
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Anonymous Authors1

Abstract
Efficiently leveraging of the capabilities of con-
temporary large language models (LLMs) is in-
creasingly challenging, particularly when direct
fine-tuning is expensive and often impractical. Ex-
isting training-free methods, including manually
or automated designed workflows, typically de-
mand substantial human effort or yield subopti-
mal results. This paper proposes Weak-for-Strong
Harnessing (W4S), a novel framework that cus-
tomizes smaller, cost-efficient language models
to design and optimize workflows for harness-
ing stronger models. W4S formulates workflow
design as a multi-turn markov decision process
and introduces reinforcement learning for agentic
workflow optimization (RLAO) to train a weak
meta-agent. Through iterative interaction with
the environment, the meta-agent learns to design
increasingly effective workflows without manual
intervention. Empirical results demonstrate the su-
periority of W4S that our 7B meta-agent, trained
with just one GPU hour, outperforms the strongest
baseline by 2.9% ∼ 24.6% across eleven bench-
marks, successfully elevating the performance of
state-of-the-art models such as GPT-3.5-Turbo
and GPT-4o. Notably, W4S exhibits strong gener-
alization capabilities across both seen and unseen
tasks, offering an efficient, high-performing alter-
native to directly fine-tuning strong models.

1. Introduction
Despite the rapid advancement of large language models
(LLMs) such as GPT-4o (OpenAI, 2024), Claude (An-
thropic, 2024), Deepseek-R1 (DeepSeek-AI et al., 2025)
and Llama (Dubey et al., 2024), how to effectively har-
ness their capabilities in workflows remains a significant
challenge. Directly querying these powerful models often

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

yields inadequate results on complex or domain-specific
tasks. Meanwhile, fine-tuning strong models to achieve
desired behaviors can be prohibitively expensive and even
infeasible, especially with closed-source, commercial mod-
els. This raises a critical research question: how can we
unleash the potential of powerful LLMs without directly
finetuning them?

To this end, training-free methods have emerged as poten-
tial solutions, ranging from simple heuristics like Few-shot
Prompting (Brown, 2020), Chain-of-Thought (COT) (Wei
et al., 2022), In-context Vectors (Liu et al., 2024a) to more
intricate hand-designed agentic workflows (Yao et al., 2023;
Zhou et al., 2023; Zhong et al., 2024b; Lu et al., 2025b).
While heuristic approaches enhance performance, they
struggle with complex tasks requiring multi-step reason-
ing (Prasad et al., 2024). Sophisticated hand-designed work-
flows mitigate some limitations but require labor-intensive
trial-and-error and domain-specific manual tuning, resulting
in high labor costs. Moreover, these manual strategies lack
adaptability across tasks or models and fail to fully exploit
LLM potential (Cemri et al., 2025), aligning with the “bit-
ter lesson” (Sutton, 2019) that hand-engineered solutions
are outpaced by adaptive, data-driven systems. Recent ef-
forts have explored representing workflows as executable
code, enabling powerful models like GPT-4o or Claude to
automate workflow generation and optimization (Hu et al.,
2024; Zhang et al., 2024a). However, these training-free
approaches underutilize historical data and environmental
feedback, sometimes performing no better than random
workflow sampling (App. E.1), highlighting the inadequacy
of such approaches in practice.

The challenge becomes even more pronounced with su-
perintelligent models whose behaviors might not be fully
predictable or comprehensible to human users (Burns et al.,
2024), raising critical questions about the optimal strate-
gies for their utilization. Given the limitations of existing
training-free methods and the intractability of fine-tuning
strong LLMs directly, this paper turns into the idea of train-
ing a weaker model that can understand the behaviors of
strong models as well as the downstream task, to harness
the strong models based on its understanding in the place of
human.

Our Contributions. We propose a new paradigm: Weak-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Weak-as-Router
Dispatching

Query
Weak Router

Weak-to-Strong
Generalization

Weak
Supervisor

Supervise

Strong Student

Weak-for-Strong
Harnessing

: will be updated via training : always fixed

Weak
Meta-agent

Task

Workflow 1

Math Expert Critical Thinker

Accuracy: 0.55

Workflow 2

Programmer Python Executor

Answer

Answer

Accuracy: 0.72

Environment

…

Strong
Model

Figure 1. Comparison of paradigms: Weak-to-Strong Generalization uses weak models to supervise strong models, akin to superalignment;
routing-based methods train weak models to dispatch queries across strong models; in contrast, Weak-for-Strong Harnessing (W4S) trains
a weak model to optimize a strong model’s performance on a specific task.

for-Strong Harnessing (W4S), which trains a weak model
to leverage the strengths of strong models. W4S casts the
problem of harnessing strong models as a workflow opti-
mization problem, and employs a weak model as a meta-
agent trained specifically for the problem. Unlike previous
methods (Zhuge et al., 2024; Zhang et al., 2024a) that prede-
fine agentic modules, we maximize the degree of freedom of
the meta-agent by constraining only the workflow interfaces.
This allows the meta-agent to design every internal compo-
nent in freedom, including prompts, hyperparameters, and
building blocks, enabling more expressive and tailored so-
lutions. We formulate this as a multi-turn Markov decision
process (MDP), and introduce reinforcement learning for
agentic workflow optimization (RLAO) to teach the meta-
agent to design and refine workflows. Through iterative
interaction with both the task environment and the behavior
of strong models, the weak meta-agent learns to design and
improve workflows for strong models based on history and
feedback.

Our approach introduces a novel perspective on the poten-
tial ways of interaction between weak and strong models,
distinct from existing paradigms such as weak-to-strong gen-
eralization (Burns et al., 2024) and weak-dispatch-strong
routing framework (Frick et al., 2025), as illustrated in Fig-
ure 1. This new paradigm emphasizes the weak meta-agent’s
role in unlocking latent capabilities of existing models with-
out modifying them directly. Our paradigm is significantly
more efficient and less expensive than finetuning strong
models directly, while outperforming both finetuning weak
models on targeted tasks and training-free methods.

We conduct comprehensive evaluations across eleven widely

adopted benchmarks, including question answering, mathe-
matics, and code generation tasks. Empirical results demon-
strate that a 7B meta-agent, trained with only one GPU
hour on five tasks, can design workflows that effectively
leverage strong models, significantly outperforming all the
baselines. W4S surpasses manually designed methods by
3.3% ∼ 27.1% and outperforms the strongest automated
design baseline by 2.9% ∼ 24.6%. Notably, the workflows
generated by our method exhibit strong generalization and
transferability across tasks and strong models, demonstrat-
ing the robustness and adaptability of the learned weak
meta-agent in orchestrating high-performance workflows.

2. Method: Weak-for-Strong Harnessing
This section presents the Weak-for-Strong Harnessing
(W4S) framework that trains weak models to optimize agen-
tic workflows for stronger models. The key insight is that
workflow optimization can be formulated as a sequential
decision-making problem where a weak meta-agent iter-
atively improves workflows through interactions with an
environment, guided by performance feedback.

Specifically, we define an agentic workflow W as a struc-
tured and executable Python function that internally invokes
a strong model to perform specific downstream tasks. The
W4S framework operates as an iterative process of work-
flow generation, execution, and refinement, as depicted in
Figure 2(a), and is unfolded as follows:

• Workflow Generation. The weak meta-agent analyzes
the task, historical workflows, and prior feedback to de-
sign a new workflow to leverage the given strong model,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

(a) W4S Optimization (b) Overview of RLAO

“Your mission is to better harness the given model
on targeted tasks.”

[Instructions] / [Task description] / [Example Workflow and Feedback]

Analysis: Previous attempts, Plans for improvements

The Evaluation Feedback is:
Validation Accuracy: 0.75
[Concrete Samples on Failure Cases]
Please improve the workflow to increase performance.

Self-Correction
Code

Thought

Test on
public set

…

!!

""

#"

Initial State

!!"

!#! !## !#" !#$!#%

"!" #!"

!"! !"# !"" !"$!"%

"!# #!# "##### ""# "$# "%##"# #$# #%#

!!! !!# !!$!!%

"!! #!! "!##!# "!$ "!%#!$ #!% $!

!!"

Weak LLM

$! !!"

Weak LLM

"!"

!#!

%&($!, !!", #!")

%&($#, !!", #!")

$#

Data Collection RL Training

Python
Expert

Figure 2. (a) The weak meta-agent harness strong models by optimizing the workflows iteratively based on task and environment feedback.
(b) To collect effective data for offline RL training, the meta-agent will sample m times in each iteration, and using the best samples to
form the next state. The data form multi-turn trajectories for offline RL training.

represented as executable Python code. A self-correction
mechanism addresses coding errors.

• Execution and Feedback. The generated workflow is
executed by a strong model on validation samples, produc-
ing performance feedback (e.g., Accuracy, Error Cases).

• Refinement. The meta-agent uses feedback to iteratively
improve the workflow, adapting to the task and the strong
model’s behavior over multiple turns.

This process enables the meta-agent to learn task-specific
strategies and harness the strong model’s capabilities effi-
ciently, without requiring direct fine-tuning of the strong
model. To rigorously analyze this optimization problem,
below we formalize it as a multi-turn Markov Decision
Process (MDP), and present our Reinforcement Learning
for Agentic Workflow Optimization (RLAO) algorithm for
training the weak meta-agent.

2.1. Workflow Optimization as Multi-Turn MDP
An MDP is denoted by a tuple M = (S,A,P,R), where S
and A are the state space and the action space, respectively.
In our case, S represents the current knowledge about the
task, the model and workflow history, A consists of possible
workflow designs, P : S ×A× S → [0, 1] is the transition
probability function, and R : S ×A×S → R is the reward
function.

For each iteration i, the agent takes action ai at state si
according to a learnable policy πθ(a|s) : S × A → [0, 1],
where θ is the parameters of the meta-agent. The envi-
ronment executes the workflow and provides feedback fi
and feedback-based reward ri, transiting to the next state
si+1 = [si; ai; fi]. This process continues for a fixed num-
ber of iterations or until a predefined convergence criterion
is met, allowing the agent to refine workflows based on
feedback.

Initial State Setup. The initial state s1 consists of Instruc-
tions I, Task description T , Example workflow w0 and its
feedback f0 (if available):

s1 = [I; T ;W0; f0].

Action Design. Each action includes two steps: analysis
and workflow generation.

1. Analysis: The meta-agent is required to first conduct
analysis include interpreting the task, history workflows,
and feedbacks, and plans for improvements. Adding the
analysis into the action space can bridge the gap between
the pretrained language priors of LLMs and the environ-
ment, providing context for what adjustments should be
made next.

2. Workflow Generation: Based on the analysis, the meta-
agent produces function-represented workflow Wi. Un-
like previous work such as Zhang et al. (2024a) that spec-
ifies predefined agentic modules (e.g., ensemble mod-
ule, revision module), which constrains the creativity
of LLMs, our approach only specifies the interface of
the workflow function and provides helper functions like
LLM calls and code execution. More details about the
helper functions can be seen in Appendix. A.2. This gives
the meta-agent complete freedom to design the prompts,
hyperparameters and internal logic of the workflow, fos-
tering greater innovation and adaptability.

Error Handling via Self-Correction. To address potential
coding errors in the generated workflows, we implement a
self-correction mechanism by executing the workflow Wi

on a single validation sample. If execution fails due to bugs,
the meta-agent will be prompted to perform self-correction
to fix the identified bugs. This process can iterate up to 3
times, with the error message provided to the meta-agent at

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

each step:

W
(j+1)
i = SelfCorrect(Instructions,W (j)

i ,Errorj).

where W
(j)
i is the workflow at the j-th correction attempt

and Errorj is the corresponding error message. After self-
correction, the complete action is then denoted as:

ai = [Analysisi;Wi].

where Wi is now the workflow of the last correction at-
tempt. If the workflow continues to produce errors after 3
correction attempts, the current iteration is skipped, and the
erroneous workflow is not recorded.

Evaluation Feedback. Upon successful execution, the
workflow is evaluated on both private and public valida-
tion sets to generate feedback:

1. Validation performance vi: Accuracy measured on the
private validation set.

2. Case studies: Examples of incorrect predictions from
the public validation set, including input prompts, model
answers, and correct answers.

The feedback is formally represented as:

fi = [vi; CaseStudiesi].

2.2. RLAO: Reinforcement Learning for Agentic
Workflow Optimization

To train the weak meta-agent, we propose Reinforcement
Learning for Agentic Workflow Optimization (RLAO), an
offline RL algorithm tailored for this MDP, as shown in
Figure 2(b). Online RL is less efficient due to the high cost
of real-time workflow execution, so we collect trajectories
offline and optimize the policy accordingly.

Reward Mechanism. Based on the feedback fi, we define
a reward ri as follows:

ri =

1, if vi > maxk∈[0,i−1] vk

0.5, if vi > vi−1

0, otherwise
.

This reward function encourages both absolute improvement
(surpassing all previous iterations) and relative improvement
(surpassing the most recent iteration).

Data Collection. We collect a dataset of optimization trajec-
tories for training the weak meta-agent. At each iteration i,
we sample m candidate actions. Subsequently, we select the
best action based on validation performance to serve as the
current action respectively to form the new state and execute
the next action. Our dataset consists of both selected actions

and unselected alternatives. At each iteration i, we generate
m candidate actions:

{ a1i , a2i , . . . , ami }.

Then we select the best action based on validation perfor-
mance:

ai = a∗i = arg max
k∈[1,m]

vki .

where vki represents the validation performance of the work-
flow produced by action aki . This selection mechanism
serves a dual purpose: it ensures that only the most effective
workflow proceeds to the next iteration while simultane-
ously enriching our training dataset with both successful
and unsuccessful attempts. This best-of-m approach helps
to create high-quality trajectories for training while main-
taining diversity.

Policy Optimization. We train the meta-agent using reward-
weighted regression (RWR), an offline RL approach that
optimizes the policy πθ.

max
θ

Eρ∼D

[
T∑

t=1

log πθ

(
at | st

)
· exp

(rt
τ

)]
(1)

where ρ = (s1, a1, r1, . . . , sT , aT , rT) is a trajectory from
dataset D, T is the trajectory length, and τ is a temperature
hyperparameter controlling reward scaling.

3. Experiments
3.1. Experimental Setup
Baselines. We compare workflows discovered by W4S
against manually designed methods for LLMs, including
5-shot prompting, COT (Wei et al., 2022), Self Consistency
CoT (5 answers) (Wang et al., 2022), Self-Refine (max 3
iteration rounds) (Madaan et al., 2023), LLM Debate (Du
et al., 2023), Quality Diversity (Lu et al., 2025a) and Dy-
namic Assignment (Xu et al., 2023a). We also compare
against workflow designed by automated workflow opti-
mization method ADAS (Hu et al., 2024) and AFlow (Zhang
et al., 2024a). Besides, we compare against a training-based
baseline where GPT-4o-mini is fine-tuned on the validation
dataset for fair comparison. More details are provided in
Appendix D.2.

Datasets. We utilize eleven public benchmarks for our ex-
periments: (1) math reasoning, we use MGSM (Shi et al.,
2023), GSM8K (Cobbe et al., 2021), GSM Plus (Li et al.,
2024a), GSM Hard (Gao et al., 2023), SVAMP (Patel et al.,
2021) and MATH (Hendrycks et al., 2021). For the MATH
dataset, we follow (Hong et al., 2024a) in selecting 617
problems from four typical problem types (Combinatorics
& Probability, Number Theory, Pre-algebra, Pre-calculus)
at difficulty level 5. (2) question-answering, we use DROP

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

(Dua et al., 2019) for evaluating reading comprehension,
MMLU Pro (Wang et al., 2024) for evaluating multi-task
problem solving and GPQA (Rein et al., 2023) for evaluat-
ing the capability of solving graduate-level Science ques-
tions. (3) code generation tasks, we use HumanEval (Chen
et al., 2021), and MBPP (Austin et al., 2021). For ADAS
and AFlow, we conduct the searching for workflows on
a validation set. For W4S, we further randomly split the
validation set into a private validation set and a public vali-
dation set. All the evaluation results are conducted on the
same held-out testing set. We follow the data splits used in
established practices (Hu et al., 2024; Zhang et al., 2024a).
More details about datasets can be found in Appendix. D.1.

Metrics. For HumanEval and MBPP, we report the pass@1
metric as presented in (Chen et al., 2021) to assess code
accuracy. For multiple-choice datasets MMLU Pro and
GPQA and mathematical datasets, we use Accuracy. For
DROP, we report the F1 Score.

Data Collection Details. To manage computational con-
straints during training, we impose a trajectory truncation
strategy in RLAO. Trajectories are limited to a horizon of
T = 2 turns, with states reset every two iterations as fol-
lows:

s2i+1 =

s1, if i = 0,

[s1; W2i; f2i], if i > 0,
, s2i+2 = [s2i+1, a2i+1, f2i+1].

where s1 is the initial state, W2i is the workflow from the
previous selected action, and f2i is its feedback. This results
in a dataset D comprising single-turn trajectories (from
unselected actions) and two-turn trajectories (from selected
actions), formally:

D :=
{(

sjt , a
j
t , f

j
t , r

j
t

)T ′

t=1

}|D|

j=1
, T ′ ∈ {1, 2}.

For the following experiments results, we set m = 5 can-
didate actions per iteration to collect offline data, yielding
212 trajectories for Table 1 and 145 trajectories for Table 2.

Implementation Details. For ADAS and AFlow, we
use GPT-4o as the meta-agent. For W4S, we employ
and train Qwen2.5-Coder-7B-Instruct as the weak
meta-agent. We also report the performance of directly
utilizing GPT-4o without RLAO as meta-agent or train-
ing meta-agent with SFT on our framework in ablation
studies. For execution, we employ GPT-3.5-Turbo,
GPT-4o-mini in main text. More experiments using
GPT-4o and Claude-Sonnet as executors are shown
in Appendix E. We set iteration rounds to 20 for AFlow,
and 30 for ADAS, following their original settings. We set
iteration rounds to 10 for W4S. Training is conducted on 2

Nvidia H100 GPUs with a learning rate of 1e-5. The temper-
ature τ for weighting the reward is set to 0.4. At inference
time, W4S only samples one action in each iteration. More
implementation details can be seen in Appendix D.

3.2. Experimental Results

W4S significantly outperforms baseline methods across
seen and unseen tasks. As illustrated in Table 1, W4S,
employing a 7B model as a weak meta-agent trained with
RLAO, markedly surpasses few-shot learning, manually de-
signed workflows, and automated workflow baselines with
only 10 iterations. In this experiment, the meta-agent is
trained on five tasks (DROP, MMLU Pro, MBPP, GSM
Hard, Math) and generalize to two unseen tasks. The exe-
cution LLM is GPT-4o-mini. ’Finetuned GPT-4o-mini’
represents using surpervised learning to train GPT-4o-mini
on validation dataset, which yields unsatisfactory results,
highlighting that leveraging a weak model trained via RLAO
effectively outperforms direct fine-tuning on strong mod-
els under limited data conditions. Besides, ’W4S w/ SFT’
represents training the weak model using the same data of
RLAO with SFT. Notably, W4S with RLAO outperforms
its untrained and SFT trained counterpart, further demon-
strating the effectiveness of RLAO.

W4S demonstrates generalization capabilities across dif-
ferent mathematical tasks. Table 2 evaluates the gener-
alization of W4S on mathematical reasoning tasks. De-
spite being trained solely on GSM Plus and MGSM, W4S
achieves substantial improvements over all baselines when
tested on unseen tasks such as GSM8K, GSM Hard, and
SVAMP. Particularly, W4S exceeds the strongest baseline
methods by 10% on GSM8K and 20% on GSM Hard, high-
lighting W4S as a scalable and effective method for har-
nessing powerful executors.

Ablation Study. Figure 3 illustrates iteration curves for
MGSM (seen task) and GSM8K (unseen task). W4S, lever-
aging a weak meta-agent trained via RLAO, demonstrates
stable and consistent improvements over iterations on both
seen and unseen tasks. Conversely, ADAS, employing
GPT-4o directly as the meta-agent, has very random per-
formance and often output workflow with a performance of
0. Besides, W4S trained with RLAO outperforms directly
using the 7B model without training, demonstrating the effi-
cacy of our training method. Notably, utilizing trained weak
meta-agent also outperforms directly using a strong model
like GPT-4o to optimize the workflow, validating the ne-
cessity and effectiveness of our weak-for-strong paradigm
facilitated by RLAO training.

Cost Analysis. In Figure 4(a), we demonstrate the compar-
ison of performance and API calls between the baselines
and the workflows found by ADAS, AFlow (using GPT-4o
as meta-agent) and W4S (using trained 7B model as meta-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Method Seen Task Unseen Task
DROP MMLU Pro MBPP GSM Hard Math GPQA HumanEval

5-shot 80.9 60.8 69.5 43.0 57.1 37.4 87.8
Finetuned GPT-4o-mini 75.9 61.1 76.2 41.2 56.8 41.8 82.8

Hand-designed Workflows
CoT 78.5 56.6 72.4 39.5 56.9 36.7 88.8
COT SC 84.2 58.0 74.2 45.0 58.1 39.4 90.3
Self Refine 79.1 57.5 70.4 47.5 53.0 38.4 85.0
LLM Debate 83.0 60.1 73.9 49.5 53.9 40.8 89.1
Quality Diversity 80.0 59.1 71.8 46.5 55.3 40.1 86.0
Dynamic Assignment 80.2 57.4 71.8 41.5 56.9 36.0 90.1

Training-free Automated-designed Workflows
ADAS (30iter) 82.0 58.4 74.0 52.5 51.4 39.6 90.8
AFlow (20iter) 80.6 59.2 83.9 52.0 58.4 42.0 92.1

W4S w/o RLAO (10iter) 85.3 61.0 86.0 60.6 58.6 39.8 92.7
W4S w/ SFT (10iter) 85.2 63.0 72.4 57.2 61.9 39.6 94.3
W4S (10iter) 87.5 64.8 86.8 76.6 63.0 45.9 95.4

Table 1. Comparison of performance (%) between W4S and baselines. All methods are executed using GPT-4o-mini, with each tested
three times, and average results reported.

(a) Seen Task (b) Unseen Task

Figure 3. Ablation Studies on MGSM and GSM8K. The purple line represents the performance of W4S using 7B model trained on
MGSM and GSM Plus with RLAO.

agent) on DROP and MBPP, and using GPT-4o-mini as
execution LLM. Results demonstrate that W4S can design
workflows that harness strong models to have a better per-
formance with less test-time compute compared with hand-
designed workflows. Besides, by automating the design of
effective agentic workflows, W4S eliminates the human
labor costs previously required. Although W4S adds more
cost of training, this training cost is negligible compared to
finetuning a strong model on targeted task. Training a 7B
model on five tasks in Table 1 requires only one GPU hour,
which can actually be amortized over repeated use across
different benchmarks. Table 3 provides a detailed efficiency
comparison on an unseen benchmark, including API cost
and wall-clock time and testing performance. Compared to
ADAS and AFlow, W4S achieves a Pass@1 score of 95.4
with a significantly reduced optimization time (33 minutes)
and zero meta-agent API cost. Test-time execution remains
comparable to baselines, with a wall-clock time of 2.7 min-

utes and an inference cost of $0.5, underscoring W4S’s
ability to balance efficacy and efficiency.

Case Study. Figure 4(b) and (c) visualizes the workflows de-
signed by W4S on MGSM and MMLU Pro. For MGSM, the
workflow employs a Translator LLM that converts multilin-
gual problems to English, followed by a Python Programmer
generating multiple code implementations. Successful code
executions are aggregated via Majority Voting, with a Math
Expert as fallback for challenging problems. This adaptive
approach dynamically adjusts strategies based on execution
results. For MMLU Pro, W4S creates a parallel multi-agent
workflow with specialized experts that each develop multi-
ple reasoning paths. After a Reflection phase where agents
review their answers, a Majority Voting mechanism pro-
duces the final answer. Both workflows demonstrate how
W4S automatically discovers task-specific decomposition
strategies and effective coordination mechanisms that com-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Method Seen Task Unseen Task
GSM Plus MGSM GSM8k GSM Hard SVAMP

Hand-designed Workflows
CoT 24.5 28.0 38.5 14.0 77.8
CoT SC 27.1 28.2 43.0 15.0 78.2
Self Refine 25.8 27.5 40.5 14.5 78.5
LLM Debate 29.9 39.0 49.0 18.0 76.0
Quality Diversity 21.1 31.1 29.0 14.0 69.8
Dynamic Assignment 27.1 30.1 34.0 19.5 73.0

Training-free Automated-designed Workflows
ADAS (GPT-4o 15iter) 52.0 47.5 54.5 31.5 80.8
ADAS (GPT-4o 30iter) 57.4 53.4 61.1 34.5 82.8
AFlow (GPT-4o 20iter) 62.8 54.8 76.8 40.6 81.3

In-distribution Domains Generalize to Other Math Domains
W4S (10iter) 68.2 66.2 86.5 61.8 84.2

Table 2. Comparison of performance (%) between W4S and baselines. All methods are executed using GPT-3.5-Turbo, with each
tested three times, and average results reported.

Method Workflow Optimization Execution on Testing Set
Wall-clock Time (min) Meta-Agent Cost ($) Execution Cost ($) Wall-clock Time (min) Inference Cost ($) Total Cost ($) Pass@1

ADAS 131 11.3 9.0 4.0 0.6 20.9 90.8
AFlow 61 0.6 0.4 10.9 0.3 1.3 92.1
W4S 33 0 0.4 2.7 0.5 0.9 95.4

Table 3. Efficiency comparison between W4S and state-of-the-art baselines on HumanEval, using GPT-4o-mini as the executor.
Testing set execution metrics are averaged over three runs, with costs reported for all runs.

bine specialized expertise with critical evaluation.

4. Related Works
Agentic Workflows. Agentic workflows and autonomous
agents represent distinct LLM application paradigms: the
former follows structured, multi-step processes, while the
latter dynamically solves problems. Unlike agents requiring
custom decision patterns, agentic workflows leverage hu-
man expertise for automated construction. They have been
applied to problem-solving (Wei et al., 2022; Wang et al.,
2022; Madaan et al., 2023; Wang et al., 2023; Han et al.,
2025; Zhou et al.), code generation (Hong et al., 2024b;
Ridnik et al., 2024; Zhong et al., 2024a), data analysis (Xie
et al., 2024; Ye et al., 2024; Zhong et al., 2024a; Zhou et al.,
2023), and mathematics (Zhong et al., 2024b; Xu et al.,
2023b).

Recent research automates workflow design via prompt tun-
ing (Fernando et al., 2024; Yüksekgönül et al., 2024; Yang
et al., 2024; Khattab et al., 2024; Liu et al., 2024b), hyper-
parameter optimization (Saad-Falcon et al., 2024), and end-
to-end workflow optimization (Li et al., 2024b; Zhou et al.,
2024a; Zhuge et al., 2024; Hu et al., 2024; Yin et al., 2024).
Methods like GPTSwarm (Zhuge et al., 2024), ADAS (Hu
et al., 2024) and AFlow (Zhang et al., 2024a) explore struc-
tured representations, yet efficient workflow discovery re-

mains a challenge. Unlike previous methods relying on
human-defined logic, our approach employs reinforcement
learning (RL) to autonomously optimize workflows, achiev-
ing superior scalability and performance. Besides, unlike
previous methods that treat workflows as graphs with prede-
fined agentic modules as nodes, we maximize the creativity
of the meta-agent by constraining only the workflow inter-
faces.

Weak-to-Strong Generalization. Weak-to-strong general-
ization refers to stronger models outperforming weaker su-
pervisors after fine-tuning. While Burns et al. (2024) empir-
ically demonstrated this effect, its limitations remain. The-
oretical analyses (Charikar et al., 2024; Lang et al., 2024)
and practical approaches—including LLM debates (Ken-
ton et al., 2024), easy-to-strong generalization (Sun et al.,
2024), small model search (Zhou et al., 2024c), hierarchical
mixture of experts (Liu & Alahi, 2024), reliability-aware
alignment (Guo & Yang, 2024), alignment with weak LLM
feedback (Tao & Li, 2024)—have been explored. Unlike
prior work focused on supervised improvements, we in-
troduce a learning-based agentic optimization approach to
harness strong models via weak models.

Concurrent Work. MaAS, ScoreFlow, and MAS-
GPT (Zhang et al., 2025; Wang et al., 2025; Ye et al., 2025)
also explore automatic workflow generation for LLM-based
systems. MaAS (Zhang et al., 2025) optimizes distribu-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

(a) Cost Analysis on DROP and MBPP (b) Case Study on MGSM (c) Case Study on MMLU Pro

Reasoning 1

Answer 1

Question-
Answering Task

Reason
Expert Scientist Critical

Thinker

Reasoning 1

Answer 1

Reasoning 1

Answer 1

Reasoning 2

Answer 2

Reasoning 2

Answer 2

Reasoning 2

Answer 2

… … …

Reflection Reflection Reflection

Majority
Voting

Final
Answer

Python
Executor

Answer

True

if succeed if succeed

None …C
od

e
G

en
er

at
io

n
an

d
E

xe
cu

ti
on

False

Code 1 Code 2

Reasoning 1 Reasoning 2
…

Python Programmer

Translator Translated Task

False

if Answer exist

Math
Expert

True

Answer

True

if succeed

Code 3

Reasoning 3

Majority
Voting

Final
Answer

Final
Answer

Multilingual
Math Task

Figure 4. Cost Analysis (a) and Case Studies (b, c) of W4S on different benchmarks.

tion over multi-agent architectures. ScoreFlow (Wang et al.,
2025) conducts evaluation-based preference optimization,
yet lacks interaction-driven refinement. MAS-GPT (Ye et al.,
2025) conducts supervised learning and lacks feedback adap-
tation. In contrast, W4S trains a weak agent via RL to it-
eratively optimize workflows with environment feedback,
achieving adaptive strong model harnessing.

5. Discussion
Safety Considerations. Although it is highly unlikely that
the meta-agent employed in our setting generate malicious
behaviors, they might inadvertently produce unsafe outputs
due to limitations in model alignment (Rokon et al., 2020;
Chen et al., 2021). We mitigate this risk through container-
ized execution of all generated code within secure, isolated
environments, automated detection of potentially unsafe
code patterns and manual safety inspections.

In fact, our training methodology offers an advantage from a
safety perspective compared with training-free methods that
rely directly on potentially less-aligned strong models to de-
sign workflows. The weak meta-agent could be specifically
trained to avoid generating workflows that might misuse
the strong model’s capabilities or produce harmful outputs.
While we didn’t explicitly optimize for safety in this paper,
future work could integrate safety-oriented objectives by
penalizing harmful patterns and rewarding safe workflows.

Limitations. The strong models we utilize are certainly
powerful, but they do not represent the frontier of closed-
source models, such as OpenAI o1 (OpenAI et al., 2024)
and Deepseek R1 (DeepSeek-AI et al., 2025). As models
continue to advance in capability, the gap between weak

models and strong executors may widen, introducing new
challenges. Additionally, our experiments focuses primarily
on question-answering and reasoning datasets, represent-
ing only a slice of potential applications. Complex tasks
like long-horizon planning and real-world agentic tasks
may require further methodological refinements. Never-
theless, despite these limitations, our current results remain
highly encouraging. They demonstrate the viability and
effectiveness of training weak models to better understand
the behaviors and leverage the potential of stronger mod-
els, suggesting a promising direction for future research
as AI systems continue to advance in capability. Our work
represents an important proof of concept that will become in-
creasingly valuable as the capability gap between accessible
and cutting-edge models continues to widen.

6. Conclusion
We propose Weak-for-Strong Harnessing (W4S), a novel
framework that trains a weak meta-agent to design and opti-
mize agentic workflows, effectively harnessing the capabili-
ties of stronger language models. By formulating workflow
optimization as a multi-turn MDP and leveraging Reinforce-
ment Learning for Agentic Workflow Optimization (RLAO),
our approach enables a 7B model to harness state-of-the-art
models, achieving significant performance gains across di-
verse benchmarks. A key benefit of Weak-for-Strong is that
the meta-agent is a smaller model that’s easier and cheaper
to train with RL and also easier to control because it’s open
source. As LLMs continue to advance, W4S establishes a
promising paradigm for efficiently unlocking their poten-
tial, paving the way for future exploration into adaptive,
learning-driven agentic systems.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Impact Statement
This work introduces a new paradigm—Weak-for-Strong
Harnessing—that empowers smaller, cost-efficient models
to design and optimize workflows that effectively leverage
stronger language models. By training a weak meta-agent to
adaptively leverage powerful strong models, our approach
enhances performance across diverse tasks without requir-
ing direct fine-tuning or internal access to the strong models.
This decoupling offers a scalable, cost-efficient alternative
particularly valuable in real-world applications constrained
by expensive training cost or access restrictions. We ac-
knowledge that automating agentic system generation intro-
duces potential risks if poorly aligned meta-agents produce
unsafe or unintended workflows. However, our approach
mitigates such risks by enabling targeted training and con-
trolled execution environments, and it offers new leverage
for integrating safety objectives into meta-agent learning.
Future research should further explore safeguards, verifica-
tion tools, and broader deployment impacts.

References
Anthropic. Introducing claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet,
2024.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Burns, C., Izmailov, P., Kirchner, J. H., Baker, B., Gao, L.,
Aschenbrenner, L., Chen, Y., Ecoffet, A., Joglekar, M.,
Leike, J., et al. Weak-to-strong generalization: eliciting
strong capabilities with weak supervision. In Proceed-
ings of the 41st International Conference on Machine
Learning, pp. 4971–5012, 2024.

Cemri, M., Pan, M. Z., Yang, S., Agrawal, L. A., Chopra,
B., Tiwari, R., Keutzer, K., Parameswaran, A., Klein,
D., Ramchandran, K., Zaharia, M., Gonzalez, J. E., and
Stoica, I. Why do multi-agent llm systems fail?, 2025.
URL https://arxiv.org/abs/2503.13657.

Charikar, M., Pabbaraju, C., and Shiragur, K. Quantify-
ing the gain in weak-to-strong generalization. Advances
in neural information processing systems, 37:126474–
126499, 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,

S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
CoRR, abs/2107.03374, 2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., et al.
Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://
arxiv.org/abs/2501.12948.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mor-
datch, I. Improving factuality and reasoning in lan-
guage models through multiagent debate, 2023. URL
https://arxiv.org/abs/2305.14325.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and
Gardner, M. DROP: A reading comprehension bench-
mark requiring discrete reasoning over paragraphs. In
NAACL-HLT (1), pp. 2368–2378. Association for Com-
putational Linguistics, 2019.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Feng, L., Nie, F., Liu, Y., and Alahi, A. Tarot: Tar-
geted data selection via optimal transport. arXiv preprint
arXiv:2412.00420, 2024.

Fernando, C., Banarse, D., Michalewski, H., Osindero, S.,
and Rocktäschel, T. Promptbreeder: Self-referential self-
improvement via prompt evolution. In ICML. OpenRe-
view.net, 2024.

Frick, E., Chen, C., Tennyson, J., Li, T., Chiang, W.-L., An-
gelopoulos, A. N., and Stoica, I. Prompt-to-leaderboard.
arXiv preprint arXiv:2502.14855, 2025.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.14325

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Guo, Y. and Yang, Y. Improving weak-to-strong general-
ization with reliability-aware alignment. arXiv preprint
arXiv:2406.19032, 2024.

Han, S., Xia, P., Zhang, R., Sun, T., Li, Y., Zhu, H.,
and Yao, H. Mdocagent: A multi-modal multi-agent
framework for document understanding. arXiv preprint
arXiv:2503.13964, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Hong, S., Lin, Y., Liu, B., Liu, B., Wu, B., Li, D., Chen,
J., Zhang, J., Wang, J., Zhang, L., Zhang, L., Yang, M.,
Zhuge, M., Guo, T., Zhou, T., Tao, W., Wang, W., Tang,
X., Lu, X., Zheng, X., Liang, X., Fei, Y., Cheng, Y., Xu,
Z., and Wu, C. Data interpreter: An LLM agent for data
science. CoRR, abs/2402.18679, 2024a.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Wang,
J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L.,
Ran, C., Xiao, L., Wu, C., and Schmidhuber, J. Metagpt:
Meta programming for A multi-agent collaborative frame-
work. In ICLR. OpenReview.net, 2024b.

Hu, S., Lu, C., and Clune, J. Automated design of agentic
systems. arXiv preprint arXiv:2408.08435, 2024.

Kenton, Z., Siegel, N., Kramár, J., Brown-Cohen, J., Al-
banie, S., Bulian, J., Agarwal, R., Lindner, D., Tang,
Y., Goodman, N., et al. On scalable oversight with weak
llms judging strong llms. Advances in Neural Information
Processing Systems, 37:75229–75276, 2024.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Vardhamanan, S., Haq, S., Sharma, A., Joshi,
T. T., Moazam, H., Miller, H., Zaharia, M., and Potts,
C. Dspy: Compiling declarative language model calls
into state-of-the-art pipelines. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024.

Lang, H., Sontag, D., and Vijayaraghavan, A. Theoretical
analysis of weak-to-strong generalization. Advances in
neural information processing systems, 37:46837–46880,
2024.

Li, Q., Cui, L., Zhao, X., Kong, L., and Bi, W. Gsm-plus: A
comprehensive benchmark for evaluating the robustness
of llms as mathematical problem solvers, 2024a. URL
https://arxiv.org/abs/2402.19255.

Li, Z., Xu, S., Mei, K., Hua, W., Rama, B., Raheja, O.,
Wang, H., Zhu, H., and Zhang, Y. Autoflow: Automated
workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821, 2024b.

Liu, S., Ye, H., Xing, L., and Zou, J. In-context vec-
tors: Making in context learning more effective and
controllable through latent space steering, 2024a. URL
https://arxiv.org/abs/2311.06668.

Liu, Y. and Alahi, A. Co-supervised learning: Improving
weak-to-strong generalization with hierarchical mixture
of experts. arXiv preprint arXiv:2402.15505, 2024.

Liu, Z., Zhang, Y., Li, P., Liu, Y., and Yang, D. A dy-
namic llm-powered agent network for task-oriented agent
collaboration, 2024b. URL https://arxiv.org/
abs/2310.02170.

Lu, C., Hu, S., and Clune, J. Intelligent go-explore: Stand-
ing on the shoulders of giant foundation models. In The
Thirteenth International Conference on Learning Rep-
resentations, 2025a. URL https://openreview.
net/forum?id=apErWGzCAA.

Lu, P., Chen, B., Liu, S., Thapa, R., Boen, J., and Zou, J.
Octotools: An agentic framework with extensible tools
for complex reasoning, 2025b. URL https://arxiv.
org/abs/2502.11271.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Muennighoff, N., Wang, T., Sutawika, L., Roberts, A., Bi-
derman, S., Scao, T. L., Bari, M. S., Shen, S., Yong,
Z.-X., Schoelkopf, H., Tang, X., Radev, D., Aji, A. F., Al-
mubarak, K., Albanie, S., Alyafeai, Z., Webson, A., Raff,
E., and Raffel, C. Crosslingual generalization through
multitask finetuning, 2023. URL https://arxiv.
org/abs/2211.01786.

OpenAI. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o/, 2024.

OpenAI, :, Jaech, A., Kalai, A., Lerer, A., Richardson, A.,
El-Kishky, A., Low, A., Helyar, A., Madry, A., Beutel,
A., Carney, A., et al. Openai o1 system card, 2024. URL
https://arxiv.org/abs/2412.16720.

Patel, A., Bhattamishra, S., and Goyal, N. Are NLP models
really able to solve simple math word problems? In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2080–2094, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.168.

10

https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://openreview.net/forum?id=apErWGzCAA
https://openreview.net/forum?id=apErWGzCAA
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2502.11271
https://arxiv.org/abs/2211.01786
https://arxiv.org/abs/2211.01786
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2412.16720

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal,
A., Bansal, M., and Khot, T. Adapt: As-needed decom-
position and planning with language models, 2024. URL
https://arxiv.org/abs/2311.05772.

Qi, Z., Tan, X., Shi, S., Qu, C., Xu, Y., and Qi, Y. Pillow:
Enhancing efficient instruction fine-tuning via prompt
matching, 2024. URL https://arxiv.org/abs/
2312.05621.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive in-
trospection: Teaching language model agents how to self-
improve, 2024. URL https://arxiv.org/abs/
2407.18219.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark, 2023.

Ridnik, T., Kredo, D., and Friedman, I. Code generation
with alphacodium: From prompt engineering to flow en-
gineering. arXiv preprint arXiv:2401.08500, 2024.

Rokon, M. O. F., Islam, R., Darki, A., Papalexakis,
E. E., and Faloutsos, M. SourceFinder: Finding
malware Source-Code from publicly available repos-
itories in GitHub. In 23rd International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID 2020), pp. 149–163, San Sebastian, October
2020. USENIX Association. ISBN 978-1-939133-18-2.
URL https://www.usenix.org/conference/
raid2020/presentation/omar.

Saad-Falcon, J., Lafuente, A. G., Natarajan, S., Maru, N.,
Todorov, H., Guha, E., Buchanan, E. K., Chen, M.,
Guha, N., Ré, C., et al. Archon: An architecture search
framework for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

Shi, F., Suzgun, M., Freitag, M., Wang, X., Srivats, S.,
Vosoughi, S., Chung, H. W., Tay, Y., Ruder, S., Zhou, D.,
Das, D., and Wei, J. Language models are multilingual
chain-of-thought reasoners. In The Eleventh International
Conference on Learning Representations, 2023.

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck,
S., and Gan, C. Easy-to-hard generalization: Scalable
alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Sutton, R. The bitter lesson. Incomplete Ideas (blog), 13(1):
38, 2019.

Tao, L. and Li, Y. Your weak llm is secretly a strong teacher
for alignment, 2024. URL https://arxiv.org/
abs/2409.08813.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Conference
on Learning Representations, 2022.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S.,
Ren, W., Arulraj, A., He, X., Jiang, Z., et al. Mmlu-pro:
A more robust and challenging multi-task language under-
standing benchmark. arXiv preprint arXiv:2406.01574,
2024.

Wang, Y., Yang, L., Li, G., Wang, M., and Aragam, B. Score-
flow: Mastering llm agent workflows via score-based pref-
erence optimization. arXiv preprint arXiv:2502.04306,
2025.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H. Un-
leashing the emergent cognitive synergy in large language
models: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Xie, Y., Luo, Y., Li, G., and Tang, N. Haichart: Hu-
man and ai paired visualization system. arXiv preprint
arXiv:2406.11033, 2024.

Xu, B., Yang, A., Lin, J., Wang, Q., Zhou, C., Zhang, Y.,
and Mao, Z. Expertprompting: Instructing large language
models to be distinguished experts, 2023a.

Xu, Y., Su, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B.,
Zhou, F., Liu, Y., Xie, T., et al. Lemur: Harmonizing
natural language and code for language agents. arXiv
preprint arXiv:2310.06830, 2023b.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In
ICLR. OpenReview.net, 2024.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

11

https://arxiv.org/abs/2311.05772
https://arxiv.org/abs/2312.05621
https://arxiv.org/abs/2312.05621
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2305.18290
https://www.usenix.org/conference/raid2020/presentation/omar
https://www.usenix.org/conference/raid2020/presentation/omar
https://arxiv.org/abs/2409.08813
https://arxiv.org/abs/2409.08813
https://github.com/huggingface/trl
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Ye, R., Tang, S., Ge, R., Du, Y., Yin, Z., Chen, S., and Shao,
J. Mas-gpt: Training llms to build llm-based multi-agent
systems. arXiv preprint arXiv:2503.03686, 2025.

Ye, Y., Hao, J., Hou, Y., Wang, Z., Xiao, S., Luo, Y., and
Zeng, W. Generative ai for visualization: State of the art
and future directions. Visual Informatics, 2024.

Yin, X., Wang, X., Pan, L., Wan, X., and Wang, W. Y.
Gödel agent: A self-referential agent framework for recur-
sive self-improvement, 2024. URL https://arxiv.
org/abs/2410.04444.

Yüksekgönül, M., Bianchi, F., Boen, J., Liu, S., Huang, Z.,
Guestrin, C., and Zou, J. Textgrad: Automatic ”differen-
tiation” via text. CoRR, abs/2406.07496, 2024.

Zhang, G., Niu, L., Fang, J., Wang, K., Bai, L., and Wang,
X. Multi-agent architecture search via agentic supernet.
arXiv preprint arXiv:2502.04180, 2025.

Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen, J.,
Zhuge, M., Cheng, X., Hong, S., Wang, J., Zheng, B.,
Liu, B., Luo, Y., and Wu, C. Aflow: Automating agentic
workflow generation, 2024a. URL https://arxiv.
org/abs/2410.10762.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S.,
Li, J., Hu, R., Zhang, T., Wu, F., and Wang, G. Instruction
tuning for large language models: A survey, 2024b. URL
https://arxiv.org/abs/2308.10792.

Zhong, L., Wang, Z., and Shang, J. Debug like a human:
A large language model debugger via verifying runtime
execution step-by-step. arXiv preprint arXiv:2402.16906,
2024a.

Zhong, Q., Wang, K., Xu, Z., Liu, J., Ding, L., and Du,
B. Achieving¿ 97% on gsm8k: Deeply understanding
the problems makes llms better solvers for math word
problems. arXiv preprint arXiv:2404.14963, 2024b.

Zhou, W., Ou, Y., Ding, S., Li, L., Wu, J., Wang, T.,
Chen, J., Wang, S., Xu, X., Zhang, N., et al. Symbolic
learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532, 2024a.

Zhou, X., Li, G., and Liu, Z. Llm as dba. arXiv preprint
arXiv:2308.05481, 2023.

Zhou, Y., Wang, Z., Wang, T., Xing, S., Xia, P., Li, B.,
Zheng, K., Zhang, Z., Chen, Z., Zheng, W., et al. Anypre-
fer: An automatic framework for preference data syn-
thesis. In The Thirteenth International Conference on
Learning Representations.

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar, A.
Archer: Training language model agents via hierarchical
multi-turn rl, 2024b.

Zhou, Z., Liu, Z., Liu, J., Dong, Z., Yang, C., and Qiao, Y.
Weak-to-strong search: Align large language models via
searching over small language models. arXiv preprint
arXiv:2405.19262, 2024c.

Zhuge, M., Wang, W., Kirsch, L., Faccio, F., Khizbullin, D.,
and Schmidhuber, J. Gptswarm: Language agents as op-
timizable graphs. In Forty-first International Conference
on Machine Learning, 2024.

12

https://arxiv.org/abs/2410.04444
https://arxiv.org/abs/2410.04444
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2308.10792

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

A. Technical Details
A.1. Prompt

We use the following prompts for the meta agent in W4S.

System Prompt for the Meta Agent

You are an AI agent system improvement expert specializing in LLM prompting techniques and state-of-the-art
LLM agent architectures. Your mission is to evolve and optimize agentic systems through innovative
prompts, strategies, and architectural patterns. Your core focus is on continuously enhancing system
performance through:

1. Careful analysis of historical agentic systems and their performance feedback
2. Creative exploration of novel architectures and techniques
3. Systematic improvement by optimizing the agentic system code based on empirical results

You will carefully study evaluation feedback to extract actionable insights and identify promising
directions for improvement. Think critically about what worked, what didn’t, and why. Use this
understanding to design targeted enhancements while maintaining system stability.

Your improvements should push boundaries through principled innovation - each iteration building upon proven
successes while thoughtfully exploring new approaches. Draw inspiration broadly from LLM agent

research and other relevant fields.

Main Prompt for the Meta Agent

Agentic System Interface:
Function you should optimize: ‘workflow(agent, task: str) -> dict‘
- Description: Solve the target task using current agent.
- Input: task (str) - The question/problem to be solved.
- Output: dict with mandatory "answer" key containing the solution; The value of "answer" should be

converted to a string.
- Available API:
[APIs]

Task Description
The task your designed agentic system should solve is:

[TASK]

History Agentic Systems
Here is the archive of the history agentic systems and their evaluation feedback.
’system code’ is the code of the solver function
’eval_feedback’ includes performance metrics and randomly selected validation samples:

[HISTORY]

Output Format
You MUST respond with:
1. Your analysis

2. A complete implementation of the workflow function in a Python code block, formatted EXACTLY as follows:
‘‘‘python
def workflow(agent, task: str):

\"""
Fill in your code here. Any helper functions or import should be included in this function.
\"""
return return_dict

‘‘‘

Prompt for the Self Correction when a runtime error occurs.

Error during evaluation:
[ERROR]

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

WARNING: DO NOT USE ANY TRY-EXCEPT BLOCKS IN YOUR SOLUTION.
Your task is to fix the root cause of the error, not to catch it.

Requirements:
1. Analyze the error message in detail
2. Explain the specific changes needed to fix the core issue
3. Provide a clean implementation that solves the problem directly
4. Do not include any error handling or try-except blocks

Please strictly follow the following output format:

[Your analysis here]

Code:
‘‘‘python
def workflow(agent, task: str):

\"""
Fill in your code here.
\"""
return return_dict

‘‘‘

A.2. Helper Function

We implement the following APIs for meta-agent to use within the workflow. The helper function description will be added
into the main prompt for the meta agent.

Available APIs.

+ ‘agent.call_json_format_llm(messages, temperature, num_of_response, agent_role, return_dict_keys,
instructions)‘: Call OpenAI APIs and return a list of dictionary format responses containing the keys
specified in ‘return_dict_keys‘.

+ ‘agent.call_llm(messages, temperature, num_of_response, agent_role, instructions)‘: Call OpenAI APIs and
return a list of text format responses.

+ ‘agent.execute_code(code)‘: Execute the code and return the output. The code MUST contain a ‘solution‘
function. The output of ‘execute_code(code)‘ will be the return value of the ‘solution‘ function if the
code is executed successfully or raise an exception.

+ ‘agent.extract_answer_str(response)‘: Extract the numeric or LaTeX answer from the LLM response (str).

+ ‘agent.extract_code_block(response, entry_point=’solution’)‘: Extract the code that contains ‘def <
entry_point>‘ from the LLM response (str).

+ ‘agent.test_on_public_test(task, solution_code, entry_point, test_loop)‘: Execute solution code on public
test set, return ‘results‘ (dict), ‘results[’result’]‘ is ‘True‘ or ‘False‘, ‘results[’solution’]‘ is
the updated solution code, ‘results[’feedback’]‘ is the feedback:

B. Case Study
B.1. Case Studies for W4S

The workflow generated for MBPP

def workflow(agent, task: str, entry_point: str):
instructions = "Requirements:\n1. Please explain your solution step by step.\n2. The answer MUST be a

valid Python function.\n3. Use clear variable names and add comments for clarity."
prompt = f"Your Task: \n{task}\nGenerate the complete function below with the function name equal to

{entry_point}: "

messages = [{"role": "user", "content": prompt}]

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

response = agent.call_json_format_llm(
messages=messages,
temperature=0.3,
num_of_response=3,
agent_role="Python Programmer",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

)

return_dicts = response
correct_solution = None

for return_dict in return_dicts:
solution_code = return_dict.get("answer", "")
results = agent.test_on_public_test(task, solution_code, entry_point, test_loop=3)
if results[’result’]:

correct_solution = results[’solution’]
break

if correct_solution is None:
If no correct solution is found, take the first one
correct_solution = return_dicts[0][’answer’]

return_dict = {
"answer": str(correct_solution),
"reasoning": return_dicts[0].get("reasoning", ""),

}

return return_dict

The workflow generated for DROP

def workflow(agent, task: str):
"""
Solve the target task using current agent. Use ‘agent.call_json_format_llm‘ to call OpenAI APIs.
Fill in your code here. Any helper functions or import should be included in this function.
"""
instructions = """Requirements:

1. Please explain step by step.
2. Please answer the question directly.
3. The answer MUST be a concise string.
4. If the problem asks for a number, provide it in precise float form (e.g., use 3 instead of ’three’, use

93.09 instead of 93).
5. Ensure a deep understanding of the context provided in the passage.
"""

messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]

Generate multiple solutions with different temperatures
responses = agent.call_json_format_llm(

messages=messages,
temperature=0.7,
num_of_response=5, # Generate 5 different solutions
agent_role="read comprehension expert",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

)

answers = []
for response in responses:

try:
answer = str(response.get("answer", ""))
answers.append(answer)

except:
continue

Ensemble prompt to select the most consistent answer
ensemble_prompt = f"Given the task as follows: \n{task}\nSeveral solutions have been generated to

address the given question. They are as follows:\n{answers}\nCarefully evaluate these solutions
and identify the answer that appears most frequently. This consistency in answers is crucial for
determining the most reliable solution."

ensemble_messages = [{"role": "user", "content": ensemble_prompt}]
ensemble_response = agent.call_json_format_llm(

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

messages=ensemble_messages,
temperature=0.3,
num_of_response=1,
agent_role="read comprehension expert",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

)[0]

return_dict = {
"answer": ensemble_response["answer"],

}

return return_dict

The workflow generated for GSMHard

def workflow(agent, task: str):
programmer_instructions = """
You should generate valid Python code to solve the math problem. Requirements:
1. The code must define a solution() function and return only the final numerical answer.
2. Use only basic arithmetic operation.
3. Do not introduce a dead loop.
4. Ensure the code handles all edge cases and returns a float.
"""
messages = [{"role": "user", "content": f"Write Python code to solve this math problem. The code should

follow the requirements. Problem: {task}"}]

responses = agent.call_json_format_llm(
messages=messages,
temperature=0.3,
num_of_response=5, # Generate 5 different solutions
agent_role="Python programmer",
return_dict_keys=["reasoning", "code"],
instructions=programmer_instructions.strip(),

)

answers = []
for response in responses:

try:
code = response.get("code", "")
result = agent.execute_code(code)
if isinstance(result, (int, float)):

answers.append(result)
except Exception as e:

continue

if not answers:
Fallback to LLM reasoning if no valid code is generated
math_expert_instructions = """
Requirements:
1. Please explain step by step.
2. The answer MUST be a float.
"""
messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
response = agent.call_json_format_llm(

messages=messages,
temperature=0.8,
num_of_response=1,
agent_role="math expert",
return_dict_keys=["reasoning", "answer"],
instructions=math_expert_instructions.strip(),

)
return_dict = response[0]
return_dict["answer"] = str(return_dict.get("answer", "0.0"))
return return_dict

Use self-consistency to get the most common answer
from collections import Counter
answer_counts = Counter(answers)
most_common_answer = answer_counts.most_common(1)[0][0]

return_dict = {
"answer": str(most_common_answer),

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

}

return return_dict

The workflow generated for MATH

def workflow(agent, task: str):
Define the instructions for the LLM
instructions = """
Requirements:
1. Please explain step by step.
2. The answer MUST be formatted correctly.
3. If the task requires a numerical answer, provide it as a precise number or LaTeX expression.
"""

Call the LLM with the task and instructions
messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
response = agent.call_llm(

messages=messages,
temperature=0.7,
num_of_response=5,
agent_role="math expert",
instructions=instructions.strip(),

)

Extract answers from the responses
answers = [agent.extract_answer_str(response) for response in response]

Count the frequency of each answer
from collections import Counter
answer_counts = Counter(answers)

Get the majority answer
majority_answer, _ = answer_counts.most_common(1)[0]

Format the answer correctly
try:

Try to convert the answer to a float
float_answer = float(majority_answer)
if float_answer.is_integer():

majority_answer = int(float_answer)
else:

majority_answer = float_answer
except ValueError:

If not a number, keep it as is
pass

Create the return dictionary
return_dict = {"answer": majority_answer}
return return_dict

The workflow generated for MMLU Pro

def workflow(agent, task: str):
from collections import Counter
import random

def get_initial_responses(task, agent_role):
messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
responses = agent.call_json_format_llm(

messages=messages,
temperature=0.7,
num_of_response=5,
agent_role=agent_role,
return_dict_keys=["reasoning", "answer"],
instructions="Requirements:\n1. Please explain step by step.\n2. The answer MUST be A or B or C

or D or E or F or G or H or I or J."
)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

return responses

def refine_response(task, initial_response, agent_role):
messages = [

{"role": "user", "content": f"# Your Task:\n{task}"},
{"role": "assistant", "content": f"Your initial solution:\nReasoning:

{initial_response[’reasoning’]}\nAnswer: {initial_response[’answer’]}"}
]
refined_response = agent.call_json_format_llm(

messages=messages,
temperature=0.3,
num_of_response=1,
agent_role=agent_role,
return_dict_keys=["revised_reasoning", "revised_answer"],
instructions="Requirements:\n1. Consider other experts’ solutions carefully.\n2. Provide

improved reasoning if needed.\n3. The revised_answer MUST be A or B or C or D or E or F or
G or H or I or J."

)[0]
return refined_response

def get_final_answer(refined_responses):
answers = [response[’revised_answer’] for response in refined_responses]
answer_counts = Counter(answers)
most_common_answer = answer_counts.most_common(1)[0][0]
return most_common_answer

Dynamic role assignment based on task complexity
agent_roles = ["Knowledge and Reasoning Expert", "Scientist", "Critical Thinker"]
if len(task.split()) < 20:

agent_roles = agent_roles[:2] # Simplified task, use fewer roles

Initial responses
initial_responses = []
for role in agent_roles:

initial_responses.extend(get_initial_responses(task, role))

Refine responses
refined_responses = []
for response in initial_responses:

refined_responses.append(refine_response(task, response, random.choice(agent_roles)))

Get final answer
final_answer = get_final_answer(refined_responses)

return_dict = {
"answer": final_answer

}

return return_dict

C. More Related Work
LLM Post-Training. Modern LLMs undergo various post-training processes to enhance task-specific capabilities and
align outputs with human preferences, including instruction tuning (Zhang et al., 2024b; Muennighoff et al., 2023; Feng
et al., 2024; Qi et al., 2024), preference learning (Rafailov et al., 2024), and reinforcement learning (DeepSeek-AI et al.,
2025; Zhou et al., 2024b). Our W4S framework is most closely related to multi-turn RL algorithms for LLMs. Qu et al.
(2024) employed multi-turn RL to train language models in self-correction and self-improvement, while Zhou et al. (2024b)
developed hierarchical multi-turn RL for training LLMs on complex interactive tasks. Unlike these approaches that directly
enhance model capabilities, W4S trains a weak meta-agent to harness stronger models without modifying their parameters.

D. More Implementation Details
D.1. Datasets

We evaluate W4S on eleven datasets, including mathematical reasoning, question answering and code generation. For
MATH, MBPP and HumanEval, we follow the data splits in Zhang et al. (2024a). For the other datasets, we follow Hu et al.
(2024) and randomly split the dataset into validation and test splits. The dataset statistics are included in Table 4.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Domain Dataset #Validation #Test

Math Reasoning

MGSM 128 800
GSM Plus 128 800
GSM Hard 128 800

GSM8K 128 800
SVAMP 128 800
MATH 119 486

Code Generation MBPP 86 341
HumanEval 33 131

Question Answering
DROP 128 800

MMLU Pro 128 800
GPQA 60 138

Table 4. Dataset Statistics.

D.2. Baselines

We evaluate W4S against several established methods, organized into three categories. First, we include standard LLM
approaches: Vanilla (direct LLM invocation) and 5-shot prompting. Second, we compare against six hand-designed agentic
workflows: (1) Chain-of-Thought (COT) (Wei et al., 2022), (2) Self-Consistency with Chain-of-Thought (COT-SC) (Wang
et al., 2022), (3) Self-Refine (Madaan et al., 2023), (4) LLM Debate (Du et al., 2023), (5) Quality Diversity (Lu et al.,
2025a), and (6) Dynamic Assignment (Xu et al., 2023a). Finally, we benchmark against two recent automated workflow
design methods: ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024a).

In COT, we prompt the LLM to think step by step before answering the question. In COT-SC, we sample n = 5 answers
and then perform an ensemble by either a LLM query (QA, Code task) or a majority voting (Math task). For Self-Refine,
we allow up to five refinement iterations, with an early stop if the critic deems the answer correct. In LLM-Debate, each
debate module is assigned a unique role, such as Math Expert or Physics Expert, and the debate lasts for two rounds.
In Quality-Diversity, we conduct three iterations to collect diverse answers based on previously proposed ones. In Role
Assignment, we use one LLM query to first choose a role from a predefined set, and then use another LLM query to answer
the question by acting within the chosen role.

For the hand-designed workflow implementations, we adopt the standardized versions from the ADAS framework to ensure
fair comparison. For AFlow, we reproduce the results using their official codebase and implementation.

D.3. Details for Data Collection

In our experiments, we set the number of candidate samples m = 5 and select the best-performing action to determine the
next state. We filter out actions yielding workflows with extremely poor performance to ensure quality. Trajectories are
collected over a maximum of 10 iterations per task in Table 1 and 15 iterations per task in Table 2. To manage computational
efficiency, we apply trajectory truncation with a horizon of T = 2, resetting the state every two iterations and correspondingly
resetting the maximum historical validation performance.

D.4. Implementation Details

Hyperparameters for Fine-Tuning with W4S. For finetuning, we utilize the TRL (von Werra et al., 2020) codebase, but
we customize the loss function and the dataset preprocessing. The base models are directly loaded from Hugging Face:
Qwen2.5-Coder-7B-Instruct. The hyperparameters used for finetuning are specified in Table 5.

Hyperparameters for Inference. For inference, we employ the meta-agent with a temperature of 0.5 to sample once for
each iteration, different from best-of-m sampling during training. In order to keep consistent with the training data, we also
apply trajectory truncation during inference, with a horizon T = 2.

19

https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Hyperparameters Value

Learning Rate 1e-5
Training Epochs 4
Number of GPUs 2
LR Scheduler cosine
Per Device Batch Size 1
Gradient Accumulation Steps 16

Table 5. Hyperparameters for Training with W4S.

0 5 10 15 20 25 30
Iteration

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Sequential Iteration vs Random Sampling
Random (w/o History Update) Sequential

Figure 5. The Test Accuracy (%) of ADAS on MGSM dataset. ’Sequential’ denotes the default configuration, updating the history archive
iteratively; ’Random’ indicates 30 independent workflow samples generated in the first iteration. Results show that ADAS’s sequential
performance closely mirrors random sampling, with its maximum accuracy not exceeding the best random sample.

E. More Experimental Results
E.1. Limitation of Previous Work

Figure 5 illustrates a key limitation of ADAS. The ’Sequential’ condition reflects its standard setup, where the history archive
is updated each iteration, while ’Random’ involves generating 30 independent workflow samples in the initial iteration. The
results reveal that ADAS’s sequential performance is comparable to random sampling, with its peak accuracy failing to
surpass the best outcome from the 30 random samples. This suggests that ADAS struggles to leverage historical information
effectively for iterative improvement.

E.2. Cross-Model Transferability

Table 6 demonstrates the cross-model transferability of W4S. We train the meta-agent to optimize workflows for GPT-4o-
mini, and directly transfer the workflow designed for GPT-4o-mini to other models.

E.3. Cross-Dataset Transferability

Table 7 demonstrates the cross-dataset transferability of W4S. We train the meta-agent for GPT-4o-mini on one dataset, and
directly transfer the optimal workflow to other datasets.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors

Execution LLM GPT-4o Claude-3-5-sonnet

Dataset MBPP

Vanilla 75.9 77.7
+W4S 90.9 (+15.0%) 89.8 (+12.1%)

Dataset GSM Hard

Vanilla 55.0 53.8
+W4S 77.6 (+22.6%) 78.2 (+24.4%)

Table 6. Cross-model transferability of W4S. The meta-agent is trained for harnessing GPT-4o-mini. We report the performances
before and after equipping the Execution LLM with the designed workflow.

Dataset MBPP → H-Eval GSM-Hard → MGSM MMLU Pro → GPQA GPQA → MMLU Pro

Vanilla 87.7 82.9 39.1 56.1
+ W4S 96.4 (+8.7%) 87.4 (+4.5%) 44.4 (+5.3%) 64.1 (+8%)

Table 7. Cross-dataset transferability of W4S. The Execusion LLM is GPT-4o-mini. ”MBPP→H-Eval” means we train our meta-agent
on MBPP, and evaluate on HumanEval. We report the performances before and after equipping the Execution LLM with the designed
workflow.

E.4. Training Cost Analysis

Training the weak meta-agent on five datasets (DROP, MMLU Pro, MBPP, GSM Hard, and Math) requires approximately 1
H100 GPU hour (30 minutes on 2 GPUs). Training on a single dataset requires only about 0.2 GPU hour. The API cost for
collecting training trajectories varies by dataset, about 10$ ∼ 20$ USD per dataset, with GPT-4o-mini as executor LLMs.
These computational and API cost could be further amortized when applying the trained meta-agent to multiple unseen
datasets without additional training. We anticipate even stronger generalization capabilities when the meta-agent is trained
across a more diverse range of domains.

21

	Introduction
	Method: Weak-for-Strong Harnessing
	Workflow Optimization as Multi-Turn MDP
	RLAO: Reinforcement Learning for Agentic Workflow Optimization

	Experiments
	Experimental Setup
	Experimental Results

	Related Works
	Discussion
	Conclusion
	Technical Details
	Prompt
	Helper Function

	Case Study
	Case Studies for W4S

	More Related Work
	More Implementation Details
	Datasets
	Baselines
	Details for Data Collection
	Implementation Details

	More Experimental Results
	Limitation of Previous Work
	Cross-Model Transferability
	Cross-Dataset Transferability
	Training Cost Analysis

