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Abstract

Efficiently leveraging of the capabilities of con-
temporary large language models (LLMs) is in-
creasingly challenging, particularly when direct
fine-tuning is expensive and often impractical. Ex-
isting training-free methods, including manually
or automated designed workflows, typically de-
mand substantial human effort or yield subopti-
mal results. This paper proposes Weak-for-Strong
Harnessing (W45S), a novel framework that cus-
tomizes smaller, cost-efficient language models
to design and optimize workflows for harness-
ing stronger models. W4S formulates workflow
design as a multi-turn markov decision process
and introduces reinforcement learning for agentic
workflow optimization (RLAO) to train a weak
meta-agent. Through iterative interaction with
the environment, the meta-agent learns to design
increasingly effective workflows without manual
intervention. Empirical results demonstrate the su-
periority of W4S that our 7B meta-agent, trained
with just one GPU hour, outperforms the strongest
baseline by 2.9% ~ 24.6% across eleven bench-
marks, successfully elevating the performance of
state-of-the-art models such as GPT-3.5-Turbo
and GPT-40. Notably, W4S exhibits strong gener-
alization capabilities across both seen and unseen
tasks, offering an efficient, high-performing alter-
native to directly fine-tuning strong models.

1. Introduction

Despite the rapid advancement of large language models
(LLMs) such as GPT-40 (OpenAl, 2024), Claude (An-
thropic, 2024), Deepseek-R1 (DeepSeek-Al et al., 2025)
and Llama (Dubey et al., 2024), how to effectively har-
ness their capabilities in workflows remains a significant
challenge. Directly querying these powerful models often
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yields inadequate results on complex or domain-specific
tasks. Meanwhile, fine-tuning strong models to achieve
desired behaviors can be prohibitively expensive and even
infeasible, especially with closed-source, commercial mod-
els. This raises a critical research question: how can we
unleash the potential of powerful LLMs without directly
finetuning them?

To this end, training-free methods have emerged as poten-
tial solutions, ranging from simple heuristics like Few-shot
Prompting (Brown, 2020), Chain-of-Thought (COT) (Wei
et al., 2022), In-context Vectors (Liu et al., 2024a) to more
intricate hand-designed agentic workflows (Yao et al., 2023;
Zhou et al., 2023; Zhong et al., 2024b; Lu et al., 2025b).
While heuristic approaches enhance performance, they
struggle with complex tasks requiring multi-step reason-
ing (Prasad et al., 2024). Sophisticated hand-designed work-
flows mitigate some limitations but require labor-intensive
trial-and-error and domain-specific manual tuning, resulting
in high labor costs. Moreover, these manual strategies lack
adaptability across tasks or models and fail to fully exploit
LLM potential (Cemri et al., 2025), aligning with the “bit-
ter lesson” (Sutton, 2019) that hand-engineered solutions
are outpaced by adaptive, data-driven systems. Recent ef-
forts have explored representing workflows as executable
code, enabling powerful models like GPT-40 or Claude to
automate workflow generation and optimization (Hu et al.,
2024; Zhang et al., 2024a). However, these training-free
approaches underutilize historical data and environmental
feedback, sometimes performing no better than random
workflow sampling (App. E.1), highlighting the inadequacy
of such approaches in practice.

The challenge becomes even more pronounced with su-
perintelligent models whose behaviors might not be fully
predictable or comprehensible to human users (Burns et al.,
2024), raising critical questions about the optimal strate-
gies for their utilization. Given the limitations of existing
training-free methods and the intractability of fine-tuning
strong LLMs directly, this paper turns into the idea of train-
ing a weaker model that can understand the behaviors of
strong models as well as the downstream task, to harness
the strong models based on its understanding in the place of
human.

Our Contributions. We propose a new paradigm: Weak-
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Figure 1. Comparison of paradigms: Weak-to-Strong Generalization uses weak models to supervise strong models, akin to superalignment;
routing-based methods train weak models to dispatch queries across strong models; in contrast, Weak-for-Strong Harnessing (W4S) trains
a weak model to optimize a strong model’s performance on a specific task.

for-Strong Harnessing (W4S), which trains a weak model
to leverage the strengths of strong models. W4S casts the
problem of harnessing strong models as a workflow opti-
mization problem, and employs a weak model as a meta-
agent trained specifically for the problem. Unlike previous
methods (Zhuge et al., 2024; Zhang et al., 2024a) that prede-
fine agentic modules, we maximize the degree of freedom of
the meta-agent by constraining only the workflow interfaces.
This allows the meta-agent to design every internal compo-
nent in freedom, including prompts, hyperparameters, and
building blocks, enabling more expressive and tailored so-
lutions. We formulate this as a multi-turn Markov decision
process (MDP), and introduce reinforcement learning for
agentic workflow optimization (RLAO) to teach the meta-
agent to design and refine workflows. Through iterative
interaction with both the task environment and the behavior
of strong models, the weak meta-agent learns to design and
improve workflows for strong models based on history and
feedback.

Our approach introduces a novel perspective on the poten-
tial ways of interaction between weak and strong models,
distinct from existing paradigms such as weak-to-strong gen-
eralization (Burns et al., 2024) and weak-dispatch-strong
routing framework (Frick et al., 2025), as illustrated in Fig-
ure 1. This new paradigm emphasizes the weak meta-agent’s
role in unlocking latent capabilities of existing models with-
out modifying them directly. Our paradigm is significantly
more efficient and less expensive than finetuning strong
models directly, while outperforming both finetuning weak
models on targeted tasks and training-free methods.

We conduct comprehensive evaluations across eleven widely

adopted benchmarks, including question answering, mathe-
matics, and code generation tasks. Empirical results demon-
strate that a 7B meta-agent, trained with only one GPU
hour on five tasks, can design workflows that effectively
leverage strong models, significantly outperforming all the
baselines. W4S surpasses manually designed methods by
3.3% ~ 27.1% and outperforms the strongest automated
design baseline by 2.9% ~ 24.6%. Notably, the workflows
generated by our method exhibit strong generalization and
transferability across tasks and strong models, demonstrat-
ing the robustness and adaptability of the learned weak
meta-agent in orchestrating high-performance workflows.

2. Method: Weak-for-Strong Harnessing

This section presents the Weak-for-Strong Harnessing
(W45S) framework that trains weak models to optimize agen-
tic workflows for stronger models. The key insight is that
workflow optimization can be formulated as a sequential
decision-making problem where a weak meta-agent iter-
atively improves workflows through interactions with an
environment, guided by performance feedback.

Specifically, we define an agentic workflow W as a struc-
tured and executable Python function that internally invokes
a strong model to perform specific downstream tasks. The
W4S framework operates as an iterative process of work-
flow generation, execution, and refinement, as depicted in
Figure 2(a), and is unfolded as follows:

* Workflow Generation. The weak meta-agent analyzes
the task, historical workflows, and prior feedback to de-
sign a new workflow to leverage the given strong model,
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Figure 2. (a) The weak meta-agent harness strong models by optimizing the workflows iteratively based on task and environment feedback.
(b) To collect effective data for offline RL training, the meta-agent will sample m times in each iteration, and using the best samples to
form the next state. The data form multi-turn trajectories for offline RL training.

represented as executable Python code. A self-correction
mechanism addresses coding errors.

* Execution and Feedback. The generated workflow is
executed by a strong model on validation samples, produc-
ing performance feedback (e.g., Accuracy, Error Cases).

* Refinement. The meta-agent uses feedback to iteratively
improve the workflow, adapting to the task and the strong
model’s behavior over multiple turns.

This process enables the meta-agent to learn task-specific
strategies and harness the strong model’s capabilities effi-
ciently, without requiring direct fine-tuning of the strong
model. To rigorously analyze this optimization problem,
below we formalize it as a multi-turn Markov Decision
Process (MDP), and present our Reinforcement Learning
for Agentic Workflow Optimization (RLAO) algorithm for
training the weak meta-agent.

2.1. Workflow Optimization as Multi-Turn MDP

An MDP is denoted by a tuple M = (S, A, P, R), where S
and A are the state space and the action space, respectively.
In our case, S represents the current knowledge about the
task, the model and workflow history, A consists of possible
workflow designs, P : S x A x & — [0, 1] is the transition
probability function, and R : S x A X S — R is the reward
function.

For each iteration 7, the agent takes action a; at state s;
according to a learnable policy my(a|s) : S x A — [0, 1],
where 6 is the parameters of the meta-agent. The envi-
ronment executes the workflow and provides feedback f;
and feedback-based reward r;, transiting to the next state
Si+1 = [8i; as; fi]. This process continues for a fixed num-
ber of iterations or until a predefined convergence criterion
is met, allowing the agent to refine workflows based on
feedback.

Initial State Setup. The initial state s; consists of Instruc-
tions Z, Task description 7, Example workflow wq and its
feedback fj (if available):

s1 = [Z; T Wo; fol-

Action Design. Each action includes two steps: analysis
and workflow generation.

1. Analysis: The meta-agent is required to first conduct
analysis include interpreting the task, history workflows,
and feedbacks, and plans for improvements. Adding the
analysis into the action space can bridge the gap between
the pretrained language priors of LLMs and the environ-
ment, providing context for what adjustments should be
made next.

2. Workflow Generation: Based on the analysis, the meta-
agent produces function-represented workflow W;. Un-
like previous work such as Zhang et al. (2024a) that spec-
ifies predefined agentic modules (e.g., ensemble mod-
ule, revision module), which constrains the creativity
of LLMs, our approach only specifies the interface of
the workflow function and provides helper functions like
LLM calls and code execution. More details about the
helper functions can be seen in Appendix. A.2. This gives
the meta-agent complete freedom to design the prompts,
hyperparameters and internal logic of the workflow, fos-
tering greater innovation and adaptability.

Error Handling via Self-Correction. To address potential
coding errors in the generated workflows, we implement a
self-correction mechanism by executing the workflow W;
on a single validation sample. If execution fails due to bugs,
the meta-agent will be prompted to perform self-correction
to fix the identified bugs. This process can iterate up to 3
times, with the error message provided to the meta-agent at
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each step:
Wi(j T = SelfCorrect(Instructions, Wi(j ), Error;).

where Wi(j ) is the workflow at the j-th correction attempt
and Error; is the corresponding error message. After self-
correction, the complete action is then denoted as:

a; = [Analysis;; W;].

where W; is now the workflow of the last correction at-
tempt. If the workflow continues to produce errors after 3
correction attempts, the current iteration is skipped, and the
erroneous workflow is not recorded.

Evaluation Feedback. Upon successful execution, the
workflow is evaluated on both private and public valida-
tion sets to generate feedback:

1. Validation performance v;: Accuracy measured on the
private validation set.

2. Case studies: Examples of incorrect predictions from
the public validation set, including input prompts, model
answers, and correct answers.

The feedback is formally represented as:

fi = [vi; CaseStudies;].

2.2. RLAO: Reinforcement Learning for Agentic
Workflow Optimization

To train the weak meta-agent, we propose Reinforcement
Learning for Agentic Workflow Optimization (RLAO), an
offline RL algorithm tailored for this MDP, as shown in
Figure 2(b). Online RL is less efficient due to the high cost
of real-time workflow execution, so we collect trajectories
offline and optimize the policy accordingly.

Reward Mechanism. Based on the feedback f;, we define
areward r; as follows:

1, if v; > maxye(o,i—1] Vk
ry =1<0.5, ifv;, >wv;_1
0, otherwise

This reward function encourages both absolute improvement
(surpassing all previous iterations) and relative improvement
(surpassing the most recent iteration).

Data Collection. We collect a dataset of optimization trajec-
tories for training the weak meta-agent. At each iteration i,
we sample m candidate actions. Subsequently, we select the
best action based on validation performance to serve as the
current action respectively to form the new state and execute
the next action. Our dataset consists of both selected actions

and unselected alternatives. At each iteration 7, we generate
m candidate actions:

1,2

{a;,a;, ..., a"}.

Then we select the best action based on validation perfor-
mance:

* k

a; = a; = ar max v, .
! v & ke1l,m] v

where v¥ represents the validation performance of the work-
flow produced by action a¥. This selection mechanism
serves a dual purpose: it ensures that only the most effective
workflow proceeds to the next iteration while simultane-
ously enriching our training dataset with both successful
and unsuccessful attempts. This best-of-m approach helps
to create high-quality trajectories for training while main-
taining diversity.

Policy Optimization. We train the meta-agent using reward-
weighted regression (RWR), an offline RL approach that
optimizes the policy mg.

T
r
méaX]EPND Zlogﬂg(at | st) . exp(;)] (1)
t=1

where p = (s1,a1,71, ..., ST, ar,TT) is a trajectory from
dataset D, T is the trajectory length, and 7 is a temperature
hyperparameter controlling reward scaling.

3. Experiments

3.1. Experimental Setup

Baselines. We compare workflows discovered by W4S
against manually designed methods for LLMs, including
5-shot prompting, COT (Wei et al., 2022), Self Consistency
CoT (5 answers) (Wang et al., 2022), Self-Refine (max 3
iteration rounds) (Madaan et al., 2023), LLM Debate (Du
et al., 2023), Quality Diversity (Lu et al., 2025a) and Dy-
namic Assignment (Xu et al., 2023a). We also compare
against workflow designed by automated workflow opti-
mization method ADAS (Hu et al., 2024) and AFlow (Zhang
et al., 2024a). Besides, we compare against a training-based
baseline where GPT-40-mini is fine-tuned on the validation
dataset for fair comparison. More details are provided in
Appendix D.2.

Datasets. We utilize eleven public benchmarks for our ex-
periments: (1) math reasoning, we use MGSM (Shi et al.,
2023), GSMS8K (Cobbe et al., 2021), GSM Plus (Li et al.,
2024a), GSM Hard (Gao et al., 2023), SVAMP (Patel et al.,
2021) and MATH (Hendrycks et al., 2021). For the MATH
dataset, we follow (Hong et al., 2024a) in selecting 617
problems from four typical problem types (Combinatorics
& Probability, Number Theory, Pre-algebra, Pre-calculus)
at difficulty level 5. (2) question-answering, we use DROP
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(Dua et al., 2019) for evaluating reading comprehension,
MMLU Pro (Wang et al., 2024) for evaluating multi-task
problem solving and GPQA (Rein et al., 2023) for evaluat-
ing the capability of solving graduate-level Science ques-
tions. (3) code generation tasks, we use HumanEval (Chen
et al., 2021), and MBPP (Austin et al., 2021). For ADAS
and AFlow, we conduct the searching for workflows on
a validation set. For W4S, we further randomly split the
validation set into a private validation set and a public vali-
dation set. All the evaluation results are conducted on the
same held-out testing set. We follow the data splits used in
established practices (Hu et al., 2024; Zhang et al., 2024a).
More details about datasets can be found in Appendix. D.1.

Metrics. For HumanEval and MBPP, we report the pass@ 1
metric as presented in (Chen et al., 2021) to assess code
accuracy. For multiple-choice datasets MMLU Pro and
GPQA and mathematical datasets, we use Accuracy. For
DROP, we report the F1 Score.

Data Collection Details. To manage computational con-
straints during training, we impose a trajectory truncation
strategy in RLAQO. Trajectories are limited to a horizon of
T = 2 turns, with states reset every two iterations as fol-
lows:

817 lfl = 0,
$2i41 = - ,
[s1; Wais fai], ifi>0,

where s; is the initial state, W5, is the workflow from the
previous selected action, and fo; is its feedback. This results
in a dataset D comprising single-turn trajectories (from
unselected actions) and two-turn trajectories (from selected
actions), formally:

poodis g f TV o
: (st,at,ft,rt)tzl L e {1,2}.

j=
For the following experiments results, we set m = 5 can-
didate actions per iteration to collect offline data, yielding
212 trajectories for Table 1 and 145 trajectories for Table 2.

Implementation Details. For ADAS and AFlow, we
use GPT-40 as the meta-agent. For W4S, we employ
and train Qwen2.5-Coder-7B-Instruct as the weak
meta-agent. We also report the performance of directly
utilizing GPT—40 without RLAO as meta-agent or train-
ing meta-agent with SFT on our framework in ablation
studies. For execution, we employ GPT-3.5-Turbo,
GPT-4o0-mini in main text. More experiments using
GPT-4o0 and Claude-Sonnet as executors are shown
in Appendix E. We set iteration rounds to 20 for AFlow,
and 30 for ADAS, following their original settings. We set
iteration rounds to 10 for W4S. Training is conducted on 2

Nvidia HI00 GPUs with a learning rate of le-5. The temper-
ature 7 for weighting the reward is set to 0.4. At inference
time, W4S only samples one action in each iteration. More
implementation details can be seen in Appendix D.

3.2. Experimental Results

W4S significantly outperforms baseline methods across
seen and unseen tasks. As illustrated in Table 1, W4S,
employing a 7B model as a weak meta-agent trained with
RLAO, markedly surpasses few-shot learning, manually de-
signed workflows, and automated workflow baselines with
only 10 iterations. In this experiment, the meta-agent is
trained on five tasks (DROP, MMLU Pro, MBPP, GSM
Hard, Math) and generalize to two unseen tasks. The exe-
cution LLM is GPT-40-mini. '’Finetuned GPT-40-mini’
represents using surpervised learning to train GPT-40-mini
on validation dataset, which yields unsatisfactory results,
highlighting that leveraging a weak model trained via RLAO
effectively outperforms direct fine-tuning on strong mod-
els under limited data conditions. Besides, *'W4S w/ SFT’
represents training the weak model using the same data of
RLAO with SFT. Notably, W4S with RLAO outperforms
its untrained and SFT trained counterpart, further demon-
strating the effectiveness of RLAO.

W4S demonstrates generalization capabilities across dif-
ferent mathematical tasks. Table 2 evaluates the gener-

S2it2 = [S2i41, aoit+nlifatiah of W4S on mathematical reasoning tasks. De-

spite being trained solely on GSM Plus and MGSM, W4S
achieves substantial improvements over all baselines when
tested on unseen tasks such as GSM8K, GSM Hard, and
SVAMP. Particularly, W4S exceeds the strongest baseline
methods by 10% on GSM8K and 20% on GSM Hard, high-
lighting W4S as a scalable and effective method for har-
nessing powerful executors.

Ablation Study. Figure 3 illustrates iteration curves for
MGSM (seen task) and GSMS8K (unseen task). W4S, lever-
aging a weak meta-agent trained via RLAO, demonstrates
stable and consistent improvements over iterations on both
seen and unseen tasks. Conversely, ADAS, employing
GPT-4o directly as the meta-agent, has very random per-
formance and often output workflow with a performance of
0. Besides, W4S trained with RLAO outperforms directly
using the 7B model without training, demonstrating the effi-
cacy of our training method. Notably, utilizing trained weak
meta-agent also outperforms directly using a strong model
like GPT-40 to optimize the workflow, validating the ne-
cessity and effectiveness of our weak-for-strong paradigm
facilitated by RLAO training.

Cost Analysis. In Figure 4(a), we demonstrate the compar-
ison of performance and API calls between the baselines
and the workflows found by ADAS, AFlow (using GPT-40
as meta-agent) and W4S (using trained 7B model as meta-
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Method Seen Task Unseen Task
DROP MMLUPro MBPP GSM Hard Math ‘ GPQA HumanEval
5-shot 80.9 60.8 69.5 43.0 57.1 37.4 87.8
Finetuned GPT-40-mini 75.9 61.1 76.2 41.2 56.8 41.8 82.8
Hand-designed Workflows
CoT 78.5 56.6 72.4 39.5 56.9 36.7 88.8
COT SC 84.2 58.0 74.2 45.0 58.1 394 90.3
Self Refine 79.1 57.5 70.4 47.5 53.0 38.4 85.0
LLM Debate 83.0 60.1 73.9 49.5 53.9 40.8 89.1
Quality Diversity 80.0 59.1 71.8 46.5 55.3 40.1 86.0
Dynamic Assignment 80.2 574 71.8 41.5 56.9 36.0 90.1
Training-free Automated-designed Workflows
ADAS (30iter) 82.0 58.4 74.0 52.5 514 39.6 90.8
AFlow (20iter) 80.6 59.2 83.9 52.0 58.4 42.0 92.1
W4S w/o RLAO (10iter)  85.3 61.0 86.0 60.6 58.6 39.8 92.7
W4S w/ SFT (10iter) 85.2 63.0 72.4 57.2 61.9 39.6 94.3
W4S (10iter) 87.5 64.8 86.8 76.6 63.0 45.9 95.4

Table 1. Comparison of performance (%) between W4S and baselines. All methods are executed using GPT-40-mini, with each tested

three times, and average results reported.
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Figure 3. Ablation Studies on MGSM and GSMS8K. The purple line represents the performance of W4S using 7B model trained on

MGSM and GSM Plus with RLAO.

agent) on DROP and MBPP, and using GPT-40-mini as
execution LLM. Results demonstrate that W4S can design
workflows that harness strong models to have a better per-
formance with less test-time compute compared with hand-
designed workflows. Besides, by automating the design of
effective agentic workflows, W4S eliminates the human
labor costs previously required. Although W4S adds more
cost of training, this training cost is negligible compared to
finetuning a strong model on targeted task. Training a 7B
model on five tasks in Table 1 requires only one GPU hour,
which can actually be amortized over repeated use across
different benchmarks. Table 3 provides a detailed efficiency
comparison on an unseen benchmark, including API cost
and wall-clock time and testing performance. Compared to
ADAS and AFlow, W4S achieves a Pass@1 score of 95.4
with a significantly reduced optimization time (33 minutes)
and zero meta-agent API cost. Test-time execution remains
comparable to baselines, with a wall-clock time of 2.7 min-

utes and an inference cost of $0.5, underscoring W4S’s
ability to balance efficacy and efficiency.

Case Study. Figure 4(b) and (c) visualizes the workflows de-
signed by W4S on MGSM and MMLU Pro. For MGSM, the
workflow employs a Translator LLM that converts multilin-
gual problems to English, followed by a Python Programmer
generating multiple code implementations. Successful code
executions are aggregated via Majority Voting, with a Math
Expert as fallback for challenging problems. This adaptive
approach dynamically adjusts strategies based on execution
results. For MMLU Pro, W4S creates a parallel multi-agent
workflow with specialized experts that each develop multi-
ple reasoning paths. After a Reflection phase where agents
review their answers, a Majority Voting mechanism pro-
duces the final answer. Both workflows demonstrate how
W4S automatically discovers task-specific decomposition
strategies and effective coordination mechanisms that com-
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Method Seen Task Unseen Task
GSM Plus MGSM \ GSM8k GSM Hard SVAMP
Hand-designed Workflows
CoT 24.5 28.0 38.5 14.0 77.8
CoT SC 27.1 28.2 43.0 15.0 78.2
Self Refine 25.8 27.5 40.5 14.5 78.5
LLM Debate 29.9 39.0 49.0 18.0 76.0
Quality Diversity 21.1 31.1 29.0 14.0 69.8
Dynamic Assignment 27.1 30.1 34.0 19.5 73.0
Training-free Automated-designed Workflows
ADAS (GPT-4o 15iter) 52.0 47.5 54.5 31.5 80.8
ADAS (GPT-40 30iter) 57.4 53.4 61.1 34.5 82.8
AFlow (GPT-40 20iter) 62.8 54.8 76.8 40.6 81.3
In-distribution Domains Generalize to Other Math Domains

W4S (10iter) 68.2 66.2 86.5 61.8 84.2

Table 2. Comparison of performance (%) between W4S and baselines. All methods are executed using GPT-3. 5-Turbo, with each

tested three times, and average results reported.

Workflow Optimization

Execution on Testing Set

Method Wall-clock Time (min) Meta-Agent Cost ($)  Execution Cost ($) ‘ Wall-clock Time (min) Inference Cost ($) ‘ Total Cost ($) Pass@1
ADAS 131 11.3 9.0 4.0 0.6 20.9 90.8
AFlow 61 0.6 0.4 109 0.3 1.3 92.1
Ww4S 33 0 0.4 2.7 0.5 0.9 95.4

Table 3. Efficiency comparison between W4S and state-of-the-art baselines on HumanEval, using GPT-40-mini as the executor.
Testing set execution metrics are averaged over three runs, with costs reported for all runs.

bine specialized expertise with critical evaluation.

4. Related Works

Agentic Workflows. Agentic workflows and autonomous
agents represent distinct LLM application paradigms: the
former follows structured, multi-step processes, while the
latter dynamically solves problems. Unlike agents requiring
custom decision patterns, agentic workflows leverage hu-
man expertise for automated construction. They have been
applied to problem-solving (Wei et al., 2022; Wang et al.,
2022; Madaan et al., 2023; Wang et al., 2023; Han et al.,
2025; Zhou et al.), code generation (Hong et al., 2024b;
Ridnik et al., 2024; Zhong et al., 2024a), data analysis (Xie
et al., 2024; Ye et al., 2024; Zhong et al., 2024a; Zhou et al.,
2023), and mathematics (Zhong et al., 2024b; Xu et al.,
2023b).

Recent research automates workflow design via prompt tun-
ing (Fernando et al., 2024; Yiiksekgondiil et al., 2024; Yang
et al., 2024; Khattab et al., 2024; Liu et al., 2024b), hyper-
parameter optimization (Saad-Falcon et al., 2024), and end-
to-end workflow optimization (Li et al., 2024b; Zhou et al.,
2024a; Zhuge et al., 2024; Hu et al., 2024; Yin et al., 2024).
Methods like GPTSwarm (Zhuge et al., 2024), ADAS (Hu
et al., 2024) and AFlow (Zhang et al., 2024a) explore struc-
tured representations, yet efficient workflow discovery re-

mains a challenge. Unlike previous methods relying on
human-defined logic, our approach employs reinforcement
learning (RL) to autonomously optimize workflows, achiev-
ing superior scalability and performance. Besides, unlike
previous methods that treat workflows as graphs with prede-
fined agentic modules as nodes, we maximize the creativity
of the meta-agent by constraining only the workflow inter-
faces.

Weak-to-Strong Generalization. Weak-to-strong general-
ization refers to stronger models outperforming weaker su-
pervisors after fine-tuning. While Burns et al. (2024) empir-
ically demonstrated this effect, its limitations remain. The-
oretical analyses (Charikar et al., 2024; Lang et al., 2024)
and practical approaches—including LLLM debates (Ken-
ton et al., 2024), easy-to-strong generalization (Sun et al.,
2024), small model search (Zhou et al., 2024c¢), hierarchical
mixture of experts (Liu & Alahi, 2024), reliability-aware
alignment (Guo & Yang, 2024), alignment with weak LLM
feedback (Tao & Li, 2024)—have been explored. Unlike
prior work focused on supervised improvements, we in-
troduce a learning-based agentic optimization approach to
harness strong models via weak models.

Concurrent Work. MaAS, ScoreFlow, and MAS-
GPT (Zhang et al., 2025; Wang et al., 2025; Ye et al., 2025)
also explore automatic workflow generation for LLM-based
systems. MaAS (Zhang et al., 2025) optimizes distribu-
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Figure 4. Cost Analysis (a) and Case Studies (b, ¢) of W4S on different benchmarks.

tion over multi-agent architectures. ScoreFlow (Wang et al.,
2025) conducts evaluation-based preference optimization,
yet lacks interaction-driven refinement. MAS-GPT (Ye et al.,
2025) conducts supervised learning and lacks feedback adap-
tation. In contrast, W4S trains a weak agent via RL to it-
eratively optimize workflows with environment feedback,
achieving adaptive strong model harnessing.

5. Discussion

Safety Considerations. Although it is highly unlikely that
the meta-agent employed in our setting generate malicious
behaviors, they might inadvertently produce unsafe outputs
due to limitations in model alignment (Rokon et al., 2020
Chen et al., 2021). We mitigate this risk through container-
ized execution of all generated code within secure, isolated
environments, automated detection of potentially unsafe
code patterns and manual safety inspections.

In fact, our training methodology offers an advantage from a
safety perspective compared with training-free methods that
rely directly on potentially less-aligned strong models to de-
sign workflows. The weak meta-agent could be specifically
trained to avoid generating workflows that might misuse
the strong model’s capabilities or produce harmful outputs.
While we didn’t explicitly optimize for safety in this paper,
future work could integrate safety-oriented objectives by
penalizing harmful patterns and rewarding safe workflows.

Limitations. The strong models we utilize are certainly
powerful, but they do not represent the frontier of closed-
source models, such as OpenAl ol (OpenAl et al., 2024)
and Deepseek R1 (DeepSeek-Al et al., 2025). As models
continue to advance in capability, the gap between weak

models and strong executors may widen, introducing new
challenges. Additionally, our experiments focuses primarily
on question-answering and reasoning datasets, represent-
ing only a slice of potential applications. Complex tasks
like long-horizon planning and real-world agentic tasks
may require further methodological refinements. Never-
theless, despite these limitations, our current results remain
highly encouraging. They demonstrate the viability and
effectiveness of training weak models to better understand
the behaviors and leverage the potential of stronger mod-
els, suggesting a promising direction for future research
as Al systems continue to advance in capability. Our work
represents an important proof of concept that will become in-
creasingly valuable as the capability gap between accessible
and cutting-edge models continues to widen.

6. Conclusion

We propose Weak-for-Strong Harnessing (W4S), a novel
framework that trains a weak meta-agent to design and opti-
mize agentic workflows, effectively harnessing the capabili-
ties of stronger language models. By formulating workflow
optimization as a multi-turn MDP and leveraging Reinforce-
ment Learning for Agentic Workflow Optimization (RLAO),
our approach enables a 7B model to harness state-of-the-art
models, achieving significant performance gains across di-
verse benchmarks. A key benefit of Weak-for-Strong is that
the meta-agent is a smaller model that’s easier and cheaper
to train with RL and also easier to control because it’s open
source. As LLMs continue to advance, W4S establishes a
promising paradigm for efficiently unlocking their poten-
tial, paving the way for future exploration into adaptive,
learning-driven agentic systems.
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Impact Statement

This work introduces a new paradigm—Weak-for-Strong
Harnessing—that empowers smaller, cost-efficient models
to design and optimize workflows that effectively leverage
stronger language models. By training a weak meta-agent to
adaptively leverage powerful strong models, our approach
enhances performance across diverse tasks without requir-
ing direct fine-tuning or internal access to the strong models.
This decoupling offers a scalable, cost-efficient alternative
particularly valuable in real-world applications constrained
by expensive training cost or access restrictions. We ac-
knowledge that automating agentic system generation intro-
duces potential risks if poorly aligned meta-agents produce
unsafe or unintended workflows. However, our approach
mitigates such risks by enabling targeted training and con-
trolled execution environments, and it offers new leverage
for integrating safety objectives into meta-agent learning.
Future research should further explore safeguards, verifica-
tion tools, and broader deployment impacts.
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A. Technical Details
A.1l. Prompt

We use the following prompts for the meta agent in W4S.

System Prompt for the Meta Agent

You are an AI agent system improvement expert specializing in LLM prompting techniques and state-of-the-art
LLM agent architectures. Your mission is to evolve and optimize agentic systems through innovative
prompts, strategies, and architectural patterns. Your core focus is on continuously enhancing system
performance through:

1. Careful analysis of historical agentic systems and their performance feedback
2. Creative exploration of novel architectures and techniques
3. Systematic improvement by optimizing the agentic system code based on empirical results

You will carefully study evaluation feedback to extract actionable insights and identify promising
directions for improvement. Think critically about what worked, what didn’t, and why. Use this
understanding to design targeted enhancements while maintaining system stability.

Your improvements should push boundaries through principled innovation - each iteration building upon proven
successes while thoughtfully exploring new approaches. Draw inspiration broadly from LLM agent
research and other relevant fields.

Main Prompt for the Meta Agent

### xxAgentic System Interfacexx:

Function you should optimize: ‘workflow(agent, task: str) -> dict®

— Description: Solve the target task using current agent.

— Input: task (str) - The question/problem to be solved.

— Output: dict with mandatory "answer" key containing the solution; The value of "answer" should be
converted to a string.

- Available API:

[APIs]

### Task Description
The task your designed agentic system should solve is:

[TASK]

### History Agentic Systems

Here is the archive of the history agentic systems and their evaluation feedback.
’system code’ is the code of the solver function

"eval_feedback’ includes performance metrics and randomly selected validation samples:
[HISTORY]

##4# Output Format

You MUST respond with:

1. Your analysis

2. A complete implementation of the workflow function in a Python code block, formatted EXACTLY as follows:

‘Y 'python

def workflow(agent, task: str):
\vl nmw
Fill in your code here. Any helper functions or import should be included in this function.
\" nn

return return_dict

Prompt for the Self Correction

Error during evaluation:
[ERROR]
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WARNING: DO NOT USE ANY TRY-EXCEPT BLOCKS IN YOUR SOLUTION.
Your task is to fix the root cause of the error, not to catch it.

Requirements:

1. Analyze the error message in detail

2. Explain the specific changes needed to fix the core issue

3. Provide a clean implementation that solves the problem directly
4. Do not include any error handling or try-except blocks

Please strictly follow the following output format:

[Your analysis here]

Code:

‘Y 'python

def workflow(agent, task: str):
\ nnun
Fill in your code here.
\ nnn
return return_dict

A.2. Helper Function

We implement the following APIs for meta-agent to use within the workflow. The helper function description will be added
into the main prompt for the meta agent.

Available APIs.

+ ‘agent.call_ json_format_llm(messages, temperature, num_of_response, agent_role, return_dict_keys,
instructions) ': Call OpenAI APIs and return a list of dictionary format responses containing the keys
specified in ‘return_dict_keys'.

+ ‘agent.call llm(messages, temperature, num_of_ response, agent_role, instructions) ‘: Call OpenAI APIs and
return a list of text format responses.

+ ‘agent.execute_code (code) ‘: Execute the code and return the output. The code MUST contain a ‘solution®
function. The output of ‘execute_code(code) ' will be the return value of the ‘solution' function if the
code is executed successfully or raise an exception.

N,

+ ‘agent.extract_answer_str (response) Extract the numeric or LaTeX answer from the LLM response (str).
+ ‘agent.extract_code_block (response, entry_point=’solution’) ‘: Extract the code that contains ‘def <
entry_point>' from the LLM response (str).

+ ‘agent.test_on_public_test (task, solution_code, entry_point, test_loop) ‘: Execute solution code on public
test set, return ‘results' (dict), ‘results[’result’]" is ‘True‘' or ‘False‘, ‘results[’solution’]" is
the updated solution code, ‘results[’feedback’]‘' is the feedback:

B. Case Study
B.1. Case Studies for W4S

The workflow generated for MBPP

def workflow(agent, task: str, entry point: str):

instructions = "Requirements:\nl. Please explain your solution step by step.\n2. The answer MUST be a
valid Python function.\n3. Use clear variable names and add comments for clarity."
prompt = f"Your Task: \n{task}\nGenerate the complete function below with the function name equal to

{entry_point}: "

messages = [{"role": "user", "content": prompt}]
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response = agent.call_ json_format_1llm(
messages=messages,
temperature=0.3,
num_of_response=3,
agent_role="Python Programmer",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

return_dicts = response
correct_solution = None

for return_dict in return_dicts:
solution_code = return_dict.get ("answer", "")

results = agent.test_on_public_test (task, solution_code, entry_point, test_loop=3)
if results[’result’]:

correct_solution = results[’solution’]

break

if correct_solution is None:
# If no correct solution is found, take the first one

correct_solution = return_dicts[0] [/ answer’
return_dict = {

"answer": str(correct_solution),

"reasoning": return_dicts[0].get ("reasoning", ""),

return return_dict

The workflow generated for DROP

def workflow(agent, task: str):

mwnow

Solve the target task using current agent. Use ‘agent.call_ json_format_llm' to call OpenAI APIs.

Fill in your code here. Any helper functions or Import should be included in this function.
wn

instructions = """Requirements:

1. Please explain step by step.

2. Please answer the question directly.

3. The answer MUST be a concise string.

4. If the problem asks for a number, provide it in precise float form (e.g., use 3 instead of ’three’, use
93.09 instead of 93).

5. Ensure a deep understanding of the context provided in the passage.

mon

messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]

# Generate multiple solutions with different temperatures
responses = agent.call_ json_format_llm(
messages=messages,
temperature=0.7,
num_of_response=5, # Generate 5 different solutions
agent_role="read comprehension expert",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

answers = []
for response in responses:
try:
answer = str(response.get ("answer", ""))
answers.append (answer)
except:
continue

# Ensemble prompt to select the most consistent answer

ensemble_prompt = f"Given the task as follows: \n{task}\nSeveral solutions have been generated to
address the given question. They are as follows:\n{answers}\nCarefully evaluate these solutions
and identify the answer that appears most frequently. This consistency in answers is crucial for
determining the most reliable solution."

ensemble_messages = [{"role": "user", "content": ensemble_prompt}]

ensemble_response = agent.call_json_format_1l1lm(
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messages=ensemble_messages,
temperature=0.3,
num_of_response=1,
agent_role="read comprehension expert",
return_dict_keys=["reasoning", "answer"],
instructions=instructions.strip(),

) [0]

return_dict = {
"answer": ensemble_response["answer"],

return return_dict

The workflow generate GSMHard

def workflow(agent, task: str):
programmer_instructions = """
You should generate valid Python code to solve the math problem. Requirements:
1. The code must define a solution() function and return only the final numerical answer.
2. Use only basic arithmetic operation.
3. Do not introduce a dead loop.
4. Ensure the code handles all edge cases and returns a float.

mwnow

messages = [{"role": "user", "content": f"Write Python code to solve this math problem. The code should
follow the requirements. Problem: {task}"}]

responses = agent.call_json_format_llm(
messages=messages,
temperature=0.3,
num_of_response=5, # Generate 5 different solutions
agent_role="Python programmer",
return_dict_keys=["reasoning", "code"],
instructions=programmer_instructions.strip(),

answers = []
for response in responses:
try:
code = response.get ("code", "")
result = agent.execute_code (code)
if isinstance(result, (int, float)):
answers.append (result)
except Exception as e:
continue

if not answers:
# Fallback to LLM reasoning if no valid code is generated
math_expert_instructions = """
Requirements:
1. Please explain step by step.
2. The answer MUST be a float.
wnn
messages = [{"role": "user", "content": f£"# Your Task:\n{task}"}]
response = agent.call_json_format_llm(
messages=messages,
temperature=0.8,
num_of_response=1,
agent_role="math expert",
return_dict_keys=["reasoning", "answer"],
instructions=math_expert_instructions.strip(),
)
return_dict = response[0]
return_dict ["answer"] = str(return_dict.get ("answer", "0.0")
return return_dict

# Use self-consistency to get the most common answer
from collections import Counter

answer_counts = Counter (answers)

most_common_answer = answer_counts.most_common (1) [0] [0]

return_dict = {
"answer": str (most_common_answer),
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return return_dict

he workflow generated for MATH

def workflow(agent, task: str):
# Define the instructions for the LLM
instructions = """
Requirements:
1. Please explain step by step.
2. The answer MUST be formatted correctly.

3. If the task requires a numerical answer, provide it as a precise number or LaTeX expression.
won

# Call the LLM with the task and instructions
messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
response = agent.call 1lm(

messages=messages,

temperature=0.7,

num_of_response=5,

agent_role="math expert",

instructions=instructions.strip(),

)

# Extract answers from the responses
answers = [agent.extract_answer_str (response) for response in response]

# Count the frequency of each answer
from collections import Counter
answer_counts = Counter (answers)

# Get the majority answer
majority_answer, _ = answer_counts.most_common (1) [0]
# Format the answer correctly
try:
# Try to convert the answer to a float
float_answer = float (majority_answer)
if float_answer.is_integer():
majority_answer = int (float_answer)
else:
majority_answer = float_answer
except ValueError:
# If not a number, keep it as 1is
pass

# Create the return dictionary
return_dict = {"answer": majority_answer}
return return_dict

he workflow generated for MMLU Pro

def workflow(agent, task: str):
from collections import Counter
import random

def get_initial_responses (task, agent_role):
messages = [{"role": "user", "content": f£"# Your Task:\n{task}"}]
responses = agent.call_ json_format_llm(
messages=messages,
temperature=0.7,
num_of_response=5,
agent_role=agent_role,
return_dict_keys=["reasoning", "answer"],
instructions="Requirements:\nl. Please explain step by step.\n2. The answer MUST be A or B or C
or D or E or F or G or Hor I or J."
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return responses
def refine_response (task,
messages = [
{"role": "user", "content": f"# Your Task:\n{task}"},
{"role": "assistant", "content": f"Your initial solution:\nReasoning:
{initial_ response[’reasoning’]}\nAnswer: {initial_ response[’answer’]}"}

initial_response, agent_role):

]
refined_response = agent.call_ json_format_llm(
messages=messages,
temperature=0.3,
num_of_response=1,
agent_role=agent_role,
return_dict_keys=["revised_reasoning", "revised_answer"],
instructions="Requirements:\nl. Consider other experts’ solutions carefully.\n2. Provide
improved reasoning if needed.\n3. The revised_answer MUST be A or B or C or D or E or F or
G or Hor I or J."
) [0]
return refined_response
def get_final_answer (refined_responses) :
answers = [response[’revised_answer’]
answer_counts = Counter (answers)
most_common_answer = answer_counts.most_common (1) [0] [0]
return most_common_answer

for response in refined_responses]

# Dynamic role assignment based on task complexity

agent_roles = ["Knowledge and Reasoning Expert", "Scientist",

if len(task.split()) < 20:
agent_roles = agent_roles[:2]

"Critical Thinker"]

# Simplified task, use fewer roles

# Initial responses

initial_responses = []

for role in agent_roles:
initial_responses.extend(get_initial_ responses (task, role))

# Refine responses

refined_responses = []

for response in initial_responses:
refined_responses.append (refine_response (task, response, random.choice (agent_roles)))

# Get final answer

final_answer = get_final_ answer (refined_responses)

return_dict = {
"answer": final_answer

}

return return_dict

C. More Related Work

LLM Post-Training. Modern LLMs undergo various post-training processes to enhance task-specific capabilities and
align outputs with human preferences, including instruction tuning (Zhang et al., 2024b; Muennighoff et al., 2023; Feng
et al., 2024; Qi et al., 2024), preference learning (Rafailov et al., 2024), and reinforcement learning (DeepSeek-Al et al.,
2025; Zhou et al., 2024b). Our W4S framework is most closely related to multi-turn RL algorithms for LLMs. Qu et al.
(2024) employed multi-turn RL to train language models in self-correction and self-improvement, while Zhou et al. (2024b)
developed hierarchical multi-turn RL for training LLMs on complex interactive tasks. Unlike these approaches that directly
enhance model capabilities, W4S trains a weak meta-agent to harness stronger models without modifying their parameters.

D. More Implementation Details

D.1. Datasets

We evaluate W4S on eleven datasets, including mathematical reasoning, question answering and code generation. For
MATH, MBPP and HumanEval, we follow the data splits in Zhang et al. (2024a). For the other datasets, we follow Hu et al.

(2024) and randomly split the dataset into validation and test splits. The dataset statistics are included in Table 4.
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Domain ‘ Dataset #Validation  #Test
MGSM 128 800
GSM Plus 128 800
. GSM Hard 128 800
Math Reasoning GSM8K 128 300
SVAMP 128 800
MATH 119 486
. MBPP 86 341
Code Generation HumanEval 33 131
DROP 128 800
Question Answering | MMLU Pro 128 800
GPQA 60 138

Table 4. Dataset Statistics.

D.2. Baselines

We evaluate W4S against several established methods, organized into three categories. First, we include standard LLM
approaches: Vanilla (direct LLM invocation) and 5-shot prompting. Second, we compare against six hand-designed agentic
workflows: (1) Chain-of-Thought (COT) (Wei et al., 2022), (2) Self-Consistency with Chain-of-Thought (COT-SC) (Wang
et al., 2022), (3) Self-Refine (Madaan et al., 2023), (4) LLM Debate (Du et al., 2023), (5) Quality Diversity (Lu et al.,
2025a), and (6) Dynamic Assignment (Xu et al., 2023a). Finally, we benchmark against two recent automated workflow
design methods: ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024a).

In COT, we prompt the LLM to think step by step before answering the question. In COT-SC, we sample n = 5 answers
and then perform an ensemble by either a LLM query (QA, Code task) or a majority voting (Math task). For Self-Refine,
we allow up to five refinement iterations, with an early stop if the critic deems the answer correct. In LLM-Debate, each
debate module is assigned a unique role, such as Math Expert or Physics Expert, and the debate lasts for two rounds.
In Quality-Diversity, we conduct three iterations to collect diverse answers based on previously proposed ones. In Role
Assignment, we use one LLM query to first choose a role from a predefined set, and then use another LLM query to answer
the question by acting within the chosen role.

For the hand-designed workflow implementations, we adopt the standardized versions from the ADAS framework to ensure
fair comparison. For AFlow, we reproduce the results using their official codebase and implementation.

D.3. Details for Data Collection

In our experiments, we set the number of candidate samples m = 5 and select the best-performing action to determine the
next state. We filter out actions yielding workflows with extremely poor performance to ensure quality. Trajectories are
collected over a maximum of 10 iterations per task in Table 1 and 15 iterations per task in Table 2. To manage computational
efficiency, we apply trajectory truncation with a horizon of 7' = 2, resetting the state every two iterations and correspondingly
resetting the maximum historical validation performance.

D.4. Implementation Details

Hyperparameters for Fine-Tuning with W4S. For finetuning, we utilize the TRL (von Werra et al., 2020) codebase, but
we customize the loss function and the dataset preprocessing. The base models are directly loaded from Hugging Face:
Qwen2.5-Coder-7B-Instruct. The hyperparameters used for finetuning are specified in Table 5.

Hyperparameters for Inference. For inference, we employ the meta-agent with a temperature of 0.5 to sample once for
each iteration, different from best-of-m sampling during training. In order to keep consistent with the training data, we also
apply trajectory truncation during inference, with a horizon 7" = 2.
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Hyperparameters Value
Learning Rate le-5
Training Epochs 4
Number of GPUs 2
LR Scheduler cosine
Per Device Batch Size 1
Gradient Accumulation Steps 16

Table 5. Hyperparameters for Training with W4S.
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Figure 5. The Test Accuracy (%) of ADAS on MGSM dataset. *Sequential’ denotes the default configuration, updating the history archive
iteratively; 'Random’ indicates 30 independent workflow samples generated in the first iteration. Results show that ADAS’s sequential
performance closely mirrors random sampling, with its maximum accuracy not exceeding the best random sample.

E. More Experimental Results
E.1. Limitation of Previous Work

Figure 5 illustrates a key limitation of ADAS. The ’Sequential’ condition reflects its standard setup, where the history archive
is updated each iteration, while 'Random’ involves generating 30 independent workflow samples in the initial iteration. The
results reveal that ADAS’s sequential performance is comparable to random sampling, with its peak accuracy failing to

surpass the best outcome from the 30 random samples. This suggests that ADAS struggles to leverage historical information
effectively for iterative improvement.

E.2. Cross-Model Transferability

Table 6 demonstrates the cross-model transferability of W4S. We train the meta-agent to optimize workflows for GPT-4o-
mini, and directly transfer the workflow designed for GPT-40-mini to other models.

E.3. Cross-Dataset Transferability

Table 7 demonstrates the cross-dataset transferability of W4S. We train the meta-agent for GPT-40-mini on one dataset, and
directly transfer the optimal workflow to other datasets.
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Execution LLM ‘ GPT-40 Claude-3-5-sonnet

Dataset | MBPP

Vanilla 75.9 77.7
+W4S 90.9 (+15.0%) 89.8 (+12.1%)
Dataset ‘ GSM Hard

Vanilla 55.0 53.8
+W4S 77.6 (+22.6%) 78.2 (+24.4%)

Table 6. Cross-model transferability of W4S. The meta-agent is trained for harnessing GPT-4o0-mini. We report the performances
before and after equipping the Execution LLM with the designed workflow.

Dataset ‘ MBPP — H-Eval GSM-Hard - MGSM MMLU Pro — GPQA GPQA — MMLU Pro

Vanilla 87.7 82.9 39.1 56.1
+W4S | 96.4 (+8.7%) 87.4 (+4.5%) 44.4 (+5.3%) 64.1 (+8%)

Table 7. Cross-dataset transferability of W4S. The Execusion LLM is GPT-40-mini. "MBPP—H-Eval” means we train our meta-agent
on MBPP, and evaluate on HumanEval. We report the performances before and after equipping the Execution LLM with the designed
workflow.

E.4. Training Cost Analysis

Training the weak meta-agent on five datasets (DROP, MMLU Pro, MBPP, GSM Hard, and Math) requires approximately 1
H100 GPU hour (30 minutes on 2 GPUs). Training on a single dataset requires only about 0.2 GPU hour. The API cost for
collecting training trajectories varies by dataset, about 10$ ~ 20$ USD per dataset, with GPT-40-mini as executor LLMs.
These computational and API cost could be further amortized when applying the trained meta-agent to multiple unseen
datasets without additional training. We anticipate even stronger generalization capabilities when the meta-agent is trained
across a more diverse range of domains.
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