 1.96 SD)	-0.015 545 – 0.006 257	-6.743 664 – 2.714 232 %

Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses $\text{mean}(\text{original}) = 0.373\ 395$. Limits of agreement are computed as mean difference $\pm 1.96 \times \text{SD}$.

Figure 21: Delta (Δ) Between Approximated PickScore Mean and Actual PickScore Mean Delta (Δ)

1566

A.11.2 SD1.5

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

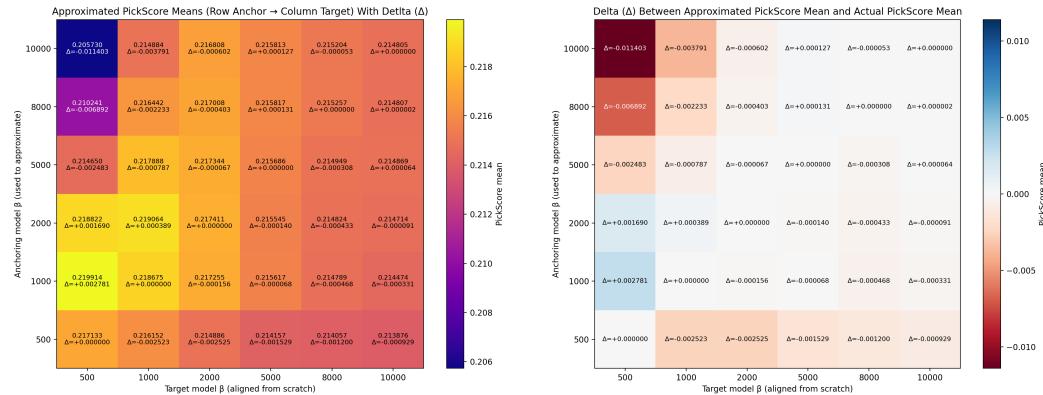


Figure 22: Approximated PickScore Means with all (Row Anchor $\beta \rightarrow$ Column Target β) with Delta (Δ)

Table 16: Summary error metrics for DeRaDiff approximations for PickScore scores when $\lambda \in [0, 1]$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.000 718	0.331 616 %
MAE (bootstrap mean)	0.000 717	0.331 069 %
MAE 95% CI (bootstrap)	0.000 336 – 0.001 163	0.155 070 – 0.537 347 %
Root mean squared error (RMSE)	0.001 097	0.506 768 %
Median absolute error	0.000 331	0.153 080 %
Bland–Altman mean difference (mean of $y - x$)	-0.000 709	-0.327 547 %
Bland–Altman SD of differences	0.000 867	0.400 259 %
Limits of agreement (mean ± 1.96 SD)	-0.002 408 – 0.000 989	-1.112 055 – 0.456 961 %

Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses mean(original) = 0.216 494. Limits of agreement are computed as mean difference $\pm 1.96 \times$ SD.

Table 17: Summary error metrics for DeRaDiff approximations for PickScore scores when $\lambda > 1$

Metric	Value	Relative to mean(original) (%)
Mean absolute error (MAE)	0.002 255	1.041 818 %
MAE (bootstrap mean)	0.002 281	1.053 707 %
MAE 95% CI (bootstrap)	0.000 973 – 0.003 959	0.449 230 – 1.828 517 %
Root mean squared error (RMSE)	0.003 786	1.748 630 %
Median absolute error	0.000 787	0.363 318 %
Bland–Altman mean difference (mean of $y - x$)	-0.001 573	-0.726 613 %
Bland–Altman SD of differences	0.003 564	1.646 340 %
Limits of agreement (mean ± 1.96 SD)	-0.008 559 – 0.005 413	-3.953 440 – 2.500 213 %

Notes: *Value* columns report absolute errors on the same scale as the original data. *Relative* column uses mean(original) = 0.216 494. Limits of agreement are computed as mean difference $\pm 1.96 \times$ SD.

A.12 LLM USAGE

1614

1615

1616

1617

1618

1619

This research idea was conceived solely and only by the authors by identifying gaps in the existing research literature. LLMs were **NOT used** for any research ideation. LLMs were only used to polish writing, help in plotting graphs, retrieve known facts and fix any grammatical errors that the authors missed.