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ABSTRACT

Keeping large foundation models up to date on latest data is inherently expensive.
To avoid the prohibitive costs of constantly retraining, it is imperative to contin-
ually train these models. This problem is exacerbated by the lack of any large
scale continual learning benchmarks or baselines. We introduce the first set of web-
scale Time-Continual (TiC) benchmarks for training vision-language models: TIC-
DataComp, TIC-YFCC, and TIC-RedCaps. TIC-DataComp, our largest dataset,
contains over 12.7B timestamped image-text pairs spanning 9 years (2014–2022).
We first use our benchmarks to curate various dynamic evaluations to measure tem-
poral robustness of existing models. We show OpenAI’s CLIP (trained on data up
to 2020) loses « 8% zero-shot accuracy on our curated retrieval task from 2021–
2022 compared with more recently trained models in OpenCLIP repository. We
then study how to efficiently train models on time-continuous data. We demon-
strate that a simple rehearsal-based approach that continues training from the last
checkpoint and replays old data reduces compute by 2.5ˆ when compared to the
standard practice of retraining from scratch1.

1 INTRODUCTION

Large multimodal foundation models (Bommasani et al., 2021) have offered unprecedented advance-
ments in image-generation and zero-shot generalization, and have led to a paradigm shift in multi-
modal learning, e.g., CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022), and Stable Dif-
fusion (Rombach et al., 2022). These foundation models are typically trained on large web-scale
datasets which are fixed and static in nature. For example, CLIP’s training data contains 400 million
image-text pairs, and Stable Diffusion was trained on LAION-2B dataset (Schuhmann et al., 2022).
In reality, however, these models must operate in a dynamic environment, where the world is in a
state of constant change. For instance, the internet continually evolves, with petabytes of new data
being added daily (Wenzek et al., 2019; Wiener & Bronson, 2014). It remains unclear how legacy
models, e.g., OpenAI’s CLIP models which were trained on internet-scale data up until 2020, work
on future data and whether they even require any re-training to adapt to time-evolving data.

We begin by comparing robustness of OpenAI’s CLIP models to others in OpenCLIP repository that
are trained on more recently curated web-datasets (e.g., LAION-5B, DataComp) containing data up
until 2022 (Ilharco et al., 2021). Since there is no existing benchmark to understand robustness to time-
evolving vision-language data, we curate dynamic classification and retrieval tasks for years 2014–
2022 and evaluate different CLIP models (see Sec. 2.2 for our evaluation tasks). We make an intriguing
observation that OpenAI models exhibit a significant gap in retrieval performance on data from 2021–
2022 compared with 2014–2016 whereas OpenCLIP models retain their performance. In contrast,
standard evaluations such as accuracy on ImageNet distribution shifts paint an incomplete picture that
OpenAI’s CLIP models are slightly more robust than OpenCLIP models (Fig. 1). Our findings not
only demonstrate the critical need for models to adapt and evolve alongside dynamic data distributions,
but also underscores the limitations of relying solely on static benchmarks (e.g. ImageNet).

One naive but common practice for adapting to time-evolving data is to train a new CLIP model
from scratch every time we obtain a new pool of image-text data. This practice has its rationale:

˚Work done during an internship at Apple.
1Code is available at https://github.com/apple/ml-tic-clip.
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Figure 1: (Left, Middle) OpenAI models show less zero-shot robustness on retrieval task from
2021–2022. OpenCLIP models and OpenAI models have similar robustness on standard benchmarks.
However, OpenAI models show less robustness on our retrieval task when compared with recent
models in OpenCLIP repository, highlighting susceptibility to a time-evolving data distribution (Right)
Simple continual training baseline is computationally efficient and competitive to retraining
from scratch. Different points denote models trained sequentially on our TIC-DataComp (L) as data
arrives over time. Warm start training with previous checkpoint and replaying all old data, performs
similar to Oracle which trains from scratch every time new data arrives, by using 2.7ˆ less compute.

initiating training from a pre-existing model can make it difficult to change the model’s behavior in
light of new data (Ash & Adams, 2020; Achille et al., 2018; Liu et al., 2023). However, training
foundation models from scratch demands significant computational resources and is often infeasible
to repeat frequently. For example, ViT-g-14 in Schuhmann et al. (2022); Cherti et al. (2022) was
trained for 240K A100 GPU hours which is approximately one month on 400 GPUs. The prevailing
training guidelines centered around scaling laws for CLIP training have only looked at training from
scratch (Cherti et al., 2023). This leads to a pivotal question: How can we continuously update models
as the data distribution evolves over time given computational constraints?

There exists a vast literature on continual learning, with a focus on adapting models to dynamic
environments (Parisi et al., 2019; Hadsell et al., 2020; De Lange et al., 2021). Traditionally, this
field concentrated on synthetic incremental benchmarks that lack natural evolution between tasks,
and hence, continual learning methods are seldom used in real-world scenarios (Cossu et al., 2022;
Lin et al., 2021). In contrast, recent works focusing on continual learning methods for CLIP models,
primarily target improving performance on a single or a sequence of disjoint downstream tasks (Ding
et al., 2022; Zhou et al., 2023b; Zheng et al., 2023; Ilharco et al., 2022). While some recent works
have started to address these problems, existing benchmarks are comparatively much smaller in scale,
or lack paired image-text data (Ni et al., 2023; Lin et al., 2021). Simply put, there is a scarcity of work
focusing on continual training of CLIP models on naturally evolving data with time at web-scale.

We take the first step towards Time-Continual (TIC) training of CLIP models where data distribution
evolves naturally over time (overview in Fig. 2). We introduce TIC-DataComp, a new benchmark for
Time-Continual training of CLIP models, which we create by appending “crawl time” information
to existing CommonPool dataset (Gadre et al., 2023). We also repurpose other web-scale datasets
gathered from diverse sources, such as Reddit and Flickr. Specifically, we curate TIC-YFCC and TIC-
RedCaps by leveraging time information available in YFCC (Thomee et al., 2016) and Redcaps (Desai
et al., 2021) respectively. The primary objective of our study on this benchmark is to develop continual
learning methods that operate within a constrained computational budget (say C) each time a fresh
batch of data becomes available. These methods compete with an Oracle, which starts training from
scratch every time new data arrives, utilizing a cumulative computational budget.

To assess models trained in our TIC-CLIP framework, we evaluate models on our proposed dynamic
evaluation tasks that evolve with time along with 28 standard classification and retrieval tasks
including ImageNet (Krizhevsky et al., 2012), ImageNet distributions shifts, and Flickr (Plummer
et al., 2015), in a zero-shot manner following the work of Gadre et al. (2023); Radford et al. (2021).

Finally, we develop continual learning methods on our benchmarks and perform over two hundred
experiments with different baselines that utilize previous checkpoints (e.g., warm start, patching,
and distillation), replay buffers, and learning rate schedules. Our findings highlight a key takeaway:
Cumulative method that warm starts training with the latest checkpoint and replays all old data,
achieves performance competitive to an Oracle while being 2.7ˆ computationally more efficient.
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Figure 2: Experimental protocol on our proposed continual benchmarks. (A) Combine new and
old data given buffer constraints. (B) Continually train a model with a compute budget (say C) either
by starting with previous checkpoint or from scratch. (C) Evaluate models on standard datasets and
our proposed dynamic datasets. Comparison with other benchmarks in Appendix A.

Additionally, our experiments demonstrate interesting trade-offs between buffer sizes for static
and dynamic performance and provide valuable insights into learning rate schedules for sequential
training. Our results span over various dataset scales (from 11M samples to 3B) and highlight trends
with different methods that are largely consistent across scales.

To make our benchmarks accessible, we publicly release the code and the time information we
collect on top of existing datasets here. Our work is just an initial step towards continual training of
foundation models, and we believe our research would spur more attention to this understudied area.

2 TIC-CLIP: BENCHMARKS AND EXPERIMENTAL PROTOCOL

In this section, we introduce our benchmark (Fig. 2) focusing on the training of a vision-language
foundation model with the Contrastive Language Image Pretraining (CLIP) (Radford et al., 2021))
objective. Notably, we train on image-text data that arrives sequentially unlike the conventional image-
text datasets which are static (e.g. WiT in CLIP, DataComp in Gadre et al. (2023)). We curate TIC-
DataComp, TIC-YFCC, and TIC-RedCaps that are image-text pairs sourced from the internet which
we augment with auxiliary time information. We also introduce dynamic evaluation tasks to assess
performance of our continually trained models on data evolving with time. The goal of a learner is to
train a deployable model at each step as new data becomes available with a fixed compute budget.

2.1 BENCHMARK DESIGN: HOW WE CREATE TIME-CONTINUAL DATASETS?

To instantiate continual training of CLIP, we extend existing image-text datasets with time information
collected from the original source of the datasets. Our largest dataset is TIC-DataComp which
contains 12.7 billion image-text pairs with “crawl-time” metadata. We create this dataset on top of the
existing DataComp benchmark (Gadre et al., 2023). We also create TIC-YFCC and TIC-RedCaps
on top of existing YFCC15M (Thomee et al., 2016; Radford et al., 2021) and Redcaps (Desai et al.,
2021) datasets to highlight that our findings are broadly applicable to carefully curated datasets from
diverse sources such as Reddit and Flickr. While time-related metadata is absent in the DataComp
benchmark, it is available in the original releases of YFCC and Redcaps. Nevertheless, to the best of
our knowledge, no prior work utilizes such time information for continual training of CLIP models.
We show dataset statistics for all datasets, e.g., number of examples in each year in App. C.3.

TIC-DataComp We collect timestamps for the CommonPool dataset introduced in DataComp
which contains 12.7B image-text pairs (not including 0.1B inaccessible ones). This dataset stands
as the largest public image-text dataset to date. The source of DataComp is Common Crawl, which
periodically releases web-crawled data snapshots, typically on a monthly basis since 2014 with new
and updated webpages. To construct TIC-DataComp, we augment each image-text pair in DataComp
with their first timestamp. We followed the same construction process as DataComp but retained only
the image-text pair found in the earliest snapshot during the deduplication stage. This process provides
timestamps at the granularity of months, spanning years 2014–2022. See App. C.7 for details on the
construction process. We note that while this augmented time information may contain some noise, on
average, we find it to be a reasonably accurate proxy for the upload time of web pages (see App. C.7).
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Figure 3: Distribution of examples changes from 2014 to 2022 in our dynamic evaluation tasks.
(Left) Samples for text to image retrieval. For new timestamps, images from novel concepts appear
(e.g., COVID-19). (Right) Samples from our classification task for 4 categories. We observe that not
only objects evolve over time but also images from recent timestamps are captured more in the wild.

Although our benchmark contains time information at the granularity of months, we limit our
experiments to granularity of years by consolidating data for all months in a year. Similar to
DataComp, our benchmark has an inclusive design, accommodating participants with varying levels
of computational resources. In particular, we experiment with medium, large, and xlarge sizes
from CommonPool. Gadre et al. (2023) leverage different filtering strategies to select the training
subset. We are concerned that filtering techniques bias the selected training data. In App. C.1, we
provide preliminary evidence that “Bestpool” filtering that uses off-the-shelf CLIP models, indeed
biases the selected data to old time steps. Nevertheless, to highlight significance of our findings even
for state-of-the filtering techniques, we experiment with both Bestpool and Basic filtering (no CLIP
filtering) at xlarge scale. For large and medium scales, we only experiment with Basic filtering.

TIC-YFCC We experiment with the 15M subset of YFCC100M (Thomee et al., 2016), namely
YFCC15M, selected by OpenAI (Radford et al., 2021). This filtering retains only images with natural
text in captions. YFCC100M contains data from years 2008–2014 and was originally released with
upload timestamps. We use this information to create continual splits at the granularity of years.

TIC-RedCaps RedCaps contains 12M image-caption pairs from manually curated set of subreddits
across 2011–2020 (Desai et al., 2021). We use the creation timestamps of the posts to create splits
for continual learning. Similar to the other two datasets, we experiment at the granularity of years.

2.2 EVALUATION TESTBED

Dynamic tasks We leverage the temporal information in our benchmarks to create dynamic
evaluation tasks. Here, the test data comprises samples varying over years as the world evolved.
For our largest dataset which is TIC-DataComp, we create dynamic tasks for both retrieval and
classification as described below. (examples in Figure 3 and additional examples in App. C.5):

I. Dynamic retrieval task: To create a retrieval task, we sample a batch of IID image-text pairs from
different timestamps and evaluate text retrieval performance given the corresponding image (similarly,
image retrieval given the corresponding text). We refer to the dataset as TIC-DataComp-Retrieval.

II. Dynamic classification task: We also create a classification dataset TIC-DataComp-Net with Ima-
geNet classes from CommonPool and augmented with timestamps. Inspired by LAIONNet (Shirali
& Hardt, 2023), we first filter examples where the corresponding caption contains one and only one
of the synsets of ImageNet. Then we only retain examples where the similarity between ImageNet
synset definition and the caption exceeds a threshold of 0.5. We evaluate the similarity using an off-
the-shelf sentence embedding model (Reimers & Gurevych, 2019). Crucially, unlike LAIONNet, we
do not filter the image-text pairs with CLIP similarity scores to avoid biasing the selection process.
We describe the construction process in more details in App. C.5. On TIC-DataComp-Net, we report
average accuracy over all classes and over selected nodes (e.g., motor vehicles) at each time step.

Similarly, we create retrieval tasks for TIC-YFCC and TIC-RedCaps. Note that we remove the
extracted image-text pairs for dynamic retrieval and classification tasks from the training sets.
Evaluations on dynamic tasks are done in a zero shot manner.
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Static tasks We also evaluate models on numerous classification and retrieval tasks in a zero-
shot manner as in Radford et al. (2021). In particular, we consider 28 standard tasks: 27 image
classification tasks, e.g., ImageNet and its 6 distribution shifts (e.g., ImageNetv2, ImageNet-R,
ImageNet-Sketch, and Objectnet), datasets from VTAB and Flickr30k retrieval task. We refer to these
as static evaluation tasks. We list all the datasets in App. C.2.

Evaluation metrics We define metrics for classification tasks and retrieval tasks based on accuracy
and Recall@1, respectively. Let T represent the number of time steps for which we have data. For
each training method, we generate a total of T models, each corresponding to the end of training
at a particular time step. For static datasets (e.g., ImageNet), we report average performance of T
models. However, when dealing with dynamic evaluation datasets, we assess the performance of
each of the T models on evaluation datasets collected at all time steps. Consequently, for each model
and a dynamic evaluation task, we obtain T performance values. We represent these values using the
performance matrix E , where each entry Ei,j signifies the performance of the model obtained after
observing training data at time step i when evaluated on a dataset from time step j. The performance
matrix E can also be succinctly summarized using three standard metrics commonly employed in
continual learning evaluations (Lin et al., 2021; Díaz-Rodríguez et al., 2018):
• In-domain performance: average performance at each training time step (i.e., the diagonal of E)
• Backward transfer: average on time steps before each training step (i.e., the lower triangular of E)
• Forward transfer: average on time steps following each training step (i.e., the upper triangular of E)

Sometimes, the metrics described above can cause the backward transfer metric to be influenced
by later evaluation time steps, biasing the backward transfer metric (refer to App. F for details).
Therefore, in App. F, we present results using revised metrics that mitigate this issue.

While the static tasks capture performance on standard benchmarks, dynamic tasks capture problems
due to distribution shift (for forward transfer) and forgetting (for backward transfer). The goal in our
benchmark is to develop continual learning methods that maximize performance on static tasks while
simultaneously optimizing for performance on dynamic tasks.

2.3 EXPERIMENTAL PROTOCOL FOR TRAINING

Streaming protocol We follow a streaming protocol, where data is progressively revealed to the
learner in large batches with the objective of achieving a deployable model as early as possible after
each batch arrives. We conduct experiments with data streaming at the granularity of years and our
benchmark supports future research at the granularity of months. Additionally, as the amount of
data from earlier time steps is limited (see App. C.3), we aggregate data from the earlier time steps
into a single larger batch and timestamp it by the latest year in the range. After this aggregation, we
have 7 time steps for TIC-DataComp (2016–2022) and 4 for both TIC-YFCC (2011–2014) and TIC-
RedCaps (2017–2020). While the number of image-text pairs revealed at each time step are of similar
orders of magnitude, the exact number does vary across steps and we do not artificially alter the sizes.

Memory budget We allow methods to use the last model checkpoint at each step as the cost of
keeping one checkpoint per month is often negligible. In contrast, the cost of retaining old data can be
high and might not be permitted due to data expiration policies. Thus, along with studying methods
that retain all old data, we also explore strategies that restrict data persistence (see Sec. 3 for details).

Compute budget To ensure a fair comparison between methods, we establish a consistent total
compute budget, quantified in terms of Multiply-Accumulate Operations (MACs), and allocate it
evenly for training at every time step. Unless specified otherwise, for all methods except Oracle and
LwF, we use the same compute budget. For experiments on TIC-DataComp, we refer to compute
configurations in DATACOMP for overall compute. For TIC-RedCaps and TIC-YFCC, we use
compute of order medium scale in TIC-DataComp. Compute budget details are in App. C.4.

2.4 ANALYZING DISTRIBUTION SHIFTS IN THE CONSTRUCTED BENCHMARKS

TIC-DataComp analysis through the lens of constructed evaluation tasks First, we qualitatively
analyze the examples in our retrieval and classification dataset (Fig. 3). We observe that over time,
in the retrieval task, new concepts like COVID-19 emerge. Likewise, certain ImageNet classes
evolve, such as the shift from “masquerad” masks to “surgical/protective” masks in their definitions.
Moreover, as time evolves, we observe that image quality improves and more images tend to appear in
the wild in contrast to centered white background images. Next, we compare performance of OpenAI
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and OpenCLIP models on our datasets. Here, we only present the main findings, and delegate a
detailed discussion to App. C.6. We observe a significant performance gap between OpenAI and
OpenCLIP models on our dynamic retrieval task (Fig. 1). This gap widens notably on retrieval queries
where captions mention COVID-19. On the other hand, OpenAI and OpenCLIP models exhibit
similar robustness for retrieval on data coming from Flickr highlighting that data from some domains
do not exhibit shifts that cause performance drops. For our classification task, we observe a very
small drop (« 1%) when averaged across all categories. However, we observe a substantial gap on
specific subtrees in ImageNet. For example, classes in “motor vehicle” subtree show an approximate
4% performance drop, when comparing OpenAI and OpenCLIP models. These findings highlight
that while overall ImageNet classes may remain timeless, certain categories tend to evolve faster than
others. Our qualitative and quantitative analysis on TIC-DataComp clearly highlights evolution of
distributions and captures different properties than standard benchmarks.

Quantitative analysis on TIC-YFCC We analyze TIC-YFCC using off-the-shelf sentence and
image encoders. We first embed images from different time steps with an OpenAI CLIP encoder
and then compute Frechet Inception Distance (FID; Seitzer (2020)). As time progresses, we observe
that FID distance increases with respect to data from first time step (Fig. 18 in App. C.6). Similarly,
we use pretrained sentence transformer to extract top-5 categories from Wordnet Nouns for each
caption. We observe that the TV distance over distribution of WordNet Nouns evolves over time
when compared to data from the first time step. More details in App. C.6.

3 TIC-CLIP: HOW TO CONTINUALLY TRAIN CLIP MODELS?

Table 1: Table summarizing our methods. D: data
size in each step, T total time steps, t: current time
step, C: compute budget (iterations).

Method Each Step Total
Train Size Init. Compute Compute

Cumulative-All tD Last C TC
Cumulative-Exp 2D Last C TC
Cumulative-Equal 2D Last C TC
Sequential D Last C TC
Restart tD Rand C TC
Patching D Last Patch C TC
LwF D Last 1.2 ˆ C 1.2 ˆ TC

Oracle˚˚ tD Rand tC pT`1qT
2 C

In this section, we lay out different methods
specifically focus on the following questions
(Tab. 1): (i) How to utilize/replay data from pre-
vious time steps; (ii) How to leverage previously
trained model checkpoints? (iii) What should be
the training/optimization procedure?

Data replay methods initialized from the last
checkpoint demonstrate strong performance on
standard continual learning benchmarks (Sec. 5).
We consider replay methods with/without initial-
ization from last checkpoint(s):

I. Oracle: Train a CLIP model from scratch (i.e., random initialization) on all image-text data
received till time t using a large compute budget of tˆC. Oracle represents a prohibitively expensive
method that is the most common practice in training large-scale foundation models. The goal of other
methods is to perform as close as possible to the Oracle within their limited budget.

II. Cumulative: Train each model initialized from last checkpoint on the union of all data up to t with
compute budget C. This method is analogous to experience replay (Robins, 1995; Hayes et al., 2019)
but with substantially larger buffers than common in the continual learning literature. Given a fixed
buffer size for each past step, we observe minimal to no difference between random subsampling and
other strategies. After sampling the replay data, we randomly shuffle it together with new data for
training. We consider the following strategies for sampling buffer sizes per step:
• -All: Replay all previous data.
• -Exp: Replay a buffer of size D and reduce the amount of old data by half at each step. For

example, at 3-rd time step, we retain D{2, D{2 of old data and at 4-th, we retain D{4, D{4, D{2 of
old data. Along with D data from current step, this method trains on at most 2D data in each step.

• -Equal: Replay a buffer of size D but split the buffer equally among all previous years. For
example, at 4-th step, we retain D{3, D{3, D{3 of old data. Along with D data from current time
step, this method trains on at most 2D data in each step.

III. Sequential: Train only on the new data starting from the best checkpoint of the previous time
step. Sequential is similar to Cumulative but without any replay buffer.

IV. Restart: Train each model from scratch (i.e., random initialization) on all the data till time t for
compute budget C. Restart is similar to the Oracle but with compute budget C at each time step and
similar to Sequential but with random initialization. As such, Restart helps us understand the forward
transfer and loss of plasticity in our benchmark (Ash & Adams, 2020; Dohare et al., 2023).
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Table 2: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ denote methods
that violate the compute budget. For static tasks, we tabulate accuracy of the models obtained on the
final timestamp. For dynamic tasks, we tabulate forward/backward transfer and ID performance on
retrieval tasks (Sec. 2.3). For TIC-DataComp (XL), we include results with Bestpool filtering (basic
filtering in Table 5). For all metrics, higher is better.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-YFCC

Restart 3.4 ˆ 1018 5.2 3.6 3.0 12.9 13.2 41.4 18.6
Sequential 3.4 ˆ 1018 17.3 10.5 15.9 21.9 42.2 48.4 23.7
Patching 3.4 ˆ 1018 18.9 11.3 18.5 23.3 44.7 53.4 24.5

Cumulative-Exp 3.4 ˆ 1018 24.1 14.3 20.4 25.9 60.4 60.1 27.1
Cumulative-Equal 3.4 ˆ 1018 23.9 13.8 20.5 26.3 60.4 60.4 27.1

Cumulative-All 3.4 ˆ 1018 29.3 17.6 26.8 29.6 66.4 60.2 27.6
LwF˚ 4.1 ˆ 1018 16.9 9.8 14.7 21.2 36.6 56.0 23.2

Cumulative-All˚ 3.6 ˆ 1018 29.2 17.5 27.4 29.3 66.8 60.3 27.6
Oracle˚˚ 8.5 ˆ 1018 29.2 17.0 25.9 29.0 66.1 61.8 26.9

TIC-RedCaps

Restart 3.4 ˆ 1018 11.7 8.5 3.7 18.4 21.3 25.4 22.4
Sequential 3.4 ˆ 1018 19.3 13.7 6.2 25.8 33.0 33.6 27.5
Patching 3.4 ˆ 1018 21.3 15.2 7.7 26.8 34.8 34.8 27.8

Cumulative-Exp 3.4 ˆ 1018 27.3 19.1 10.5 30.0 44.5 42.0 32.6
Cumulative-Equal 3.4 ˆ 1018 27.8 19.4 10.0 30.5 44.4 42.0 32.6

Cumulative-All 3.4 ˆ 1018 32.2 18.7 14.5 31.7 48.9 43.2 33.4
LwF˚ 4.1 ˆ 1018 21.6 14.8 8.2 27.3 35.4 36.0 28.4

Cumulative-All˚ 3.6 ˆ 1018 32.9 23.7 14.1 32.9 49.0 43.4 33.4
Oracle˚˚ 8.5 ˆ 1018 32.7 22.7 14.3 32.3 48.5 43.1 33.4

TIC-DataComp (M)

Sequential 3.0 ˆ 1018 19.2 16.4 16.4 26.0 25.7 26.4 14.9
Patching 3.0 ˆ 1018 19.3 16.8 18.5 26.4 26.9 25.4 14.5

Cumulative-Exp 3.0 ˆ 1018 22.1 18.4 20.4 28.8 31.7 27.1 15.2
Cumulative-Equal 3.0 ˆ 1018 22.1 18.4 19.2 28.0 31.8 26.8 15.1

Cumulative-All 3.0 ˆ 1018 24.0 20.2 20.9 30.0 33.8 26.4 15.1
LwF˚ 3.8 ˆ 1018 19.2 16.5 17.7 27.0 25.6 26.6 14.9

Cumulative-All˚ 3.9 ˆ 1018 30.0 25.0 28.6 35.1 36.7 28.3 15.5
Oracle˚˚ 1.2 ˆ 1019 25.5 21.2 23.3 30.8 34.9 27.8 15.6

TIC-DataComp (L)

Sequential 2.7 ˆ 1019 44.7 37.4 48.4 45.7 52.6 58.4 41.1
Patching 2.7 ˆ 1019 45.8 38.9 49.7 46.9 55.2 57.5 40.9

Cumulative-Exp 2.7 ˆ 1019 47.3 39.6 50.8 47.6 60.4 58.4 41.4
Cumulative-Equal 2.7 ˆ 1019 47.7 40.3 51.8 47.7 60.9 58.2 41.4

Cumulative-All 2.7 ˆ 1019 48.9 41.3 50.9 48.0 62.1 57.3 41.2
Cumulative-All˚ 4.1 ˆ 1019 53.0 44.3 54.4 51.3 63.0 57.8 41.2

Oracle˚˚ 1.1 ˆ 1020 53.6 44.0 53.9 50.4 64.3 58.6 41.8

TIC-DataComp (XL)
Sequential 2.7 ˆ 1020 66.5 54.2 61.2 61.0 63.1 68.9 56.8

Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 64.8 70.7 68.5 57.1
Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 66.7 71.0 68.6 57.1

Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 65.8 - - -

V. Patching: We use sequential patching from Ilharco et al. (2022). Initialize from a patched model of
last step and train only on the new data. To obtain a patched model at each time step, we apply weight
interpolation with the patched model (if any) trained at time step t ´ 1 and the model trained at time
step t. We tune the mixing coefficients by optimizing average retrieval performance on previous tasks.

VI. LwF: Train only on the new data with a KL divergence penalty between the image-text similarity
matrix of last checkpoint and current model on each batch (Li & Hoiem, 2017; Ding et al., 2022).
See App. E for results with other continual learning methods, e.g., EWC (Kirkpatrick et al., 2017).

Learning rate schedule The defacto Learning Rate (LR) schedule for training CLIP models is an
initial linear increase to a maximum value, i.e., warm up, followed by a cosine decay (Radford et al.,
2021; Gadre et al., 2023). We default to using a cosine LR schedule for each sequential run, resulting
in a cyclic schedule and observe a significant increase in training loss early in subsequent runs when
the LR is high. However, as training progresses, we observe that the increased loss decreases at a
faster rate (when compared to training from scratch) allowing us to train with cyclic schedules. We
discuss this more and explore an alternate learning rate schedule in App. B.5.

Other Training details and hyperparameters Unless specified otherwise, we closely follow the
original CLIP training recipe (Radford et al., 2021). We train the CLIP variant with ViT-B/16 as the
image encoder (Dosovitskiy et al., 2020). All training and hyperparameters can be found in App. D.2.

4 EXPERIMENTS AND MAIN RESULTS

Our main results are in Table 2 and more detailed plots on each dataset are in App. B.1. Recall, our
goal is compete with an Oracle that re-trains from scratch every time new data is observed, both on
dynamic and static tasks, while being computationally efficient. Here, we summarize our key findings:
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Figure 4: (Left) Dynamic and static evaluations rank models differently. Models with similar per-
formance on static datasets, have ą 6% difference on retrieval task from 2021-2022 TIC-DataComp
(L). Different points denote models trained sequentially over time. (Right) Performance of Oracle
on future time steps drops highlighting distribution shift in dataset. Each row evaluates the Ora-
cle trained on TIC-DataComp (L) at a particular time step across all dynamic retrieval tasks.

Cumulative-All saves up to 4ˆ the cost. On dynamic evaluation tasks, we observe that Cumulative-
All where we replay all the past data, achieves performance close to the Oracle (within 1%) using
significantly less compute (4ˆ less on TIC-DataComp and 2.5ˆ less on TIC-YFCC and TIC-
RedCaps). On static tasks, the gap remains small at small scales but grows to 4.7% on large, 1.8%
on xlarge Bestpool, and 4% on xlarge Basic (see Table 2 and Table 5). In these cases, training
Cumulative models with slightly extra compute bridges the gap while remaining at least 2.7ˆ more
computationally efficient (see rows with ˚ in Table 2). This highlights that with unconstrained access
to past data, we can simply train sequentially and save significant computational resources.

At scale, Sequential has strong forward transfer but lacks on static tasks. On TIC-YFCC and TIC-
RedCaps, which are at the smallest scale, we observe a significant gap (ą 10%) between Sequential
(with no data replay) and Oracle on all tasks. On the other hand, on all scales in TIC-DataComp,
Sequential shows strong performance on forward transfer and ID dynamic evaluations. However, on
static tasks and backward transfer evaluations, Sequential significantly underperforms the Oracle.

Patching and LwF improve over Sequential but lag behind Cumulative-All. On static tasks, LwF
improves over Sequential by 2%, while on dynamic tasks, LwF improves backward transfer by 7%
on TIC-DataComp (M). However, its computation cost is higher than even Cumulative-All˚ which
outperforms LwF on all tasks. Patching improves over Sequential on backward transfer on all datasets
(e.g., 5% boost on TIC-DataComp L) highlighting that Patching combines benefits of previously
patched model and the new Sequential model without additional computation cost. However, such
benefits do not show up on static tasks. These results hint that to continuously improve on static tasks
with time, replaying old data as in Cumulative-All plays a crucial role.

-Exp and -Equal significantly reduce replay buffer size and maintain static task performance
and backward transfer. Recall, that -Exp and -Equal reduce the replay buffer size to a maximum 2D
of old data. In particular, at the last time step, -Exp and -Equal reduce the buffer size by 3.5ˆ for TIC-
DataComp datasets. While reducing the buffer sizes, these methods still achieve performance close
to Cumulative-All (within 2%) on both static and dynamic tasks, with -Equal consistently better than
-Exp strategy. As we go to large scale, e.g., from medium to large, the gap between these methods
and Cumulative-All reduces. These findings demonstrate that even a small amount of replay data from
old time steps stays competitive with replaying all data and significantly improves over no replay at all.

Warm up helps training on data from first time step, but hurts on subsequent time steps. Cosine
LR is commonly coupled with an initial warm-up that linearly increases the LR from zero to maximum
LR. We investigate the effectiveness of warm-up in first versus subsequent time steps. Surprisingly,
we observe that not using warmup for subsequent training runs is strictly more beneficial than using
warm up on both static and dynamic tasks. In particular, on TIC-DataComp (L), we observe about
1.5% improvement in ImageNet accuracy and 4.3% improvement on ID dynamic retrieval when not
using warmup with Cumulative (see App. B.3). Moreover, we also ablate over not using warm up for
the first training run and observe a drop of approximately 4.8% accuracy in the first time step on TIC-
DataComp (L). Hence, we default to using warmup when training on the first time step and not using
it on the subsequent time steps with all methods except for training on TIC-DataComp (XL) where
we add a smaller warm up (10% of the warm up iterations used in first step) to stabilize training.
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Same maximum LR works best across all runs when using cosine schedule. We ablate on TIC-
DataComp (M) to investigate how to change LR after training on data from the first time step. Unlike
conventional pretraining and finetuning settings where LR is typically decreased for subsequent
training, we observe that decaying maximum LR for subsequent steps in our setup hurts on static and
dynamic tasks and consequently, we use same maximum LR across our runs (see App. B.3).

Filtering strategy changes the ordering of performance on static and dynamic retrieval tasks. We
observe that while bestpool filtering models outperform basic filterining models on TIC-DataComp
(XL) by 6% on static tasks, they underperform by over 5% on dynamic retrieval task (see Fig. 7).

Dynamic tasks provide complimentary information for model selection compared to static
tasks. Choosing models solely based on static task performance may inadvertently select models
that underperform on dynamic tasks. For example, Cumulative models that show relatively modest
improvements on static tasks continue to improve by ą 6% for retrieval on 2021-2022 (Fig. 4).

Table 3: ImageNet continual training.
Cumulative-All remains close to Oracle.

Method Number of splits
1 (Oracle) 2 4 8

Cumulative-All 80.9 80.8 80.6 80.0

Cumulative-All remains competitive to Oracle even
on ImageNet on up to 8 splits. CLIP models are often
trained for fewer epochs and are typically not trained until
they reach an “overfitting” regime. Here, we investigate
how Cumulative-All performs when compared to Oracle
when training is done for longer. Specifically, we assess
Cumulative-All on 2, 4 and 8 IID splits including the full
dataset (see App. D.1 for details). Table 3 summmarizes our key findings. Notably, even with up to 8
splits, the difference in accuracy between Oracle and Cumulative-All remains below 0.9%. These
results underscore the feasibility of continual training with Cumulative-All even on ImageNet.

5 RELATED WORK

Benchmarks for continual learning Traditionally, the continual learning community has focused on
domain, class, and task incremental benchmarks (Hsu et al., 2018; Van de Ven & Tolias, 2019; Zhou
et al., 2023a) with artificial task boundaries (e.g., Split-CIFAR, Perm-MNIST). These benchmarks
are often task-specific and present minimal or no meaningful evolution between adjacent tasks.
Consequently, continual learning methods are often confined to these benchmarks and seldom scale
to practical real-world scenarios (Cossu et al., 2022; Lin et al., 2021). On the other hand, continual
learning methods for CLIP models are primarily aimed at fine-tuning to improve performance on a
single or on a sequence of disjoint downstream tasks (Thengane et al., 2022; Zheng et al., 2023; Ilharco
et al., 2022). Existing large-scale benchmarks for training CLIP models, e.g., Datacomp (Gadre et al.,
2023) and LAION-5B (Schuhmann et al., 2022), are curated to investigate methods and scaling laws
to train state-of-the-art CLIP models in a single training run. In our work, we augment these existing
datasets with temporal information to create benchmarks for continual pertaining of CLIP models.

Continual learning methods Common methods can be categorized into three categories: i)
regularization, ii) replay, and iii) architecture-based methods. Regularization methods add a penalty to
keep the fine-tuned model close to its initialization and often incur additional memory/compute costs
(Kirkpatrick et al., 2017; Mirzadeh et al., 2020a;b; Farajtabar et al., 2020). Data replay methods retain
all or a subset of the prior data for subsequent training (Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017; Chaudhry et al., 2018). Simple replay-based baselines surpass various methods on standard
benchmarks (Lomonaco et al., 2022; Balaji et al., 2020; Prabhu et al., 2020). Lastly, architecture-based
methods expand the model as new tasks arrive, limiting their applicability in evolving environments
without clear task boundaries (Schwarz et al., 2018; Rusu et al., 2016). In this work, we compare
popular continual learning methods with simple alternatives for continually pretraining of CLIP.

6 CONCLUSION AND FUTURE WORK

We view TIC-DataComp as the initial stride toward the continual training of large-scale vision-
language foundation models. We believe that our benchmark, alongside the preliminary results
obtained using simple baselines will foster future research for large-scale continual-learning. There
are several pivotal directions for future work: (i) Compare our baselines on continually streaming
data at finer granularity, e.g., streaming data at the monthly level; (ii) Investigate alternate learning
rate schedules (e.g., Const-Cosine as in App. B.5) that are forward looking, and are better suited to
continual learning; (iii) Better data filtering techniques that are more inclusive of future data; (iv)
Expand our problem setup to encompass the training of other large-scale foundation models.
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A CONTINUAL LEARNING BENCHMARKS AND METHODS

We introduce a large-scale image-text benchmark with web scale streaming image text pairs specially
developed for studying how efficiently one can get a fresh CLIP model with new incoming batches of
data. Table 4 compares the proposed benchmark with existing datasets for continual learning. Note
that this table is not aimed to be an exhaustive list of all CL datasets, but the most popular benchmarks
in each domain. For language modeling tasks we report the number of examples/documents as the
number of samples and for detection tasks we report the number of labeled objects/bounding boxes.

Table 4: Comparison with continual learning benchmarks.

Benchmark # Samples Years Time-Continual Image-Text Task

Split-MNIST (Goodfellow et al., 2013) 60K 1998 ✗ ✗ Classification
Perm-MNIST (Goodfellow et al., 2013) 60K 1998 ✗ ✗ Classification
Rot-MNIST (Lopez-Paz & Ranzato, 2017) 60K 1998 ✗ ✗ Classification
Split-CIFAR-100 (Zenke et al., 2017) 50K 2008 ✗ ✗ Classification
Split-MINI-ImageNet (Chaudhry et al., 2019) 50K 2009 ✗ ✗ Classification
Split-ImageNet (Wen et al., 2020) 1.2M 2009 ✗ ✗ Classification
Split-ImageNet-R (Wang et al., 2022) 30K 2019 ✗ ✗ Classification
CORe50 (Lomonaco & Maltoni, 2017) 165K 2017 ✗ ✗ Detection
CLAD (Verwimp et al., 2023) 23K 2021 ✗ ✗ Detection
WANDERLUST (Wang et al., 2021) 326K 2021 ✓ ✗ Detection
Inc-PASCAL (Michieli & Zanuttigh, 2019) 11K 2012 ✗ ✗ Segmentation
Inc-ADE20K (Cermelli et al., 2020) 20K 2012 ✗ ✗ Segmentation
StreamingQA (Liška et al., 2022) 100K 2007–2020 ✓ ✗ Question Answering
TemporalWiki (Jang et al., 2022) 32M 2021 ✓ ✗ Language Modeling
CKL (Jang et al., 2021) 30K 2019-2021 ✗ ✗ Language Modeling
CTrL (Veniat et al., 2020) 300K 1998-2017 ✗ ✗ Classification
CLOC (Cai et al., 2021) 39M 2006-2014 ✓ ✗ Classification
CLEAR (Lin et al., 2021) 7.8M 2004-2014 ✓ ✗ Classification
NEVIS (Bornschein et al., 2022) 8M 1992-2021 ✓ ✗ Classification
Mod-X (Ni et al., 2023) 156K 2014 ✗ ✓ Retrieval
CLiMB (Srinivasan et al., 2022) 1.3M 2013-2021 ✗ ✓ Classification

TIC-YFCC 15M 2008-2014 ✓ ✓ Retrieval / ZS Classification
TIC-RedCaps 12M 2011-2020 ✓ ✓ Retrieval / ZS Classification
TIC-DataComp 100M/1B/12B 2014-2022 ✓ ✓ Retrieval / ZS Classification

A.1 EXTENDED RELATED WORK

Neural networks trained on new data suffer from catastrophic forgetting of prior knowledge (Sutton,
1986; Goodfellow et al., 2013). Addressing the continual learning challenge, researchers have
primarily honed in on methods tailored for small-scale benchmarks, specifically focusing on domain,
class, or task incremental benchmarks (Hsu et al., 2018; Van de Ven & Tolias, 2019). Continual
learning of foundation models would significantly reduce the costs and increase quick adaptability.
While some recent works have started to introduce continual learning benchmarks, they are not
naturally time-continual and are comparatively much smaller in scale (Ni et al., 2023; Srinivasan
et al., 2022). While evaluations on these benchmarks often neglect the consideration of “training
time”, it becomes a pivotal factor when scaling continual learning approaches to scenarios involving
the training of foundation models such as CLIP.

In our study, we abstain from comparing with continual learning methods that notably prolong
the “training time”. Methods such as GEM (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018),
and IMM (Lee et al., 2017), which compute gradients for two models in each training iteration,
essentially double the training duration. For completeness, we include a comparison with LWF (Li
& Hoiem, 2017; Ding et al., 2022) and EWC (Kirkpatrick et al., 2017). While these methods
increase computation cost over standard training due to an additional forward pass, the increase in
computation cost is relatively much smaller than methods that compute additional gradients. Our
LWF implementation is motivated by Ding et al. (2022) which focuses on continual fine-tuning
CLIP models on classification tasks by adapting LwF to CLIP models. Instead, for setups where
additional compute resources are available, we run our Cumulative-All approach for slightly longer.
Cumulative-All narrows the gap with Oracle (refer to Table 2). Given that data storage costs are
substantially lower than computational costs at scale, we advocate for taking computational efficiency
into consideration in future endeavors.

A.2 DISCUSSION AND COMPARISON WITH CLOC BENCHMARK

Cai et al. (2021) provide interesting discussion/analysis for continual learning at a large number
of steps. However, our study differs from Cai et al. (2021) in several crucial respects: (i) Training
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Methodology: We employ noisy supervision using contrastive loss between image-text pairs, as
opposed to the cross-entropy loss used by Cai et al. (2021). (ii) Scale of Experiments: Our experiments
on the TiC-DataComp dataset are orders of magnitude larger, scaling up by 200ˆ.

These differences introduce unique challenges. The use of contrastive loss (i) necessitates a tailored
approach to designing our evaluation studies. The significantly larger scale of our experiments (ii)
poses challenges in collecting timestamped data and understanding if and how distribution shifts
impact learning at this scale.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DETAILED RESULTS ON OUR BENCHMARKS
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Figure 5: Static and dynamic evaluation performance over time with selected methods in our
testbed. As we get more data, all methods improve on both static and forward transfer on dynamic
tasks but methods with limited replay buffer start performing slightly worse for backward transfer.
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(d) TIC-DataComp (L).

Figure 6: Dynamic retrieval evaluation results on our benchmarks with Sequential, Cumulative-Exp,
Cumulative-All and Oracle. These evaluations highlight the catastrophic forgetting observed with
Sequential and Cumulative-Exp. Moreover, by observing new data, we not only benefit on tasks from
current time step but also improve performance on tasks from old time steps.

B.2 RESULTS WITH BASIC FILTERING ON TIC-DATACOMP XL

Filtering strategy changes the ordering of performance on static and dynamic retrieval tasks. We
observe that while Bestpool filtering models outperform basic filterining models on TIC-DataComp
(XL) by 6% on static tasks, they underperform by over 5% on dynamic retrieval task (see Fig. 7). In
the main paper (Table 2), we included TIC-DataComp (xlarge) results with Bestpool filtering. In
Table 5, we include basic filtering results. We observe that while Bestpool filtering models perform
better than basic filtering models on static tasks, the order is flipped on dynamic retrieval tasks. Hence,
we resort to including results with Basic filtering at smaller scales, but include Bestpool results for
completeness as it achieves better results on static tasks.
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Table 5: Zero shot performance on our time-continual benchmarks (Basic and Bestpool filtering).
˚ and ˚˚ denote methods that violate the compute budget and use extra compute. For static tasks,
we tabulate accuracy of the models obtained on the final timestamp. For dynamic tasks, we tabulate
forward transfer, backward transfer and ID performance. For all metrics, higher is better. Bestpool
filtering results are copied from Table 2.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp
(XL; Bestpool)

Sequential 2.7 ˆ 1020 66.5 54.2 61.2 61.0 63.1 68.9 56.8
Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 64.8 70.7 68.5 57.1

Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 66.7 71.0 68.6 57.1
Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 65.8 - - -

TIC-DataComp
(XL; Basic)

Cumulative-All 2.7 ˆ 1020 63.5 52.0 62.8 58.7 64.6 55.5 47.6
Sequential 2.7 ˆ 1020 60.2 48.9 62.4 56.6 51.6 50.3 45.0
Oracle˚˚ 1.1 ˆ 1021 66.0 54.0 63.8 59.6 - - -
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Figure 7: Comparing Oracle models trained on Bestpool and Basic filtering trained on data from all
time steps. Our results clearly highlight that Basic filtering performs better than Bestpool filtering on
dynamic retrieval task. However, on static tasks, the order is reversed. Moreover, Bestpool filtering
shows a drop in retrieval performance from 2016 to 2022 when compared with Basic filtering.

B.3 ABLATIONS WITH LEARNING RATE WARMUP AND MAXIMUM LEARNING RATE

To continually train models as more data arrives sequentially over time, we use multiple cycles of
cosine learning rate schedule (Fig. 8). There are two crucial design choices: (i) Should we warm
up the learning rate for subsequent continual runs? and (ii) How should the maximum learning rate
change for sequential training runs?

Table 6: Zero shot performance on our time-continual benchmarks with and without initial LR
wamrup for subsequent runs. Using warm up on sequential runs after training on the first time step
hurts slightly when compared with not using warm up on sequential runs.

Benchmark Method
Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (M) Cumulative-All (w/o warmup) 24.0 20.2 20.9 17.9 33.8 26.4 15.1
Cumulative-All (w warmup) 23.3 20.1 20.3 17.6 33.3 26.1 14.8

TIC-DataComp (L) Cumulative-All (w/o warmup) 48.9 41.3 50.9 36.3 62.1 57.3 41.2
Cumulative-All (w warmup) 47.6 40.6 50.0 35.2 60.1 53.0 39.5
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(a) Multiple cycles of standard cosine learning rate schedules which involves warm-up for all
subsequent training runs.
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(b) Our proposed cosine learning rate schedule without learning rate warm-up for subsequent training
runs.

Figure 8: Learning rate schedule ablations. Schedules vary on how continual training is performed
when the training run is initialized with the best previous model. When training with cosine learning
schedules for subsequent runs, we observe that keeping the same maximum learning rate as the first
run performs the best.

Table 7: Cumulative experiments on TIC-DataComp (M) with different maximum learning rates for
subsequent runs with first run fixed at LR 0.00025. Our default choice for subsequent runs is 0.00025.
Performance reported on ImageNet. At maximum learning rate 0.001, the runs crashed with Nan in
loss.

Method Max LR
0.00005 0.0001 0.00025 0.0005 0.001

Cumulative-All 16.3 19.0 24.0 10.1 –

When training with large batches, linear learning rate warm-up is typically employed to stabilize the
start of the training when beginning from a random initialization (Goyal et al., 2017; Steiner et al.,
2021). However, when training sequentially by initializing models with checkpoints from the previous
step, it remains unclear whether we should employ a learning rate warm up or not. Our observations
highlight that while warm up is benefits for the first time step, not using warm up on subsequent runs
performs better. In particular, we observe that removing the warm up for the first training run hurts the
final performance. On TIC-DataComp (large), we observe that training a ViT-B/16 with warm up
on the first time step (i.e., 2016) gets 29.9 zero-shot on Imagenet, whereas, without warm up ViT-B/16
achieves only 24.1 zero-shot performance on Imagenet. Table 6 shows the final performance of models
trained with and without warmup on subsequent time steps (after training on the first time step with
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warmup). In particular, on TIC-DataComp (large), we observe 1.5% accuracy gap on Imagenet and
4.3% accuracy gap on dynamic ID retrieval performance on models trained with and without warm up.

Hence, we default to using warmup when training on the first time step and not using it on the
subsequent time steps with all methods except for training on TIC-DataComp (XL) where we add a
smaller warm up (10% of the warm up iterations used in first step) to stabilize training.

Next, we experiment with different maximum learning rate when training with cosine schedules. We
ablate on TIC-DataComp (M) to investigate how to change LR after training on data from the first
time step. Unlike conventional pretraining and finetuning settings where LR is typically decreased
for subsequent training, we observe that decaying maximum LR for subsequent steps in our setup
hurts on static and dynamic tasks and consequently, we use the same maximum LR across our runs
(see Table 7).

B.4 PRELIMINARY EXPERIMENTS COMPARING RANDOM SUBSAMPLING WITH OTHER
STRATEGIES TO REDUCE BUFFER SIZE

In our preliminary experiments, we explored the efficacy of subsampling old data based on the
alignment between text and image content from previous time steps. Specifically, when training a
model at time step t ` 1, we used the model from the end of time step t to assess this alignment. We
employed two distinct subsampling methods:

1. Retaining half of the data with the lowest alignment scores, based on the premise that these data
points might be more challenging to learn and require additional gradient steps.

2. Retaining half of the data with the highest alignment scores, under the assumption that these
represent higher quality data, as indicated by the stronger alignment between text and image pairs.

We applied these methods to the TiC-YFCC dataset and evaluated their performance against a
baseline of random sampling. The outcomes revealed minimal differences: less than 0.2% variation
in Imagenet performance and under 0.5% in dynamic retrieval performance across different time
steps. Given that these minor improvements came with a significant computational cost—requiring a
full forward pass to compute alignment post each training epoch—they exceeded our compute budget
constraints. As a result, we opted for random sampling in our research. We leave investigation on
improved subsampling techniques for future work.

B.5 CONST-COSINE: AN ALTERNATIVE LEARNING RATE SCHEDULE

The defacto LR schedule for training CLIP models is an initial linear increase to a maximum value, i.e.,
warm up, followed by a cosine decay (Radford et al., 2021; Gadre et al., 2023). In the main paper, we
default to using cosine LR schedule for each sequential run, resulting in a cyclic schedule. We observe
a significant increase in training loss early in subsequent runs when the LR is high. Comparing the
loss on training data with Cumulative and Oracle methods, we observe that as training progresses the
training loss increases every time the learning rate is increased to the maximum LR (Fig. 9).

It would be ideal for continual training to employ a learning rate schedule that is “forward looking”,
allowing us to continually train from a previous checkpoint without experiencing a significant increase
in training loss. One desirable property of such a learning rate schedule would be its ability to adapt
without requiring prior knowledge of the decay period.
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Figure 9: Training loss increases every time the LR is reset to maximum LR for Cumulative.
Loss comparison on training data with Cumulative and Oracle method. Cumulative is trained with a
cyclic cosine schedule without warm up for sequential training runs. For Cumulative, we plot the
loss on training data, and as the training progresses, samples from new time steps are added to the
training pool. For Oracle, the training data is the union of data from all time steps and remains the
same throughout the training.
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Figure 10: Const-Cosine: Our proposed alternative forward-looking learning rate schedule schedule
which trains one model with constant learning rate and decays the learning rate with cosine schedule
only for a fraction of iterations before obtaining a deployable model. Const-Cosine schedule uses an
extra compute budget than an Oracle run because an extra training run is launched for the fraction of
training when learning rate is decayed.

In our work, we perform preliminary experiments with the simplest alternative, Const-Cosine where
after the warm up period, we train with a constant learning rate and decay the learning rate only for a
small fraction of training towards the end when we want a deployable model (Fig. 10). This allows us
to continue training for subsequent runs from the checkpoint at the end of the constant learning rate
schedule and decay the LR only in the end. For our experiments, we fix the decay period as 0.2 of
the total training iterations. Due to this, Const-Cosine schedule slightly increases the overall training
budget of the Cumulative runs when compared with cyclic cosine schedules.

For Const-Cosine, we only ablate at relatively smaller scale datasets in our testbed (i.e., TIC-YFCC,
TIC-RedCaps, and TIC-DataComp (medium)). For a fair comparison, we also re-run Oracle methods
with the same Const-Cosine schedule. Note that for Const-Cosine experiments, we use the same
maximum LR as with the cosine schedule.

We observe that training with Const-Cosine schedule significantly improves both Cumulative and Or-
acle as compared to their counterparts trained with cosine learning rates 2. Moreover, as expected, we

2We also experimented with Const-Cosine schedule for Oracle training on TIC-DataComp (large) and
TIC-DataComp (xlarge). We observe that with a decay fraction of 0.2, Const-Cosine achieves similar results
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do not observe jumps in training loss when training Cumulative with Const-Cosine schedule. How-
ever, the gap between Oracle and Cumulative with Const-Cosine doesn’t decrease when compared
with gap between Oracle and Cumulative with cosine learning rate schedules. This highlights that the
jumps in the training loss observed while training with the cyclic cosine schedule might have benign
effects on the final performance.

Table 8: Zero shot performance on Imagenet with Const-Cosine LR schedule. We observe that
Const-Cosine improves over cyclic cosine LR schedule. However, the gap between cyclic cosine LR
schedule and Const-Cosine for different LR schedules remains the same. ˚˚ denote methods that
violate the compute budget.

Benchmark
Method Cosine LR Schedule Const-Cosine LR schedule

Compute (MACs) ImageNet Compute (MACs) ImageNet

TIC-YFCC Cumulative-All 3.4 ˆ 1018 29.3 4.4 ˆ 1018 32.8
Oracle˚˚ 8.5 ˆ 1018 29.2 8.5 ˆ 1018 33.2

TIC-RedCaps Cumulative-All 3.4 ˆ 1018 32.2 4.4 ˆ 1018 35.1
Oracle˚˚ 8.5 ˆ 1018 32.7 8.5 ˆ 1018 36.2

TIC-DataComp (M) Cumulative-All 3.0 ˆ 1018 24.0 3.6 ˆ 1018 28.2
Oracle˚˚ 1.2 ˆ 1019 25.5 1.2 ˆ 1019 28.9

B.6 OPENCLIP MODELS OBTAINED BY RETRAINING AFTER REMOVING ANY DUPLICATE
EXAMPLES FROM THE TEST SET

OpenCLIP models (e.g., models trained on Datacomp and LAION-5B) have been trained on data
curated from Common Crawl. Since the retrieval tasks we constructed are built on top of data curated
from Common Crawl, one may argue there is a possibility of train/test overlap in our evaluations of
OpenCLIP models. Thus, we retrain OpenCLIP models on DataComp datasets after removing the
samples in our test sets. Figure 11 shows that the trends observed for OpenCLIP models holds for
our retrained models.
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Figure 11: We replicate OpenCLIP models by training from scratch and removing duplicates from
the evaluation dataset. We observe that trends continue to hold.

B.7 RESULTS ON DYNAMIC CLASSIFICATION TASK

In the main paper, we include results on our dynamic retrieval task. For completeness, here we include
results on dynamic classification tasks on TIC-DataComp splits (Table 9). Along with including
results on all nodes of ImageNet, we also include results on classification task restricted to classes in
the “motor vehicles” subtree of ImageNet hierarchy. For the dynamic classification task, we observe
trends similar to the dynamic retrieval task.

to that of the cosine learning rate schedule. In particular, Const-Cosine achieves 61.3 on large and 73.0 on
xlarge versus Cosine schedule achieves 62.3 on large and 73.3 on xlarge. This highlights the potential
of training with Const-Cosine schedule in scenarios where total training duration might be unknown apriori.
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Table 9: Zero shot performance on our TIC-DataComp-Net classification task. ˚ and ˚˚ denote
methods that violate the compute budget. We tabulate forward/backward transfer and ID performance
on classification tasks (Sec. 2.3). For TIC-DataComp (XL), we include results with Bestpool filtering.

Benchmark Method Compute
(MACs)

Dynamic Retrieval Tasks (All) Dynamic Retrieval Tasks (‘Motor Vehicles’)
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (M)

Sequential 3.0 ˆ 1018 15.9 13.3 9.9 34.5 30.0 22.6
Patching 3.0 ˆ 1018 15.6 13.1 9.7 34.4 29.2 22.1

Cumulative-Exp 3.0 ˆ 1018 17.6 14.4 10.4 36.6 30.9 23.5
Cumulative-Equal 3.0 ˆ 1018 17.5 14.2 10.4 36.4 31.1 23.5

Cumulative-All 3.0 ˆ 1018 18.3 14.7 10.6 38.2 31.7 23.7
LwF˚ 3.8 ˆ 1018 16.0 13.5 9.9 35.1 30.7 23.3

Cumulative-All˚ 3.9 ˆ 1018 20.7 16.0 10.9 40.4 32.3 23.9
Oracle˚˚ 1.2 ˆ 1019 19.2 15.2 10.7 38.7 31.9 23.5

TIC-DataComp (L)

Sequential 2.7 ˆ 1019 38.3 36.9 33.3 58.4 55.6 49.7
Patching 2.7 ˆ 1019 38.6 36.8 33.3 58.3 54.9 49.3

Cumulative-Exp 2.7 ˆ 1019 40.2 37.9 34.2 60.7 56.8 51.1
Cumulative-Equal 2.7 ˆ 1019 40.6 38.0 34.2 60.7 56.8 50.8

Cumulative-All 2.7 ˆ 1019 41.3 38.3 34.4 61.4 56.6 50.9
Cumulative-All˚ 4.1 ˆ 1019 43.0 39.2 34.6 62.7 57.5 51.1

Oracle˚˚ 1.1 ˆ 1020 43.8 40.0 35.2 62.6 56.8 50.7

TIC-DataComp (XL)
Sequential 2.7 ˆ 1020 55.4 55.1 53.3 67.8 66.0 63.5

Cumulative-All 2.7 ˆ 1020 58.5 56.7 54.3 70.2 67.4 63.8
Cumulative-All˚ 3.5 ˆ 1020 58.8 56.9 54.3 70.5 67.5 63.8

B.8 ADDRESSING DIFFERENCES BETWEEN SEQUENTIAL AND CUMULATIVE-ALL BETWEEN
TIC-YFCC AND TIC-DATACOMP

In Table 2, we observe differences in the behavior of Sequential and Cumulative-Allon TIC-YFCC
when compared with TIC-DataComp. For instance, differences between the ID performance between
Sequential and Cumulative-All is larger in TIC-YFCC than in TIC-DataComp (M). Similar observa-
tions hold true for backward transfer performance. In this section, we explain the underlying causes
for these differences.

We identify two primary reasons:

(i) the nature of the distribution shift observed in TIC-YFCC. We observe that models trained
with Sequential on TIC-YFCC suffer from relatively larger drops on old-time steps than TIC-
DataComp (M) due to catastrophic forgetting (see Fig. 6).

(ii) compute used at each time step per data available at each time step is different for these
bencmarks. Overall YFCC is 2x smaller than Tic-Datacomp (M) but the compute we used in
both TiC-YFCC and TiC-Datacomp setup is of similar order (in fact, it is slightly higher in TiC-
YFCC). We re-ran the experiments for Tic-YFCC by reducing the compute. In the updated runs,
we observe that the gap between ID performances of Sequential and Cumulative-All vanishes.

Table 10: Zero shot retrieval performance on TIC-YFCC with Sequential and Cumulative-All
with reduced compute.

Benchmark Method

Dynamic Retrieval Tasks (original compute) Dynamic Retrieval Tasks (reduced compute)

Compute
(MACs)

Backward
Transfer

ID Perfor-
mance

Forward
Transfer

Compute
(MACs)

Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-YFCC Sequential 3.4 ˆ 1018 42.2 48.4 23.7 1.5 ˆ 1018 27.0 42.0 15.7
Cumulative-All 3.4 ˆ 1018 66.4 60.2 27.6 1.5 ˆ 1018 46.3 38.7 17.3

C ADDITIONAL BENCHMARK DETAILS

C.1 FILTERING ABLATIONS ON TIC-DATACOMP

For Basic Filtering, Gadre et al. (2023) performs the following three steps: filter by English language
(using fasttext (Joulin et al., 2017)), filter by caption length over two words and 5 characters, and
filter by image sizes with smallest dimensions over 200 pixels and aspect ratio above 3. We do not
default to other filtering techniques that use off-the-shelf CLIP models from Gadre et al. (2023) to
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Figure 12: Dynamic retrieval evaluation results with Sequential, Cumulative-All on TIC-YFCC with
reduced compute.

avoid biasing dataset selection from each time step. In Fig. 13, we show that “Bestpool” filtering
(which filters image-text pairs with CLIP scores and ImageNet image embeddings) biases dataset
selection to preferring old time step data over new timestamp data. Moreover, we also show that
models trained with Bestpool filtering is less robust when evaluated on our dynamic tasks from 2021-
2022 (Fig. 13). Nevertheless, for completeness and to highlight the significance of our findings even
for state-of-the-art filtering techniques, we perform continual learning experiments with Bestpool
filtering at xlarge scale which is included in the main paper. In App. B.2, we include results with
Basic filtering at xlarge.
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Figure 13: (Left) Gap in retrieval performance for different OpenCLIP models that use different
filtering techniques. (Right) Reduction in TIC-DataComp data at different times with different
filtering techniques. This clearly highlights that there is a selection bias towards retaining more old
data for CLIP/BestPool filtering. No such bias exists for basic filtering.
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C.2 STATIC DATASETS CONSIDERED FOR EVALUATION

Table 11: Evaluation tasks borrowed from Gadre et al. (2023).

Task type Dataset Task Test set size Number of classes Main metric

Food-101 Bossard et al. (2014) Food recognition 25,250 101 accuracy
GTSRB Stallkamp et al. (2011) Traffic sign recognition 12,630 43 accuracy
ImageNet 1k Deng et al. (2009) Visual recognition 50,000 1,000 accuracy
ImageNet Sketch Wang et al. (2019) Visual recognition 50,889 1,000 accuracy
ImageNet V2 Recht et al. (2019) Visual recognition 10,000 1,000 accuracy
ImageNet-A Hendrycks et al. (2021b) Visual recognition 7,500 200 accuracy
ImageNet-O Hendrycks et al. (2021b) Visual recognition 2,000 200 accuracy
ImageNet-R Hendrycks et al. (2021a) Visual recognition 30,000 200 accuracy
KITTI distance Geiger et al. (2012); Zhai et al. (2019) Distance prediction 711 4 accuracy
MNIST LeCun (1998) Digit recognition 10,000 10 accuracy
ObjectNet Barbu et al. (2019) Visual recognition 18,574 113 accuracy
Oxford Flowers-102 Nilsback & Zisserman (2008) Flower recognition 6,149 102 mean per class
Oxford-IIIT Pet Parkhi et al. (2012); Zhai et al. (2019) Pet classification 3,669 37 mean per class
Pascal VOC 2007 Everingham et al. (2007) Object recognition 14,976 20 accuracy
PatchCamelyon Veeling et al. (2018); Zhai et al. (2019) Metastatic tissue cls. 32,768 2 accuracy
Rendered SST2 Zhai et al. (2019) Sentiment classification 1,821 2 accuracy
RESISC45 Cheng et al. (2017); Zhai et al. (2019) Satellite imagery recognition 6,300 45 accuracy
Stanford Cars Krause et al. (2013) Vehicle recognition 8,041 196 accuracy
STL-10 Coates et al. (2011) Visual recognition 8,000 10 accuracy
SUN-397 Xiao et al. (2016) Scene recognition 108,754 397 accuracy
SVHN Netzer et al. (2011); Zhai et al. (2019) Digit recognition 26032 10 accuracy
iWildCam Beery et al. (2020); Koh et al. (2021) Animal recognition 42,791 182 macro F1 score
Camelyon17 Bandi et al. (2018); Koh et al. (2021) Metastatic tissue cls. 85,054 2 accuracy

Classification

FMoW Christie et al. (2018); Koh et al. (2021) Satellite imagery recognition 22,108 62 worst-region acc.

Retrieval Flickr30k Young et al. (2014) Image and text retrieval 31,014 N/A R@1

C.3 OUR BENCHMARK STATISTICS

In this section, we discuss statistics of our constructed benchmarks. Fig. 14 summarizes TIC-RedCaps,
TIC-YFCC and TIC-DataComp dataset sizes. Fig. 15 summarizes original YFCC dataset sizes.
Table 12, Table 13 and Table 14 present the exact numbers for these datasets. For TIC-DataComp,
we only discuss the sizes at xlarge scale.
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Figure 14: Number of examples in each year in our benchmarks.
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Figure 15: Number of examples in each year in original YFCC 15M. X-axis the upload month and
y-axis is the number of examples in that month.

Table 12: Number of examples in TIC-RedCaps in each year.

Dataset Year
2017 2018 2019 2020

TIC-RedCaps 4,220,262 1,660,003 2,526,575 3,115,715

Table 13: Number of examples in TIC-YFCC in each year.

Dataset Year
2004–2008 2009–2010 2011–2012 2012–2014

TIC-YFCC 4,337,727 4,050,166 3,976,339 2,312,753

Table 14: Number of examples in TIC-DataComp in each year before filtering.

Dataset Year
2014 2015 2016 2017 2018 2019 2020 2021 2022

TIC-DataComp (no filter) 244,802,598 175,648,045 666,019,511 1,906,357,755 1,877,561,875 2,016,011,588 1,778,751,066 2,044,463,701 1,442,233,121
TIC-DataComp (basic filter) 52,764,775 50,757,898 133,333,267 400,225,598 501,347,511 519,575,760 417,067,014 494,038,122 371,748,613

Next, we tabulate the number of examples in our retrieval evaluation datasets. Since the evaluation
dataset sizes are different at different time steps, we subsample the dataset to a fixed size before
performing retrieval evaluations. On TIC-YFCC and TIC-RedCaps, we randomly sampled 1000
image-text pairs from these evaluation datasets. For TIC-DataComp, we randomly sample 4000
image-text pairs. We repeat this process for 3 seeds and report the aggregated performance.

Table 15: Number of retrieval evaluation examples in TIC-RedCaps in each year.

Dataset Year
2017 2018 2019 2020

TIC-RedCaps 31,316 42,539 16,738 25,565

Table 16: Number of retrieval evaluation examples in TIC-YFCC in each year.

Dataset Year
2004–2008 2009–2010 2011–2012 2012–2014

TIC-YFCC 43,820 40,909 40,165 23,354

Table 17: Number of retrieval evaluation examples in TIC-DataComp in each year before filtering.

Dataset Year
2016 2017 2018 2019 2020 2021 2022

TIC-DataComp 23,085 39,289 50,450 53058 42,239 49,841 38,051
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C.4 COMPUTE CONSTRAINTS FOR DIFFERENT DATASETS

We closely follow compute budget constraints from Gadre et al. (2023). In particular, on TIC-
DataComp, we restrict to using exactly the same amount of overall compute as fixed in Gadre et al.
(2023). Below we list exact total MACs on each dataset:

• TIC-YFCC: Total MACs: 3.4 ˆ 1018

• TIC-RedCaps: Total MACs: 3.4 ˆ 1018

• TIC-DataComp medium: Total MACs: 3.0 ˆ 1018

• TIC-DataComp large: Total MACs: 2.7 ˆ 1019

• TIC-DataComp xlarge: Total MACs: 2.7 ˆ 1020

For a ViT-B architecure, these values correspond to 20k iterations on TIC-YFCC (batch size: 8192),
TIC-RedCaps (batch size: 8192), 35k iterations on TIC-DataComp (M) (batch size: 4096), 157k
iterations on TIC-DataComp (L) (batch size: 8192), and 143.5k iterations on TIC-DataComp (XL)
(batch size: 90100). We divide these iterations equally among all time steps.

C.5 CREATION PIPELINE FOR EVALUATION DATASETS

TIC-DataComp-Retrieval To create a retrieval task, we sample a batch of IID image-text pairs
from different timestamps and evaluate text retrieval performance given the corresponding image
(similarly, image retrieval given the corresponding text). Alongside general evaluations, we also
construct datasets from specific domains, e.g., Covid-19 subset and Flickr subset. To create Covid-19,
we filter the dataset to only retain pairs where the caption contains a mention of "covid". This search
process restricts the data to time only after 2019. For the Flickr subset, we filter the dataset to only
retain pairs where the corresponding “url” contains data from Flickr.

TIC-DataComp-Net We create our dynamic classification dataset TIC-DataComp-Net with Ima-
geNet classes from the CommonPool data augmented with temporal information. Our construction
process draws inspiration from the LAIONet construction process described in Shirali & Hardt (2023).
In particular, we first filter examples where the corresponding caption contains one and only one of
the synsets of ImageNet-1K. We also apply additional basic filtering (Gadre et al., 2023) to make sure
that images are of at least 200 size in smallest dimension and the caption contains at least 2 words and
5 characters. After filtering for examples with ImageNet synsets, we only retain examples where the
similarity—as evaluated by an off-the-shelf sentence embedding model (Reimers & Gurevych, 2019)—
between imagenet synset definition and the caption exceeds a threshold of 0.5. The goal of this filter-
ing step is to restrict examples with “high” alignment between caption and imagenet synset definition.
This last step differs from the LAIONet construction. Crucially, unlike LAIONet, we do not filter the
image-text pairs with CLIP similarity scores to avoid biasing the dataset selection process.

C.6 DISTRIBUTION SHIFT ANALYSIS ON PROPOSED BENCHMARKS
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Figure 16: (Left) Comparison of retrieval performance on COVID queries versus Flickr queries
(construction described in App. C.5). (Right) Comparison on old Flickr versus new Flickr data.
Clearly, we observe that while gap on old versus new flickr data is small, the gap is significantly
larger on Covid queries.
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Figure 17: (Left) Comparison on old versus new data from TIC-DataComp-Net. (Right) Comparison
on motor vehicles node from TIC-DataComp-Net. For our classification task, we observe a very
small drop (« 1%) when averaged across all categories. However, we observe a substantial gap on
classes in “motor vehicle” subtree, when comparing OpenAI and OpenCLIP models. These findings
highlight that while overall ImageNet classes may remain timeless, certain categories tend to evolve
faster than others.

TIC-DataComp analysis through the lens of constructed evaluation tasks Here, we compare
performance of OpenAI and OpenCLIP models on our datasets. We observe a significant performance
gap between OpenAI and OpenCLIP models on our dynamic retrieval task (Fig. 1). This gap widens
notably on retrieval queries where captions mention COVID-19. On the other hand, OpenAI and
OpenCLIP models exhibit similar robustness for retrieval on data coming from Flickr highlighting
that data from some domains do not exhibit shifts that cause performance drops. For our classification
task, we observe a very small drop (« 1%) when averaged across all categories. However, we observe
a substantial gap on specific subtrees in ImageNet. For example, classes in “motor vehicle” subtree
show an approximate 7% performance drop, when comparing OpenAI and OpenCLIP models. These
findings highlight that while overall ImageNet classes may remain timeless, certain categories tend
to evolve faster than others. Our qualitative and quantitative analysis on TIC-DataComp clearly
highlights evolution of distributions and captures different properties than standard benchmarks.

Quantitative analysis on TIC-YFCC We analyze TIC-YFCC using off-the-shelf sentence and
image encoders. For off-the-shelf sentence embedder, we used an existing sentence transformer from
Hugging Face (Reimers & Gurevych, 2019). For the image encoder, we use a CLIP pretrained ViT-B-
16 model (Radford et al., 2021; Ilharco et al., 2021).

We first embed images from different time steps with an OpenAI CLIP encoder and then compute
Frechet Inception Distance (FID; Seitzer (2020)). As time progresses, we observe that FID distance
increases with respect to data from first time step (Fig. 18). Similarly, we use the pretrained sentence
transformer to extract top-5 categories from Wordnet Nouns for each caption. We then obtain a
distribution over these Nouns for each time step. We observe that the TV distance over the distribution
of WordNet nouns evolves over time when compared to data from the first time step.

C.7 CREATION PIPILINE FOR TIC-DATACOMP

We collect timestamps for the CommonPool dataset introduced in DataComp. We repeat the crawling
process described in Gadre et al. (2023) to download WARC files from Common Crawl. In particular,
we follow the same multistep process which involved: (i) parsing URLs and alt-text from Common
Crawl dumps and downloading these images; (ii) tagging images with meta data and id of the
common crawl batch; and (iii) conducting evaluation set duplication and safety content filtering.
After downloading the WARC files, we perform a join with the datacomp 12.8B examples. During
this join, we lost approximately 0.1B of examples that are no longer available online. Moreover,
while performing this join, we only retain examples with their first occurrence. This is done before
running any de-duplication on image-text pairs for exact matches as done in Gadre et al. (2023).

The source of DataComp is Common Crawl, which periodically releases web-crawled data snapshots,
typically on a monthly basis since 2014 with new and updated webpages. This process provides
timestamps at the granularity of months, spanning years 2014–2022.
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(a) TIC-YFCC

(b) TIC-DataComp (M)

Figure 18: Distribution shift results. Analysis on TIC-YFCC and TIC-DataComp (M) using off-
the-shelf sentence and image encoders. We first embed images from different time steps with an
OpenAI CLIP encoder and then compute Frechet Inception Distance (FID; Seitzer (2020)). As time
progresses, we observe that FID distance increases with respect to data from first time step. Similarly
TV distance over categorical distribution on Wordnet Noun synsets also increases with time when
compared to categorical distribution on first timestep.
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Figure 19: Distribution shift analysis on TIC-DataComp (M) using off-the-shelf sentence and image
encoders. We first embed images from different time steps with an OpenAI CLIP encoder and then
compute Frechet Inception Distance (FID; Seitzer (2020)). As time progresses, we observe that FID
distance increases with respect to data from first time step. Similarly TV distance over categorical
distribution on Wordnet Noun synsets also increases with time when compared to categorical distri-
bution on first timestep.

We note that while this augmented time information may contain some noise, on average, we find
it to be a reasonably accurate proxy for the upload time of web pages. To perform an initial check,
we note that our data contains images from flickr which provides an API to query for true upload
timestamp. So we extract 10k examples from our benchmark TIC-DataComp and query Flickr for
their true timestamp. Fig. 20 summarizes true timestamps with timestamps extracted from CC.
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Figure 20: Comparison of Common Crawl assigned timestamp and true timestamp on a subset of 10k
examples containing image-text pairs from Flickr. We observe a clear trend where CC timestamps
correlate with true timestamps.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 ADDITIONAL DETAILS ON IMAGENET IID SPLIT CONTINUAL LEARNING EXPERIMENT

With ImageNet data, we consider 2, 4 and 8 splits including the full dataset. This design is inspired
by Ash & Adams (2020). We consider ViT-B/16 architecture trained for 300 epochs on full data and
split the iterations corresponding to 300 epochs equally among k splits when training sequentially.
We keep all other hyperparameters, such as learning rate, optimizer, and batch size, set to the standard
values typically employed for training ViT-B/16 on the ImageNet dataset (Dosovitskiy et al., 2020).
We also employ ℓ2 regularization and augmentation on ImageNet training data. We evaluate the
models on IID ImageNet test set.

Our Imagenet experiments were primarily inspired by the “loss of plasticity” phenomenon described
in Ash & Adams (2020). Their study demonstrates that models sequentially trained on two splits of
CIFAR-10 data (initially on 50%, followed by 100% of data) exhibit poorer generalization compared
to models trained from scratch on the entire dataset. Since we do not observe this behavior for
continual training of CLIP, we investigated the existence of such behaviors on up to 8 splits of
Imagenet. Our findings reveal that the simple cumulative baseline (with no extra budget) remains
competitively close to the Oracle model (that benefits from using the full compute budget on the
entire pooled training data from the beginning).

Prior works (Prabhu et al., 2023; Hu et al., 2021) performed continual learning experiments on
Imagenet to compare different methods and highlight the effectiveness of continual training on
synthetic continual learning setups derived from ImageNet. While these papers include results with
an Oracle method, differences in the settings considered in these studies limit direct comparisons.

In particular, we show the performance gap of less than 1% in the same setup used otherwise in the
paper when using SOTA training procedures achieving 81% validation performance. Comparitively
the referenced Hu et al. (2021) does not show whether the 65% to 77% performance gap in their
Table 1 can be bridged by increasing the compute for their method. Instead, authors show that if they
restrict the compute for Oracle in Table 2, the Oracle performance drops to 68% (with « 3% gap).

Moreover, in Prabhu et al. (2023), authors perform experiments on DI-Imagenet-2k where they start
with an initial memory of Imagenet-1k 1.2 M samples and sequentially observe data for the same
classes 1k classes from Imagenet-21k pool. This makes comparing streaming accuracy (or Imagenet-
1k accuracy) for different methods incomparable with our setup (with a gap of over 7% in streaming
accuracy even at step 8 as compared to less than 1% in our setup).
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D.2 TRAINING AND HYPERPARAMETER DETAILS

We create a common experimental setup by fixing the training procedure for sequential runs. Unless
specified otherwise, we closely follow the CLIP training recipe proposed in (Ilharco et al., 2021;
Radford et al., 2021) where we train models with a contrastive objective over images and captions.
Given a set of image-text pairs, we train an image encoder and a text encoder such that the similarity
between the representations of images and their corresponding text is maximized relative to unaligned
pairs. Only LwF deviates from this standard training procedure. For each benchmark, we pick
Vision Transformers (ViTs) as the image encoder, in particular, we fix the model architecture to
ViT-B/16 (Dosovitskiy et al., 2021). We fix the Adam optimizer and its hyperparameters to values
suggested in (Ilharco et al., 2021).

We primarily ablate over only two things: maximum learning rate with cosine learning schedule
and warm up iterations for sequential training. For choosing other hyperparameters, we follow the
OpenCLIP library (Ilharco et al., 2021).

D.3 REPLAY SIZES WITH EXP AND EQUAL STRATEGIES

We default to using 2D size of data where D represents incoming data size from new time step. As
described in the main text, for -Exp, we reduce the buffer size by half of what we used at old time
step and use rest of the half as data from previous time step. App. C.3 lists the dataset sizes for each
benchmark which dictate the exact buffer sizes.

E RESULTS WITH OTHER CONTINUAL LEARNING METHODS

E.1 RESULTS WITH EWC METHOD

As proposed in the original work Kirkpatrick et al. (2017), we implement EWC method where we
optimize the following loss:

LEWCpθq “ Lpθq `
ÿ

i

λEWC

2
Fipθi ´ θt´1,iq

2 ,

where Lpθq is the standard contrastive loss on data from time step t, Fi is the i-th diagonal entry
of the fisher information matrix, and θt´1 are the frozen parameters from previous time step. We
perform experiments with different values of λEWC P t1, 10, 100, 400u (see Table 18).

Table 18: Zero shot performance on our time-continual benchmarks with EWC. ˚ and ˚˚

denote methods that violate the compute budget. For static tasks, we tabulate accuracy of the models
obtained on the final timestamp. For dynamic tasks, we tabulate forward/backward transfer and ID
performance on retrieval tasks (Sec. 2.3). We observe that EWC performs worse than Sequential,
Patching and LwF.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (M) Sequential 3.0 ˆ 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9
Patching 3.0 ˆ 1018 19.3 16.8 18.5 14.7 26.9 25.4 14.5

LwF˚ 3.8 ˆ 1018 19.2 16.5 17.7 14.3 25.6 26.6 14.9
EWC (λEWC = 1)˚ 3.6 ˆ 1018 18.7 16.3 16.2 15.1 25.5 26.4 14.8
EWC (λEWC = 10)˚ 3.6 ˆ 1018 18.1 15.8 16.8 14.7 24.8 25.7 14.4

EWC (λEWC = 100)˚ 3.6 ˆ 1018 17.6 15.4 16.3 14.8 24.4 25.4 14.3
EWC (λEWC = 400)˚ 3.6 ˆ 1018 17.0 15.0 16.4 14.3 24.1 24.9 14.0

E.2 RESULTS WITH OVERSAMPLING + COUNTING BASED SAMPLING METHOD

In this section, we perform ablation on Cumulative-Equal. In particular, we made the following two
modifications: (i) Count based sampling: Instead of random sampling, we implemented the count-
based subsampling that prioritizes not/less used examples; (ii) Oversampling: We oversampled data
from old timesteps with ratio inversely proportional to the ratio of examples, i.e., if the old data is of
size D/2 and the new data is of size D, then we upsample old data with 2:1 ratio.

However, we observe that this method doesn’t improve performance over Cumulative-Equal and in
fact hurts the performance slightly (see Table 19). We hypothesize that this can be due to a decreasing
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marginal utility of labeled data as highlighted in Cui et al. (2019). Their work argues that due to
information overlap among data, as the number of samples increases, the marginal benefit a model
can extract from the data diminishes. As a result, Cui et al. (2019) proposed using of “effective
sample size” instead of the actual number of samples to obtain the ratio used to perform re-sampling
or re-weighting. In particular, the expression of “effective sample size” is given by En “

1´βn

1´β

where n is the original sample size and β is a hyperparameter that Cui et al. (2019) selects from
β P t0.9, 0.99, 0.999, 0.9999u.

For different time steps, we leverage this expression of En to calculate the effective number of
samples. In our settings (even at small scales), our datasets contain an order of 100k image-text pairs
even after subsampling data from old time step. For example, with -Equal baseline, when training
on the last time step (i.e., 2022), the smallest dataset (i.e., 2016) is of approximately 400k samples.
Plugging in the expression for effective sample size from Cui et al. (2019), we observe that for all
β P p0, 0.99999q, the ratio of effective sample sizes for different time steps remains close to 1. This
may highlight why our naive over-sampling strategy doesn’t improve over no-oversampling.

Table 19: Zero shot performance on our time-continual benchmarks with oversampling and
counting-based sampling. ˚ and ˚˚ denote methods that violate the compute budget. For static
tasks, we tabulate accuracy of the models obtained on the final timestamp. For dynamic tasks, we
tabulate forward/backward transfer and ID performance on retrieval tasks (Sec. 2.3).

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (M) Sequential 3.0 ˆ 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9
Cumulative-Equal (Counts + OS) 3.0 ˆ 1018 18.1 15.3 14.3 16.5 28.9 23.7 14.2

Cumulative-Equal 3.0 ˆ 1018 22.1 18.4 19.2 17.1 31.8 26.8 15.1

F RESULTS WITH NEW EVALUATION METRICS ON DYNAMIC TASKS

Recall, T represent the number of time steps for which we have data. For each training method, we
generate a total of T models, each corresponding to the end of training at a particular time step. For
each model and a dynamic evaluation task, we obtain T performance values. We represent these
values using the performance matrix E , where each entry Ei,j signifies the performance of the model
obtained after observing training data at time step i when evaluated on a dataset from time step
j. Defining backward metrics as in Sec. 2.2 involves averaging the entries in the upper and lower
diagonal of our performance matrix E , i.e., it was calculated as the average of time steps before
each training step (i.e., the lower triangular of E), i.e.,

ř

iěj Eij

pT pT´1qq{2 . This backward transfer metric
has been used in prior works Lin et al. (2021). However, this approach inadvertently resulted in
the backward transfer metric being influenced by later evaluation time steps resulting in backward
transfer performance numbers slightly larger than ID performance.

To address this issue, we’ve revised our metric calculation method to metric as in Díaz-Rodríguez
et al. (2018). Now, we normalize the data in each row, which corresponds to evaluation time steps by
subtracting the ID performance. This adjustment ensures a more balanced and accurate representation
across all training time steps. In particular, our updated forward and backward transfer metrics can be
summarized as:

• Backward transfer: Let Bi denote the average performance on evaluation tasks before time i, then
we define backward transfer as average of Bi across each training step, i.e.,

řT
i“2

ř

iěj Eij´Eii

T pT´1q{2

• Forward transfer: Let Fi denote the average performance on evaluation tasks after time i, then we
define forward transfer as average of Fi across each training step, i.e.,

řT´1
i“1

ř

iďj Eij´Eii

T pT´1q{2
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Table 20: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ denote methods
that violate the compute budget. For dynamic tasks, we tabulate forward/backward transfer and ID
performance on retrieval tasks with updated metrics as defined in App. F.

Benchmark Method Compute
(MACs)

Dynamic Retrieval Tasks

Backward
Transfer

ID Perfor-
mance

Forward
Transfer

Relative
Backward
Transfer

Relative
Forward
Transfer

TIC-YFCC

Restart 3.4 ˆ 1018 13.2 41.4 18.6 ´29.8 ´21.2
Sequential 3.4 ˆ 1018 42.2 48.4 23.7 ´9.5 ´21.5
Patching 3.4 ˆ 1018 44.7 53.4 24.5 ´15.6 ´22.0

Cumulative-Exp 3.4 ˆ 1018 60.4 60.1 27.1 ´9.8 ´23.0
Cumulative-Equal 3.4 ˆ 1018 60.4 60.4 27.1 ´10.3 ´23.0

Cumulative-All 3.4 ˆ 1018 66.4 60.2 27.6 ´4.1 ´22.4
LwF˚ 4.1 ˆ 1018 36.6 56.0 23.2 ´27.4 ´24.9

Cumulative-All˚ 3.6 ˆ 1018 66.8 60.3 27.6 ´3.9 ´22.4
Oracle˚˚ 8.5 ˆ 1018 66.1 61.8 26.9 ´6.6 ´24.0

TIC-RedCaps

Restart 3.4 ˆ 1018 21.3 25.4 22.4 ´4.5 ´2.7
Sequential 3.4 ˆ 1018 33.0 33.6 27.5 ´3.8 ´3.0
Patching 3.4 ˆ 1018 34.8 34.8 27.8 ´3.9 ´3.0

Cumulative-Exp 3.4 ˆ 1018 44.5 42.0 32.6 ´3.0 ´4.0
Cumulative-Equal 3.4 ˆ 1018 44.4 42.0 32.6 ´3.0 ´4.0

Cumulative-All 3.4 ˆ 1018 48.9 43.2 33.4 ´0.6 ´3.5
LwF˚ 4.1 ˆ 1018 35.4 36.0 28.4 ´4.6 ´3.7

Cumulative-All˚ 3.6 ˆ 1018 49.0 43.4 33.4 ´1.0 ´3.5
Oracle˚˚ 8.5 ˆ 1018 48.5 43.1 33.4 ´1.0 ´3.4

TIC-DataComp (M)

Sequential 3.0 ˆ 1018 25.7 26.4 14.9 ´4.7 ´7.6
Patching 3.0 ˆ 1018 26.9 25.4 14.5 ´1.9 ´7.4

Cumulative-Exp 3.0 ˆ 1018 31.7 27.1 15.2 0.3 ´7.6
Cumulative-Equal 3.0 ˆ 1018 31.8 26.8 15.1 0.9 ´7.6

Cumulative-All 3.0 ˆ 1018 33.8 26.4 15.1 3.5 ´7.3
LwF˚ 3.8 ˆ 1018 25.6 26.6 14.9 ´4.8 ´8.0

Cumulative-All˚ 3.9 ˆ 1018 36.7 28.3 15.5 3.0 ´7.3
Oracle˚˚ 1.2 ˆ 1019 34.9 27.8 15.6 2.5 ´7.7

TIC-DataComp (L)

Sequential 2.7 ˆ 1019 52.6 58.4 41.1 ´8.7 ´14.4
Patching 2.7 ˆ 1019 55.2 57.5 40.9 ´4.9 ´13.9

Cumulative-Exp 2.7 ˆ 1019 60.4 58.4 41.4 ´1.1 ´13.8
Cumulative-Equal 2.7 ˆ 1019 60.9 58.2 41.4 ´0.3 ´13.8

Cumulative-All 2.7 ˆ 1019 62.1 57.3 41.2 2.2 ´13.5
Cumulative-All˚ 4.1 ˆ 1019 63.0 57.8 41.2 2.1 ´13.5

Oracle˚˚ 1.1 ˆ 1020 64.3 58.6 41.8 2.2 ´13.3

TIC-DataComp (XL)
Sequential 2.7 ˆ 1020 63.1 68.9 56.8 ´5.6 ´12.3

Cumulative-All 2.7 ˆ 1020 70.7 68.5 57.1 2.5 ´11.7
Cumulative-All˚ 3.5 ˆ 1020 71.0 68.6 57.1 2.5 ´11.7
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