
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DERADIFF: DENOISING TIME REALIGNMENT OF
DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

Figure 1: DeRaDiff re-approximates a model aligned from scratch. Top row consists of images
generated by an SDXL model aligned from scratch at β = 5000 KL regularization strength. Bottom
row consists of images obtained via DeRaDiff sampling via an anchoring SDXL model aligned at a
KL regularization strength of β = 2000 with no further retraining.

ABSTRACT

Recent advances align diffusion models with human preferences to increase aes-
thetic appeal and mitigate artifacts and biases. Such methods aim to maximize a
conditional output distribution aligned with higher rewards whilst not drifting far
from a pretrained prior. This is commonly enforced by KL (Kullback–Leibler)
regularization. As such, a central issue still remains: how does one choose the
right regularization strength? Too high of a strength leads to limited alignment and
too low of a strength leads to “reward hacking”. This renders the task of choosing
the correct regularization strength highly non-trivial. Existing approaches sweep
over this hyperparameter by aligning a pretrained model at multiple regularization
strengths and then choose the best strength. Unfortunately, this is prohibitively
expensive. We introduce DeRaDiff, a denoising-time realignment procedure that,
after aligning a pretrained model once, modulates the regularization strength dur-
ing sampling to emulate models trained at other regularization strengths—without
any additional training or fine-tuning. Extending decoding-time realignment from
language to diffusion models, DeRaDiff operates over iterative predictions of con-
tinuous latents by replacing the reverse-step reference distribution by a geomet-
ric mixture of an aligned and reference posterior, thus giving rise to a closed-
form update under common schedulers and a single tunable parameter, λ, for on-
the-fly control. Our experiments show that across multiple text–image alignment
and image-quality metrics, our method consistently provides a strong approxima-
tion for models aligned entirely from scratch at different regularization strengths.
Thus, our method yields an efficient way to search for the optimal strength, elimi-
nating the need for expensive alignment sweeps and thereby substantially reducing
computational costs.

1 INTRODUCTION

Text-to-image (T2I) diffusion models (Ho et al. (2020); Rombach et al. (2022)) now underpin state-
of-the-art image generation. Sampling has been made efficient by techniques such as classifier-free

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

guidance and latent diffusion, unlocking applications like style transfer, image-to-image translation,
and inpainting (Dhariwal & Nichol (2021); Saharia et al. (2022)). Most modern systems are trained
in two stages: (i) pretraining, which optimizes the diffusion objective on large-scale data; and (ii)
alignment, which adapts behavior to tasks or human preferences via supervised fine-tuning (SFT)
(Lee et al. (2023)) or reinforcement learning (Black et al. (2023), Clark et al. (2023)).

A persistent challenge in alignment is balancing adaptation with fidelity to the pretrained prior. This
trade-off is typically controlled by a proximity penalty—most commonly a Kullback–Leibler (KL)
divergence—between the aligned and reference distributions. The associated regularization strength
is pivotal: if too strong, the model under-adapts; if too weak, it drifts and risks reward hacking
(Amodei et al. (2016); Stiennon et al. (2020); Bai et al. (2022); Lewis et al. (2020)). Unfortunately,
identifying the right hyperparameter generally requires expensive sweeps that are prohibitive for
large diffusion models (Ho et al. (2020); Rombach et al. (2022)).

To this end, we propose DeRaDiff, a denoising-time realignment procedure. In the context of lan-
guage modeling, realignment is defined as the post-hoc adjustment of the regularization strength
β—effectively modulating the proximity to the reference model—by geometrically mixing the ref-
erence and aligned distributions at inference time (Liu et al. (2024)). While this enables LLMs to
vary alignment intensity via discrete logit manipulation, applying this principle to generative art
presents a distinct challenge: diffusion models do not output single-step probabilities over a finite
vocabulary, but rather operate via the iterative denoising of continuous latents. Our key insight is a
derivation of a tractable, closed form formula for the geometric mixture of a reference and aligned
diffusion models’ distribution that is parameterized by λ that adjusts the effective regularization
strength relative to the aligned model’s regularization strength, β. Crucially, λ is tunable on-the-fly
during inference.

As such, the closed-form update is presented in theorem 1 for the realigned reverse process, pro-
viding both a theoretical basis and an efficient implementation (see Algorithm 1). Quantitative
(Section 5) and qualitative results (Figure 8, Figure 3) show that DeRaDiff preserves downstream
performance while obviating retraining. Moreover, we achieve substantial compute savings, as de-
scribed in section 6. Our contributions can be summarized as three-fold:

• A theoretical extension of decoding-time realignment to diffusion processes, yielding a
closed-form stepwise realignment posterior integrated into the reverse diffusion process.

• DeRaDiff, a denoising-time realignment method that approximates models aligned at dif-
ferent regularization strength without additional training by modulating alignment during
sampling.

• Experimental evidence that DeRaDiff enables precise control of alignment strength and
accelerates RLHF-style hyperparameter exploration, substantially reducing compute while
preserving downstream performance.

2 RELATED WORK

Alignment of diffusion models. A growing body of work aligns diffusion models using prefer-
ence signals or task rewards, including DDPO (Black et al., 2023) , DRaFT (Clark et al., 2023) ,
DPOK (Fan et al., 2023), AlignProp (Prabhudesai et al., 2023) , and Diffusion DPO (Wallace et al.,
2023) . These methods chiefly study the effectiveness and training efficiency of alignment proce-
dures. Central to their stability is the choice of regularization strength toward a reference model:
insufficient regularization permits distributional drift and reward hacking, whereby models score
high rewards but fail on the intended task. (Amodei et al. (2016); Stiennon et al. (2020); Bai et al.
(2022); Lewis et al. (2020)).

Decoding-time alignment of sampling distributions. To avoid retraining for each task or pref-
erence setting, recent work has considered decoding-time control of the sampling distribution. One
line of work leverages unconditionally pretrained diffusion models together with pretrained neural
networks to enable diverse conditional generation tasks (He et al. (2024)). Another line of work em-
ploys Sequential Monte Carlo to sample from reward-aligned target distributions at inference-time
(Kim et al. (2025); Wu et al. (2023a)). While effective, these approaches generally do not exploit
the presence of a conditional model that has undergone alignment.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) λ = 0 (b) λ = 0.75 (c) λ = 1 (d) λ = 2.5 (e) λ = 7.5

(a) λ = 0 (b) λ = 0.5 (c) λ = 1 (d) λ = 7.5 (e) λ = 10

Figure 3: On-the-fly modulation with DeRaDiff. Applied to SDXL (Podell et al., 2023), DeRaDiff
adjusts alignment at inference via a scalar λ. Increasing λ decreases the effective regularization
(more alignment to human preferences) and increases the aesthetic quality and increases prompt
adherence as expected, while maintaining λ ∈ [0, 1]. (Top: “Typhoon in a teacup. . . ”, bottom:
“A smiling beautiful sorceress. . . ”). However, increasing λ beyond 1 pushes the model beyond the
aligned regime, resulting in degradation in aesthetics and inducing reward-hacking-like artifacts as
is expected for models trained on too low a regularization strength.

Decoding-time realignment in language models. In language modeling, Liu et al. (2024) in-
troduced decoding-time realignment, offering a theoretical framework and empirical validation for
decoding-time realignment of discrete next-token distributions. Our work differs by developing an
analogous realignment mechanism for continuous diffusion trajectories, adapting realignment to the
iterative denoising process and thereby enabling inference-time control of regularization strength
without additional alignment for diffusion models.

Decoding-time realignment in diffusion models. Diffusion Blend (Cheng et al., 2025) intro-
duced a decoding-time realignment for diffusion models under the score-based SDE (Song et al.,
2020) paradigm. Our work differs by providing a decoding-time realignment approach under the
DDPM paradigm (Sohl-Dickstein et al., 2015). Although (Karras et al., 2022) established a theo-
retical equivalence between DDPM and SDE paradigms, our approach establishes the theoretical
foundation for an exact closed-form Gaussian update on the stepwise realigned posterior under mild
assumptions. To the best of our knowledge, our work is the first to introduce realignment under the
DDPM paradigm and provide a theoretical foundation for the stepwise posterior.

3 BACKGROUND

Diffusion models. We follow the common latent diffusion formulation (Rombach et al., 2022):
given noise schedule parameters {αt, σt}Tt=0, a denoising diffusion model (Ho et al. (2020), Sohl-
Dickstein et al. (2015)) defines a Markovian reverse process. Here,

pθ(x0:T) =

T∏
t=1

pθ(xt−1 |xt), pθ(xt−1 |xt) = N
(
xt−1;µθ(xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)
, (1)

KL-regularized RL fine-tuning. Following Jaques et al. (2017) and Jaques et al. (2020), alignment
is commonly cast as reward maximization with a KL penalty to keep the fine-tuned model near a
pretrained reference:

max
pθ

Ec∼Dc,x0∼pθ(x0|c)[r(c,x0)]− βDKL[pθ(x0|c)∥pref(x0|c)] (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here,Dc is a distribution of prompts and β > 0 controls the trade-off between reward and proximity
to the reference model. Sweeping β is the standard way to find the desired alignment strength but
is computationally expensive; our method provides an inference-time tool to cheaply explore this
space for Diffusion Models. The unique global optimum of Equation 2 for the discrete case was
explored by Ziegler et al. (2019), Korbak et al. (2022), Rafailov et al. (2023). We provide a natural
extension of the unique global optimum for the continuous case (see appendix A.2 for details):

p∗θ[β](x0|c) =
pref(x0|c)e

1
β r(c,x0)∫

pref(x′
0|c)e

1
β r(c,x′

0) dx′
0

(3)

Realignment at decoding time Decoding-time realignment (Liu et al. (2024)) blends a reference
and an aligned model at sampling time. Extending this idea to diffusion models requires handling
continuous per-step posteriors rather than discrete next-token distributions. In the next section,
we derive a closed-form per-step Gaussian interpolation and give a complete sampling procedure
(algorithm 1). Full technical derivations are provided in appendix A.

4 METHOD

4.1 REALIGNMENT & STEPWISE APPROXIMATION

We follow the formulation of decoding-time realignment (Liu et al. (2024)) which expresses the
realigned model as a geometric mixture of the reference and aligned densities. Concretely, the
full-sample posterior is given by (see appendix A.1 for details):

p∗θ[β/λ](x0 |c) =
pref(x0 |c)1−λ p∗θ[β](x0 |c)λ∫
pref(x

′
0 |c)1−λ p∗θ[β](x

′
0 |c)λdx′

0

, (4)

which is the normalized version of p1−λ
ref p∗θ[β]

λ. Direct evaluation of Equation 4 is intractable for
diffusion models as it requires marginalizing all intermediate latents. We therefore apply a stepwise
denoising approximation and apply the same geometric mixture of the densities at each step:

p̂θ[β/λ](xt−1 |xt, c) =
pref(xt−1 |xt, c)

1−λ p∗θ[β](xt−1 |xt, c)
λ∫

pref(x
′
t−1 |xt, c)

1−λ p∗θ[β](x
′
t−1 |xt, c)

λ dx′
t−1

. (5)

Interpretation. Equation 4 blends reference and aligned densities by raising each to complementary
powers. Equation 5 applies an analogous idea at each denoising step, enabling sampling with the
effect of alignment without retraining. The parameter λ controls the KL regularization strength.
When λ = 0, the regularization strength β/λ is infinite, thus recovering the original pref model (as
seen in Equation 4). When λ = 1, we have β/λ = β, which recovers the aligned model pθ[β].
When 0 < λ < 1, the new model p̂θ[β/λ] is an interpolation between the two models, which is the
most stable and yields the best performance (see Figure 3) as it is a convex combination between
the log densities. When λ > 1, then p̂θ[β/λ] uses a lower regularization strength than the strength
with which the anchoring model pθ[β] has been trained with. However, this extrapolation process
is no longer a convex combination and may cause the new covariance matrix (see theorem 1) to be
non-positive definite and ill-conditioned, which can lead to deterioration in performance.

Assumptions. For the statements used in Theorem 1, we assume that the following are true: (i)
per-step posteriors are well-approximated by Gaussians (scalar or diagonal variance) and (ii) the
interpolation weight λ is in the range of [0, 1] (because if λ > 1, this corresponds to extrapolation and
may cause performance degradation due to absence of positive definiteness of the new covariance
matrix).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 DENOISING TIME REALIGNMENT

Theorem 1 (Closed-form per-step denoising realignment). Denoting µ1 = µθ(xt, t, c), µ2 =

µ∗
θ[β](xt, t, c)

1 and σ2
1 = σ2

t|t−1

σ2
t−1

σ2
t

I = σ2
2

2 for brevity, Let

pref(xt−1|xt, c) = N (xt−1;µ1, σ
2
1I) p∗θ[β](xt−1|xt, c) = N (xt−1;µ2, σ

2
2I)

Then, for any interpolation weight λ ∈ [0, 1] the stepwise realigned posterior

p̂θ[β/λ](xt−1 | xt, c) =
pref(xt−1 | xt, c)

1−λ p∗θ[β](xt−1 | xt, c)
λ∫

pref(x
′
t−1 | xt, c)

1−λ p∗θ[β](x
′
t−1 | xt, c)

λ dx′
t−1

(6)

is Gaussian with closed-form parameters:

Σnew =

(
1− λ

σ2
1

+
λ

σ2
2

)−1

I µnew = Σnew

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
(7)

Moreover, deterministic scheduler posterior transform (including schedulers used by DDIM/DDPM
samplers) preserves the Gaussian form of p̂θ[β/λ], allowing the closed-form update above to be
applied at each denoising step.

Proof sketch. Note that pref(xt−1|xt, c)
1−λ pθ[β](xt−1|xt, c)

λ ∝ exp (− 1
2 (

1−λ
σ2
1
∥xt−1 − µ1∥2 +

λ
σ2
2
∥xt−1 − µ2∥2)). We then define Σnew = (1−λ

σ2
1

+ λ
σ2
2
)−1I and µnew = Σnew(

(1−λ)
σ2
1

µ1 +
λ
σ2
2
µ2).

Following this, one sees that the product can be written as an unnormalized Gaussian. Finally, using
algebraic manipulation with respect to the integral, we arrive at a normalized Gaussian from which
we can sample. We note that Σnew is guaranteed to be positive definite for λ ∈ [0, 1] and σ2

1 , σ
2
2 > 0.

Moreover, this same closed form update applies iteratively at each denoising step. We provide a full
and detailed derivation which is available at appendix A.3.

Corollary 1 (Positivity and scalar simplification). If σ2
1 , σ

2
2 > 0 and λ ∈ [0, 1], then σ2

new > 0 and
the interpolated posterior is a valid Gaussian. In the isotropic (scalar) case, the σ2

new and µnew are
as follows

σ2
new =

σ2
1σ

2
2

σ2
2(1− λ) + σ2

1λ
µnew = σ2

new

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
(8)

which is implemented in algorithm 1.

Remark As seen in eq. (7), λ > 1 forces a non convex combination, as such, since 1 − λ < 0, it
may cause the new covariance matrix to not be positive definite and ill-conditioned. But empirically,
DeRaDiff continues to approximate a model with lesser effective regularization for moderate λ > 1
before instability occurs (see fig. 3).
Multi-reward extension We also prove that DeRaDiff can be extended to the very general case of
multi-reward modelling (Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023)). A full proof
is given at appendix A.4.

1xt, xt−1, µt, µt−1 ∈ RD

2Note that σ2
1 need not be equal to σ2

2–our derivation handles this more general case.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 ALGORITHM

Algorithm 1 DeRaDiff Sampling

Require: Reference model Eθref , Aligned model Eθtuned , interpolation weight λ ∈ [0, 1], prompt p,
guidance scale γ, number of inference steps N , scheduler with timesteps {ti}Ni=0 and corre-
sponding noise levels {σi}Ni=0.

1: c← Encode(p)
2: cnull ← Encode(“”) ▷ Get unconditional embedding
3: xtN ∼ N (0, I) ▷ Sample initial latent from a standard Gaussian distribution
4: for i = N, . . . , 1 do
5: t← ti, tprev ← ti−1

6: σt ← σi

7: ϵref ← Eθref(xt, σt, cnull) + γ (Eθref(xt, σt, c)− Eθref(xt, σt, cnull))
8: ϵtuned ← Eθtuned(xt, σt, cnull) + γ (Eθtuned(xt, σt, c)− Eθtuned(xt, σt, cnull)) ▷ Compute

Classifier-Free Guidance predictions for both models.
9: µ1, σ

2
1 ← SchedulerPosterior(xt, ϵ

ref, t, tprev)
10: µ2, σ

2
2 ← SchedulerPosterior(xt, ϵ

tuned, t, tprev) ▷ Calculate posterior mean µ and variance
σ2 for the distribution at tprev.

11: σ2
new ←

(
1−λ
σ2
1

+ λ
σ2
2

)−1

12: µnew ← σ2
new

(
1−λ
σ2
1
µ1 +

λ
σ2
2
µ2

)
13: z ∼ N (0, I)

14: xtprev ← µnew + z ·
√
σ2

new
15: end for
16: Iout ← VAE.decode(xt0)
17: return Iout

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our experiments constitute the following steps:

1. Obtain reference and realigned models. We obtain public releases of model checkpoints
(SDXL 1.0) and initialize the reference model pref. Then, we use an arbitrary alignment
method (eg: DiffusionDPO, Wallace et al. (2023)) to align the reference model while mini-
mizing the KL divergence where the regularization strength is β, which yields the realigned
model pθ[β]. We also perform experiments on Stable Diffusion 1.5, which can be found in
appendix A.8.

2. Obtain outputs from Denoising Time Realignment. For given prompts c, we apply algo-
rithm 1 with varying λ values to obtain samples from p̂θ[β/λ], allowing us to approximate
various different regularization strengths without alignment from scratch.

3. Compare denoising time realignment samples against retrained models. We compare
the downstream reward achieved by samples generated from p̂θ[β/λ] to those of pθ[β/λ]
which is a model that is aligned completely from scratch.

To comprehensively assess DeRaDiff’s ability to approximate the performance of models aligned
from scratch, we sample a batch of 500 prompts from a union of the Pick-a-Pic v1 and HPS datasets
and test DeRaDiff’s approximation capability on three metrics which cover various aspects of image
generation, namely PickScore, HPS v2 and CLIP. The SDXL 1.0 model is aligned at a wide range
of regularization strengths β ∈ {500, 1000, 2000, 5000, 8000, 10000}, and at a time, one aligned
model at a particular β is used as an anchor model to approximate other alignment strengths. We do
the same for SD1.5, whose results are provided in detail in appendix A.8.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PickScore errors, λ ∈ [0, 1]

n (pairs) 15
MAE 3.55× 10−4

Median |∆| 2.83× 10−4

75th / 90th 3.31× 10−4 / 6.95× 10−4

Max 1.10× 10−3

Frac ≤ 5×10−4 86.7%
Frac ≤ 10−3 93.3%

PickScore mean 0.230509
PickScore std 0.001434

Figure 4: ECDF of absolute PickScore errors |∆| = |PickScoreapprox − PickScoreorig|, when
DeRaDiff is used on aligned SDXL models.

Figure 5: Line graphs for the average PickScore rewards gained by SDXL models realigned from
scratch along with line graphs for the average PickScore rewards gained from DeRaDiff using an-
chor SDXL models with β = 500 (left plot), β = 1000 (middle plot) and β = 2000 (right plot)
regularization strengths.

5.1.1 PICKSCORE

PickScore (Kirstain et al., 2023) is a caption-aware image reward model trained under a Bradley–
Terry objective on pairwise preferences. Given a tuple (c, IA, IB , y), where c is the prompt, IA and
IB are candidate images, and y ∈ {0, 1} indicates whether IA is preferred, a CLIP-based encoder
with an MLP head produces a real-valued score sθ(c, I). The induced preference probability is
Pr(IA ≻ IB | c) = σ

(
sθ(c, IA) − sθ(c, IB)

)
with σ(·) the logistic sigmoid. We use PickScore

as a learned reward targeting human-perceived quality under the provided caption; unless otherwise
stated, higher indicates stronger preference.

As seen in fig. 4, the typical approximation error is extremely small (median = 2.83×10−4,≈ 20%
of the PickScore std) when DeRaDiff approximates human appeal to images on aligned SDXL
models. Roughly 87% of approximations have errors ≤ 5 × 10−4, so DeRaDiff produces near-
identical PickScore ratings for the vast majority of cases, meaning the human appeal of images
produced by DeRaDiff and models aligned entirely from scratch are near-identical.

As seen in fig. 5, DeRaDiff is able to meaningfully control the regularization strength on the fly
without retraining by closely matching the SDXL models that were aligned entirely from scratch.
Thus DeRaDiff enables testing of various regularization strengths without training, allowing one to
search for the optimal strength, eliminating the need for expensive alignment sweeps. Moreover,
using DeRaDiff, one can identify a promising range of regularization strengths and only align at
these strengths, substantially reducing computational costs.

5.1.2 HPS V2

Human Preference Score v2 (HPS v2) (Wu et al., 2023b) is a caption-aware preference model trained
on the Human Preference Dataset v2 (HPD v2), a large-scale corpus of pairwise judgments designed
to approximate human ratings of text-to-image outputs. HPD v2 comprises on the order of 7.9×105

binary choices over ∼ 4.3 × 105 prompt–image pairs spanning real photographs and generations
from diverse T2I models. To this end, we test how well DeRaDiff matches human-preference be-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Scatter plot of approximated HPS Mean
vs. original HPS (target) shows DeRaDiff
approximations closely match human pref-
erence scores.

(b) Bland–Altman plot of DeRaDiff approximations for
mean CLIP scores showing no systematic semantic fi-
delity approximation bias.

Figure 6: Graphical plots of statistical analysis of DeRaDiff’s approximations.

haviours of models realigned from scratch by presenting and analyzing a scatter plot. As seen in
fig. 6a, each point (x, y), corresponds to a a specific approximation of a βtarget SDXL model using
a specific βanchor anchoring SDXL model using DeRaDiff where x corresponds to the mean HPS
score obtained by the DeRaDiff approximation of the βtarget model and y corresponds to the mean
HPS score obtained by the βtarget model. Moreover, we colour code each point (x, y) with its re-
spective log2(βtarget/βanchor) value with the goal of encoding the gap between the regularization
strengths of βanchor and βtarget. Here we see that points lie around the identity line and the linear fit
is close to it. This indicates that DeRaDiff is able to match and recover the human-preference scores
of images from models aligned entirely from scratch. Moreover, inferring from the color scale, this
indicates that approximations is near-identical or even better when an anchor β approximates a tar-
get β that is close-by, but performance degrades smoothly with increasing anchor-to-target distance.
Overall, this figure provides a faithfulness check: DeRaDiff enables low-cost, inference-time align-
ment that is able to preserve human preference outcomes of models aligned entirely from scratch.
Detailed statistical analysis is provided in appendix A.8.

5.1.3 CLIP

CLIP (Hessel et al., 2021) provides a general-purpose text–image relevance score without explicit
training on human preference pairs. For a caption–image pair (p, x), we compute the cosine
similarity of normalized embeddings, sCLIP(p, x) =

Enctext(p)·Encimg(x)
∥Enctext(p)∥ ∥Encimg(x)∥ . In our evaluations,

CLIP is treated as a semantic fidelity baseline to complement preference-trained metrics (HPS v2,
PickScore), helping to disentangle prompt adherence from aesthetic appeal. To demonstrate how
DeRaDiff maintains semantic fidelity and that DeRaDiff has no systematic semantic approximation
bias when considering the preservation of semantic-fidelity, we present a Bland-Altman comparison
for DeRaDiff approximations on SDXL models in fig. 6b. In this Bland-Altman plot, for each point
(x, y) with label βanchor → βtarget, x refers to the average of (a) the CLIP score gained by the
DeRaDiff approximation of a βtarget reference model using a βanchor SDXL model as the anchor
and (b) the original CLIP score gained by the target βtarget SDXL model. And y refers to the dif-
ference between (a) and (b), i.e. the difference between the CLIP score gained by the DeRaDiff
approximation and the CLIP score gained by the target model that was aligned from scratch. We
use a similar colour scheme for each point as was described in section 5.1.2. Here, fig. 6b demon-
strates that DeRaDiff approximations have negligible average bias and show very small absolute
differences (maximum |∆| ≈ 4.5 × 10−3, 1.2% of µorig, where µorig is the mean of all CLIP
values generated by models aligned completely from scratch) and that the Bland-Altman mean dif-
ference is -0.001018, which is -0.273% of µorig. Furthermore, the 95% limits of agreement is
[−0.004496, 0.002461]. Further analysis is provided in appendix A.8. These results indicate that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: DeRaDiff undoes reward hacking. For each panel, left = image from SDXL model
aligned at β = 500 (reward-hacked), center = DeRaDiff approximating an SDXL model aligned at
β = 2000 using an SDXL anchor aligned at β = 500, right = reference image from an SDXL model
aligned at β = 2000. The image details and style are successfully recovered by DeRaDiff.

DeRaDiff preserves prompt-to-image semantic fidelity with no systematic bias, particularly when
λ ∈ [0, 1]. Taken together, these results show that DeRaDiff preserves prompt-to-image semantic
fidelity to within measurement noise in CLIP, thus rendering DeRaDiff once more capable of tuning
the regularization strength on the fly during inference accurately preserving semantics all the while
obviating the need to perform multiple costly retrainings.

5.2 QUALITATIVE ANALYSIS

As seen in table 1, DeRaDiff is capable of producing highly accurate training-free approximations
particularly in the case for λ ∈ [0, 1], and is able to meaningfully control the regularization strength
at inference time on the fly. We provide further detailed statistical analysis in appendix A.8. Across
both SDXL and SD1.5, mean absolute errors are extremely small (all < 0.02 in absolute terms) and
remain well below 0.5% when taken with respect to the respective means. The results show that
DeRaDiff reproduces the average behavior of models aligned entirely from scratch for the case λ ∈
[0, 1]. In table 2, we show the performance of DeRaDiff on an arbitrary anchor aligned at β = 2000.
We observe that the performance of DeRaDiff is generally stronger when applied to approximating
models aligned with regularization strengths that are higher than that of the anchor model. This is
explained by the fact that when 0 ≤ λ ≤ 1, DeRaDiff performs a convex combination, as seen in
Equation 5. The experiments show that this interpolation is stable and is thus a reliable surrogate
to approximate the performance of models aligned at such regularization strengths. When λ >
1, the combination is not convex as discussed in theorem 1. This leads to slightly less accurate
approximations. Furthermore, as seen in fig. 5 and fig. 7, our experiments demonstrate that DeRaDiff
can provide an accurate approximation of models aligned from scratch even when using a reward
hacked model as the anchor. As reward hacked models have small β values, we can undo the effect
of reward hacking by using the reward hacked model as an anchor and utilise a small λ value to
reverse the effect of reward hacking (as seen in fig. 7). We further provide detailed evaluations of
DeRaDiff’s capability to undo reward hacking in appendix A.6.2.

6 COMPUTE SAVINGS

In our experimental setup detailed in appendix A.7, aligning a SDXL model at a single β takes
≈ 336 GPU hours, which is ≈ 52, 416 TFLOP-hours (FP16 Tensor-core equivalent) at a sustained
load of 50%, or ≈ 1.887 × 1020 floating point operations (≈ 188.7 EFLOPs). If a naive pipeline
aligns a single SDXL model at N regularization strengths, the costs scale to N × 336 GPU hours
(or N × 188.7 EFLOPs). DeRaDiff requires aligning only once, thus cumulative wall-time and
FLOPs are reduced by a factor of N . For instance, using DeRaDiff instead of naively aligning of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 1: Training-free approximation errors of DeRaDiff when λ ∈ [0, 1]

Model CLIP HPS PickScore

MAE MAE (% of µ) MAE MAE (% of µ) MAE MAE (% of µ)

SDXL 0.001 604 0.430 000 0.000 770 0.265 000 0.000 355 0.154 000
SD1.5 0.001 557 0.448 000 0.001 175 0.425 000 0.000 718 0.332 000

Notes: MAE = mean absolute error between DeRaDiff outputs and images generated by models aligned from
scratch across all regularization strength anchors. For each metric and model, µ is the evaluated mean metric
value when aligned from scratch across all evaluated regularization strengths; reported percentages are MAE
divided by µ. A very detailed statistical analysis is provided in

Tasks (Anchor β = 2000) Target Model β-values

500 1000 2000 5000 8000 10000

PickScore
Actual 0.2273 0.2314 0.2313 0.2311 0.2312 0.2308
Approximated 0.2243 0.2296 0.2313 0.2312 0.2309 0.2305
Absolute Difference (%) 1.3451 0.7831 0.0000 0.0611 0.1399 0.0987

HPS
Actual 0.2869 0.2919 0.2921 0.2916 0.2910 0.2903
Approximated 0.2852 0.2918 0.2921 0.2911 0.2902 0.2897
Absolute Difference (%) 0.5890 0.0299 0.0000 0.1701 0.2688 0.2061

CLIP
Actual 0.3628 0.3757 0.3752 0.3763 0.3751 0.3752
Approximated 0.3643 0.3738 0.3752 0.3751 0.3752 0.3751
Absolute Difference (%) 0.4022 0.5077 0.0000 0.3041 0.0310 0.0282

Table 2: Comparison of mean rewards achieved on various metrics by using an aligned β = 2000 SDXL
model as an anchor. DeRaDiff closely matches the models that were aligned completely from scratch. In
particular, when λ ≤ 1, the largest absolute percentage difference for PickScore, HPS and CLIP are 0.1399%,
0.2688%, 0.3041% respectively, thus demonstrating the accuracy of DeRaDiff’s approximations.

N = 3, 5, 10 yields approximate GPU-hour savings of 66.7%, 80%, and 90% (respectively), and
EFLOP savings of ≈ 377.4 EFLOPs (N=3), 754.8 EFLOPs (N=5), and 1,698.3 EFLOPs (N=10).
Thus, by using DeRaDiff in place of a naive alignment sweep at N β’s, one can reduce run-time
and FLOPs by ≈ 1 − 1

N . However, DeRaDiff requires two forward passes at inference, but taken
in totality, this overhead is still always smaller compared to full alignment sweeps. Moreover, this
inference overhead can still be reduced by using prompt encoding caching or parallelized inference.

7 CONCLUSION

In this work, we introduced DeRaDiff, a theoretical expansion of decoding time realignment to dif-
fusion models, a framework enabling one to modulate the regularization strength of any aligned
model on the fly without any additional training. We also showed empirical evidence that DeRaDiff
enables precise and meaningful control of the alignment strength and consistently provides a strong
approximation for models aligned entirely from scratch. We also demonstrated the substantial com-
pute savings that DeRaDiff brings about. Thus, DeRaDiff yields an efficient way to search for the
optimal regularization strength, eliminating the need for expensive alignment sweeps.

8 ETHICAL STATEMENT

The authors have read the ICLR Code of Ethics and are committed to complying and upholding
them. We only note two potential concerns: (1) pretrained image models and their training data
might contain copyrighted content and also it may include societal biases, and (2) by lowering
the computational costs involved in alignment, this can reduce the barrier to deployment and may
increase the risk of misuse. The authors wish to inform that they are strictly against such misuse and

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

encourage responsible and safe use at all times without question. Furthermore, the authors only use
pretrained models and datasets that are available to the public and are committed to strictly adhering
to all model and dataset license restrictions.

9 REPRODUCIBILITY STATEMENT

The authors make every effort to make their work fully reproducible. To this end, the authors
freely share the source code required to run our experiments in the supplemental section of this
submission. We also detail our experimental setup in appendix A.7. Furthermore, we have used
publicly available SDXL and SD1.5 checkpoints. We also provide a README file and also provide
all evaluation scripts along with the core DeRaDiff implementation code.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety, 2016. URL https://arxiv.org/abs/1606.06565.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback,
2022. URL https://arxiv.org/abs/2204.05862.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning, 2023. URL https://arxiv.org/abs/2305.13301.

Min Cheng, Fatemeh Doudi, Dileep Kalathil, Mohammad Ghavamzadeh, and Panganamala R. Ku-
mar. Diffusion blend: Inference-time multi-preference alignment for diffusion models, 2025.
URL https://arxiv.org/abs/2505.18547.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards, 2023. URL https://arxiv.org/abs/2309.17400.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Rein-
forcement learning for fine-tuning text-to-image diffusion models. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 79858–79885. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf.

Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
preserving guided diffusion. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=o3BxOLoxm1.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. 2021. doi: 10.48550/ARXIV.2104.08718.
URL https://arxiv.org/abs/2104.08718.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

11

https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2305.13301
https://arxiv.org/abs/2505.18547
https://arxiv.org/abs/2309.17400
https://arxiv.org/abs/2105.05233
https://proceedings.neurips.cc/paper_files/paper/2023/file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf
https://openreview.net/forum?id=o3BxOLoxm1
https://arxiv.org/abs/2104.08718
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Han-
naneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personal-
ized large language model alignment via post-hoc parameter merging, 2023. URL https:
//arxiv.org/abs/2310.11564.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E.
Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In Proceedings of the 34th International Conference on Machine Learning
(ICML), volume 70 of Proceedings of Machine Learning Research, pp. 1645–1654. PMLR, Au-
gust 2017. URL http://proceedings.mlr.press/v70/jaques17a.html.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement
learning. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3985–4003,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.327. URL https://aclanthology.org/2020.emnlp-main.327/.

Tero Karras, Miika Aittala, Samuli Laine, and Timo Aila. Elucidating the design space of diffusion-
based generative models. In Proceedings of the 36th International Conference on Neural Infor-
mation Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
reward over-optimization. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=vi3DjUhFVm.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation, 2023. URL https:
//arxiv.org/abs/2305.01569.

Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better viewed as
bayesian inference, 2022. URL https://arxiv.org/abs/2205.11275.

Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback, 2023. URL https://arxiv.org/abs/2302.12192.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time
realignment of language models, 2024. URL https://arxiv.org/abs/2402.02992.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D. Manning. An
emulator for fine-tuning large language models using small language models, 2023. URL
https://arxiv.org/abs/2310.12962.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
image diffusion models with reward backpropagation, 2023. URL https://arxiv.org/
abs/2310.03739.

12

https://arxiv.org/abs/2310.11564
https://arxiv.org/abs/2310.11564
http://proceedings.mlr.press/v70/jaques17a.html
https://aclanthology.org/2020.emnlp-main.327/
https://openreview.net/forum?id=vi3DjUhFVm
https://arxiv.org/abs/2305.01569
https://arxiv.org/abs/2305.01569
https://arxiv.org/abs/2205.11275
https://arxiv.org/abs/2302.12192
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2402.02992
https://arxiv.org/abs/2310.12962
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2310.03739
https://arxiv.org/abs/2310.03739

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023. URL https://arxiv.org/abs/2305.18290.

Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by in-
terpolating weights fine-tuned on diverse rewards, 2023. URL https://arxiv.org/abs/
2306.04488.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685. IEEE, June 2022. doi:
10.1109/cvpr52688.2022.01042. URL http://dx.doi.org/10.1109/CVPR52688.
2022.01042.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
fusion models with deep language understanding, 2022. URL https://arxiv.org/abs/
2205.11487.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2020. URL
https://arxiv.org/abs/2011.13456.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 3008–3021. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization, 2023. URL https://arxiv.org/abs/2311.12908.

Luhuan Wu, Brian L. Trippe, Christian A Naesseth, John Patrick Cunningham, and David Blei.
Practical and asymptotically exact conditional sampling in diffusion models. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023a. URL https://openreview.
net/forum?id=eWKqr1zcRv.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis, 2023b. URL https://arxiv.org/abs/2306.09341.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
URL https://arxiv.org/abs/1909.08593.

13

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2306.04488
https://arxiv.org/abs/2306.04488
http://dx.doi.org/10.1109/CVPR52688.2022.01042
http://dx.doi.org/10.1109/CVPR52688.2022.01042
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://arxiv.org/abs/2011.13456
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/abs/2311.12908
https://openreview.net/forum?id=eWKqr1zcRv
https://openreview.net/forum?id=eWKqr1zcRv
https://arxiv.org/abs/2306.09341
https://arxiv.org/abs/1909.08593

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

A Appendix 15

A.1 Re-expression of Realigned model . 15

A.2 Unique Global Optimum for the Continuous Case 15

A.3 Proof of Denoising Time Realignment . 16

A.4 Proof of Denoising Time Realignment when considering a Linear Combination of
Multiple Rewards . 17

A.5 An End-to-End process of finding the globally optimal λ∗ 19

A.5.1 Gaussian Process Surrogate . 19

A.5.2 Acquisition Function . 20

A.6 Additional Experiments . 21

A.6.1 A fine grained examination . 21

A.6.2 Undoing Reward Hacking . 22

A.7 Detailed Experimental Setup . 22

A.8 Metrics used for Detailed Statistical Analysis . 24

A.9 Statistical analysis of DeRaDiff’s performance on CLIP 25

A.9.1 SDXL . 25

A.9.2 SD1.5 . 26

A.10 Statistical analysis of DeRaDiff’s performance on HPS 27

A.10.1 SDXL . 27

A.10.2 SD1.5 . 28

A.11 Statistical analysis of DeRaDiff’s performance on PickScore 29

A.11.1 SDXL . 29

A.11.2 SD1.5 . 30

A.12 LLM Usage . 30

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RE-EXPRESSION OF REALIGNED MODEL

This concerns the re-expression of the realigned model in terms of a model that was aligned from
scratch. Thus, this shows a way to feasibly approximate an aligned model without training from
scratch. From equation 3 we see that e

1
β r(c,x0) = Z(c)p∗θ[β](x0|c)/pref(x0|c) and hence

p∗θ[β/λ](x0|c) =
pref(x0|c)e

λ
β r(c,x0)∫

pref(x′
0|c)e

λ
β r(c,x′

0) dx′
0

=
pref(x0|c)

[
e

1
β r(c,x0)

]λ
∫
pref(x′

0|c)
[
e

1
β r(c,x′

0)
]λ

dx′
0

=
Pref(x0|c) [Z(c)P ∗

θ [β](x0|c)/Pref(x0|c)]λ∫
Pref(x′

0|c) [Z(c)P ∗
θ [β](x

′
0|c)/Pref(x′

0|c)]
λ
dx′

0

=
Pref(x0|c) [P ∗

θ [β](x0|c)/Pref(x0|c)]λ∫
Pref(x′

0|c) [P ∗
θ [β](x

′
0|c)/Pref(x′

0|c)]
λ
dx′

0

(9)

A.2 UNIQUE GLOBAL OPTIMUM FOR THE CONTINUOUS CASE

This concerns the finding of the unique global optimum for equation 2. This proof is as seen in
Rafailov et al. (2023), but where the partition function is for the continuous case. Using the definition
of the KL divergence, equation 2 simplifies to:

P ∗
θ = max

ρθ

Ec∼Dc

[
Ex0∼pθ(x0|c)

[
r(c, x0)− β log

pθ(x0|c)
pref(x0|c)

]]
= min

ρθ

Ec∼Dc

[
Ex0∼pθ(x0|c)

[
log

pθ(x0|c)
pref(x0|c)

− 1

β
r(c, x0)

]]

= min
ρθ

Ec∼Dc

Ex0∼pθ(x0|c)

log pθ(x0|c)
1

Z(c)pref(x0|c)e
1
β r(c,x0)

− logZ(c)

 (10)

Here, the partition function is:

Z(c) =

∫
pref(x

′
0|c)e

1
β r(c,x′

0)dx′
0 (11)

Now, define p∗(x0|c) = 1
Z(c)pref(x0|c)e

1
β r(c,x0) which is a valid probability distribution as

p∗(x0|c) ≥ 0 for all x0 and
∫
p∗(x0|c)dx0 = 1.

Then, since Z(c) is not a function of x0, bring the expectation inside:

P ∗
θ = min

ρθ

Ec∼Dc

Ex0∼pθ(x0|c)

log pθ(x0|c)
1

Z(c)pref(x0|c)e
1
β r(c,x0)

− logZ(c)


= min

ρθ

Ec∼Dc
[DKL(pθ(x0|c)||p∗(x0|c))− logZ(c)] (12)

Since the second term doesn’t depend on on pθ, the minimum is achieved by the pθ that minimizes
the first term. Thus,

pθ = p∗θ =
1

Z(c)
pref(x0|c)e

1
β r(c,x0) (13)

More specifically,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

p
[β]
θ (x0|c) =

pref(x0|c)e
1
β r(c,x0)∫

pref(x′
0|c)e

1
β r(c,x′

0)dx′
0

(14)

is a diffusion model that is aligned with a regularization strength β(̸= 0).

A.3 PROOF OF DENOISING TIME REALIGNMENT

This proof concerns the finding of a closed-form formula for

p∗θ[β/λ](xt−1|xt, c) =
pref(xt−1|xt, c)

1−λp∗θ[β](xt−1|xt, c)
λ∫

pref(x′
t−1|xt, c)1−λp∗θ[β](x

′
t−1|xt, c)λdx′

t−1

. (15)

As noted previously, we have that

pref(xt−1|xt, c) = N
(
xt−1;µθ(xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)

and

p∗θ[β](xt−1|xt, c) = N
(
xt−1;µ

∗
θ[β](xt, t, c), σ

2
t|t−1

σ2
t−1

σ2
t

I
)
.

For ease of notation, denote µ1 = µθ(xt, t, c), µ2 = µ∗
θ[β](xt, t, c)

3 and σ2
1 = σ2

t|t−1

σ2
t−1

σ2
t

= σ2
2 .

4

Using the closed form of the isotropic multivariate gaussian distribution we have that,

pref(xt−1|xt, c) = N (xt−1;µ1, σ
2
1I) =

exp
{
− 1

2σ2
1
∥xt−1 − µ1∥2

}
(2πσ2

1)
D/2

and

p∗θ[β](xt−1|xt, c) = N (xt−1;µ2, σ
2
2I) =

exp
{
− 1

2σ2
2
∥xt−1 − µ2∥2

}
(2πσ2

2)
D/2

.

Define

Σnew =

(
1− λ

σ2
1

+
λ

σ2
2

)−1

I, (16)

µnew = Σnew

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
. (17)

Now considering the numerator of equation 15 , we obtain

pref(xt−1|xt, c)
1−λp∗θ[β](xt−1|xt, c)

λ =
exp

{
−α

2

}
(2πσ2

1)
(1−λ)D/2(2πσ2

2)
λD/2

(18)

where through the application of equation 16 and equation 17,

α =
(1− λ)

σ2
1

∥xt−1 − µ1∥2 +
λ

σ2
2

∥xt−1 − µ2∥2

=

(
1− λ

σ2
1

+
λ

σ2
2

)
∥xt−1∥2 − 2

(
(1− λ)

σ2
1

µ1 +
λ

σ2
2

µ2

)
· xt−1 +

(
(1− λ)

σ2
1

∥µ1∥2 +
λ

σ2
2

∥µ2∥2
)

= (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)− µT
newΣ

−1
newµnew +

(
(1− λ)

σ2
1

∥µ1∥2 +
λ

σ2
2

∥µ2∥2
)
.

(19)

3xt, xt−1, µt, µt−1 ∈ RD

4Note that σ2
1 need not be equal to σ2

2–our derivation handles this more general case.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Recalling equation 18 we now see that,

pref(xt−1|xt, c)
1−λp∗θ[β](xt−1|xt, c)

λ =
exp

{
− 1

2α
}

(2πσ2
1)

(1−λ)D/2(2πσ2
2)

λD/2

= φ exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
,

(20)
where

φ =
exp

{
− 1

2

[
µT
newΣ

−1
newµnew −

(
(1−λ)
σ2
1
∥µ1∥2 + λ

σ2
2
∥µ2∥2

)]}
(2πσ2

1)
(1−λ)D/2(2πσ2

2)
λD/2

. (21)

Note that expression φ is a constant with respect to xt−1. Similarly, we can also rewrite the denom-
inator of equation 15 in the same way to arrive at

p∗θ[β/λ](xt−1|xt, c) =
φ · exp

{
− 1

2 (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)
}∫

φ · exp
{
− 1

2 (x
′
t−1 − µnew)TΣ

−1
new(x′

t−1 − µnew)
}
dx′

t−1

=
1

(2π)D/2|Σnew|1/2
exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
.

(22)

And thus we see that
p∗θ[β/λ](xt−1|xt, c) = N (xt−1;µnew,Σnew) (23)

A.4 PROOF OF DENOISING TIME REALIGNMENT WHEN CONSIDERING A LINEAR
COMBINATION OF MULTIPLE REWARDS

We also consider the natural extension of decoding time realignment to DeRaDiff in the case of
multi-reward RLHF as proposed by Ramé et al. (2023), Jang et al. (2023), Mitchell et al. (2023).
Multi reward methods combine multiple models aligned independently using different rewards.
Thus, consider the case of a linear combination of rewards rλ⃗ defined by

rλ⃗(c, x0) =

K∑
i=1

λi ∗ ri(c, x0), (24)

where we have K reward functions and where λ⃗ = (λ1, ..., λK) ∈ RK . Then, considering the
aligned model, p∗θ[β, λ⃗] under λ⃗,

p∗θ[β, λ⃗](x0|c) =
pref(x0|c) exp

{
1
β rλ⃗(c,x0)

}
∫
pref(x′

0|c) exp
{

1
β rλ⃗(c,x

′
0)
}

dx′
0

=
pref(x0|c) exp

{
1
β

∑K
i=1 λiri(c,x0)

}
∫
pref(x′

0|c) exp
{

1
β

∑K
i=1 λiri(c,x′

0)
}
dx′

0

. (25)

Now, denoting p∗i,θ[β](x0|c) as the model obtained by aligned a reference model entirely from
scratch using the ith reward, we have (as before) that,

exp

{
1

β
ri(c,x0)

}
= Z(c)p∗i,θ[β](x0|c)/pref(x0|c). (26)

Then, we note that,

exp

{
k∑

i=1

λi
ri(c, x0)

β

}
=

k∏
i=1

exp

{
λi

ri(c, x0)

β

}

=

k∏
i=1

(
Z(c)

p∗i,θ[β](x0 | c)
pref(x0 | c)

)λi

.

(27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In a similar fashion,

exp

{
k∑

i=1

λi
ri(c, x

′
0)

β

}
=

k∏
i=1

(
Z(c)

p∗i,θ[β](x
′
0 | c)

pref(x′
0 | c)

)λi

. (28)

Finally, we have that

p∗θ[β, λ⃗](x0|c) =
pref(x0|c)

∏k
i=1

(
Z(c)

p∗
i,θ[β](x0|c)
pref (x0|c)

)λi

∫
pref(x′

0|c)
∏k

i=1

(
Z(c)

p∗
i,θ[β](x

′
0|c)

pref (x′
0|c)

)λi

dx′
0

. (29)

Then, letting λs =
∑K

i=1 λi, we have that,

p∗θ[β, λ⃗](x0|c) =
pref(x0|c)1−λs

∏k
i=1

(
Z(c)p∗i,θ[β](x0 | c)

)λi

∫
pref(x′

0|c)1−λs
∏k

i=1

(
Z(c)p∗i,θ[β](x

′
0 | c)

)λi

dx′
0

(30)

=
pref(x0|c)1−λs

∏k
i=1

(
p∗i,θ[β](x0 | c)

)λi

∫
pref(x′

0|c)1−λs
∏k

i=1

(
p∗i,θ[β](x

′
0 | c)

)λi

dx′
0

. (31)

In a similar fashion, due to the intractability of eq. (32), consider the stepwise approximation:

p∗θ[β, λ⃗](xt−1|xt, c) =
pref(xt−1|xt, c)

1−λs
∏k

i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

∫
pref(xt−1|xt, c)1−λs

∏k
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

dx′
0

. (32)

Now, the DeRaDiff proof follows almost immediately noting that

p∗i,θ[β](xt−1|xt, c) = N (xt−1;µi, σ
2
i I) =

1

(2πσ2
i)

D/2
exp

{
− 1

2σ2
i

∥xt−1 − µi∥2
}
.

Now considering the numerator of equation 32, we have

pref(xt−1|xt, c)
1−λs

k∏
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi
=

exp
{
−
∑K

i=1
λi

2σ2
i
∥xt−1 − µi∥2

}
∏K

i=1(2πσ
2
i)

D/2
. (33)

Define

Σnew =

(
K∑
i=1

λi

σ2
i

)−1

I, (34)

µnew = Σnew

(
K∑
i=1

λi

σ2
i

µi

)
. (35)

To simplify the exponent in the numerator of eq. (33), by defining α =
∑K

i=1
λi

σ2
i
||xt−1 − µi||2 and

applying equation 34 and equation 35, we have

α =

K∑
i=1

λi

σ2
i

||xt−1 − µi||2

=

(
K∑
i=1

λi

σ2
1

)
∥xt−1∥2 − 2

(
K∑
i=1

λi

σ2
i

µi

)
· xt−1 +

(
K∑
i=1

λi

σ2
i

∥µi∥2
)

= (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)− µT
newΣ

−1
newµnew +

(
K∑
i=1

λi

σ2
i

∥µi∥2
)
. (36)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Substituting the result above into equation 33, we yield

pref(xt−1|xt, c)
1−λs

k∏
i=1

(
p∗i,θ[β](xt−1|xt, c)

)λi

=
exp

{
− 1

2α
}∏K

i=1(2πσ
2
i)

D/2

= φ · exp
{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
, (37)

where

φ =
exp

{
− 1

2

[
µT
newΣ

−1
newµnew −

(∑K
i=1

λi

σ2
i
∥µi∥2

)]}
∏K

i=1(2πσ
2
i)

D/2
.

Finally, we have that

p∗θ[β, λ⃗](xt−1|xt, c) =
φ · exp

{
− 1

2 (xt−1 − µnew)
TΣ−1

new(xt−1 − µnew)
}∫

φ · exp
{
− 1

2 (x
′
t−1 − µnew)TΣ

−1
new(x′

t−1 − µnew)
}
dx′

t−1

=
1

(2π)D/2|Σnew|1/2
exp

{
−1

2
(xt−1 − µnew)

TΣ−1
new(xt−1 − µnew)

}
.

(38)

A.5 AN END-TO-END PROCESS OF FINDING THE GLOBALLY OPTIMAL λ∗

One can even extend DeRaDiff by employing Bayesian optimization to find the globally optimum
λ∗ (and thus, the best regularization strength) that gives rise to the best downstream rewards. Here,
we constrain λ ∈ [0, 1]. Here, we outline the major ideas required to implement this.

We denote pλ(x) as the generative distribution arising from using denoising time parameter λ. Given
a reward function (eg.the downstream Pickscore by Kirstain et al. (2023)), our goal is:

λ∗ = arg max
λ∈[0,1]

J(λ), where J(λ) = Ex∼pλ
[R(x)]. (39)

Because J(λ) is expensive to evaluate (since this requires running the model on a large batch of
images and scoring using a reward function), we treat it as a black-box function and use gaussian
process optimization to find λ∗ in as few evaluations as possible.

A.5.1 GAUSSIAN PROCESS SURROGATE

We model the unkown objective f(λ) ≈ J(λ) via a gaussian process prior:

f(λ) ∼ GP(m(λ), k(λ, λ′)). (40)

For simplicity, we let m(λ) = 0. Next, we use the RBF kernel k(λ, λ′) = σ2
f exp

(
− (λ−λ′)2

2ℓ2

)
with

l being the length-scale parameter and σ2
f being the signal variance. After n− many evaluations at

points {λi}ni=1 yielding noisy estimates R̂i ≈ J(λi), conditioning yields the exact posterior

µn(λ) = k(λ,λ)[K+ σ2
nI]

−1R̂ (41)

σ2
n(λ) = k(λ, λ)− k(λ,λ)[K+ σ2

nI]
−1k(λ, λ), (42)

where λ = [λ1, . . . , λn], R̂ = [R̂1, . . . , R̂n]
⊤, and Kij = k(λi, λj).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5.2 ACQUISITION FUNCTION

To decide on which lambda value to evaluate next, λn+1, we maximize an acquisition function a(λ)
that balances exploration of the search space (high σn) and exploitation (high µn):

1. Expected Improvement (EI):
Let f+

n = maxj≤n R̂j . Then

EI(λ) = Ef∼N (µn,σ2
n)
[max{f − f+

n , 0}] = (µn − f+
n)Φ(z) + σnϕ(z), (43)

where z = (µn − f+
n)/σn, and Φ, ϕ are the standard Normal CDF/PDF.

2. Upper Confidence Bound (UCB):

UCB(λ) = µn(λ) + βnσn(λ),

with βn chosen (e.g. βn =
√

2 log(n2π2/6δ)) to guarantee sublinear regret.

We demonstrate a run using SDXL aligned at β = 500 below. We leave this as an interesting avenue
to work on in the future.

Figure 8: DeRaDiff + Bayesian optimization used to find the optimal regularization strength using
an SDXL anchor model aligned at β = 500

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2 1D Bayesian Optimization for Global λ Selection

Require: Domain Λ = [0, 1], budget T , initial design size n0, reward evaluator R(·)
Ensure: Best weight λ∗ and estimate J(λ∗)

1: Initial Design:
2: Sample {λi}n0

i=1∼Uniform(Λ)
3: for i = 1 . . . n0 do
4: Generate batch {xi,j} from pλi

5: Compute R̂i=
1

|{xi,j}|
∑

j R(xi,j)

6: end for
7: Fit GP surrogate on {(λi, R̂i)}n0

i=1
8: for t = n0 + 1 . . . T do
9: Compute posterior mean µt−1(λ) and variance σ2

t−1(λ)
10: Select next point via 1-D line search

λt = argmax
λ∈Λ

EI(λ | µt−1, σt−1)︸ ︷︷ ︸
or UCB

11: Generate batch from pλt
, compute R̂t

12: Append (λt, R̂t) to data and update GP
13: end for
14: return λ∗ = argmax

i≤T
R̂i

A.6 ADDITIONAL EXPERIMENTS

A.6.1 A FINE GRAINED EXAMINATION

In this section, we train further β values in the interesting region of 100 ≤ β ≤
1500 where the human appeal rises fastest. Formally, we sample the following β values:
250, 500, 750, 1000, 1250, 1500, 2000 and evaluate the performance of DeRaDiff on PickScore us-
ing the experimental method detailed in section 5.1:

Figure 9: Line graphs for the average PickScore rewards gained by SDXL models realigned from
scratch and also from DeRaDiff using anchor SDXL models with β = 750 (left plot) and β = 1000
(right plot) regularization strengths.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We see that this demonstrates a consistent increase in the perceived human appeal (measured via
PickScore) for both DeRaDiff approximations and as well as for models that were realigned entirely
scratch showing that DeRaDiff can faithfully re-approximate models realigned entirely from scratch.

A.6.2 UNDOING REWARD HACKING

To demonstrate the capability of undoing reward hacking we use three reward hacked models.
Namely, we use the SDXL models aligned at β = 250 (severely reward hacked), β = 500 (moder-
ately reward hacked), β = 750 (mildly reward hacked). We use a β = 2000 model as our reference
model that is healthy (i.e. not reward hacked). Since reward hacking manifests itself as drastic dis-
tributional changes in contrast, vibrancy, colour, we use the Fréchet Inception Distance to measure
the degree of reward hacking and the extent to which DeRaDiff undoes reward hacking. To this end,
we sample a batch of 1000 prompts from a combined dataset of HPSv2 and Partiprompts. Next,
we measure the FID score between the outputs of the reward hacked models on these 1000 prompts
giving rise to an average FID score for each reward-hacked model (in comparison to the healthy
β = 2000 model). Next, for each reward hacked model, we use it as an anchor to re-approximate
the β = 2000 model and measure the average FID score. For each model, the difference in its
respective FID scores will measure the extent of undoing reward hacking.

Figure 10: DeRaDiff successfully undoes reward hacking

Table 3: DeRaDiff undoes reward-hacking measured by FID (lower is better).

Model (reward-hacked) FID (reward hacked model
against β = 2000)

FID (DeRaDiff approx.
against β = 2000)

∆
(abs)

∆
(%)

Severely reward-hacked (β = 250) 72.98 50.71 22.27 30.50
Moderately reward-hacked (β = 500) 61.61 47.13 14.48 23.50
Mildly reward-hacked (β = 750) 50.04 48.43 1.61 3.20

Thus we see that DeRaDiff is capable of undoing reward hacking and this effect of reward hacking
is much more pronounced in models that are severely reward hacked. In fig. 11 we also provide
more qualitative examples of how DeRaDiff can even undo extreme reward hacking.

A.7 DETAILED EXPERIMENTAL SETUP

For our experiments, we obtain public releases of Stable Diffusion 1.5 (SD1.5) from
runwayml/stable-diffusion-v1-5 and Stable Diffusion XL 1.0 (SDXL) from
stabilityai/stable-diffusion-xl-base-1.0 . We align them using DiffusionDPO
(Wallace et al., 2023) on the Pick-a-Pic v1 dataset (Kirstain et al., 2023). Each alignment is per-
formed on 2x NVIDIA A-100 80GB GPUs. The exact hyperparameters we used are as follows:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: DeRaDiff undoes reward hacking For each panel, left = image from SDXL model
aligned at β = 250 (severely reward-hacked), center = DeRaDiff approximating an SDXL model
aligned at β = 2000 using the reward hacked SDXL anchor aligned at β = 250, right = reference
image from an SDXL model aligned at β = 2000. The image details and style are successfully
recovered by DeRaDiff.

Table 4: Aligning Hyperparameters for SDXL and SD1.5)

Parameter SDXL SD1.5

Pretrained VAE madebyollin/sdxl-vae-fp16-fix —
GPUs 2 1
Per-device batch size 1 1
Gradient accumulation 64 64
Effective global batch sizea 128 64
Dataloader workers 16 16
Max train steps 30000 2000
LR scheduler constant with warmup constant with warmup
LR warmup steps 200 500
Learning rate 1× 10−8 1× 10−8

a Effective global batch size = NGPUs × train batch size × gradient accumulation steps. Thus SDXL:
2× 1× 64 = 128, SD1.5: 1× 1× 64 = 64.

Moreover, we use the Euler Ancestral Discrete scheduler for both SDXL and SD1.5. We use 50
denoising steps for both SDXL and SD1.5. Moreover, we use a guidance scale of 5 for SDXL and
7.5 for SD1.5

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.8 METRICS USED FOR DETAILED STATISTICAL ANALYSIS

In this section, we provide all numerical values of original and approximated metrics and we also
give a detailed statistical analysis for each.

Metric Formula Meaning / interpretation

Mean absolute error
(MAE)

MAE =
1

n

n∑
i=1

|yi − xi| Average magnitude of the errors (un-
signed). Provides a simple, easy-to-
interpret measure of typical error size.

MAE (bootstrap
mean)

MAEboot =
1

B

B∑
b=1

MAE(b) Average of MAE computed across
bootstrap resamples; indicates stability
of the MAE estimate under resampling.

MAE 95% CI (boot-
strap)

[
MAE2.5%, MAE97.5%

]
2.5th and 97.5th percentiles of the boot-
strap MAE distribution; a 95% interval
expressing sampling uncertainty.

Root mean squared
error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)2 Similr to the MAE but squares errors
first, so it penalizes larger errors more
strongly (sensitive to outliers).

Median absolute er-
ror

MedAbs = median
(
|yi −

xi|
) The median of absolute errors; a robust

measure of a “typical” error that is less
sensitive to outliers.

Bland–Altman mean
difference (bias)

d̄ =
1

n

n∑
i=1

di, di = yi − xi Mean signed difference between pre-
diction and truth.

Bland–Altman SD of
differences

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 Sample standard deviation of the differ-
ences; this simply quantifies the vari-
ability of the errors.

Limits of agreement
(LoA)

LoA = d̄± 1.96 sd Approximate interval containing
∼95% of individual differences (under
approximate normality of differences).
Useful to see practical worst-case error
bounds.

Relative to mean
(original) (%)

Rel(M) = 100 ×
M

x̄orig
, x̄orig =

1

m

m∑
j=1

xorig
j

Expresses a metric M (on the original
scale) as a percentage of the mean of
the original signal. This will help give
n intuitive context for magnitude.

Table 5: Definitions and their interpretations. Here xi denotes the true/original value, yi the approximated
value, n the number of pairs, B bootstrap resamples, and m the number of original observations whose mean
is used for scaling.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.9 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON CLIP

A.9.1 SDXL

Figure 12: Approximated CLIP Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 13: Delta (∆) Between Approximated
CLIP Mean and Actual PickScore Mean

Table 6: Summary error metrics for DeRaDiff approximations for CLIP scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 604 0.430 000 %
MAE (bootstrap mean) 0.001 608 0.431 000 %
MAE 95% CI (bootstrap) 0.001 038 – 0.002 226 0.278 000 – 0.596 000 %
Root mean squared error (RMSE) 0.001 994 0.534 000 %
Median absolute error 0.001 772 0.475 000 %
Bland–Altman mean difference (mean of y − x) −0.001 018 −0.273 000 %
Bland–Altman SD of differences 0.001 775 0.475 000 %
Limits of agreement (mean ± 1.96 SD) −0.004 496 – 0.002 461 −1.204 000 – 0.659 000 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.

Table 7: Summary error metrics for DeRaDiff approximations for CLIP scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.005 014 1.342 690 %
MAE (bootstrap mean) 0.005 069 1.357 464 %
MAE 95% CI (bootstrap) 0.002 202 – 0.008 347 0.589 843 – 2.235 382 %
Root mean squared error (RMSE) 0.007 937 2.125 601 %
Median absolute error 0.001 593 0.426 633 %
Bland–Altman mean difference (mean of y − x) −0.003 733 −0.999 878 %
Bland–Altman SD of differences 0.007 250 1.941 581 %
Limits of agreement (mean ± 1.96 SD) −0.017 943 – 0.010 476 −4.805 378 – 2.805 622 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.9.2 SD1.5

Figure 14: Approximated CLIP Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 15: Delta (∆) Between Approximated
CLIP Mean and Actual CLIP Mean

Table 8: Summary error metrics for DeRaDiff approximations for CLIP scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 557 0.447 532 %
MAE (bootstrap mean) 0.001 553 0.446 387 %
MAE 95% CI (bootstrap) 0.000 934 – 0.002 268 0.268 478 – 0.651 936 %
Root mean squared error (RMSE) 0.002 070 0.594 985 %
Median absolute error 0.001 137 0.326 711 %
Bland–Altman mean difference (mean of y − x) −0.000 399 −0.114 728 %
Bland–Altman SD of differences 0.002 103 0.604 310 %
Limits of agreement (mean ± 1.96 SD) −0.004 520 – 0.003 722 −1.299 176 – 1.069 720 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.347 938. Limits of agreement are computed as mean difference ±1.96×SD.

Table 9: Summary error metrics for DeRaDiff approximations for CLIP scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.007 215 2.073 730 %
MAE (bootstrap mean) 0.007 302 2.098 770 %
MAE 95% CI (bootstrap) 0.002 903 – 0.013 009 0.834 311 – 3.738 885 %
Root mean squared error (RMSE) 0.012 594 3.619 573 %
Median absolute error 0.002 391 0.687 314 %
Bland–Altman mean difference (mean of y − x) −0.006 824 −1.961 343 %
Bland–Altman SD of differences 0.010 956 3.148 884 %
Limits of agreement (mean ± 1.96 SD) −0.028 298 – 0.014 650 −8.133 156 – 4.210 469 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.347 938. Limits of agreement are computed as mean difference ±1.96×SD.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.10 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON HPS

A.10.1 SDXL

Figure 16: Approximated HPS Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 17: Delta (∆) Between Approximated
HPS Mean and Actual HPS Mean

Table 10: Summary error metrics for DeRaDiff approximations for HPS scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 770 0.264 808 %
MAE (bootstrap mean) 0.000 770 0.265 098 %
MAE 95% CI (bootstrap) 0.000 501 – 0.001 053 0.172 547 – 0.362 301 %
Root mean squared error (RMSE) 0.000 949 0.326 627 %
Median absolute error 0.000 680 0.233 938 %
Bland–Altman mean difference (mean of y − x) −0.000 640 −0.220 152 %
Bland–Altman SD of differences 0.000 726 0.249 753 %
Limits of agreement (mean ± 1.96 SD) −0.002 063 – 0.000 783 −0.709 668 – 0.269 364 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.290 636. Limits of agreement are computed as mean difference ±1.96×SD.

Table 11: Summary error metrics for DeRaDiff approximations for HPS scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.004 041 1.390 437 %
MAE (bootstrap mean) 0.004 079 1.403 635 %
MAE 95% CI (bootstrap) 0.001 746 – 0.006 886 0.600 884 – 2.369 320 %
Root mean squared error (RMSE) 0.006 582 2.264 714 %
Median absolute error 0.001 539 0.529 484 %
Bland–Altman mean difference (mean of y − x) −0.003 481 −1.197 693 %
Bland–Altman SD of differences 0.005 782 1.989 560 %
Limits of agreement (mean ± 1.96 SD) −0.014 814 – 0.007 853 −5.097 232 – 2.701 845 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.290 636. Limits of agreement are computed as mean difference ±1.96×SD.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.10.2 SD1.5

Figure 18: Approximated HPS Means with all
(Row Anchor β → Column Target β) with Delta
(∆)

Figure 19: Delta (∆) Between Approximated
HPS Mean and Actual CLIP Mean

Table 12: Summary error metrics for DeRaDiff approximations for HPS scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.001 175 0.425 179 %
MAE (bootstrap mean) 0.001 172 0.424 093 %
MAE 95% CI (bootstrap) 0.000 654 – 0.001 781 0.236 744 – 0.644 486 %
Root mean squared error (RMSE) 0.001 625 0.587 958 %
Median absolute error 0.000 744 0.269 095 %
Bland–Altman mean difference (mean of y − x) −0.001 175 −0.425 179 %
Bland–Altman SD of differences 0.001 161 0.420 353 %
Limits of agreement (mean ± 1.96 SD) −0.003 451 – 0.001 102 −1.249 071 – 0.398 713 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.276 300. Limits of agreement are computed as mean difference ±1.96×SD.

Table 13: Summary error metrics for DeRaDiff approximations for HPS scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.002 386 0.863 447 %
MAE (bootstrap mean) 0.002 415 0.873 887 %
MAE 95% CI (bootstrap) 0.000 986 – 0.004 310 0.356 733 – 1.560 056 %
Root mean squared error (RMSE) 0.004 179 1.512 308 %
Median absolute error 0.000 824 0.298 315 %
Bland–Altman mean difference (mean of y − x) −0.001 569 −0.567 982 %
Bland–Altman SD of differences 0.004 009 1.450 790 %
Limits of agreement (mean ± 1.96 SD) −0.009 426 – 0.006 287 −3.411 531 – 2.275 566 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.276 300. Limits of agreement are computed as mean difference ±1.96×SD.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.11 STATISTICAL ANALYSIS OF DERADIFF’S PERFORMANCE ON PICKSCORE

A.11.1 SDXL

Figure 20: Approximated PickScore Means with
all (Row Anchor β → Column Target β) with
Delta (∆)

Figure 21: Delta (∆) Between Approximated
PickScore Mean and Actual PickScore Mean

Table 14: Summary error metrics for DeRaDiff approximations for PickScore scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 355 0.153 864 %
MAE (bootstrap mean) 0.000 353 0.153 119 %
MAE 95% CI (bootstrap) 0.000 238 – 0.000 498 0.103 446 – 0.216 058 %
Root mean squared error (RMSE) 0.000 441 0.191 478 %
Median absolute error 0.000 283 0.122 888 %
Bland–Altman mean difference (mean of y − x) 0.000 063 0.027 498 %
Bland–Altman SD of differences 0.000 452 0.196 144 %
Limits of agreement (mean ± 1.96 SD) −0.000 823 – 0.000 950 −0.356 944 – 0.411 939 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.230 509. Limits of agreement are computed as mean difference ±1.96×SD.

Table 15: Summary error metrics for DeRaDiff approximations for PickScore scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.004 903 2.126 836 %
MAE (bootstrap mean) 0.004 939 2.142 507 %
MAE 95% CI (bootstrap) 0.002 544 – 0.007 666 1.103 610 – 3.325 670 %
Root mean squared error (RMSE) 0.007 102 3.080 951 %
Median absolute error 0.003 058 1.326 521 %
Bland–Altman mean difference (mean of y − x) −0.004 644 −2.014 716 %
Bland–Altman SD of differences 0.005 562 2.412 729 %
Limits of agreement (mean ± 1.96 SD) −0.015 545 – 0.006 257 −6.743 664 – 2.714 232 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.373 395. Limits of agreement are computed as mean difference ±1.96×SD.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A.11.2 SD1.5

Figure 22: Approximated PickScore Means with
all (Row Anchor β → Column Target β) with
Delta (∆)

Figure 23: Delta (∆) Between Approximated
PickScore Mean and Actual PickScore Mean

Table 16: Summary error metrics for DeRaDiff approximations for PickScore scores when λ ∈ [0, 1]

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.000 718 0.331 616 %
MAE (bootstrap mean) 0.000 717 0.331 069 %
MAE 95% CI (bootstrap) 0.000 336 – 0.001 163 0.155 070 – 0.537 347 %
Root mean squared error (RMSE) 0.001 097 0.506 768 %
Median absolute error 0.000 331 0.153 080 %
Bland–Altman mean difference (mean of y − x) −0.000 709 −0.327 547 %
Bland–Altman SD of differences 0.000 867 0.400 259 %
Limits of agreement (mean ± 1.96 SD) −0.002 408 – 0.000 989 −1.112 055 – 0.456 961 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.216 494. Limits of agreement are computed as mean difference ±1.96×SD.

Table 17: Summary error metrics for DeRaDiff approximations for PickScore scores when λ > 1

Metric Value Relative to mean(original) (%)

Mean absolute error (MAE) 0.002 255 1.041 818 %
MAE (bootstrap mean) 0.002 281 1.053 707 %
MAE 95% CI (bootstrap) 0.000 973 – 0.003 959 0.449 230 – 1.828 517 %
Root mean squared error (RMSE) 0.003 786 1.748 630 %
Median absolute error 0.000 787 0.363 318 %
Bland–Altman mean difference (mean of y − x) −0.001 573 −0.726 613 %
Bland–Altman SD of differences 0.003 564 1.646 340 %
Limits of agreement (mean ± 1.96 SD) −0.008 559 – 0.005 413 −3.953 440 – 2.500 213 %

Notes: Value columns report absolute errors on the same scale as the original data. Relative column uses
mean(original) = 0.216 494. Limits of agreement are computed as mean difference ±1.96×SD.

A.12 LLM USAGE

This research idea was conceived solely and only by the authors by identifying gaps in the existing
research literature. LLMs were NOT used for any research ideation. LLMs were only used to polish
writing, help in plotting graphs, retrieve known facts and fix any grammatical errors that the authors
missed.

30

	Introduction
	Related Work
	Background
	Method
	Realignment & stepwise approximation
	Denoising Time Realignment
	Algorithm

	Experiments
	Experimental Setup
	PickScore
	HPS v2
	CLIP

	Qualitative Analysis

	Compute Savings
	Conclusion
	Ethical Statement
	Reproducibility Statement
	Appendix
	Appendix
	Re-expression of Realigned model
	Unique Global Optimum for the Continuous Case
	Proof of Denoising Time Realignment
	Proof of Denoising Time Realignment when considering a Linear Combination of Multiple Rewards
	An End-to-End process of finding the globally optimal *
	Gaussian Process Surrogate
	Acquisition Function

	Additional Experiments
	A fine grained examination
	Undoing Reward Hacking

	Detailed Experimental Setup
	Metrics used for Detailed Statistical Analysis
	Statistical analysis of DeRaDiff's performance on CLIP
	SDXL
	SD1.5

	Statistical analysis of DeRaDiff's performance on HPS
	SDXL
	SD1.5

	Statistical analysis of DeRaDiff's performance on PickScore
	SDXL
	SD1.5

	LLM Usage

